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1. Introduction 

Dynamical collapse theories, such as the GRW theory (Ghirardi, Rimini and Weber 1986), the  

Continuous Spontaneous Localization theory, or CSL (Pearle 1989; Ghirardi, Pearle and Rimini 

1990),  Quantum Mechanics with Universal Spontaneous Localization, or QMUPL (Diósi 1989), 

and their respective relativistic extensions (Dove 1996; Dove and Squires 1996; Tumulka 2006; 

Bedingham 2011a,b; Pearle 2015) modify the usual deterministic, unitary quantum dynamics in 

such as to produce something like the textbook collapse process. See Bassi and Ghirardi (2003), 

Bassi et al. (2013), and Ghirardi (2016) for overviews. 

If some sort of dynamical collapse theory is correct, what might the world be like? Can a 

theory of that sort be a quantum state monist theory, or must such theories supplement the quantum 

state ontology with additional beables? In a previous work (Myrvold 2018), I defended quantum 

state monism. The view defended involves a natural extension of the usual eigenstate-eigenvalue 

link, which provides a sufficient condition for a quantum state to be one in which a system has a 

definite value of some dynamical variable, namely, that the quantum state be an eigenstate of that 

variable. The usual eigenstate-eigenvalue link leaves it open what to say about states that are not 

eigenstates. A state that is not an eigenstate of some dynamical variable, but is very close to an 

eigenstate, exhibits behaviour that closely approximates that of the eigenstate. In accordance with 

a proposal of Ghirardi, Grassi, and Pearle (1990), in such a case the quantity may be treated as if it 

were definite. But specification of the quantities that are definite or near-definite does not 

exhaustively specify the condition of the physical world, as there are matters of fact about such 

things as the spread of values of a dynamical variable in a given state. The natural ontology for a 

collapse theory is a distributional ontology along the lines advocated by Philip Pearle (2009). On 

such an account, dynamical quantities such as charge or mass within a specified region do not take 

on precise values, but, rather, have associated with them a distribution of values. 
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This chapter discusses the extension of such a picture to the context of a relativistic spacetime. 

This will not be presumed to be Minkowski spacetime, as we will want to consider curved 

spacetimes; furthermore, we do not wish to exclude the possibility of discrete spacetimes. What 

the spacetimes we will consider have in common is a relativistic causal structure. In particular, we 

will focus attention on spacetimes in which, for any spacetime point p, there are temporally 

extended processes that go on at spacelike separation from p, prohibited by the spacetime structure 

from either causally influencing p or being influenced by it. 

In Section 2 I give a brief recapitulation of the argument, presented in more detail in Myrvold 

(2018), for distributional ontology. This is based on a principle that, I claim, ought to be respected 

by any project of seeking to draw ontological conclusions from non-fundamental physical theories, 

a principle that I call the Principle of Metaphysical Continuity, outlined in section 2.1. This 

principle permits us to draw conclusions about ontology for non-ideal collapse theories—that is, 

collapse theories that yield, not exact eigenstates of the dynamical quantities one would like to be 

definite, but close approximations to them—from ontological considerations regarding ideal 

collapse theories. In Section 3 is presented a fairly general schema for collapse theories in a 

relativistic spacetime. Finally, in section 4, we turn to the identification of local beables for theories 

of that sort. 

2. The case for distributional ontology 

2.1. Ontology for non-fundamental theories 

If we want to know something about the make-up of the world, we can do no better than to look to 

our best scientific theories. This poses a prima facie problem, however, as there is not, and never 

has been, a convincing candidate on the table for a complete and fundamental physical theory. 

One reaction to this fact might be take on the task of giving an account of what the world 

would be like if such-and-such physical theory were a complete and fundamental theory. On this 

view, metaphysics is a subgenre of fiction, though stripped of plot and character and, indeed, of 

everything that motivates us to read fiction. This strikes me as an uninteresting enterprise, except 

insofar as considerations of unrealistic theories yields insights regarding the ontology of the actual 

world. For instance: though we currently lack a theory that incorporates both quantum and 

gravitational phenomena, one could, perhaps, investigate the structure of a world in which there is 
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no gravitation and in which the standard model of quantum field theory is exactly correct. But such 

a world would be a lonely and boring place, as it would contain no stars or planets, and, since 

virtually all nuclei heavier than helium are formed in stars, would contain little in the way of 

chemical reactions. We could not ask what it would like to be a denizen of a world like that, because 

a world like that would contain no life. 

Another reaction might be to abandon all ontological inquiry as hopeless, on the grounds that 

we can expect future theories to generate radical ontological shifts. This strikes me as overly 

pessimistic. The objects dealt with in classical physics do, after all, exist, even if their behaviour is 

not exactly what classical physics would lead one to expect. Any theory that can lay claim to the 

title of a viable successor theory to our current theories is obliged to recover the empirical successes 

of our current theories, and, as long as we resist the temptation to draw stronger conclusions from 

our current physical theories than we have warrant for, there are reasons for optimism that those 

conclusions will weather the storms of future theory change.  

This sort of attitude recommends due caution in our metaphysical musings. The evidence we 

have concerning our physical theories warrants only the conclusions that they hold to a good 

approximation in their domains of applicability, and that any viable successor theory will have 

entail something like the current theories within those domains. If our current theories have 

metaphysical consequences that are sensitive to the precise details of the theory, consequences that 

would not hold if the theory were slightly different, then we have no warrant for taking those 

consequences to hold of our world. Our metaphysical conclusions should satisfy a Principle of 

Metaphysical Continuity: they should be robust under small perturbations of theory. This is a 

principle that we will put to work, in Subsection 2.3, below. 

2.2. The requirement of local beables 

Consider a region of spacetime that is bounded in both time and space, say, the spatial region inside 

your office, during some specified hour of time. Of the things that are true of that bounded 

spacetime region, some are local to that region: they refer only to intrinsic properties of that region. 

These are to be contrasted with things that involve relations to states of affairs outside the region, 

or either implicit or explicit reference to things outside. 
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For example, on the usual way of thinking about things, if your office, during the hour we 

are considering, contains a cabinet-shaped piece of steel, this is a local fact about that spacetime 

region. If the proposition that the spacetime region under consideration contains an object of that 

sort is true, its truth is compatible with completely arbitrary states of affairs outside the region, and 

its truth value cannot be changed by goings-on outside the region unless those goings-on have an 

effect on local matters within the region. By contrast, if the contents of your office are 

approximately 150 million kilometers from the nearest star, this fact is clearly a fact about relations 

between the things in your office and the world outside of it. A symptom of this fact is that it can 

be changed by making changes outside your office that don’t affect anything within it.  

By a local beable, I will mean something that is, in this sense, local to a bounded spacetime 

region. The ontology of a physical theory might contain both local and nonlocal beables. If it is the 

case that, for an arbitrarily fine covering of spacetime with open sets, the full ontology of the theory 

supervenes on beables that are local to elements of that covering, we will say that the ontology 

satisfies the condition of separability (see Myrvold 2011 for further discussion). 

Quantum state realism entails rejection of separability. It does not follow that there are no 

local beables. For one thing, there could be local beables postulated in addition to the quantum 

state. But also, some aspects of the quantum state—in particular, the reduced state that is the 

restriction of the state to observables pertaining to a bounded spacetime region—might be counted 

as local beables. 

Need there be any local beables at all? If we are willing to countenance a rejection of 

separability, might we not go all the way, and accept a radically holistic view in which there are no 

beables intrinsic to any region short of the whole of spacetime? 

The difficulty with this is that, if the theory is meant to be one that is in principle 

comprehensive, it must have room for such things as experimental apparatus that is subject to local 

manipulations, and whose experimental readouts are, presumably, matters of fact local to the 

laboratory. In the absence of things like these, the theory runs the risk of undermining its own 

evidential base (see Maudlin 2007 for a lucid discussion of this point).  

A brief comment, before we continue. What it means to say that a structure found within a 

physical theory plays the role of spacetime for that theory is that it has the appropriate connections 

with dynamics. In speaking of spacetime, I will always mean that structure that plays the role in 
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the theory of affording spatiotemporal relations such as distances, temporal intervals, causal 

connectability, and the like, distances and temporal intervals and causal relations that are relevant 

to the dynamics. It is necessary to say this because it has been claimed that quantum theory 

motivates the introduction of a so-called “fundamental space” or “fundamental arena,” a high-

dimensional space that would be such that quantum states involve nothing more than assignments 

of local beables to points in that fundamental space (see Albert 1996 and the various contributions 

to Ney and Albert, eds., 2013). In a quantum theory, even if such a space can be found, it is not the 

structure on which the distances, temporal intervals, and causal relations relevant to the dynamics 

are defined. For that reason, such a space, even if it were to exist, is not spacetime in the sense of 

the word being used in this chapter. Hence, even if such a space did exist, a quantum state realist 

ontology violates separability, as we are using the term. 

2.3. Ontology for ideal collapse theories 

According to the textbook collapse postulate, after an experiment the quantum state of the system 

subjected to the experiment is an eigenstate of the observable whose value has been obtained. 

Naively, one might expect a dynamical collapse theory to be like that. There are good reasons for 

thinking that this is an unattainable goal. If, however, we could have a theory like that—a theory 

that yielded eigenstates of an appropriate dynamical variable—then, I claim, there would be no 

problem of ontology for the theory, once we have settled on a choice of dynamical variable to 

collapse to eigenstates of (a suitable choice seems to be that of a smeared mass density, as 

advocated by Ghirardi, Grassi, and Benatti 1995). That there is any question about the ontology for 

a collapse theory is an aspect of what has been called the tails problem (first flagged as an issue by 

Shimony 1991, and by Albert and Lower 1991), which stems from the fact that collapse theories 

do not lead to eigenstates of familiar dynamical quantities. 

Consider a quantum theory on a discrete spacetime, one on which space consists of 

elementary cells of size vastly smaller than the scales on which we deal with things. Suppose we 

had a collapse theory that tended to suppress superpositions of distinct mass densities smeared over 

regions (which could consist of a great many of these elementary cells) of order 10–5 cm, small on 

human scale, but large compared to atomic dimensions. Suppose that our collapse theory induced 

collapse, within a finite time, to eigenstates of the operators corresponding to total mass within 
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regions of this size, and that states that are not eigenstates of these mass operators could persist 

only for a minuscule fraction of a second. 

On such a theory, for every region of space of sufficient size, the quantum state would, almost 

all of the time, be an eigenstate corresponding to a definite mass within that region. Hence, by the 

eigenstate-eigenvalue link, there would be a matter of fact about the amount of mass within that 

region. Thus, a possible state of the room in which I am sitting would be one in which there was a 

desk-shaped region of higher mass density than its surroundings. Provided that these regions of 

high mass density exhibited the right sort of dynamical behaviour, there would be no problem in 

identifying them with desks, chairs, and laboratory equipment, and there would be no problem of 

ontology for collapse theories. 

2.4. Distributional ontology 

Prospects are dim for a viable collapse theory that yields precise eigenstates of total mass in any 

bounded region, or, indeed, precise eigenstates of any local beables. A collapse theory can, 

however, yield close approximations to eigenstates of appropriate local beables, such as mass 

smeared over sufficiently large regions. 

Whether the dynamics is linear, unitary, and deterministic, as in the Schrödinger equation, or 

non-unitary and stochastic, initial states that are close to each other, in Hilbert space norm, evolve 

in approximately the same way. Thus, a state that is close to being an eigenstate of a given 

dynamical quantity will evolve in approximately the same way as the eigenstate that it is close to. 

If we accept (as we should; see Myrvold 2018 for a fuller discussion, and also Albert 2015: 

127ff.) that to be a be a physical body is nothing more and nothing less than to have a certain place 

in a network of dynamical and causal relations of an appropriate sort, and if we accept (as we 

should) that there would be no problem of interpretation of an ideal collapse theory that yielded 

eigenstates of the right sort of dynamical quantities, then, by the Principle of Metaphysical 

Continuity, we should accept that regions of space whose states are very near to eigenstates of total 

mass can serve as physical objects just as well as would regions of space in exact eigenstates of 

total mass. 

Considerations such as this have led to a proposed modification of the eigenstate-eigenvalue 

link. 
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if one wishes to attribute objective properties to individual systems one has to accept 

that such an attribution is legitimate even when the mean value of the projection 

operator on the eigenmanifold associated to the eigenvalue corresponding to the 

attributed property is not exactly equal to 1, but is extremely close to it (Ghirardi, 

Grassi, and Pearle 1990: 1298). 

This modification has been dubbed, by Clifton and Monton (1999), the fuzzy link. 

To say that we can ascribe a property to a system when the quantum state is such that its 

variance is negligibly small requires that there be a matter of fact about what the variance is. 

Considerations of this sort suggest a revision of the way we think about dynamical quantities, along 

the lines advanced by Pearle (2009). On this view, dynamical variables typically do not take on 

sharp values as they would classically. What they have, instead, is a distribution associated with 

them. These distributions, though having the formal characteristics of probability distributions, are 

to be thought of, not as a probability distribution over precise but unknown possessed values, but 

as reflecting a physical, ontological, lack of determinacy about what the value is. A limiting case 

would be the classical case, in which the distribution is a delta function.  

On this view, the value of every dynamical variable is distributional. A collapse theory will 

tend to narrow the spread of the distributions of some of these quantities. When the distribution is 

sufficiently narrow, things will be almost exactly as if the quantity has a precise value, and, under 

such circumstances, we can treat the variable as if it does possess a precise value. In seeking objects 

that behave like our familiar macroscopic objects, it is to those variables that we should direct our 

attention. But the spread-out distributions of the other variables are no less part of physical reality. 

2.5. Primitive ontology as an alternative? 

Given a family of operators ˆ ( )M x , corresponding to a smeared mass-density centred at the point 

x , for any quantum state   one can define a function ( )m x , whose value at the point x  is equal 

to the expectation value of ˆ ( )M x  in state  . When Ghirardi, Grassi, and Benatti (1995) 

introduced the smeared mass-density as a basis for the ontology of collapse theories, their proposal 

was an application of the fuzzy eigenstate-eigenvalue link. They argued that the quantity ( )m x  

behaves like a mass density when—and only when—the variance of ˆ ( )M x  is sufficiently small as 

to be negligible, in which case the mass density is said to be objective. When this condition is not 
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satisfied, the quantity ( )m x , though well-defined, cannot be interpreted as a mass density, as other 

systems do not behave as if a quantity of mass corresponding to ( )m x  is present. In some later 

works (Ghirardi and Grassi 1996; Ghirardi 1997a, 1997b) the mass density is said to be 

“accessible” if its variance is sufficiently small (this shift is attributed by Ghirardi and Grassi 1996, 

fn. 5, to a conversation with S. Goldstein). 

There is, at least apparently, a rival interpretation of ( )m x . On this view, introduced by 

Goldstein (1998) and discussed extensively by Allori et al. (2008), a mass density equal at every 

point to the expectation value of ˆ ( )M x  is posited as additional, primitive ontology, over and above 

the quantum state. 

The quantities ( )m x  are well-defined for any quantum state. However, since, in situations in 

which the objectivity, or accessibility, condition is not satisfied—that is, situations in which the 

variance of ˆ ( )M x  is not small enough to be neglected—other objects do not respond as if a mass 

density equal to ( )m x  is present, ( )m x  acts like a mass density only when the accessibility 

condition is satisfied. Something that doesn’t act like a mass density isn’t a mass density. Thus, on 

the supposed rival interpretation, despite what is said, a mass density is present only when there is 

a mass density present on the original, quantum state monist proposal, that is, when the accessibility 

condition is satisfied. The proposal to take ( )m x  as additional, primitive ontology does not present 

a genuine alternative to the original proposal of Ghirardi, Grassi, and Benatti (1995). 

3. A schema for relativistic collapse theories 

3.1. Relativistic spacetimes 

We assume a spacetime equipped with a causal order, that is, a relation  of causal precedence, 

assumed to be transitive and antisymmetric (that is, if p causally precedes q, then q does not 

causally precede p). Two spacetime points are said to be causally unconnected if they stand in no 

causal order, that is, if neither p q  nor q p  obtains. Because no point is in the causal past of 

itself, the relation of being causally unconnected is reflexive. That it is symmetric follows 

straightforwardly from its definition. Two distinct points that are causally unconnected are said to 

be spacelike separated. 

In Galilean spacetime, the relation of being causally unconnected  is transitive, and, therefore, 

is an equivalence relation, and the spacetime can be portioned into equivalence classes of 
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simultaneity. In Minkowski spacetime, on the other hand, for any two points p, q that are spacelike 

separated from each other, there are other points r that are spacelike separated from p but not from 

q. Define a relativistic spacetime as one in which, for any spacelike separated p, q, there exists a 

point r that is spacelike separated from p, such that r q . 

A causal curve is a curve such that, for any pair of distinct points p, q, either p q  or q p

. A Cauchy surface is a set of spacetime points that is intersected exactly once by every inextendible 

causal curve. A spacetime that contains Cauchy surfaces is said to be globally hyperbolic. 

We will, in what follows, assume a globally hyperbolic relativistic spacetime. We can define 

the relation   between Cauchy surfaces: If ,    are two Cauchy surfaces, then     when no 

part of one if no part of   is in the causal past of  . This relation is reflexive and transitive, and 

hence is a partial order on Cauchy surfaces. 

3.2. Collapse theories in relativistic spacetime 

A collapse theory modifies the deterministic, unitary evolution so as to produce something like the 

textbook collapse. Gisin (1989) has demonstrated, on the assumption that the evolution is 

Markovian (meaning that future states depend only on the present state, and not on any details 

about the past that aren’t reflected in the present), that any deterministic, nonlinear dynamics for 

quantum states that does not respect a certain linearity condition permits signalling—if two 

spatially separated systems are in an entangled state, a choice of experiment on one can influence 

probabilities of outcomes of experiments performed on the other. 

The relevant condition is the following. 

Linearity. Let T be a dynamical map on the set of pure states of a system. Let 

 , 1,...,i i n=  and  , 1,...,j j m=  be sets of pure states such that, for some non-

negative weights {xi}, {yj}, 

1 1

n m

i i j j

i j

x y
= =

=   . 

Then 

( ) ( )
1 1

n m

i i j j

i j

x T y T
= =

=   . 
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As Kent (2005) has argued, though violations of linearity permit signalling, this need not be 

superluminal signalling. Nonetheless, ordinary quantum mechanics does not allow operations on 

one system to be used for signalling to another system, unless there is an interaction term between 

the two systems in the Hamiltonian, and we will assume that the no-signalling condition holds, and 

hence that the evolution is linear. This means that (unsurprisingly) a theory that produces collapse 

must be a theory with indeterministic dynamics. 

It is convenient to work within what may be called the stochastic Tomonaga-Schwinger 

picture. The usual Tomonaga-Schwinger picture (see Schweber 1961: 419–422, for an 

introduction) is an extension of the interaction picture to a relativistic spacetime. One divides the 

Lagrangian density into two parts (typically regarded as the free Lagrangian density and the 

interaction Lagrangian), 

0 1( ) ( ) ( )x x x= + . 

The operators representing observables are Heisenberg-picture operators for the free theory. We 

utilize, however, evolving state vectors; with each Cauchy surface   is associated a state vector 

( )  . Evolution from a surface   to another,  , differing by a small deformation   about a 

point x, satisfies the Tomonaga-Schwinger equation: 

1

( )
( ) ( )i c H x

 
= 




 . 

Integration of this equation yields, for any Cauchy surfaces   and  , a unitary mapping from 

( )   to ( )  . 

We wish to modify this equation so as to produce collapse. On the stochastic Tomonaga-

Schwinger picture, we work with Heisenberg-picture operators that are solutions to the standard 

field-theoretic equations, for free or interacting fields. The difference between states on different 

Cauchy surfaces is due to the stochastic modifications to the usual evolution. We will assume that 

the new dynamics is Markovian: that is, that, if    , the set of possible states on  , and their 

respective probabilities, are determined by ( )  , and not by other facts about the history leading 

up to that state. 

Given two Cauchy surfaces, ,   , with    , and a state vector ( )  , there will be some 

state vector ( )  , but what this vector will be is not determined by ( )   and the dynamics. 

Instead, there will be some set of alternatives { ( ) } 
 , which we take to be indexed by a 
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parameter   that takes on values in a set  . We expect our theories to specify, given two surfaces 

,   , with    , and the state vector ( )  , the set of alternatives  ( ) , 
  , and also a 

probability distribution over the possible values of  . Suppose that, with respect to some 

background measure  , this probability distribution is represented by a density function ( )p  . 

With this apparatus in place, we can define a mixed state, ( ; )    as the weighted average 

over the possibilities for the state on  , given ( )  . 

( ; ) ( ) ( ) ( )p d 


     =        

This would be the state used by someone who knows the state on   and the possible state 

transitions from ( )   to ( )   and their respective probabilities, but does not know the 

outcome of the process that occurs between   and  . 

Gisin’s proof, mentioned above, generalizes to stochastic theories. If we take T to be the 

mapping that takes a pure state on   to a mixed state ( ; )   , no-signalling entails that this map 

must satisfy the linearity condition (Simon, Bužek, and Gisin 2001, Bassi and Hejazi 2015), and 

from this, together with the condition that, applied to subsystems in entangled states, the mapping 

extend to a positive map on the state space of the wider system, entails that the map from the state 

on   to the mixed state ( ; )    be a completely positive map. 

We will therefore take the mapping from a pure state on   to the mixed state ( ; )    to be 

a nonselective completely positive map, which is a mixture of selective completely positive maps 

that takes us from ( )   to ( )
  . This entails that there is a set of operators  ,K  , 

which we will call evolution operators, such that, for some  , 

( ) ( ) ( ) ( )K K        
 = = , 

with probabilities for which state is realized given by 

Pr( ) ( )p d


 =   . 

The linearity condition entails that 

2
( ) ( )p K =   . 

Any probabilities that depart from these would lead to signalling. The condition that p always be 

normalized is the condition that 



 12 

† 1K K d 


 = . 

The evolutions should also satisfy the semi-group property, which requires that, for Cauchy 

surfaces       , the possible evolutions from   to   be the compositions of evolutions from 

  to   with evolutions from   to  . 

The theory of quantum dynamical semi-groups is well-studied (see Bassi and Ghirardi 2003, 

or Alicki and Lendi 2007 for an introduction). Provided that the evolution satisfies an appropriate 

continuity condition, the mixed-state density operators on Cauchy surfaces   to the future of some 

surface 0  will satisfy a Lindblad equation. We consider the change in 0( ; )    as we pass from 

one surface   to another,  , differing by a small deformation about a point x on   , with 

spacetime volume  . Let ( )H x  be the Hamiltonian density, that is, the component of the energy-

momentum density along the normal to   at x. For a Lindblad-type evolution, there is also a 

countable set  ( )L x  of operators, such that the change   satisfies 

  † † †1 1
( ), ( ) ( ) ( ) ( ) ( ) ( )

2
H x L x L x L x L x L x L x

i c
     

  

 
=  +  − + 

  
   . 

 

 

Consider two Cauchy surfaces ,   , with    , that coincide everywhere except on the 

boundaries of two bounded regions   and   (see Figure 1). The evolution from   to   through 

  must equal the composition of the evolution through   and the evolution through  , in 

either order. The necessary and sufficient condition for this is that evolution operators 

corresponding to spacelike separated regions commute. 

Moreover, for computing probabilities for the results of experiments on the overlap of    

and  , it should not matter whether ( )   or ( ; )    is used. Someone located in the overlap, 

who knows the state on   and believes collapse will occur between   and  , but does not know 

(because it occurs at spacelike separation) what the outcome of that collapse is, should be able to 

Figure 1. Two Cauchy surfaces ,   , with    , that coincide everywhere except on the boundaries of two bounded regions 

  and  . 
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use ( )   or ( ; )    for computing probabilities of results of experiments that she is about to 

undertake, and these should yield the same probabilities for outcomes of those experiments. The 

necessary and sufficient condition for this is that evolution operators that implement evolution 

through a given spacetime region   should commute with operators representing observables at 

spacelike separation from  . 

These conditions give us a rather general schema for a quantum theory with stochastic 

dynamics on a relativistic spacetime. It includes, as a special case, deterministic, unitary evolution, 

in which case the set of evolution operators pertaining to any region of spacetime is a singleton set. 

Concrete theories will fill in the details, specifying, in particular, what the sets of evolution 

operators are. 

4. Beables for relativistic collapse theories 

4.1. Intrinsic and extrinsic states of a spacetime region 

Consider a bounded spacelike region  , that is common to Cauchy surfaces  , , ,...    . In the 

stochastic Tomonaga-Schwinger picture, there will be quantum states ( )  , ( )  , ( )  , …. Each of 

these states yields probabilities of outcomes of experiments to the future of its Cauchy surface, 

conditional on events, including any collapses, to the past of the Cauchy surface. For each of these 

states, we can consider the reduced state that consists of the restriction of the state to observables 

in the forward domain of dependence of  . Call these reduced states ( )  , ( )
  , etc.. If the 

evolution between two surfaces   and   is purely unitary, then ( )   will coincide with ( )
  . If, 

however, collapse occurs between   and  , then they need not coincide. 

 

 

Figure 2. Three Cauchy surfaces containing a common part . 
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Since the reduced state ( )   is conditioned on any collapses to the past of  , including any 

that are spacelike separated from  , it should be clear that, though it is associated with the region 

 , ( )   cannot in general be regarded as a beable local to  . Thus, if the reduced states ( )   and 

( )
   differ, they do not offer competing accounts of intrinsic properties of the region  . 

The intrinsic state of a bounded spacelike region   must be conditioned only on collapses 

to the past of  . We can define this state by a limiting procedure. Consider a sequence of Cauchy 

surfaces  1 2, ,..., ,...n   , that is such that   is contained as a common part of all n  and for all 

n, 1n n+   , and the sequence converges on the past light cone of   (that is, the set of points that 

are to the past of all n  is precisely the casual past of  . Define the past light-cone state of   as 

the limit, if it exists, of ( )n  , as n increases indefinitely. Though a state derived from a Cauchy 

surface with events to its past that are spacelike separated from   cannot be regarded as the 

intrinsic state of  , its past light-cone state can. 

4.2. Compatibility of extrinsic states 

Maudlin (1996: 301-302) raised the question of consistency of state assignments derived from 

different hypersurfaces passing through a given region. If two hypersurfaces  ,   having a region 

  in common, yielded reduced states that were orthogonal to each other, in the sense of yielding 

conflicting definite (probability equal to unity) predictions for the outcome of some experiment, 

this would be problematic. 

The question arises: do the conditions on collapse dynamics outlined above guarantee that 

the differing extrinsic state assignments obtained from different Cauchy surfaces are not in outright 

conflict with each other? It can be shown (see Myrvold 2003: 489, 2016: 255-257) that these 

conditions suffice to guarantee that the states states ( )   and ( )
   are not orthogonal. 

In fact, a stronger sense of compatibility obtains. The question of the compatibility of reduced 

states derived from states on different Cauchy surfaces is essentially the same as that addressed by 

Brun, Finkelstein, and Mermin (2002). They demonstrate that state assignments that can represent 

information about a system available to different observers are compatible, in the sense that they 

have overlapping support. 

The context in which Brun et al. work is that of finite-dimensional Hilbert spaces. However, 

essentially the same conclusion holds in a setting appropriate to quantum field theory. In this 
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context we cannot assume a finite-dimensional Hilbert space, nor can we assume that the mixed 

state of a bounded region   obtained from a pure state on a Cauchy surface containing   admits 

of a decomposition into pure states. We must take care to formulate the condition in a manner that 

is independent of assumptions such as these. 

We assume a von Neumann algebra ( )R  , whose self-adjoint elements represent the 

bounded observables pertaining to the forward domain of dependence of  . Let   be a normal 

state of ( )R   (that is, a completely additive state). We define the support projection for   as the 

orthogonal complement of the union of all projections in ( )R   to which   assigns expectation 

value zero. 

With these definitions in hand, it can be shown that, given a set  , , ,...     of Cauchy 

surfaces containing  , then on the assumption that there is a Cauchy surface containing   that is 

nowhere to the past of any of them (which, in particular, will always be the case for any finite set 

of Cauchy surfaces), the corresponding set of states  ( ), ( ), ( ),...  
        have nonzero 

overlapping support. See Appendix for details. 

4.3. Local beables for collapse theories 

Suppose that we have a collapse theory that yields near-eigenstates of an appropriate dynamical 

quantity. For example: the natural extension to the relativistic context of a mass-density would be 

the components of the stress-energy tensor. Assume that we have an appropriate relativistically 

invariant smearing function (see Bedingham 2011a,b), and formulate smeared operators ˆ ( )T x , 

representing a smeared stress-energy density centred at the point x. For any state  , we can define 

ˆ( ) ( )x T x 


=  

The 00-component of this is the relativistic analogue of the mass density that has been proposed as 

an appropriate ontology for nonrelativistic collapse theories. 

For a bounded region   contained in distinct Cauchy surfaces   and  , the reduced states 

( )  and ( )
   may yield differing values for ( )x , with x within  . But, obviously, these 

do not yield rival accounts of local beables within  ; as they are defined via the extrinsic states 

( )  and ( )
  , which are not themselves local beables. 
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Where, then, may we find local beables for a relativistic collapse theory? There are, in the 

literature, two proposals for extending the fuzzy link to a relativistic context. One is what might be 

called the agreement criterion, formulated by Ghirardi, Grassi, and Pearle (1991): 

We think that the appropriate attitude is the following: when considering a local 

observable A with its associated support we say that an individual system has the 

objective property a (a being an eigenvalue of A), only when the mean value of Pa is 

extremely close to one, when evaluated on all spacelike hypersurfaces containing the 

support of A. (1991: 1310). 

This means that, for x within  , ( )x  will be regarded as representing an objective property if 

and only if the accessibility criterion is satisfied in ( )   for every Cauchy surface containing 

. 

The other criterion is the past light cone criterion, formulated by Ghirardi and Grassi (1994: 

419; see also Ghirardi 1996: 336, 1999: 139, 2000: 1364). On this criterion, a system is said to 

possess the property A=a when the expectation value of Pa is extremely close to one, evaluated on 

the past light-cone state. 

If the criterion for property attribution were an exact eigenstate-eigenvalue link—that is, if 

we were ascribing a property A=a only when the expectation value of Pa is exactly equal to one—

then the two would be equivalent. The past light-cone state of a region   is an eigenstate of an 

observable A pertaining to   with eigenvalue a if and only if the state on every Cauchy surface 

containing   is. On the fuzzy link, the agreement criterion entails the past light-cone criterion, but 

the past light-cone criterion does not guarantee satisfaction of the agreement criterion; it only 

entails that the agreement criterion will hold with high probability. 

If the property attribution criterion is meant to supply local beables, then it is clear that what 

is wanted is the past light-cone criterion and not the agreement criterion. The agreement criterion 

makes reference to events at spacelike separation from the region in question. Moreover, as 

Ghirardi, Grassi, Butterfield, and Fleming (1993: 358) have shown, a choice regarding experiments 

performed at spacelike separation from   can affect the probability that the agreement criterion is 

satisfied. Consider a case of two spin-½ particles, located in world-tubes A and B. We take initial 

conditions on a Cauchy surface 0 , and suppose that the particle in A is undisturbed in the interval 

between 0  and some later Cauchy surface 1 . Let  be a spacelike slice of A between 0  and 1 . 
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Let 0 ,  1  be the intersections of B with 0   and 1 , respectively.  We will take 0  and 1  such 

that 0  and 1  are to the past, and future, respectively, of   (see Figure 3). 

 

 

Suppose that the state of the pair of particles on 0  is 

0( ) 1
A B A B

  = − + + +  − −  

where +  and −  are spin eigenstates in some designated direction (say, the z-direction), and   

is an extremely small number, small enough that the state 0( )   is sufficiently close to an 

eigenstate of spin for the particle in A that the accessibility criterion is satisfied. Thus, on the past 

light-cone criterion, we ascribe + spin in the z-direction to the particle in A as a possessed property. 

Figure 3. Set-up for the example described in the text. 
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Suppose that Bob, located near B, has a choice of whether to perform a spin experiment on 

B. Suppose that, if he doesn’t, the pair of spin-½ systems is effectively isolated from outside 

interference, and that in that case our collapse theory assigns, for some   smaller than  , 

probability 1−  that the state will remain undisturbed in the interval between 0  and 1 , in which 

case the agreement criterion for property attribution is satisfied. If Bob chooses to do a spin 

experiment on the particle in B, there is probability   that he will obtain the result − . If he does, 

then the state of the combined system on a Cauchy surface 2  that includes   and runs to the 

future of Bob’s experiment will not be a state in which the particle in A is close to a + eigenstate 

for spin-z; on the contrary, it will close to a – eigenstate for spin-z. In such an eventuality, the 

agreement criterion for ascribing ‘spin-z = +’ to the particle in A is not satisfied. 

Now, if the threshold for satisfaction of the accessibility criterion is stringent enough—say, 

10–40, as suggested by Pearle (1997)—then the probability of disagreement between the past light-

cone criterion and the agreement criterion is sufficiently low as to be negligible, whether or not 

Bob chooses to do an experiment. However, it is still true that the value of this negligibly low 

probability depends on Bob’s choice regarding his experiment, and hence, if we were to apply the 

agreement criterion for outcome attribution, this would require acceptance that the theory exhibits 

parameter dependence, albeit a very weak parameter dependence (see Ghirardi, Grassi, Butterfield, 

and Fleming 1993 for discussion). If, however, we adopt the past light-cone criterion, then (as 

noted already by Ghirardi and Grassi 1994), there is no parameter dependence at all, not even very 

weak dependence. The conclusion to be drawn is that local beables for a relativistic collapse theory 

are to be identified according to the past light-cone criterion. 

As mentioned, Ghirardi, Grassi, and Benatti (1995) have argued that a theory on which, at 

the macroscopic scales, a smeared mass density is almost always near-definite yields an adequate 

picture of the world. Combined with the past light-cone criterion, this gives a past light-cone matter 

density ontology, discussed by Tumulka (2007) and, in more detail, by Bedingham et al. (2014). 

5. Conclusion 

There is a sensible ontology for collapse theories in a relativistic context. Moreover, considerations 

of what it takes for a theory to represent a world that contains, among other things, objects like our 

experimental apparatus, to be thought of a local beables, determine the form that this ontology 



 19 

takes. It is one on which all dynamical quantities are distributional in character. In spite of this 

distributional character, dynamical quantities may hace effectively precise values (in the sense that 

they behave, to a high degree of approximation, as if they have precise values); it is the goal of a 

collapse theory to ensure that the properties of macroscopic objects almost always have this 

character. Beables local to a bounded spacetime region are to be evaluated via the past light cone 

state of that region. 

Appendix 

We consider a finite set of Cauchy surfaces  1 2, ,..., n   , all containing an open subset  . Our 

goal is to show that, given the conditions on a relativistic collapse theory, the states 

1 2( ), ( ),..., ( )n         have common support. 

We assume a Hilbert space that contains vectors 1 2( ) , ( ) ,..., ( )n      . We assume 

also that, if    , there exists K  such that 

( ) ( ) ( ) .K K       =  

If    , and   is in the overlap of   and  , then the region between   and   is spacelike 

separated from  .  Therefore, K  commutes with all self-adjoint elements of ( )R  . 

The restrictions of the states on the Cauchy surfaces 1 2, ,..., n    are states (which will 

typically be mixed states) of ( )R  , 1 2( ), ( ),..., ( )n        . We do not assume that these are 

represented by density operators in ( )R  , or that they are mixtures of pure states of ( )R  , as this 

is not needed in what follows. 

As mentioned in the main text, the projector onto the null space of any state   of ( )R   is 

the union of all projections P that have zero expectation value in  , and the support projection of 

  is the orthogonal complement of the projector onto the null space. We will call the null space 

and the support of  ,  Null   and  Supp  . 

Lemma 1. Let   and   be Cauchy surfaces containing a common open subset  . If 

   , then, for any positive operator ( )E R  , if ( ) ( ) 0E =    , then 

( ) ( ) 0E  =    . 

Proof. Any positive operator E  has a square root 1/ 2E . Suppose that 
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( ) ( ) 0E =     

Therefore, since  

2
1/ 2( ) ( ) ( )E E=       

then 

1/ 2 ( ) 0E =   

For some K  that commutes with all self-adjoint ( )E R  , 

( ) ( ) ( ) ,K K       =  

Therefore, 

1/2 1/2 1/2( ) ( ) ( ) ( ) ( ) 0E E K K K E K             = = =  

and so 

( ) ( ) 0E  =     

. 

Lemma 1 gives us a relation between the supports of ( )   and ( )
   when    . 

Proposition 1. Let   and   be Cauchy surfaces containing a common open subset 

 . If    , then    ( ) ( )Null Null 
     ; equivalently, 

   ( ) ( )Supp Supp 
     . 

Proof. This is immediate from Lemma 1. 

From this follows the result concerning overlapping support of {𝜌𝛼(𝜎1), 𝜌𝛼(𝜎2),… , 𝜌𝛼(𝜎𝑛)}. 

Proposition 2. Let 1 2, ,..., n    be Cauchy surfaces sharing a common open subset  . 

Then the supports of 1 2( ), ( ),..., ( )n         have nonzero intersection. 

Proof. We can construct a Cauchy surface +  that contains   and is such that i +    for each i, 

by taking the least upper bound of the set  1 2, ,..., n    under the ordering  . Consider, now, the 

state ( ) +  . By Proposition 1,    ( ) ( )iSupp Supp +       for all i, and hence the support of 

+  lies within the intersection of the supports of 1 2( ), ( ),..., ( )n        . 
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Remark I. The restriction to a finite set is unnecessary; the result holds for an infinite set of Cauchy 

surfaces provided that there is a Cauchy surface that is the upper bound of all of them. Furthermore, 

if there is a future light-cone state that is the limit of an increasing (in the ordering  ) set of Cauchy 

surfaces that converges on the future light cone of  , then the support of the future light cone states 

is the intersection of the supports of all ( )   for all   containing  . 

Remark II. A quantum field is an assignment of a “field operator” ˆ( )x  to each point of spacetime. 

In standard quantum field theories on Minkowksi spacetime, it is assumed that there is a unitary 

representation of the group of spacetime translations, with infinitesimal generators P  that satisfy 

the spectrum condition: 

For any future-directed timelike vector a, the spectrum of Pa  is in +  

This ensures positivity of the energy, with respect to any reference frame. 

We assume a unique vacuum state that is invariant under all spacetime symmetries. Define 

the standard Hilbert space of the theory as the closure in norm of the set of all vectors that can be 

obtained by operating on the vacuum state with operators constructed from standard fields. It 

follows from the Reeh-Schlieder theorem that, for any state   that is analytic in energy, for any   

that is such that the set of points spacelike separated from   contains an open set, the null space 

of   is empty.  If 1 2( ), ( ),..., ( )n         are all states in the standard Hilbert space of the theory 

that are analytic in the energy, each of their null spaces consists solely of the zero vector, and hence 

Proposition 2 holds trivially. 

The proposition is less trivial for theories that introduce nonstandard fields, and whose states 

go beyond the standard Hilbert space, as do the relativistic versions of CSL due to Bedingham 

(2011a, b) and Pearle (2015). It can be shown, for any indeterministic theory formulated within the 

framework sketched in Section 3 that is set in Minkowski spacetime, it is necessary to go beyond 

the standard Hilbert space (see Myrvold 2017). 
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