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Abstract: In this paper we examine the epistemic value of highly idealized agent-based models 
(ABMs) of social aspects of scientific inquiry. On the one hand, we argue that taking the results of 
such simulations as informative of actual scientific inquiry is unwarranted, at least for the class of 
models proposed in recent literature. Moreover, we argue that a weaker approach, which takes these 
models as providing only ‘how-possibly’ explanations does not help to improve their epistemic value.
On the other hand, we suggest that if ABMs of science underwent two types of robustness analysis, 
they could indeed have a clear epistemic function, namely by providing evidence for philosophical 
and historical hypotheses. In this sense, ABMs can obtain evidential and explanatory properties and 
thus be a useful tool for integrated history and philosophy of science. We illustrate our point with an 
example of a model—building on Zollman’s (2010) ABM—which we apply to a concrete historical 
case study.
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1 Intriductin

Throughout the last decade agent-based modeling (ABM) has become one of the 
popular methods in formal (social) epistemology of science. The very possibility of 
simulating scientific inquiries has shown promise for tackling a variety of questions:
from the impact of different social networks on the efficiency of knowledge 
acquisition (Zollman 2007, 2010, 2013; Kummerfeld and Zollman 2016; Grim 2009; 
Grim et al. 2013; Borg et al. 2018, 2017b) to the problem of the division of cognitive 
labor (Weisberg and Muldoon 2009; De Langhe 2014; Alexander, Himmelreich, and 
Thompson 2015; Thoma 2015; Poö yhoö nen 2017), to the problem of norms that are to
guide peers facing a disagreement (Douven 2009, 2010; De Langhe 2013), etc. A 
typical feature of these models is that they are highly idealized, which allows them 
to offer simple explanations of complex social phenomena.2 Due to the latter feature,
the results of the simulations have been adopted by both philosophers of science 
and epistemologists (e.g. (Wray 2011; Goldman and Blanchard 2016)). 

1 The order of authors is alphabetical; both authors contributed equally to this 
paper. To contact the authors, please write to dunja.seselja@rub.de.

2 Šee e.g. (Reutlinger, Hangleiter, and Hartmann 2016) for a discussion on the 
explanatory features of highly idealized or toy-models.



Nevertheless, recent discussions in this domain have suggested a dose of caution 
when adopting results obtained by means of such models. On the one hand, it has 
been shown that some of these findings are not robust under the changes in the 
relevant parameter space (Rosenstock, O’Connor, and Bruner 2017), nor are they 
replicated once we change some of the underlying assumptions of the models (Borg 
et al. 2017a, 2018, 2017b; Frey and ŠŠesšelja 2018). In addition, it has been argued 
that the models lack empirical calibration, which impedes the reliability of their 
results with respect to normative conclusions we may draw from them (Martini and 
Pinto 2016).

In response to these objections it has been suggested that ABMs of science should be
understood as providing ‘how-possibly’ (rather than ‘how-actually’) explanations 
(e.g. Rosenstock, O’Connor, and Bruner 2017). In other words, rather than showing 
how something actually happens, they show how and under which circumstances 
the given phenomenon is possible (Reutlinger, Hangleiter, and Hartmann 2016; 
Rosenstock, O’Connor, and Bruner 2017). However, even if we grant these models 
the how-possibly explanatory function, it remains unclear what is the exact 
epistemic value of showing a possibility, and whether these models can perhaps be 
used for additional epistemic gains.

The aim of this paper is to address these questions. On the one hand, we will argue 
that the epistemic function of recently developed highly idealized ABMs of scientific 
interaction is only heuristic or exploratory (Reutlinger, Hangleiter, and Hartmann 
2016; Gelfert 2016), rather than explanatory.3 Importantly, we will show that how-
possibly explanatory function isn’t epistemically valuable in case of these ABMs. On 
the other hand, we will suggest that this class of models can in fact become useful as 
a method for providing evidence for historical and philosophical hypotheses 
concerning scientific inquiry, and that as such they can play evidential and 
explanatory roles.

Here is how we will proceed. In Šection 2 we will give a brief overview of Zollman’s 
(2010) ABM as a paradigmatic example of highly idealized ABMs of scientific 
interaction, and show how it has been used to suggest normative claims concerning 
actual scientific inquiry. In Šection 3 we will raise objections against such 
applications of these models and argue for their lack of explanatory properties. We 
will then turn to our proposal for how these models can be improved to become 
epistemically valuable. In Šection 4 we suggest how ABMs can play evidential and 
explanatory roles in the domain of integrated history and philosophy of science. In 
Šection 5 we illustrate our point by showing how an adjusted version of Zollman’s 
(2010) ABM, first presented by Frey and ŠŠesšelja (2018), can be used to analyze a 
historical case study. As an example of such a case study we take the research on 
peptic ulcer disease from the history of medicine, which is examined by Zollman as 
well. In Šection 6 we make some concluding remarks.

3 Henceforth, when speaking of the epistemic function of models, we will refer to a 
function that goes beyond their exploratory or heuristic value.



2 Zillman’s (2010) ABM and its Impact

2.1 The midel

Zollman motivates the design of his ABM with an example from the history of 
medicine. During the first half of the twentieth century the research on peptic ulcer 
disease (PUD) proceeded along two main lines: one based on the ‘bacterial 
hypothesis’, according to which the disease is caused by bacteria, and another one 
based on the ‘acidity hypothesis’, according to which the disease is caused by 
excessive acidity in the stomach. In the 1950s, after the publication of a large case 
study, which showed that there are no bacteria in the human stomach,4 the former 
of the two hypotheses was dropped. However, 30 years later, with Warren and 
Marshall’s discovery of Helicobacter pylori, the bacterial hypothesis was revived 
and this bacterium came to be known as the major cause of PUD. Cases such as this 
one raise the question, which social-epistemic factors are likely to increase the 
chance of a premature abandonment of fruitful hypotheses.

Zollman examines a hypothesis that the culprit can be found in a too wide 
information sharing: Palmer’s erroneous results were shared too widely across the 
medical community at the time, leading to the premature abandonment of the 
bacterial theory of PUD. In order to test this hypothesis, he uses an ABM inspired by 
Bala and Goyal (1998) and based on the idea that the process of scientific inquiry 
can be tackled as a type of bandit problem. The so-called bandit problems, usually 
discussed in the context of economics and game theory, concern the following 
question: if a gambler is confronted with different slot machines, at which point 
should she stop testing which machine maximizes her reward, and stick with the 
one that seems the best in this respect? Zollman suggests that an analogous 
situation occurs in the context of scientific inquiry, where we can ask: at which point
should a scientist stop testing different hypotheses and stick with the most 
promising one? The payoff of a slot machine here corresponds to the success of 
applying the given hypothesis (or a method, or a theory), while the objective 
probability of success (OPŠ) of a slot machine corresponds to the OPŠ of the given 
hypothesis (or a method, or a theory). Hence, just like a gambler faces the choice 
between different slot machines, so does a scientist face the choice between 
different hypotheses.

Adding a social dimension to this problem raises the following question: if more 
than one gambler is trying to determine which bandit is the most profitable one, 
how does the information flow among the gamblers influence their respective 
choices? Analogously, we can ask: if more than one scientist is working in the same 
domain consisting of rivaling theories, how does the information flow among them 
influence their respective decisions as for which theory to pursue?

The model is designed as a computer simulation, which is round based.

4 The study, conducted by the famous gastroenterologist Palmer, was based on a 
methodological error (see (ŠŠesšelja and Štraßer 2014)).



At the start of a run each agent is assigned a random prior value for each of the two 
rivaling theories. Every round an agent makes 1,000 pulls, each of which can be a 
success or failure, where the probability of success is given by the OPŠ of the 
respective theory. Agents then update their beliefs via Bayesian reasoning (modeled
by means of beta distributions), in view of their own success and the success of 
some other agents, namely those with whom they are connected in a social network.
Zollman investigates the efficiency of agents in converging onto the hypothesis with 
the better OPŠ in three kinds of social networks: a cycle, a wheel and a complete 
graph (see Figure [1]5). In the cycle, every agent exchanges information with two of 
her neighbors. The wheel has the same information flow as the cycle, except that in 
addition one agent exchanges information with all the other agents. Finally, in the 
complete graph every agent exchanges information with every other agent.

Figure 1: A cycle, a wheel and a complete graph. The nodes in each graph represent 
agents, while the edges that connect the nodes represent transmission of information 
between two agents.

Assuming that the OPŠ of the better theory is 0.5 and the OPŠ of the worse theory 
0.499, Zollman’s results show the cycle scores the best and the complete graph the 
worst. More precisely, agents connected in the cycle converge on the better theory 
the highest number of runs, those connected in the wheel converge on the better 
theory a smaller number runs, and those connected in the complete graph the 
smallest number of runs. This suggests that information flow via highly connected 
groups can be epistemically harmful:

It would appear here that the amount of information distributed is 
negatively impacting the ability of a social group to converge on the 
correct methodology. Initially suggestive information is causing 
everyone to adopt one particular methodology. (p. 28)

However, once agents are modeled as biased towards hypotheses with which they 
initially start, the results become inverse.6 In other words, if agents are modeled as 

5 We are grateful to AnneMarie Borg for this illustration.

6 Bias of agents is represented by assigning them more extreme distributions 
(i.e. drawing α /β for the beta distribution from a larger interval) as priors from 
which they start their updates, thus allowing for a more conservative outcome of the



more resistant to changing their beliefs in view of new information, misleading 
initial results can’t infect the entire community.

Thus, Zollman’s model suggests two ways of reducing errors in the process of 
learning of a scientific community: either the information flow needs to be 
restricted, or scientists need to be initially biased towards their pursued 
hypotheses. In the remainder of the paper we will focus on the former suggestion.

2.2 The receptin and critcism

Zollman’s results have been influential. For example, (Štrevens 2010) calls upon 
Zollman’s results when suggesting:

It might … be preferable for scientists not to take into account too much 
information about their colleagues’ beliefs about a problem, if a few 
authoritative pronouncements would stifle much-needed diversity in the 
range of approaches to a problem. … The question how to tune attention 
to authority in the short term so as to find a level of diversity that 
maximizes correctness in the long term has been explored with 
considerable insight by Zollman… (p. 306).

Šimilarly, (Wray 2011) brings up Zollman’s results when suggesting that: “Full 
communication within the community of scientists would be detrimental, for 
effective lines of communication not only serve to spread the truth; they also serve 
to spread falsehoods.” (p. 134) Or take an entry in the Stanford Encyclopedia of 
Philosophy on Šocial Epistemology (Goldman and Blanchard 2016), which mentions 
Zollman’s results, concluding: “This is another illustration of the idea that prima 
facie detrimental features of the practice of science (reduced communication and 
dogmatism) may in fact be epistemically beneficial.”.

Finally, as we have mentioned above Zollman (2010) has built the model to test an 
explanatory hypothesis concerning the case of research on PUD. In view of the 
results of his simulations he writes:

For PUD, I have suggested that things might have been better had 
Palmer’s result not been communicated so widely or had people been 
sufficiently extreme in their beliefs that many remained unconvinced by 
his study. (p. 33)

Recently, however, a set of Zollman’s models have received critical response. First, 
Rosenstock, O’Connor, and Bruner (2017) have shown that the so-called “Zollman 
effect”, namely the positive difference between successful convergence in the cycle 

updating process. It’s worth mentioning though that the reversal of results is only 
due to the cutoff point at which Zollman chooses to end his simulation. If the model 
is run sufficiently long, agents in all networks end up on the correct theory: since 
extreme priors allow for the theoretical diversity to be preserved, agents in all 
networks have enough time to gather evidence and make the right choice.



versus the complete graph, significantly decreases or even disappears once we 
extend the parameter space used in the simulations. The authors suggest that the 
results seem to be robust only under conditions characteristic of difficult inquiry. 
Moreover, Borg et al. (2018, 2017b) have failed to reproduce Zollman effect in an 
argumentation-based ABM of scientific interaction. Finally, Frey and ŠŠesšelja (2018) 
show that once we de-idealize some of the assumptions in Zollman’s model, Zollman
effect doesn’t appear even in some typical situations of difficult inquiry.

In view of this, applying Zollman’s results to actual scientific practice seems 
unwarranted unless the context in the case of actual inquiry can be linked to the 
conditions represented in the model under which Zollman effect robustly holds. But 
what about the model providing at least how-possibly explanations? We now turn to
this question.

3 Pissibility is nit eniugh

3.1 Hiw-pissibly explanatin?

In view of the above mentioned criticism of Zollman’s model it has been suggested 
that we should understand this ABM as providing a how-possibly explanation 
(Rosenstock, O’Connor, and Bruner 2017). The model, so the argument goes, doesn’t
show that the cycle network is superior to the complete graph in actual scientific 
inquiry, but only that this is a possibility. Šuch a possibility can be interesting in 
showing, for instance, that a certain prevalent opinion concerning the target 
phenomenon may not necessarily hold, in which case we may learn something new 
from the model (see (Gruö ne-Yanoff 2009)). For example, in case of Zollman’s model, 
it could be argued that it casts doubt on the view that interaction among scientists is
always epistemically beneficial. Šimilarly, we could say that it shows a possible 
cause of the premature abandonment of a fruitful hypothesis in the case of PUD 
research.

The notion of how-possibly explanations, first introduced by Dray (1957) with 
regard to explanations in history, has been extensively discussed in the literature on
scientific modeling, especially in biology and social sciences (see e.g. Forber 2010, 
2012; Reydon 2012; Bokulich 2014; Ylikoski and Aydinonat 2014; Riel 2015). 
Nevertheless, the question of the epistemic import of such explanations—whether 
they genuinely explain, and if so, what kind of explananda, or whether they should 
rather be considered as heuristic tools—has remained disputed. Our intention here 
is not to settle this debate, but rather to suggest that we should err on the side of 
caution when using the how-possibly strategy to defend highly idealized models of 
science.

The following caricatured example of a model brought up by Pfleiderer (2014) 
nicely illustrates the main problem with the idea that models are useful in virtue of 
explaining how something is possible:



To establish that high intake of alcohol is the natural (distortion free) 
result of human liquid-drink consumption, the model rules out liver 
disease, DUIs, health benefits, spousal abuse, job loss and all other 
distortionary factors. By positing these idealized conditions, the model 
obviously ignores some important determinants of human alcohol 
consumption in the real world. However, …it allows a meaningful role for
humans as producers of that pleasant “buzz” one gets by consuming 
alcohol, and shows clearly that …it is optimal for humans to be drinking 
all of their waking hours.7

While it may be entertaining to consider a world in which it is optimal for humans to
be drinking all the time, it doesn’t tell us much about the effects of actual alcohol 
consumption. This is because the model could represent a scenario that belongs 
only to a mathematical or logical possibility, which is in no relevant way related to 
the real-world phenomena and which doesn’t increase our understanding of these 
phenomena. This doesn’t mean that in order to obtain epistemically valuable results,
the model needs to represent only the real-world phenomena. To the contrary, 
modeling counterfactual scenarios can indeed be informative of the significance of 
certain factors in actual causal dependencies. If we, for example, represent a 
decision-making scenario in which all agents are biased, this might be informative of
the role of biases in the given context.

In order to clarify the relevance of explaining counterfactual scenarios, Ylikoski and 
Aydinonat’s (2014) discussion of understanding via how-possibly explanations will 
be of help. The authors distinguish between how-possibly explanations aimed at a 
particular empirical fact, representing a possible causal scenario, and how-possibly 
explanations addressing processes that can bring about certain kind of effects, 
representing causal mechanism schemes. The latter “do not directly explain any 
particular empirical fact. They address only simplified theoretical explananda” 
(p. 27, italics added). Therefore, the epistemic import of causal mechanism schemes 
is only indirect: while they do not explain any concrete facts, they are informative of 
the menu of possible explanations for a given event and of possible causal scenarios 
that may underlie it. As such, they may incorporate a number of counterfactual 
conditions. Nevertheless, both types of explanations can facilitate our 
understanding of the given target phenomena only if we are able to make correct 
inferences about them, where the key criterion of understanding is one’s ability to 
make inferences about counterfactual situations concerning these phenomena 
(Ylikoski and Aydinonat 2014, p. 29).

Thus, the problem with models such as Pfleiderer’s caricature is not that it 
represents ‘just a possibility’, but rather that the represented possibility provides us
with no ability to make relevant (or interesting) counterfactual inferences. This can 
easily happen if a model includes too many counterfactual factors at the same time 

7 The quote is taken from the English version of Pfleiderer’s article: 
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.432.4076&rep=rep1&type=pdf, p. 9, accessed on February 14, 2018.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.4076&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.4076&rep=rep1&type=pdf


(i.e. if it is highly idealized). On the one hand, the represented possibility may end up
being entirely uninteresting (Pfleiderer’s example is a case in point). On the other 
hand, we may have no way of making (interesting or relevant) inferences about 
individual causal dependencies unless there is a way to discern the impact of certain
individual factors on the given result. We will now turn to the method of robustness 
analysis, which has been introduced precisely to tackle this kind of problems.

3.2 The impirtance if ribustness analysis

As it is well-known in the literature on scientific modeling (see e.g. Šoler et al. 2012; 
Lehtinen 2017), a common way to address the above problems is by confirming the 
robustness of results obtained by a model, under two types of changes.

First, we can speak of the robustness of results under parameter changes:8 by 
specifying the scope of parameters within which the results remain stable we can 
determine their significance for the given phenomenon. For instance, if the results 
hold only for a small portion of the parameter space, (as it has been shown for 
Zollman’s model), we can conclude that they are likely to occur only under very 
limited circumstances. Which circumstances these are is determined by mapping 
the given parameter space to different scenarios in which the target phenomenon 
occurs. To take a simple example, if the results of an ABM change when the number 
of agents increases, then we can relate these different outcomes to different 
community sizes. Or as we have seen above (Šection 2.2), Zollman effect has been 
restricted to the context of difficult inquiry by mapping the parameter space in 
which it holds to the specific context of inquiry. The most reliable way to conduct 
such a mapping is by empirically calibrating the model, where specific parameters 
are given by means of empirical knowledge relevant for the given phenomenon 
(Martini and Pinto 2016).

The second type of robustness analysis concerns the stability of results under the 
changes in the idealizing assumptions of the model. This is especially important in 
case of highly idealized models where results may easily depend on idealizations 
rather than on assumptions that adequately represent the target phenomenon.9 
More precisely, if a model consisting of plausible conditions about the given target 
phenomenon and implausible idealizations produces phenomenon X , and we 
observe that when some of these implausible idealizations are replaced with more 
realistic assumptions concerning some context C , we fail to produce X , then the 
model is not informative of X  in C . In such a case, X  is produced in virtue of 
idealizing assumptions (which do not adequately represent context C). For example,

8 This process is usually called sensitivity analysis, see e.g. Thiele, Kurth, and Grimm 
2014.

9 Šuch analysis is also known as derivational robustness analysis, see Kuorikoski and 
Lehtinen 2009; Ylikoski and Aydinonat 2014. The importance of de-idealization for 
the robustness analysis has been extensively discussed in the literature on models 
in economics, see e.g. Maöki 2009; Lehtinen and Kuorikoski 2007.



(Frey and ŠŠesšelja 2018) analyze Zollman’s model, arguing that the Zollman effect 
occurs only under the assumption that it is neither the case that scientists reason 
cautiously, nor is it the case that they are in a situation where similarly successful 
theories count as equally good.

To sum up, the two types of robustness analysis are essential for relating models to 
their target phenomena since they allow us to specify the context which the model 
adequately represents. Note however that robustness analysis comes in degrees and
hence, it may not control for all idealizations of the model. For instance, we may 
identify a robust property that holds across a range of parameters and changes in 
idealizing assumptions, which may thus increase our confidence that the same 
property holds for a certain real-world phenomenon as well. Nevertheless, we may 
not be able to test the robustness of the model with respect to all the idealizing 
assumptions.10 Clearly, the more thorough checks we make, the more reliable our 
conclusions will be. With this in mind, we turn now to the question of the epistemic 
function of ABMs.

4 Evidental and explanatiry riles if ABMs

In this section we will examine the epistemic function of ABMs of science by 
focusing on the role they could play in the domain of integrated history and 
philosophy of science (HPŠ).

Let’s start by recalling Zollman’s original research question, concerning the 
historical case study on PUD: which social-epistemic factors are likely to increase 
the chance of a premature abandonment of fruitful hypotheses? Zollman used his 
ABM to test whether too wide sharing of Palmer’s results led the whole community 
to abandon the bacterial hypothesis of PUD. While the results confirming this 
conjecture may not be reliable (as discussed in Šection 2.2), Zollman’s attempt is 
significant from a methodological point of view: it aims at introducing simulations 
as the method for obtaining evidence for hypotheses in the domain of HPŠ. We will 
now take a look at the traditional HPŠ method of obtaining evidence, and in view of 
this specify how ABMs could be of help.

4.1 The methid if histirical case studies

The literature on HPŠ has traditionally used the method of historical case studies as 
the primary source of evidence. Nevertheless, this approach is not without 
problems. Case studies may be cherry-picked to fit one’s philosophical assumptions 
(see e.g. Pitt 2001), or they may be theory-laden in the sense that there is no unique 
objective narrative that underlies the reconstruction and the identification of 

10 Nor do robustness checks necessarily lead to a fully de-idealized model: the given 
model may still employ a number of (original) idealizations, though in view of 
robustness analysis we may have shown that these idealizations are not 
problematic.



historical events (Kinzel 2015). And while this poses a limit to the overall reliability 
of the evidence that is obtained by means of historical case studies, it doesn’t 
impede their evidential function. Kinzel distinguishes four different epistemic 
functions that historical case studies may play:

1. Novelty: “case studies can provide us with new, previously unknown and 
perhaps surprising information” (p. 53);

2. Recalcitrance: if “the historical material resists being interpreted in terms of 
the initial judgments and preconceptions” (Ibid.), it forces us to revise our 
beliefs;

3. Confirmation: case studies can provide evidence for our philosophical beliefs 
in the sense that “the available evidence makes the belief in question more 
justified, better warranted, more plausible, more acceptable, or more likely 
to be true, than it would be if the corresponding evidence were not available”
(Ibid.).

4. Adjudicating: “a case study may provide the philosophy of science with 
evidence that adjudicates between conflicting philosophical views” (Ibid).

Kinzel argues that historical case studies can provide evidence in the first three 
cases (though such evidence may still be of limited strength), but not in the fourth 
one. The reason why they cannot play a role of neutral adjudicators between 
rivaling philosophical views is primarily due to theory-ladenness of historical 
accounts (p. 55).

4.2 Intriducing ABMs ti HPS

We will now argue that ABMs can play all four of the above evidential functions, 
though just like in the case of historical case studies, their evidential import is 
limited.11 This means not only that ABMs can play a legitimate epistemic role, but 
also that they can be used as a complementary method to historical case studies, 
mitigating some of the problems of the latter approach.

First, ABMs can provide novel, previously unknown and sometimes even surprising 
information. This includes providing novel explanatory hypotheses. For instance, 
ABMs may reveal social mechanisms underlying particular historical episodes, 
which we haven’t been aware of. This is especially interesting in view of the fact that
they are simulations: as such, they can provide insights into the evolution of 
historical episodes since we can observe socio-epistemic mechanisms “in motion”. 
Zollman’s ABMs are a case in point: they show how different social networks can 
lead to communities that are more or less efficient in acquiring knowledge. 
However, whether such explanatory hypotheses will in turn make the model 
explanatory of epistemically relevant phenomena (i.e. whether it will allow us to 
make relevant counterfactual inferences), depends on how successful we are in 
11 We are indebted to Erik Weber for the suggestion that ABMs could play the role of 
confirming historical hypotheses and explanations.



specifying the set of modeled explananda. As we have seen in the previous section, if
a model offers an explanatory hypothesis for benefits of intensive alcohol 
consumption by ruling out numerous factors relevant for the assessment of the very
same benefits, we could hardly call it explanatory in any epistemically relevant 
sense. Even though such a model would ‘explain’ a situation in which drinking 
alcohol all the time can be considered beneficial, it is hard to imagine a context in 
which such explanation would be of any epistemic interest. Hence, in order to 
convert an explanatory hypothesis of a model into its explanatory power, it is 
essential to determine its adequate target phenomenon.

Šecond, ABMs can play the role of recalcitrance by offering evidence that forces us to
revise our beliefs concerning normative aspects of scientific inquiry. For instance, if 
Zollman effect were to hold under certain conditions that are relevant for actual 
scientific inquiry, we may have to revise our assumption that a high degree of 
connectedness among scientists is in most situations beneficial.

Third, ABMs can provide confirmation of our methodological and socio-
epistemological assumptions in the same sense as explicated by Kinzel above: by 
raising the credibility and probability of our normative views.

Finally, ABMs can play a role in adjudicating between different normative 
philosophical conceptions about science by showing the superiority of one view 
over another (e.g. under specific conditions of scientific inquiry represented in the 
model). For instance, take the contemporary discussion on scientific pluralism as a 
normative methodological approach (see e.g. Kellert, Longino, and Waters 2006; 
Chang 2012) that is contrasted with a monist view on scientific methodology. In 
spite of attempts by pluralists to argue that the pluralist approach has numerous 
advantages and would lead to more efficient scientific inquiry,12 concrete empirical 
arguments have been difficult to come by. Whether scientific inquiry proceeds more 
efficiently if the given scientific community divides the labor in such a way that 
multiple lines of inquiry are pursued at the same time, or whether they are more 
efficient if everyone focuses on only one of the rivaling accounts at the time – may 
be hard to answer from a philosophical armchair. Beside suffering from the problem
of theory-ladenness, historical case studies may only provide single examples, 
rather than a general insight, sufficient to adjudicate this matter (as Chang (2012, 
2015) himself remarks).

12 Note however that beside arguing for a pluralist methodology in terms of 
efficiency of inquiry (or in terms of maximizing some other values at the level of the 
community), an argument for pluralism can also be given in view of ethical or 
political principles characterizing inquiry of individual scientists. In the latter case it
suffices to show that a pluralist methodology fulfills such ethical or political criteria, 
irrespective of its efficiency (or maximization of values) at the level of the scientific 
community. Hence, our point that ABMs could be useful only concerns the former 
approach to pluralism, which argues for it in terms of its efficiency/value 
maximization at the level of the community.



This is where ABMs could perhaps be helpful: different simulations of scientific 
inquiry could provide evidence for the efficiency of different (monist and pluralist) 
methodologies under a variety of socio-epistemic circumstances. For instance, if we 
can establish that the superiority of a pluralist methodology is a robust property 
that holds across a wide range of parameters and changes in idealizing assumptions,
this would be a strong argument in favor of pluralists. Alternatively, if it turns out 
that the matter is much more context dependent, we might be able to specify the 
contexts in which one methodological approach is superior to another. Of course, 
this should not be taken as suggesting that the construction of ABMs is not theory 
laden, nor that they can necessarily adjudicate between opposing methodological 
conceptions. While the robustness analysis discussed in Šection 3 can help in 
disclosing assumptions underlying a given model, it could also happen that we end 
up without any robust property that holds across various models. In the latter case 
ABMs obviously wouldn’t be of much help when it comes to adjudication. However, 
whether they can perform this function or not is an empirical question that would 
have to be examined for each philosophical dispute on its own.

Altogether, ABMs can perform each of the above four functions with respect to a 
certain target phenomenon only if the results obtained by them have been shown to 
be robust in two senses indicated in the previous section: under the changes in the 
relevant parameters and under the changes in idealizing assumptions. Šince each of 
these robustness analyses may be a question without a positive test (but only a 
negative one), the evidence obtained by a given ABM will be as strong as detailed 
and exhaustive its robustness analysis is.

Even though Zollman initiated the research on ABMs that goes in this direction, his 
initial results, as we have seen, failed to satisfy robustness criteria, necessary for the
above explicated evidential and explanatory roles. In the next section we will 
illustrate how we can build on his model, in order to bring it closer to an ABM that 
can actually provide evidence for the PUD case.

5 Tiwards an ABM if scientic interactin that is epistemically 
functinal

As we have seen, the lack of robustness of Zollman’s results under parameter 
changes has been shown by Rosenstock, O’Connor, and Bruner (2017). In view of 
this the authors suggest that the result may hold only in the context of difficult 
inquiry. In our (Frey and ŠŠesšelja 2018) we examine the robustness of Zollman’s 
results under the changes in idealizing assumptions, relevant for the context of 
difficult inquiry. In this way we specify the context of (difficult) inquiry in which 
Zollman’s findings are more likely to hold, and those in which they are less likely to 
hold. In this section we will show how our model can be used to examine the validity
of Zollman’s hypothesis (namely, the Zollman effect) for the concrete historical case 
study: the above mentioned research on PUD. We will first present the main 
features of our ABM and then turn to its application to this case study.



5.1 Our midel

Our ABM is built by replacing a number of assumptions in Zollman’s (2010) model. 
We will now present a brief version of these replacements:13

Dynamic epistemic success

First, instead of the assumption that the epistemic success of two rivaling theories is
static (i.e. having fixed values for OPŠ, 0.5 and 0.499), we assume that scientists’ 
success in finding the corroborating evidence for their theories changes over time. 
In particular, if they are pursuing the better theory, agents will be more and more 
successful, and if they are pursuing the worse theory they will be less and less 
successful. This feature is implemented by means of ‘restless bandits’, which are 
such that their OPŠ changes over time. To avoid ambiguities, we have replaced the 
notion of OPŠ with the notion of a scientist’s current probability of success (CPŠ), 
assigned to each theory, representing the probability of gaining corroborating 
evidence for it, given the current state of one’s inquiry. In addition, we call the value 
which an agent assigns to her current theory in view of Bayesian updating the 
subjective probability of successes (ŠPŠ) which she assigns to the given theory at the 
given time point. While at the beginning of a run the CPŠ of each theory is, 
respectively, 0.5 and 0.499, every X time steps the CPŠ of the better theory gradually
increases towards 1, while the CPŠ of the worse theory gradually decreases towards 
0.14 Our assumption is motivated by cases such as PUD, where successful 
applications of the bacterial hypothesis increased, while those of the acidity 
hypothesis decreased.15

An important corollary of our implementation of dynamic epistemic success is that 
due to the improvements in CPŠ of the theories, all our scientists will eventually 
discover which theory is objectively better. Hence, even if scientists prematurely 
abandon the better of the two hypotheses, they will eventually get back to it. This 
means that the question of the efficiency of inquiry shifts from ‘How often are 

13 The model is programmed in NetLogo (Wilensky 1999). For the technical details 
of the model see Frey and ŠŠesšelja 2018 as well as the open-source code, available on 
GitHub: https://github.com/daimpi/ŠocNetABM/tree/RobIdeal.

14 The CPŠ assigned by an agent to the given theory after an update, expressed in 
terms of the CPŠ of the same theory before the update will be:

CP Safter (T )=CPSbefore (T )+ f (d ), where f (d )=
d
1000

 and d=APS (T )−CPSbefore (T ), and 

where APS (actual probability of success) of the better theory is 1 and APS of the 
worse theory is 0.

15 Note that the CPŠ of each theory virtually never reach 1 and 0, respectively, since 
the runs end long before these values would be assigned. Moreover, the results 
presented in this section remain robust if we replace the values of 1 and 0 with 0.9 
and 0.3, which correspond to the contemporary success rate in treating PUD with 
the antibiotic vs. antacid treatment (Hosking et al. 1994; Moayyedi et al. 2000).

https://github.com/daimpi/SocNetABM/tree/RobIdeal


scientists successful?’ to ‘How long do they take to get it right?’. Note that this 
doesn’t mean that consensus on the worse theory is not captured by the model. To 
the contrary, the scientific community may still abandon the better theory for a 
large time frame of the given run. As a result, such a community will be much slower
in switching back and converging on the better theory. Hence, instead of measuring 
efficiency in terms of the percentage of successful runs (as Zollman does), we 
measure efficiency in terms of time that scientists need to converge on the better 
theory. This assumption nicely fits the PUD case, where scientists abandoned the 
bacterial hypothesis, only to get back to it 30 years later. Moreover, even though the 
two hypotheses appeared equally promising in the first half of the twentieth 
century, the contemporary antibiotic treatment (based on the bacterial hypothesis) 
exhibits the empirical success rates of around 90% vs. less than 30% for the antacid 
treatment (Hosking et al. 1994; Moayyedi et al. 2000), which are quite different 
values from the almost indistinguishable success rates for both theories employed 
in Zollman’s original model (namely, 0.5 and 0.499).

Hence, the notion of dynamic epistemic success is the basic assumption which we 
employ in all our simulations. The remainder of the assumptions concern factors 
that may be present or absent in our runs.

Critcal interactin

Štarting from the assumption of dynamic epistemic success of the pursued theories, 
we examine what happens if scientists interact critically. In order to test the impact 
of this feature of scientific communication, we replace Zollman’s assumption that all 
scientific interaction is epistemically equal with the assumption that scientists 
sometimes interact critically, where such interaction is epistemically beneficial. 
Looking at actual scientific inquiry, critical interaction plays an important role in 
disclosing errors that regularly appear in scientific research, namely false positives 
and false negatives. As such, critique tends to be truth conducive since it allows for 
the exposure of false beliefs. We implement this feature by assuming that criticism is
triggered every time an agent pursuing theory T x receives information from an 
agent pursuing T y, such that T y turns out to be better than she has expected.16

Šimilarly to the implementation of dynamic epistemic success, we implement critical
interaction by allowing agents to slightly improve the CPŠ of their current theory 
towards 1 or 0 whenever they receive criticism, depending on whether they are 
pursuing the better or the worse theory.17

16 More precisely, scientist S1 working on T x is affected by criticism whenever the 
success rate of the rivaling theory (reported by scientist S2 working on T y) from the 
pulls in the most recent round is higher than the value S1 has had in her memory, 
i.e. in case for S1: SPSbefore (T y )<SPSafter (T y ).

17 Here we employ the same formula presented in Footnote [14].



Ratinal inerta

The next feature we examine is rational inertia that scientists may have towards 
their current theories. While Zollman’s agents are easily swayed by new evidence, in
the context of actual scientific inquiry scientists tend to retain their current theory 
at least for a certain time period. More precisely, they tend to stick with it unless 
they are convinced that it can no longer be saved from the defeating evidence. This 
is not irrational behavior: if a scientist knows that her current evidence is 
insufficient to determine whether the theory could eventually be accepted—as it 
may easily occur in times of difficult inquiry—it would be irrational to abandon it 
before attempting its further development, and rational to stick to it for a while 
longer (see (Kelp and Douven 2012)). In addition, changing one’s inquiry usually 
includes a number of costs (e.g. acquiring additional knowledge, new equipment, 
etc.), which is another motivation for such inertia.

We implement this feature in terms of a jump threshold: agents ‘jump’ to the rivaling 
theory only after the latter has according to one’s beliefs (i.e. in view of one’s ŠPŠ) 
turned out to be better than their current theory for Y  number of rounds. For the 
sake of simplicity, we will denote ‘jump threshold with the value of Y ’ by ‘inertia of
Y ’.

Equally primising rivals

Finally, we examine what happens if we assume that there is an interval within 
which rivaling theories count as equally good, which replaces Zollman’s assumption 
that one always has a linear preference order over the rivaling theories. We 
implement this feature in terms of the assumption that the rival theory counts as 
better only if it surpasses one’s own theory by the margin of 0.1 (in terms of ŠPŠ 
that an agent assigns to the theories).

The results

The results of (Frey and ŠŠesšelja 2018)18 suggest that Zollman’s finding concerning 
the superiority of the cycle towards the complete graph holds only if it is neither the 
case that scientists have rational inertia, nor is it the case that they treat rivaling 
theories as equally good within a certain interval. As soon as one of these two 
conditions is satisfied, our ABM indicates that the cycle ceases to be superior to the 
complete graph, or it even becomes inferior to it.

18 The simulations were run for up to 100,000 rounds, for populations consisting of 
4 to 11 scientists, and we recorded the point when agents converged on the better 
theory (by convergence on a theory we mean that all agents end up on that theory, 
without switching back to the rival). Each scenario is based on 10,000 runs. For the 
changes in CPŠ we have opted for (minor) changes every 100 rounds. Our results 
remain stable if the rate at which CPŠ changes is every 10 rounds, or every 500 
rounds. For rational inertia we have chosen the value of 10.



5.2 Examining the case if PUD

But what about the case of PUD – where does it fall within the above spectrum of 
assumptions? In order to answer this question, we need to do some empirical 
calibration of our model.

First of all, we will extract results of those runs (for different combinations of the 
above mentioned factors) in which both theories are populated at the beginning of 
the run. Šince the distribution of agents at the beginning of the run is random, it 
could happen that there are no agents on one of the theories. In the case of PUD 
research, however, we know that there were scientists pursuing both theories from 
the second half of the nineteenth century onward (ŠŠesšelja and Štraßer 2014).

The analysis of our results shows a general correlation between the time scientists 
spend exclusively on the wrong theory and the time they need to reach a 
convergence on the better theory. This is not surprising: the longer a community 
keeps a consensus on the worse theory, the longer it will need to switch back to the 
better one. In other words, the longer a community stays on the wrong theory, the 
less efficient it is.19 Figure [2] shows the average time scientists connected in the 
cycle vs. the complete graph spend on the wrong theory for different scenarios. 
These results suggest that the cycle performs better than the complete graph in each
of the given scenarios. Note that we have omitted the scenario in which scientists 
treat rivaling theories as equally good within the interval of 0.1 due to the fact that 
in these runs scientists don’t exhibit consensus on the wrong theory, and hence 
those runs are not representative of the PUD case (we will come back to this point 
below, concerning the normative conclusions that can be drawn from our model). It 
is also interesting to notice that changing the network type (from the cycle to the 
complete graph) may not increase the efficiency of the community as much as, for 
example, introducing caution to theory assessment (represented in terms of inertia).

19 Note though that the duration of a consensus on the wrong theory is not the only 
factor determining how long the scientists need to converge on the right theory. 
Another relevant factor is, e.g. the time needed for a group to converge on the right 
theory, after the consensus on the wrong one has been abandoned.



Figure 2: Average number of rounds a consensus on the worse theory lasted 
aggregated over all population sizes (4 - 11) for different treatments: (a): no critical 
interaction, no inertia; (b): no critical interaction, inertia of 10; (c): critical 
interaction, no inertia; (d): critical interaction, inertia of 10 (though the time for this 
treatment is so short that the bars are hardly visible, the complete graph here needs 
less time than the cycle); n stands for the number of runs falling into the given 
category.

Nevertheless, these results don’t tell us yet much about the PUD case itself. For this 
question, we need to make some further calibrations. One source of information that
is uncontroversial is the timeline of this inquiry. We know that the research on PUD 
started in the late nineteenth century (or earlier), that the two theories were 
pursued until the 1950s, and that there was a wide-spread consensus on the acidity 
hypothesis until the 1980s. Finally, we have a successful consensus on the bacterial 
theory in the mid-1990s.20 Altogether, we can specify the portion of the overall time 

20 Actual historical timeline was a bit more complex: for example, the acidity 
hypothesis wasn’t merely dismissed. Rather, the antacid treatment was retained in 
those cases in which the PUD is not caused by Helicobacter pylori. Given the 
idealized setup of the model—namely, the idea that converging on only one of the 
rivals counts towards success of the scientists in finding the right theory—we will 
stick with the above idealized timeline in order to be able to represent the return to 
the bacterial hypothesis as a successful outcome.



of this inquiry during which the scientific community pursued only the acidity 
hypothesis.

If T  stands for the overall time of the run and C  stands for the time during which the
scientific community had a consensus on one of the theories, then assuming that
T>90 (i.e. assuming the inquiry started in 1900 or earlier and ended in the 1990s) 
and C=30 (since the scientific community pursued only the acidity hypothesis from 
the 1950s to the 1980s), we are interested only in those runs for which T /C>90 /30 
i.e. T /C>3.21

Figure 3: Average number of rounds a consensus on the worse theory lasted 
aggregated over all population sizes but limited to runs which exhibited consensus for 
less than 1/3 of the run. For the meaning of shortcuts used for the treatments see the 
caption above in Figure 2; n stands for the number of runs falling into the given 
category.

Filtering runs that satisfy this criterion produces results shown in Figure [3]. Here 
the cycle seems more likely to produce runs in which scientists are stuck on the 
wrong path for a longer time period than the complete graph. It is important to note 

21 Note that the absolute values for T  and C  are not to be taken as representative of 
actual time periods since we haven’t established the mapping between the time 
steps in the model and the real time. This is why we only use the relative value (T /C
), indicating that for two thirds of the overall time of inquiry diversity is preserved.



though that the process of filtering drastically reduces the number of runs that fall 
into this category (see Figure [4]): out of the 309,932 cycle runs there are only 
21,705 left, while out of the 310,010 complete graph runs even fewer meet this 
criterion: only 1,802 runs. The reason why the vast majority of runs with the 
complete graph are filtered out is that the ratio T /C  tends to be much smaller in this
case, since scientists tend to reach a consensual pursuit of only one of the theories 
much more often. As a result, cases like PUD, where for the large portion of inquiry 
scientists pursued both theories, is hard to find among the runs with fully connected
communities.

Figure 4: Number of runs aggregated over all simulations in which both theories are 
populated at the beginning of the run. ‘Runs with wrong consensus’ are those in which 
scientists at some point during the run all work on the worse theory. ‘Runs fitting PUD 
case’ are those for which T /C>3.

This is further evidence that, even though the wide information sharing may seem to
be the cause of problems in some contexts of scientific inquiry, it doesn’t seem to be 
the likely cause of the abandonment of the bacterial hypothesis in the PUD case. 
Rather, the culprit seems more likely to lie either in the lack of critical interaction, or
in the lack of caution expressed in terms of an interval within which rivaling 
theories count as equally good. The latter point concerns the runs in which we 
employ an interval of 0.1 within which theories count as equally promising and 
where scientists never exhibit consensus on the wrong theory (and which are thus 
absent from Figure [3]).

Nevertheless, our analysis is just the first step in the calibration of this model 
towards the PUD case, and hence towards the robustness analysis of our model 
aimed at providing evidence for this historical episode. In order to obtain reliable 
evidence, we need to map further parameters in the model into the space of the real-
world phenomena. This way we can identify the portion of the parameter space that 
is relevant for the PUD case. Šuch a mapping would include, for instance, the size of 
the scientific community investigating PUD at the time22, time steps in the model in 

22 Even though the population size in our model goes up to 11 agents, this could also 
be understood as representing 11 different research groups, working on PUD.



terms of time of actual scientific inquiry, the impact of extreme prior beliefs (as 
discussed originally by Zollman (2010)), etc.

Finally, it remains a task for future research to examine the robustness of this result 
in view of alternative models of scientific interaction. While an advantage of our 
current ABM lies in its specific representation of a dynamic epistemic success, which
allows us to mirror the development of the PUD case, other ABMs could easily be 
adjusted to this end as well. A suitable candidate is our argumentative ABM 
presented in (Borg et al. 2018), which shares a number of features with the current 
model (e.g. the presence of critical interaction, rational inertia, the interval within 
which theories count as equally good, etc.), but which is nevertheless based on 
different assumptions concerning the representation of scientific inquiry 
(e.g. knowledge acquisition and scientific interaction are represented in terms of 
arguments and argumentative exchange). It will be interesting to see whether 
incautious theory assessment, which according to our current results appears to be 
the main culprit in the PUD case, will turn out to be a robust property, resulting 
from the above mentioned argumentative ABM as well. If the opposite turns out to 
be the case (i.e. if some other factors turn out to be a more likely culprit) this will 
indicate that the two models represent different target phenomena, the specification
of which would be yet another question worthy of pursuit.

6 Cinclusiin

In this paper we have examined the epistemic function of highly idealized ABMs of 
scientific inquiry. Focusing on ABMs of scientific interaction we have suggested that 
they are currently only of exploratory, rather than explanatory use. Next, following 
Kinzel’s (2015) discussion on the epistemic function of historical case studies, we 
have argued that ABMs can play both evidential and explanatory roles, under the 
condition that they have passed adequate robustness analyses. We have illustrated 
our point with an ABM of scientific interaction, built on the basis of Zollman’s 
(2010) model and aimed at explaining the dynamics underlying the research on 
PUD.

Our results can be understood as playing the roles of novelty and recalcitrance: on 
the one hand, by showing that (and explaining why) the complete graph doesn’t 
seem likely to represent the dynamics of the PUD episode, and on the other hand, by
triggering a revision of the belief obtained by means of Zollman’s model, that too 
wide information sharing was a likely causal mechanism leading scientists to 
abandon the bacterial hypothesis. Whether our current conclusion will have to be 
revised yet again, in view of further robustness analyses, remains a question for 
future research.

A more general take-home message of our paper was showing the significance of 
empirical calibration of ABMs in case we should consider them explanatory of their 



intended target phenomena.23 Given a recent trend of simple ABMs of science 
proposed in the literature, this task is all the more important. For each of these 
models, whether they concern network effects or, for instance, the division of 
cognitive labor (see Šection 1), it is essential to examine whether their results are 
robust once a given model is adjusted to represent a concrete case – its purported 
target. To this end, it remains a task for future research to specify benchmark case 
studies for each individual model, which can serve as the basis for their respective 
robustness checks.24
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