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Abstract

We continue the investigations initiated in the recent papers [7, 11] where Bayes logics

have been introduced to study the general laws of Bayesian belief revision. In Bayesian belief

revision a Bayesian agent revises (updates) his prior belief by conditionalizing the prior on

some evidence using the Bayes rule. In this paper we take the more general Jeffrey formula

as a conditioning device and study the corresponding modal logics that we call Jeffrey logics,

focusing mainly on the countable case. The containment relations among these modal logics

are determined and it is shown that the logic of Bayes and Jeffrey updating are very close.

It is shown that the modal logic of belief revision determined by probabilities on a finite or

countably infinite set of elementary propositions is not finitely axiomatizable. The significance

of this result is that it clearly indicates that axiomatic approaches to belief revision might be

severely limited.

Keywords: Modal logic, Bayesian inference, Bayes learning, Bayes logic, Jeffrey learning,

Jeffrey conditionalization.

1 Background and overview

This paper continues the investigations initiated in the recent papers [7, 11] where Bayes logics

have been introduced to study the modal logical properties of statistical inference (Bayesian belief

revision) based on Bayes conditionalization.

Suppose (X,B, p) is a probability space where the probability measure p describes knowledge

of statistical information of elements of B. In the terminology of probabilistic belief revision one

says that elements in B stand for the propositions that an agent regards as possible statements

about the world, and the probability measure p represents an agent’s prior degree of beliefs in the

truth of these propositions. Belief revision is about to learn new pieces of information: Learning

proposition A ∈ B to be true, the agent revises his prior p on the basis of this evidence and

replaces p with some new probability measure q (often called posterior) that can be regarded as

the probability measure that the agent infers from p on the basis of the information (evidence)

that A is true. This transition from p to q is what is called statistical inference. We say in this
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situation that “q can be learned from p”1 and that “it is possible to obtain/learn q from p”. This

clearly is a modal talk and calls for a logical modeling in terms of concepts of modal logic. Indeed,

the core idea of the paper [7] was to look statistical inference as an accessibility relation between

probability measures: the probability measure q can be accessed from the probability measure p

if for some evidence A we can infer from p to q. (For more motivation on how exactly modal logic

come to the picture we refer to the introduction of [7]).

But how do we get q? One possible answer is a fundamental model of statistical inference,

the standard Bayes model that relies on Bayes conditionalization of probabilities: given a prior

probability measure p and an evidence A ∈ B the inferred measure q is defined by conditionalizing

p upon A using the Bayes rule:

q(H)
.
= p(H | A) =

p(H ∩A)

p(A)
(∀H ∈ B) (1)

provided p(A) 6= 0. When q can be obtained from p using Bayes conditionalization upon some

evidence A we say that q is Bayes accessible from p. The paper [7] studied the logical aspects of

this type of inference from the perspective of modal logic and also hints that a similar analysis

could be carried out when Bayes accessibility is replaced by the more general accessibility based

on Jeffrey conditionalization.

Indeed, Bayesian belief revision is just a particular type of belief revision: Various rules re-

placing the Bayes rule have been considered in the context of belief change, and one important

particular type is Jeffrey conditionalization (see [32] and [9]). Jeffrey conditioning is a way of

inferring to a new probability q from the prior probability p and from an uncertain evidence ri

assigned to a finite2 partition {Ei}i<n of X (ri ≥ 0,
∑
i<n ri = 1, p(Ei) > 0) by making use of

the Jeffrey rule:

q(H)
.
=
∑
i<n

p(H | Ei)ri (2)

Jeffrey conditioning provides a more general method than Bayesian conditioning: if we assume

that an element of the partition becomes certain (i.e. ri = 1 for some index i), then the Jeffrey

rule (2) reduces to the Bayes rule q(H) = p(H | Ei). On this basis the Bayes rule is a special

case of the Jeffrey rule. Taking the Jeffrey rule as an inference device gives rise to what we call

Jeffrey accessibility: we say that q can be Jeffrey accessed from p if q can be obtained from p using

(2) with some uncertain evidence. The aim of the current paper is to study the modal logical

character of Jeffrey accessibility in a similar manner as it had been done in [7] and [11] with Bayes

accessibility.

For monographic works on Bayesianism we refer to [19], [6], [32]; for papers discussing basic

aspects of Bayesianism, including conditionalization, see [18], [16], [14], [30], [17], [31]; for a

discussion of Jeffrey’s conditionalization, see [10].

1This terminology is common in the literature of machine learning or artificial intelligence [22], [3], and it might

be slightly confusing because one also says the “Agent learns the evidence”. But the conceptual structure of the

situation is clear: The Agent’s “learning” q means the Agent infers q from some evidence (using conditionalization

as inference device, see later).
2Finiteness of the partition does not play a crucial role here, in fact, it turns out from Section 3 that from the

modal logical point of view allowing infinite (countable) partitions does not make any difference. See the discussion

in Section 3.

2



Two remarks are in order here. First, in the literature of probabilistic updating apart from the

Bayes and Jeffrey rules various other rules have been studied to update a prior probability, such as

entropy maximalization or minimalization principles among others. Conditionalizing is a concept

and technique in probability theory that is much more general than the Bayes rule (1) (also called

“ratio formula” [25]). Both the Bayes rule and Jeffrey rule are special cases of conditioning with

respect to a σ-field, see [4][Chapters 33-34] and [13] for further discussion of the relation of Bayes

and Jeffrey rules to the theory of conditionalization via conditional expectation determined by

σ-fields. We refer to [9] for a comparison of such methods.

Second, let us note here that there is a huge literature on other types of belief revision as

well. Without completeness we mention: the AGM postulates in the seminal work of Alchurrón–

Gärdenfors–Makinson [1]; the dynamic epistemic logic [29]; van Benthem’s dynamic logic for belief

revision [28]; probabilistic logics, e.g. Nilsson [23]; and probabilistic belief logics [2]. Typically, in

this literature beliefs are modeled by sets of formulas defined by the syntax of a given logic and

axioms about modalities are intended to prescribe how a belief represented by a formula should be

modified when new information and evidence are provided. Viewed from the perspective of such

theories of belief revision our intention in this paper, following [7], is very different. We do not

try to give a plausible set of axioms in some nicely designed logic to capture desired features of

(probabilistic) belief revision. On the contrary, we take the model that is actually used in appli-

cations of probabilistic learning theory and aim at an in-depth study of this model from a purely

logical perspective. Bayesian probabilistic inference is relevant not only for belief change: Bayes

and Jeffrey conditionalization are the typical and widely applied inference rules also in situations

where probability is interpreted not as subjective degree of belief but as representing objective

matters of fact. Finding out the logical properties of such types of probabilistic inference has thus

a wide interest going way beyond the confines of belief revision.

Below we recall the most important preliminary definitions from [7] and define the central

subjects of the present paper. Concerning notions in modal logic we refer to the books Blackburn–

Rijke–Venema [5] and Chagrov–Zakharyaschev [8]. We take the standard unimodal language given

by the grammar

a | ⊥ | ¬ϕ | ϕ ∧ ψ | ♦ϕ (3)

defining formulas ϕ, where a belongs to a nonempty countable set Φ of propositional letters. We

use more-or-less standard notation and terminology but to be on the safe side the most basic

concepts are recalled in the Appendix.

Formal background. For a measurable space 〈X,B〉 we denote by M(X,B) the set of all

probability measures over 〈X,B〉. M(X,B) serves as the set of “possible worlds” in the Kripkean

terminology and Bayes accessibility relation has been defined in [7] as follows: For v, w ∈M(X,B)

we say that w is Bayes accessible from v if there is an A ∈ B such that w(·) = v( · | A). We denote

the Bayes accessibility relation on M(X,B) by R(X,B). [7] introduces the notion of Bayes frames

and Bayes logics:

Definition 1.1 (Bayes frames). A Bayes frame is a Kripke frame 〈W,R〉 that is isomorphic, as a
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directed graph, to F(X,B) = 〈M(X,B), R(X,B)〉 for a measurable space 〈X,B〉. �

For convenience, we rely on the convention that elementary events {x} for x ∈ X always belong

to the algebra B; the reader can easily convince himself that this convention can be bypassed for the

purposes of this paper. As a result, note that if the measurable space 〈X,B〉 is finite or countably

infinite, then B must be the powerset algebra ℘(X). Therefore, in the countable case (i.e. when

X is countable) instead of writing F(X,℘(X)), M(X,℘(X)) or R(X,℘(X)) we sometimes simply

write F(X), M(X) or R(X), respectively.

Definition 1.2 (Bayes logics). A family of normal modal logics have been defined in [7] based on

finite or countable or countably infinite or all Bayes frames as follows.

BL<ω = {φ : (∀n ∈ N) F(n, ℘(n)) 
 φ} (4)

BLω = {φ : F(ω, ℘(ω)) 
 φ} (5)

BL≤ω = BL<ω ∩BLω (6)

BL = {φ : (∀ Bayes frames F) F 
 φ} (7)

We call BL<ω (resp. BL≤ω) the logic of finite (resp. countable) Bayes frames; however, observe

that the set of possible worlds M(X,B) of a Bayes frame F(X,B) is finite if and only if X is a

one-element set, otherwise it is at least of cardinality continuum. �

Bayes logics in Definition 1.2 capture the laws of Bayesian learning: BL<ω is the set of general

laws of Bayesian learning based on all finite Bayes frames, while the general laws of Bayesian

learning independent of the particular representation 〈X,B〉 of the events is then the modal logic

BL. The following theorem has been proved in [7]3.

Theorem 1.3. The following (non)containments hold.

• S4 ⊆ BL ⊆ BLω = BL≤ω ( BL<ω,

• S4.1 ( BLω,

• S4.1 + Grz ( BL<ω.

The logic of finite Bayes frames has completely been described in [7] and, in particular, it has been

shown that

• BL<ω has the finite frame property ([7][Proposition 5.8]),

• BL<ω is not finitely axiomatizable ([7][Propositions 5.9]).

In a similar manner we define Jeffrey accessibility: Given two measures p, q ∈M(X,B) we say

that q is Jeffrey accessible from p if there is a finite partition {Ei}i<n and uncertain evidence ri

assigned to this partition (ri ≥ 0,
∑
i<n ri = 1, p(Ei) > 0) such that eq. (2) holds. Denote the

corresponding accessibility relation by J(X,B).

3Some of the basic terminology of modal logic, such as what S4 is, is recalled in the Appendix.
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Definition 1.4 (Jeffrey frames). A Jeffrey frame is a Kripke frame 〈W,R〉 that is isomorphic, as

a directed graph, to J (X,B) = 〈M(X,B), J(X,B)〉 for a measurable space 〈X,B〉. �

A remark similar as above applies here: if the underlying set X of the measurable space

〈X,B〉 is countable, then we may write J (X) and J(X) instead of the longer J (X,℘(X)) and

J(X,℘(X)).

Definition 1.5 (Jeffrey logics). A family of normal modal logics is defined for a cardinal κ and

n ∈ {=, <,≤} as follows.

JLnκ = {φ : (for all 〈X,B〉 with |X|n κ) J (X,B) 
 φ} (8)

JL = {φ : (∀ Jeffrey frames J ) J 
 φ} (9)

We call JL<ω (resp. JLω) the logic of finite (resp. countable) Jeffrey frames or sometimes we use

the term “finite (resp. countable) Jeffrey logic”. �

Jeffrey logics in Definition 1.5 capture the laws of Jeffrey updating: JL<ω is the set of general

laws of Jeffrey learning based on all finite Jeffrey frames, while the general laws of Jeffrey learning

independent of the particular representation 〈X,B〉 of the events is then the modal logic JL.

From the point of view of applications of probabilistic updating the most important classes of

Bayes and Jeffrey frames are the ones determined by measurable spaces 〈X,B〉 having a finite or a

countably infinite X. Taking the first steps, this paper focuses only on the case with countable X,

nevertheless, questions similar to what we ask here could be raised in connection with standard

Borel spaces, e.g. when B is the Borel (or Lebesgue) σ-algebra over the unit interval X = [0, 1].

It seems that countability of X serves as a dividing line and continuous spaces require different

techniques than the ones employed here (cf. [11] where Bayes updating over standard Borel spaces

was investigated).

Overview of the paper. Firstly, in Section 2 we discuss the connections of Jeffrey logics to

a list of modal axioms that are often considered in the literature. In particular, Proposition 2.1

shows that JL ` S4 but JL 6` M (thus JL 6` S4.1), JL≤ω ` S4.1 and JLnκ 6` Grz for any

n ∈ {=, <,≤} and κ > 1. Then, Theorem 2.2 clarifies the containments between the different

Jeffrey logics:

S4 ⊆ JL ⊆ JLω = JL≤ω ⊆ JL<ω ⊆ JLn+k ⊆ JLn (10)

In Section 3 we prove that the logic of Jeffrey updating (in the countable case) coincide with

the logic of absolute continuity (see Theorem 3.7). The interesting part is when X is countably

infinite: as a side result it turns out that from the modal logical point of view it does not matter

whether or not we allow infinite partitions in the Jeffrey formula (2). In other words, the general

laws that apply to Jeffrey learning are the same in both cases (and coincide with that of absolute

continuity).

In Section 4 we ask the question “how close Bayes and Jeffrey logics are?” It turns out that

finiteness of X serves as a dividing line: there is a proper containment

JLn ( BLn and JL<ω ( BL<ω (11)
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The case with countably infinite X, however, seems to show a completely different behavior.

Theorem 4.6 disqualifies a large class of normal modal logics L that can possibly be put in between

JLω ( L ( BLω. We also show that JLω is indistinguishable from BLω within a large class of

modal formulas (Corollary 4.7). It seems that the standard techniques fail to make a distinction

between JLω and BLω and thus we conjecture that they are indeed the same. This we articulated

in Problem 4.8: Are the logics JLω and BLω the same?

Finally, Section 5 deals with finite axiomatizability of the logics JL<ω and JLω. Theorem 5.8

states that the logic of finite Jeffrey frames JL<ω is not finitely axiomatizable, while Theorem 5.16

claims the same non finite axiomatizability result for JLω (moreover countable Jeffrey logics are not

axiomatizable by any set of formulas using finitely many variables). The situation is thus similar to

that of Bayes logics (recall that BL<ω is not finitely axiomatizable, see [7][Propositions 5.9]). Such

no-go results have a philosophical significance: they tell us that there is no finite set of formulas

from which all general laws of Bayesian belief revision and Bayesian learning based on probability

spaces with a countable set of propositions can be deduced. Bayesian learning and belief revision

based on such simple probability spaces are among the most important instances of probabilistic

updatings because they are widely used in applications. If the axiomatic approach to belief revision

is not capable to characterize the logic of the simplest, paradigm form of belief revision, then this

casts doubt on the general enterprize that aims at axiomatizations of belief revision systems.

The cases with finite or countably infinite X require different techniques, therefore this section is

divided into two subsections, accordingly.

2 Modal principles of Jeffrey updating

In this section we discuss the connections of Jeffrey logics to a list of modal axioms that are often

considered in the literature: the T, 4, M and Grz axioms (see Appendix).

We claim first that each Jeffrey frame is an S4-frame, that is, the accessibility relation of the

frame is reflexive and transitive. Take any Jeffrey frame J (X,B) = 〈W,R〉. As we mentioned

earlier Bayes conditioning is a special case of Jeffrey conditioning. This immediately implies

reflexivity of R as for all probability measures w ∈W we have w(·) = w( · | X). As for transitivity,

suppose u, v, w ∈ W with uRv and vRw. Taking into account the Jeffrey formula (2), we need

two partitions {Ei} and {Fj} and uncertain evidences ri and sj assigned to these partitions such

that v(H) =
∑
i u(H | Ei)ri and w(H) =

∑
j v(H | Fj)sj . Checking transitivity of R requires

some efforts but only basic algebra is involved (such as reordering sums) and thus we skip the

lengthy calculations and only hint that one should take the common refinement {Ei ∩ Fj}i,j of

the two partitions with suitable values ti,j calculated from the values ri and sj . Consequently

J (X,B) 
 S4 and therefore S4 ⊆ JL.

An S4-frame is an S4.1-frame if it validates the axiom M that requires the existence of

endpoints: the frame J (X,B) = 〈W,R〉 validates M if and only if R has endpoints in the following

sense:

∀w∃u(wRu ∧ ∀v(uRv → u = v)) (12)

If X is countable, then the Dirac measures δ{x} for x ∈ X are endpoints: take any u ∈ W and
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pick x ∈ X such that u({x}) 6= 0. Then δ{x} = u( · | {x}). It follows that S4.1 ⊆ JL≤ω. (We will

see later on that this containment is proper as JL≤ω is not finitely axiomatizable).

On the other hand, we claim that M /∈ JL and consequently S4.1 6⊆ JL. To this end it is

enough to give an example for a Jeffrey frame J (X,B) in which there are paths without endpoints.

Consider the frame J ([0, 1],B) where [0, 1] is the unit interval and B is the Borel σ-algebra. Then,

for the Lebesgue measure w we have

J ([0, 1],B) 6|= ∃u(wRu ∧ ∀v(uRv → u = v)) (13)

We note that none of the logics JLnκ (for n ∈ {=, <,≤} and κ > 1) contain the Grzegorczyk

axiom Grz as a Jeffrey frame J always contains a complete subgraph of cardinality continuum.

Summing up we get the following proposition.

Proposition 2.1. The following statements hold:

• JL ` S4 but JL 6`M, in particular JL 6` S4.1.

• JL≤ω ` S4.1.

• JLnκ 6` Grz for any n ∈ {=, <,≤} and κ > 1.

The containments between different Jeffrey logics are clarified in the next theorem.

Theorem 2.2. The following containments hold.

S4 ⊆ JL ⊆ JLω = JL≤ω ⊆ JL<ω ⊆ JLn+k ⊆ JLn (14)

Proof. From the very definition the following containments are straightforward:

JL ⊆ JL≤ω ⊆ JL<ω ⊆ JLn and JL ⊆ JL≤ω ⊆ JLω (15)

Next we show JLm ⊆ JLn for m > n and JLω ⊆ JL<ω. The proof relies on Lemma 2.3. If

〈X,B〉 and 〈Y,S〉 are measurable spaces, then we say that 〈X,B〉 can be embedded into 〈Y,S〉
(〈X,B〉 ↪→ 〈Y,S〉 in symbols) if there is a surjective measurable function f : Y → X such that

f−1 : B → S is a σ-algebra homomorphism.

Lemma 2.3. If 〈X,B〉 ↪→ 〈Y,S〉, then J (Y,S)� J (X,B)

Proof. Let f : Y → X be a surjective measurable function (f−1 : B → S is a σ-algebra

homomorphism). For a probability measure p ∈ M(Y,S) let us assign the probability measure

F (p) ∈M(X,B) defined by the equation

F (p)(A) = p
(
f−1(A)

)
(A ∈ B) (16)

Then F : J (Y,S)� J (X,B) is a surjective bounded morphism.

Now, for m > n we have J (m) � J (n) and J (ω) � J (n). Hence, the containments JLm ⊆
JLn for m > n and JLω ⊆ JL<ω follow. We also obtain JLω = JL≤ω as JL≤ω = JLω ∩ JL<ω.
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3 Relation to absolute continuity

Considering equation (2) (or even equation (1)) it is easy to see that q has value 0 on every element

H ∈ B which has p-probability zero. The technical expression of this is that q is absolutely

continuous with respect to p. Therefore absolute continuity is necessary for Bayes or Jeffrey

accessibility. In general, for p, q ∈M(X,B) we say that q is absolutely continuous with respect to

p (q � p in symbols) if p(A) = 0 implies q(A) = 0 for all A ∈ B.

Let us now assume that X = {x0, . . . , xn−1} is finite and take any probability measure p ∈
M(X,℘(X)). If q ∈ M(X,℘(X)) is a probability measure such that q � p, then by taking the

partition Ei = {xi} for i < n and the uncertain evidence ri = q(Ei), we get

q(H) =
∑
i<n

p(H | Ei)ri (17)

for all H ⊆ X. This means that given any prior probability p and an other probability q that is

absolutely continuous with respect to p, if the probability space is finite, then q can be obtained

from p by the Jeffrey rule. In other words, absolute continuity and Jeffrey accessibility coincide

in the finite case. This motivates us to introduce Kripke frames where the accessibility relation is

defined by absolute continuity, as follows.

Definition 3.1. For a probability space 〈X,B〉 we define the Kripke frame

A(X,B) =
〈
M(X,B), �

〉
(18)

where � stands for absolute continuity: For probability measures p, q ∈M(X,B) we write p� q

(or q � p) if p(A) = 0 implies q(A) = 0 for all A ∈ B. �

Definition 3.2 (Logics of Absolute Continuity). In a similar manner to Definitions 1.2 and 1.5

we define a family of normal modal logics based on absolute continuity. Let κ be a cardinal and

n ∈ {=, <,≤}.

ACLnκ = {φ : (for all 〈X,B〉 with |X|n κ) A(X,B) 
 φ} (19)

ACL = {φ : (∀〈X,B〉) A(X,B) 
 φ} (20)

�

Our observation at the beginning of this section proves the next proposition.

Proposition 3.3. JLn = ACLn and JL<ω = ACL<ω for any n ∈ N.

Proof. For a finite X a probability measure q ∈ M(X,℘(X)) can be obtained from p ∈
M(X,℘(X)) by means of Jeffrey conditionalizing if and only if p � q. This implies that the

frames A(X) and J (X) are identical. Consequently ACLn = Λ(A(n)) = Λ(J (n)) = JLn, and

ACL<ω =
⋂
n ACLn =

⋂
n JLn = JL<ω.

What about the countably infinite case? The answer depends on whether or not we allow

infinite partitions in the Jeffrey formula (2).
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If we allow infinite partitions in the Jeffrey formula (2) and X is countably infinite, say X = N,

then taking the partition Ei = {i} and the values ri = q({i}) for i ∈ N, Jeffrey formula leads to

q(H) =
∑
i∈N

p(H | Ei)ri (21)

for all H ∈ ℘(N), provided p, q ∈M(N, ℘(N)) are such that p� q. This immediately ensures that

q is Jeffrey accessible from p if and only if q is absolutely continuous with respect to p, and in

particular JLω = ACLω.

There are good reasons, however, to keep the partition in the Jeffrey formula finite. The re-

quirement that the uncertain evidence is given by a probability measure on a proper, non-trivial

partition can be important: otherwise, as we have seen it, every probability measure can be ob-

tained from itself as evidence – a triviality. The recent paper [12] argues that even in the finite

case (i.e. when X is finite) it makes sense not to consider the trivial partition in the Jeffrey rule

(as we did in eq. (17)). However, by sticking to all proper partitions in Jeffrey accessibility we

would lost transitivity4 which is a well-desired property in the context of learning theory. The

natural way to overcome this problem is to not allow all proper partitions but rather just the

restricted set of finite partitions. This way we can keep transitivity and also, as we will shortly

see, the infinite Jeffrey logic JLω will still coincide with ACLω. In other words, from the logical

point of view whether or not we allow infinite partitions in the Jeffrey rule (2) does not make any

difference. The rest of this section is devoted to prove this statement.

Recall that for a countable X, the support of a probability measure u ∈ M(X,℘(X)) is the

set supp(u) = {x ∈ X : u({x}) 6= 0}.

Lemma 3.4. Let p, q, r be probability measures over the measure space 〈N, ℘(N)〉 and suppose

that both q and r are Jeffrey accessible from p and supp(q) = supp(r). Then r is Jeffrey accessible

from q and vice versa.

Proof. Let p, q and r be as in the statement. According to Proposition 7.2, as both q and r

are Jeffrey accessible from p, we have that the Radon–Nikodym derivatives dq
dp and dr

dp are step

functions p-almost everywhere. As supp(q) = supp(r), q and r are mutually absolutely continuous.

In order to get that r is Jeffrey accessible from q, it is enough (by Proposition 7.2 again) to check

that the Radon–Nikodym derivative dr
dq is a step function, q-almost everywhere. But dr

dq = dr
dp ·

dp
dq

except for a q-measure zero set, and it is straightforward that the product of two step functions

is a step function. That q is Jeffrey accessible from r is completely similar.

Proposition 3.5. JLω ⊆ ACLω.

Proof. It is enough to prove that A(ω) E J (ω). Indeed, we claim that whenever p ∈ J (ω) is

a faithful measure (meaning that it has full support supp(p) = ω), then the generated subframe

J p is isomorphic to A(ω). For this we only need that if q and r are Jeffrey accessible from p and

4The common refinement of two proper partitions can lead to the trivial partition, see the example in Figure 4

in [12].
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supp(q) = supp(r), then r is Jeffrey accessible from q and vice versa. This exactly is Lemma 3.4.

Proposition 3.6. JLω ⊇ ACLω.

Proof. It is enough to prove that
⊎
A(ω)� J (ω) for a suitable disjoint union

⊎
A(ω). Indeed,

recall that
⊎
A(ω) � J (ω) implies Λ

(
A(ω)

)
⊆ Λ

(⊎
A(ω)

)
⊆ Λ

(
J (ω)

)
, that is, ACLω ⊆ JLω.

The construction is as follows.

For a non-empty subset X ⊆ ω consider those probability measures in J (ω) whose support is

X and write

SX =
{
u ∈M(ω, ℘(ω)) : supp(u) = X

}
. (22)

As the Jeffrey accessibility relation is transitive, SX can be partitioned into clicks. A click is a

maximal subset K of SX such that any two u, v ∈ K are mutually Jeffrey accessible. Let KX
α be

an enumeration of the clicks of SX (α < κX for some cardinal κX depending on X). Note that

each KX
α is either a 1-element set or has continuum many elements depending on whether or not

X is a 1-element set.

For each α < κω take a disjoint copy Aα(ω) of A(ω) and write

AXα =
{
u ∈ Aα(ω) : supp(u) = X

}
. (23)

Note that each Aωα has continuum many elements.

Finally, take arbitrary bijections Fα : Aωα → Kω
α (for α < κω) and let F =

⋃
α<κω

Fα be the

union of these bijections. As the copies Aωα are disjoint, F is a well-defined bijection between⋃
αA

ω
α and Sω (this latter set is taken as a subset of J (ω)).

The content of Lemma 3.4 can be interpreted in our context as follows. Take any probability

p ∈ J (ω) with supp(p) = X. Suppose Y ⊆ X is a non-empty subset and q, r are measures in

J (ω) such that supp(q) = supp(r) = Y and both q and r can be Jeffrey accessed from p. Then

q and r must belong to the same click of SY . It follows that F can be extended from
⋃
αA

ω
α to

the entire
⋃
αA(ω)α in a homomorphic way. Checking that this extension is indeed a bounded

morphism is not hard and left to the reader.

Summing up, independently of whether or not we allow infinite partitions in the Jeffrey formula

(2) we obtained the following theorem.

Theorem 3.7. For all countable cardinals κ and n ∈ {=, <,≤} we have

JLnκ = ACLnκ. (24)

Proof. The equations JLn = ACLn for n ∈ ω and JL<ω = ACL<ω is Proposition 3.3. Com-

bining Propositions 3.5 and 3.6 we get JLω = ACLω. Finally, JL≤ω = ACL≤ω follows from the

previous results and the definition.

This result enables us to use the frames A(n) and A(ω) instead of the more complex Jeffrey

frames J (n) and J (ω).
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4 How close Bayes and Jeffrey logics are?

One of the main results in [7] is Theorem 5.2 which relates Bayes logics to Medvedev logics. We

start by recalling definitions and theorems from [26] and [7]. Medvedev’s logic of finite problems

and its extension to infinite problems by Skvortsov originate in intuitionistic logic. (For an overview

we refer to the book [8] and to Shehtman [26]; Medvedev’s logic of finite problems is covered in

the papers [21, 27, 24, 26, 20, 15]).

Definition 4.1 (Medvedev frame). A Medvedev frame is a frame that is isomorphic (as a directed

graph) to P0(X) = 〈℘(X) r {∅},⊇〉 for a non-empty finite set X. �

Medvedev’s logic ML<ω is the modal logic that corresponds to the Medvedev frames:

MLn =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| = n

}
(25)

ML<ω =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| non-empty, finite

}
(26)

A Skvortsov frame is defined in the same way as a Medvedev frame except with X is a non-

empty set of any cardinality. We denote the corresponding Skvortsov logics by MLα for sets X

of cardinality α. It has been proved (see Theorem 2.2 in [27]) that

ML
def
=
⋂
α

MLα = MLω (27)

As a slight abuse of notation we will use the term Medvedev frame for any frame of the form P0(X)

(thus X need not be finite here).

Theorem 5.2 of [7] states the containments below.

ML = MLω = ML≤ω ( ML<ω ( MLn

∪ q q q q
BL ( BLω = BL≤ω ( BL<ω ( BLn

(28)

A consequence of this result is that when the underlying set X of the measurable space is

countable we can use the more easy-to-handle Medvedev frames instead of Bayes frames.

Lemma 4.2. For a countable X the mapping f : A(X)� P0(X) defined by

f(p) = supp(p) (29)

is a surjective bounded morphism.

Proof. Surjectivity of f is straightforward. f is a homomorphism (preserves accessibility) be-

cause for p, q ∈M(X,℘(X)) we have p� q if and only if supp(p) ⊇ supp(q). To verify the zig-zag

property, suppose supp(p) ⊇ A. We need q ∈ M(X,℘(X)) such that p � q and supp(q) = A.

Finding such a q is easy, take for example the conditional probability q(·) = p(· | A).

Corollary 4.3. ACLnκ ⊆ MLnκ holds for n ∈ {=, <,≤} and κ countable.

11



Proof. Immediate from Lemma 4.2.

Corollary 4.4. JLnκ ⊆ BLnκ holds for n ∈ {=, <,≤} and κ countable.

Proof. Combine Corollary 4.3, Theorem 3.7 and Theorem 5.2. in [7].

We note that none of the logics ACLn (for n > 1) contain the Grzegorczyk axiom Grz as A(n)

always contain a complete subgraph of cardinality continuum. It is easy to check that Medvedev

frame over a finite set P0(n) validate Grz, that is, Grz ∈ BL<ω. Therefore we get

JLn ( BLn and JL<ω ( BL<ω (30)

To have all the containments between Bayes and Jeffrey logics the only question remained is

whether JLω = BLω. (By Corollary 4.4 we know that JLω ⊆ BLω). The Grzegorczyk axiom

does not differentiate between JLω and BLω as none of these logics contain the formula Grz. In

fact, we prove that JLω is indistinguishable from BLω within a large class of modal formulas. On

the other hand the standard techniques (generated subframes, bounded morphisms) to prove the

equality of the two logics do not seem to work: none of A(ω)E P0(ω) or
⊎
P0(ω)� A(ω) holds.

We call a Kripke frame F click free if there are no two different worlds in F that are mutually

accessible, i.e. the largest click in F has size at most one. Note that click freeness enables reflexive

points.

Lemma 4.5. Let F be a click free S4-frame. Then P0(ω)� F if and only if A(ω)� F .

Proof. (⇒) The claim that P0(ω) � F implies A(ω) � F is straightforward as any bounded

morphism f : P0(ω) � F can be lifted up to a bounded morphism f+ : A(ω) � F by letting

f+(p)
.
= f(supp(p)) for p ∈M(ω, ℘(ω)).

(⇐) That A(ω) � F implies P0(ω) � F can be verified by observing that click freeness of

F ensures that all points of a click in A(ω) must be mapped to the same point of F . Thus any

morphism f : A(ω) � F can be pushed down to a morphism f− : P0 � F by letting for all

∅ 6= X ⊆ ω, f−(X)
.
= f(p) for any p ∈M(ω, ℘(ω)) with supp(p) = X.

Theorem 4.6. There is no normal modal logic L such that

JLω ( L ( BLω (31)

and L is the logic of a click free S4-frame F with A(ω)� F .

Proof. Immediate from Lemma 4.5.

The previous theorem tells us that if we would like to distinguish JLω from BLω, then the

standard technique of finding a bounded morphic image of A(ω) that does the distinction fails

12



(provided that this bounded morphic image is transitive and click free). We note that every modal

formula is validated on a suitable finite, transitive, click free frame, thus Theorem 4.6 gives the

impression that the two logics JLω and BLω coincide. Applying the same technique the next

Corollary tells us that JLω is indistinguishable from BLω within a large class of modal formulas

called Jankov – de Jongh formulas (cf. Theorem 7.1 in the Appendix).

Corollary 4.7. For a transitive, click free frame F we have

χF ∈ JLω ⇔ χF ∈ BLω (32)

Proof. Combine Lemma 4.5 with Theorem 7.1.

We end this section by an open problem.

Problem 4.8. Are the logics JLω and BLω the same?

Part of the question in Problem 4.8 is this: Is there any frame F such that A(ω) � F but

P0(ω) 6� F? Such a frame F must contain a proper click (must not be click free).

5 Non finite axiomatizability

For a natural number l a logic L is l-axiomatizable if it has an axiomatization using only for-

mulas whose propositional variables are among p1, . . . , pl. Every finitely axiomatizable logic is

l-axiomatizable for a suitable l: take l to be the maximal number of variables the finitely many

axioms in question use.

The main message of this section is that countable Jeffrey logics JL<ω, JLω and JL≤ω are not

finitely axiomatizable. In fact, it turns out from the proof that they cannot even be axiomatized

with (possibly infinitely many) formulas using the same finitely many propositional letters. Thus,

these logics are not finite schema axiomatizable either. The finite and the countably infinite cases

require slightly different techniques, therefore we split the proof into two subsections, accordingly.

Also recall that the logic of countable Jeffrey frames is proved to be equal to that of absolute

continuity (see Theorem 3.7). This allows us to use the frames A(X) of absolute continuity rather

than the more complicated Jeffrey frames J (X). Phrasing it differently: we in fact show that the

logics ACL<ω, ACLω and ACL≤ω are not finitely axiomatizable and then refer to the fact that

JLnκ = ACLnκ for all countable cardinals κ and n ∈ {=, <,≤} (see Theorem 3.7).

5.1 The finite case

We aim at proving ACL<ω is not finitely axiomatizable. We show first that ACL<ω is a logic of

finite frames, thus it has the finite frame property.

For each k, n ∈ N we define the finite frame Ak(n) as follows. Take the frame A(n). For each

non-singleton set A ⊆ n the frame A(n) contains a complete subgraph of cardinality continuum

(measures p with support supp(p) = A). Replace this infinite complete graph with the complete

graph on k vertices and keep everything else fixed. A more precise definition is the following.
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Definition 5.1. Let n, k > 0 be natural numbers. For each non-singleton set a ∈ ℘(n)−{∅} take

new distinct points [a]1, . . . , [a]k, and for each singleton a ∈ ℘(n) take [a]1 = · · · = [a]k to be a

single new point. The set of possible worlds of the frame Ak(n) is the set

Ak(n) =
{

[a]1, . . . , [a]k : a ∈ ℘(n)− {∅}
}

(33)

For two points [a]i, [b]j ∈ Ak(n) we define the accessibility relation → as

[a]i → [b]j if and only if a ⊇ b (34)

�

Lemma 5.2. For all n and k we have A(n)� Ak(n).

Proof. For a measure p ∈ M(n) the support supp(p) is a non-empty subset of n, therefore

[supp(p)]1, . . ., [supp(p)]k are elements of Ak(n). Take any mapping f : M(n)→ Ak(n) such that

f(p) = [supp(p)]i for some i ∈ {1, . . . , k} (35)

and f is a surjection. Such a mapping clearly exists as for each a ∈ ℘(n)− {∅} we have

|{p : supp(p) = a}| = 2ℵ0 > k (36)

We claim that f is a surjective bounded morphism:

Homomorphism. Take p, q ∈ M(n) and suppose f(p) = [supp(p)]i, f(q) = [supp(q)]j . Then

p� q if and only if supp(p) ⊇ supp(q) if and only if [supp(p)]i → [supp(q)]j .

Zag property. Assume f(p) → [a]i for some a ∈ ℘(n) − {∅}. This can be the case if and only

if supp(p) ⊇ a. By surjectivity of f there is q such that f(q) = [a]i, whence supp(p) ⊇ supp(q)

which means p� q.

Lemma 5.3. For each modal formula ϕ there is k ∈ N such that A(n) 1 ϕ implies Ak(n) 1 ϕ.

Proof. We prove that if ϕ uses the propositional letters p1, . . . , pk only, then A(n) 1 ϕ implies

A2k(n) 1 ϕ. If A(n) 1 ϕ, then there is an evaluation V such that the model 〈A(n), V 〉 1 ϕ.

The truth of a formula in a model depends only on the evaluation of the propositional letters the

formula uses, therefore we may assume that V is restricted to p1, . . ., pk.

For x ∈ A(n) we define a 0–1 sequence of length k according to whether x ∈ V (pi) holds for

1 ≤ i ≤ k:

Px(i) =

{
1 if x ∈ V (pi)

0 otherwise.
(1 ≤ i ≤ k) (37)

As there are 2k different 0–1 sequences of length k, the number of possible Px’s is at most 2k.

Take any surjective mapping f : A(n)→ A2k(n) such that

f(x) = [supp(x)]i for some i ∈ {1, . . . , k} (38)

and for x, y ∈ A(n) with supp(x) = supp(y) we have

Px = Py implies f(x) = f(y) (39)
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Such a mapping f must exist as for each non-singleton a ∈ ℘(n)− {∅} we have 2k elements [a]1,

. . ., [a]2k in A2k(n), and this is the number of the possible Px’s. Let us now define the evaluation

V ′ over A2k(n) by

V ′(pi) = {f(x) : x ∈ V (pi)} (40)

for 1 ≤ i ≤ k. Condition (39) ensures that if x and y agree on p1, . . . , pk, then so do the images

f(x) and f(y). Thus, V ′ is well-defined. Following the proof of 5.2 one obtains that

f : 〈A(n), V 〉 � 〈A2k(n), V ′〉 (41)

is a surjective bounded morphism. As 〈A(n), V 〉 
 ¬ϕ we arrive at 〈A2k(n), V ′〉 
 ¬ϕ. This

means A2k(n) 1 ϕ.

Proposition 5.4. ACL<ω =
⋂∞
n=1

⋂∞
k=1 Λ (Ak(n)).

Proof. By combining Lemmas 5.2 and 5.3 the equality

∞⋂
n=1

Λ (A(n)) =

∞⋂
n=1

∞⋂
k=1

Λ (Ak(n)) (42)

follows immediately. The left-hand side of the equation is the definition of ACL<ω.

Corollary 5.5. Finite Jeffrey logic JL<ω has the finite frame property.

Proof. JL<ω = ACL<ω by Theorem 3.7 and thus Proposition 5.4 implies

JL<ω =

∞⋂
n=1

∞⋂
k=1

Λ (Ak(n)) (43)

As each frame Ak(n) is finite, the proof is complete.

Proposition 5.6. Let K be a class of finite, transitive frames, closed under point-generated

subframes. For every finite, transitive, point-generated frame F we have

F 
 Λ(K) if and only if ∃(G ∈ K) G � F . (44)

Proof. (⇐) If there is G ∈ K such that G � F , then Λ(K) ⊆ Λ(G) ⊆ Λ(F).

(⇒) By way of contradiction suppose G 6� F for all G ∈ K. Then by Theorem 7.1 we have

G 
 χ(F) for all G ∈ K, in particular, χ(F) ∈ Λ(K). It is straightforward to see that F 1 χ(F),

thus F 1 Λ(K).

Theorem 5.7. ACL<ω is not finitely axiomatizable.

15



Proof. A logic L is not finitely axiomatizable if and only if for any formula φ ∈ L there is a frame

Fφ such that Fφ 1 L but Fφ 
 φ.

We will use the proof that Medvedev’s modal logic of finite problems, ML<ω, is not finitely

axiomatizable. We refer to [26] where it has been proved that for each modal formula φ ∈ML<ω

there is a finite, transitive, point-generated frame Gφ such that Gφ 
 φ while Gφ 1 ML<ω. The

construction therein is such that Gφ is click free.

We intend to show that Gφ 1 ACL<ω. This is enough because ACL<ω ⊂ML<ω. By Propo-

sition 5.4 ACL<ω is the logic of the class K = {Ak(n) : n, k ∈ N} of finite, transitive frames,

closed under point-generated subframes. Therefore, to show Gφ 1 ACL<ω, by Proposition 5.6 it

is enough to prove that Gφ is not a bounded morphic image of any Ak(n). Suppose, seeking a con-

tradiction, that there exists a bounded morphism f : Ak(n)� Gφ. Then for each a ∈ ℘(n)− {∅}
the elements [a]1, . . ., [a]k should be mapped into the same point xa in Gφ. This is because the

points [a]i are all accessible from each other, while in Gφ there are no non-singleton sets in which

points are mutually accessible. It follows that f induces a bounded morphism f∗ : P0(n) → Gφ
from the Medvedev frame P0(n) into Gφ by letting f∗(a) = xa for a ∈ ℘(n) − {∅}. But this is

impossible as Gφ 1 ML<ω.

Theorem 5.8. Finite Jeffrey logic JL<ω is not finitely axiomatizable.

Proof. JL<ω = ACL<ω by Theorem 3.7 and this latter logic is not finitely axiomatizable by

Theorem 5.7.

5.2 The countably infinite case

To gain non finite axiomatizability results for the countable Jeffrey logic JLω we follow the method

presented in Shehtman [26] and we recall the most important lemmas that we make use of.

Definition 5.9 ([26]). For m > 0 and k > 2 the Chinese lantern is the S4-frame C(k,m) formed

by the set

{(i, j) : (1 ≤ i ≤ k − 2, 0 ≤ j ≤ 1) or (i = k − 1, 1 ≤ j ≤ m) OR (i = k, j = 0)} (45)

with the accessibility relation being an ordering:

(i, j) ≤ (i′, j′) iff (i, j) = (i′, j′) OR i > i′ (46)

�

C(m, k) is illustrated on page 373 in [26], however, we will not need any particular information

about C apart from two lemmas that we recall below.

Lemma 5.10 (Lemma 22 in [26]). Let φ be a modal formula using l variables and let m > 2l.

Then C(k,m) 1 φ implies C(k, 2l) 1 φ.

Lemma 5.11 (Lemma 24 in [26]). For any n > 1 we have C(2n, 2n) 
ML<ω.
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Let F = 〈W,≤〉 be a finite ordering (partially ordered set) and pick x ∈W . y is an immediate

successor of x if x < y and there is no x < z < y. (As usual < means ≤ ∩ 6=). The branch index

bF (x) is the cardinality of the set of immediate successors of x, and the depth dF (x) is the least

upper bound of cardinalities of chains in F whose least element is x. Thus, dF (x) = 1 means that

x has no immediate successors. F is duplicate-free if it is finite, generated and bF (u) 6= 1 for any

u ∈W (cf. Shehtman [26]).

Lemma 5.12. P0(ω) 6� C(k, 2k).

Proof. This is essentially Lemma 17 in [26]. Note that C(k,m) is duplicate-free. The point u =

(k, 0) in C(k, 2k) has depth d(u) = k and branch index b(u) = 2k. If there were P0(ω)� C(k, 2k),

then by Lemma 17 in [26] we would have b(u) < 2d(u) which is impossible.

Theorem 5.13. Let L be a normal modal logic with S4 ⊆ L ⊆ ML<ω. Suppose that for every

l ≥ 1 and k > l there is n ≥ k such that χ(C(k, 2n)) ∈ L. Then L is not l-axiomatizable for any

number l.

Proof. By way of contradiction suppose L is l-axiomatizable, that is, L = S4 + Σ where Σ is a

set of formulas that can use only the first l propositional variables. Let k = 2l. By assumption

there is n ≥ k so that χ(C(k, 2n)) ∈ L. That Σ axiomatizes L means that every formula in L can

be derived (in the normal modal calculus) from a finite set of axioms from Σ. Therefore there

is an l-formula φ ∈ L such that χ(C(k, 2n)) ∈ S4 + φ. This implies, by Theorem 7.1(B), that

C(k, 2n) 1 φ. As n ≥ k = 2l > l, Lemma 5.10 ensures C(k, 2l) 1 φ. In particular, C(k, 2l) 1 L.

On the other hand Lemma 5.10 implies (as k = 2l) that C(k, 2l) 
 ML<ω. By assumption

L ⊆ML<ω so it follows that C(k, 2l) 
 L which is a contradiction.

Corollary 5.14. Let F be a frame, L = Λ(F) and assume S4 ⊆ L ⊆ ML<ω. Suppose for any

k ≥ 1 there is n ≥ k such that for all u ∈ F we have Fu 6� C(k, 2n). Then L is not l-axiomatizable

for any finite number l.

Proof. Under the given assumptions Theorem 7.1(A) implies that for all k ≥ 1 there is n ≥ k so

that χ(C(k, 2n)) ∈ L. Then Theorem 5.13 applies.

Theorem 5.15. ACLω is not finitely axiomatizable (in fact, it is not l-axiomatizable for any

finite number l).

Proof. We intend to apply Corollary 5.14. ACLω = Λ(A(ω)) and the containments S4 ⊆
ACLω ⊆ML<ω hold (see Theorem 2.2). Write A = A(ω). In order to use Corollary 5.14 we only

need to verify that for any k ≥ 1 there is n ≥ k such that for all u ∈ A we have Au 6� C(k, 2n).

It is easy to see that for all u ∈ A, Au is isomorphic either to A(ω) or to A(n) depending on

whether or not u has an infinite support. Therefore it is enough to check A 6� C(k, 2k). As

C(k, 2k) is a transitive, click free frame, according to Lemma 4.5 if A � C(k, 2k), then we also
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have P0(ω)� C(k, 2k). But this latter is impossible by Lemma 5.12.

Theorem 5.16. Countable Jeffrey logic JLω is not finitely axiomatizable (in fact, it is not l-

axiomatizable for any finite number l).

Proof. JLω = ACLω by Theorem 3.7 and this latter logic is not finitely axiomatizable by Theo-

rem 5.15.

6 Closing words and further research directions

Our aim was to study the modal logical character of Jeffrey accessibility in a similar manner as it

has been done in [7] and [11] concerning Bayes accessibility. We have seen that the modal logic of

Jeffrey learning always extends S4, and extends S4.1 only if the underlying measurable space is

countable (see Proposition 2.1). Containments between the different Jeffrey logics were clarified

in Theorem 2.2:

S4 ⊆ JL ⊆ JLω = JL≤ω ⊆ JL<ω ⊆ JLn+k ⊆ JLn. (47)

and the relations of Jeffrey logics to Bayes logics were also drawn in Section 4:

JLn ( BLn and JL<ω ( BL<ω (48)

Equality between JLω and BLω remained open. Theorem 4.6 and Corollary 4.7 hints that they

might be equal and in Problem 4.8 we ask whether the logics JLω and BLω coincide.

We regard Section 5 the main result of the paper. Theorem 5.8 states that the logic of finite

Jeffrey frames JL<ω is not finitely axiomatizable, while Theorem 5.16 claims the same non finite

axiomatizability result for JLω (moreover countable Jeffrey logics are not axiomatizable by any

set of formulas using finitely many variables). The picture is thus analogous to that of Bayes

logics, see [7][Propositions 5.9]. The significance of these results is that they clearly indicate that

axiomatic approaches to belief revision might be severely limited.

It is a longstanding open question whether Medvedev’s logic of finite problems ML<ω (and thus

Bayes logic BL<ω) is recursively axiomatizable (see [8], Chapter 2). Since the class of Medvedev

frames is a recursive class of finite frames, BL<ω is co-recursively enumerable. It follows that if

ML<ω is recursively axiomatizable, then BL<ω is decidable. According to Corollary 5.5 finite

Jeffrey logic JL<ω has the finite frame property. The proof reveals that JL<ω is a logic of a

recursive class of finite frames, thus JL<ω is co-recursively enumerable, as well. We are not aware

any similar result for JLω, neither do we know whether Jeffrey logics are recursively axiomatizable.

We conjecture that recursive axiomatizability of Jeffrey logics would solve the similar question for

Medvedev’s logic, thus the problem might be severely hard.

Problem 6.1. Are any of the logics JL<ω and JLω recursively axiomatizable?
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Finally, we have already mentioned that in the literature of probabilistic updating apart from

the Bayes and Jeffrey rules various other rules have been studied to update a prior probability,

such as entropy maximalization or minimalization principles, among others. We do believe that

a similar analysis should be carried out when Bayes or Jeffrey accessibility is replaced by some

other accessibility relation based on these various probability updating principles.
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7 Appendix

ω is the least infinite cardinal (that is, the set of natural numbers). By a frame we always

understand a Kripke frame, that is, a structure of the form F = 〈W,R〉, where W is a non-empty

set (of possible worlds) and R ⊆ W × W a binary relation (accessibility). Kripke models are

tuples M = 〈W,R, [| · |]〉 based on frames F = 〈W,R〉, and [| · |] : Φ → ℘(W ) is an evaluation of

propositional letters. Truth of a formula ϕ at world w is defined in the usual way by induction:

• M, w 
 p ⇐⇒ w ∈ [| p |] for propositional letters p ∈ Φ.

• M, w 
 ϕ ∧ ψ ⇐⇒ M, w 
 ϕ AND M, w 
 ψ.

• M, w 
 ¬ϕ ⇐⇒ M, w 6
 ϕ.

• M, w 
 ♦ϕ ⇐⇒ there is v such that wRv and M, v 
 ϕ.

Formula ϕ is valid over a frame F (F 
 ϕ in symbols) if and only if it is true at every point in

every model based on the frame. For a class C of frames the modal logic of C is the set of all

modal formulas that are valid on every frame in C:

Λ(C) =
{
φ : (∀F ∈ C) F 
 φ

}
(49)

Λ(C) is always a normal modal logic. Let us recall the most standard list of modal axioms (frame

properties) that are often considered in the literature (cf. [5] and [8]).

Basic frame properties

Name Formula Corresponding frame property

T �φ→ φ accessibility relation R is reflexive

4 �φ→ ��φ accessibility relation R is transitive

M �♦φ→ ♦�φ 2nd order property not to be covered here

Grz �(�(φ→ �φ)→ φ)→ φ T + 4 + ¬∃P (∀w ∈ P )(∃v wRv)(v 6= w ∧ P (v))

S4 T + 4 preorder

S4.1 T + 4 + M preorder having endpoints
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For two frames F = 〈W,R〉 and G = 〈W ′, R′〉 we write FEG if F is (isomorphic as a frame to) a

generated subframe of G. We recall that if FEG, then G 
 φ implies F 
 φ, whence Λ(G) ⊆ Λ(F)

(see Theorem 3.14 in [5]). If w ∈W , then we write Fw to denote the subframe of F generated by

w, and we call such subframes point-generated subframes. Further, let F � G denote a surjective,

bounded morphism (sometimes called p-morphisms). Such morphisms preserve the accessibility

relation and have the zig-zag property (see [5]). Recall that if F � G, then F 
 φ implies G 
 φ,

hence Λ(F) ⊆ Λ(G) (see Theorem 3.14 in [5]). We also recall that (∀i) Fi 
 φ implies
⊎
Fi 
 φ

(for the definition of the disjoint union
⊎

of frames see Definition 3.13 in [5]). In the special case

when Fi = F it follows that Λ(F) ⊆ Λ(
⊎
F) (Theorem 3.14 in [5]).

The next theorem is due to Jankov and de Jongh.

Theorem 7.1 (cf. Proposition 4 in [26]). Let F be a generated finite S4-frame. Then there is a

modal formula χ(F) with the following properties:

(A) For any S4-frame G we have G 1 χ(F) if and only if ∃u Gu � F .

(B) For any logic L ⊇ S4 we have L ⊆ Λ(F) if and only if χ(F) /∈ L.

Let X be countable and consider probability measures p, q ∈ M(X,℘(X)). Suppose that q is

absolutely continuous to p. The Radon–Nikodym derivative dq
dp can be expressed as

dq

dp
(x) =

{
q({x})
p({x}) if p({x}) 6= 0

∗ otherwise.

where ∗ denotes any value ( dqdp is determined up to p-measure zero, only). This is because

∑
x∈A

f(x)q({x}) =

∫
A

f dq =

∫
A

f
dq

dp
dp =

∑
x∈A

f(x)
q({x})
p({x})

p({x})

Proposition 7.2. Let X be a countable set and consider probability measures p, q ∈M(X,℘(X)).

The following are equivalent

(a) q is Jeffrey accessible from p: there is a finite partition {Ei}i of X such that p(Ei) 6= 0 and

q(H) =
∑
i

p(H | Ei)q(Ei) for all H ⊆ X

(b) q is absolutely continuous with respect to p and the range of the function dq
dp is finite except

for a p-measure zero set.

Proof. (⇒) Suppose q is Jeffrey accessible from p, that is, there is a finite partition {Ei}i<n of

X with p(Ei) 6= 0 and a probability measure r : {Ei} → [0, 1] such that

q(H) =
∑
i<n

p(H ∩ Ei)
p(Ei)

r(Ei) (H ∈ S) (50)
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As p(H) = 0 implies q(H) = 0, q is absolutely continuous with respect to p. Suppose for some

i < n there are a, b ∈ Ei which are not p-measure zero elementary events. Then by (50) we have

q({a}) =
p({a})
p(Ei)

r(Ei), q({b}) =
p({b})
p(Ei)

r(Ei) =⇒ q({a})
p({a})

=
q({b})
p({b})

This shows that dq
dp is constant on each Ei (p-almost everywhere).

(⇐) Let X+ = {x ∈ X : p({x}) > 0} and X0 = X r X+. By q � p it follows that the

Radon–Nikodym derivative dq
dp exists and by assumption it is a step function on X+. Define

Ey =

{
x ∈ X+ :

q({x})
p({x})

= y

}
for y ∈ ran

(
dq

dp

)
Then {Ey}y∈ran(dq/dp) is a finite partition of X+ and dq

dp is constant on each block Ey of this

partition. Pick an arbitrary Ey and replace it by Ey ∪X0 (we need to have a partition of X such

that the blocks of this partition are not p-measure zero, thus we can get rid of X0 by adding it to

any block Ey). For convenience we denote this new block by the same letter Ey. Define a measure

r on the σ-subalgebra generated by the partition {Ey}y∈ran(dq/dp) by the equation

r(Ey) = y · p(Ey).

Note that r defines a probability measure because∑
y∈ran(dq/dp)

r(Ey) =
∑
y

y · p(Ey) =
∑
y

y
∑
x∈Ey

p({x}) =
∑
x∈X

dq

dp
(x)p({x}) =

∑
X

q({x}) = 1

We claim that

q(H) =
∑

y∈ran(dq/dp)

p(H ∩ Ey)

p(Ey)
r(Ey) (for H ∈ S)

For all x ∈ X there is a unique j such that x ∈ Ej . Therefore∑
y

p({x} ∩ Ey)

p(Ey)
r(Ey) =

p({x})
p(Ej)

r(Ej) = q({x})

This latter equation holds because x ∈ Ej iff dq
dp (x) = j iff q({x})

p({x}) = j, consequently

r(Ej) = j · p(Ej) =
q({x})
p({x})

p(Ej)

This completes the proof.
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