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HERE are two intuitively appealing ways to understand the nature of

motion. One is that motion is nothing over and above the occupation,

by an object, of different places at different times. This is known as the
at-at theory of motion (being at different places ar different times) and is gen-
erally attributed to Russell (1903, Ch. 54). One is inclined in this case (because
of the ‘nothing over and above’ qualification) to say that facts about motion
are grounded in facts about the positions of objects; it is, in short, a reduction-
ist account of motion. The other is that motion essentially involves moving in
some way, for example, the possession, by an object, of a non-zero quantity of
motion — especially a non-zero instantaneous velocity. I will call this the impe-
tus theory of motion, in keeping with the terminology used by Arntzenius.! As
velocity on this account is a basic quantity possessed by objects, it is evidently
a non-reductive account of motion.

Note that neither view would preclude the other if the ‘nothing over and
above’ qualification were removed from the statement of the at-at theory. After
all, the possession of an instantaneous velocity is not necessarily at odds with
being at different places at different times. There is a compelling argument,
however, that the at-at theory, qualification or not, implies that there are in
fact no truly instantaneous velocities (Russell, 1903; Arntzenius, 2000; Albert,
2000). The issue is that the calculus explication of instantaneous velocity makes
essential reference to non-instantaneous position developments, and hence this
velocity is not truly instantaneous. That is, one may define an object’s instan-
taneous velocity at each instant, but the velocity itself is completely grounded
in the object’s past and future positions. Velocity is therefore not a basic quan-
tity possessed by objects, as the impetus theory would have it. So, it would
seem that the at-at theory of motion and the impetus theory of motion necessar-
ily furnish distinct metaphysical accounts of motion: the former is necessarily
reductive and the latter is not.

Particularly important criticisms of these two accounts of motion have been
raised by Arntzenius (2000). He argues that the at-at theory precludes the possi-
bility of determinism by the way it defines velocity and concludes that “surely

1. Armntzenius (2000) discusses both of these accounts in relation to Zeno’s arrow para-
dox. He also explores approaches to the paradox that eschew instants of time, which,
given my aims, I set aside.
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the ‘at-at’ theory is wrong if it entails that” (Arntzenius, 2000, 191). The im-
petus theory avoids this problem by reifying instantaneous velocities, but it
does so at the ontological costs of adding fundamental quantities and neces-
sarily imposing what I will call a kinematical constraint, an additional law of
nature. Since the at-at theory is sufficient for describing motion without the
super-addition of such instantaneous velocities, the impetus theory should, it
seems, by parsimony be rejected. Given these drawbacks, we might find both
theories unsatisfactory, as Arntzenius himself does.

Although Arntzenius seems to leave us with a rather damp squib, in my
view our prospects are much brighter than it might appear. My aim in this
paper is to relate satisfactory versions of both theories of motion, using the crit-
icisms of Arntzenius as a foil. I should note at the outset that there are various
other criticisms of the at-at theory of motion, based mainly on the notion that
the reductive account fails to do justice to the causal role of velocity (Tooley,
1988; Lange, 2005; Easwaran, 2014). As I think there is a natural extension of
what I say here to those concerns (and for the sake of some concision), I leave
discussion of these concerns for another occasion and concentrate mainly on
Arntzenius’s arguments, for these arguments represent significant challenges to
any theory of motion and must be overcome if we are to have a satisfactory
account thereof.

The paper runs as follows: In §1 I rebut Arntzenius’s criticisms of the at-at
theory of motion, by arguing that the at-at theory only precludes one partic-
ularly strong version of determinism. In §2 I take up the impetus theory of
motion. I do agree with the standard argument against the most familiar impe-
tus theory of motion, one that merely super-adds instantaneous velocities to the
at-at theory of motion, and rehearse this argument for convenience of exposi-
tion. There is, however, a subtle way to develop the impetus account to avoid
any metaphysical profligacy. Arntzenius (2003) himself in fact moots the basic
idea briefly. The thought is to treat velocity as basic (as the impetus account
states) but define positions in terms of velocity developments through integra-
tion. Arntzenius quickly rejects it, albeit for what I will argue are poor reasons.
I take up this nascent proposal, developing it in detail and fully in parallel to
the at-at theory, i.e. as an alternative reductive account, one that, however, in-
stead reduces position facts to velocity facts rather than the other way around.
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Readers familiar with modern physical frameworks for classical motion might
suspect that they suggest differing accounts of motion than those discussed thus
far, so in §3 I consider two of the best-known frameworks, Hamiltonian and La-
grangian mechanics, concluding that the issues nevertheless remain the same
despite initial appearances to the contrary. I briefly conclude in §4.

1. The At-At Theory

The at-at theory of motion holds that what it is to be in motion is nothing over
and above being ar different places ar different times. The appropriate theoret-
ical setting for such an account of physical motion is classical mechanics. In
classical mechanics, motion is conventionally understood to be continuous, and
velocity is defined as the instantaneous time rate of change of position. Hence
velocity is a derived quantity, as it depends completely on objects’ positions at
different times. The standard presentation of classical mechanics is therefore
naturally understood in the at-at way.

1.1 Instantaneous Velocity as a Neighborhood Property

Let us begin with the previously mentioned claim that velocity on the at-at the-
ory is not a truly instantaneous quantity (Russell, 1903; Albert, 2000; Arntze-
nius, 2000), since it is important to understand it in order to appreciate Arntze-
nius’s objection concerning determinism. The typical calculus-based definition
of what is called instantaneous velocity, which I will denote X, is simply the
rate of change of position x with respect to time ¢, i.e. the time derivative of
position: dx/dr.

To compute the derivative of a function, one must determine the limits of
particular sequences of functions. In the case of instantaneous velocity, the rel-
evant sequence of functions is the sequence of average velocities over increas-
ingly small temporal intervals approaching each instant of time. The average
velocity @ over a temporal interval 2A¢ centered on time ¢ is defined as follows:

DEFINITION.

x(1+ Ar) —x(r — At)
2At

a(t,Ar) =

In words, the average velocity @ is just the difference in positions at two times
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divided by the time interval between them.

Given a particular instant ¢, consider the sequence of average velocities as
the temporal interval Ar decreases to zero. The limiting value of these average
velocities as At goes to zero defines the time derivative of position dx/dr at
time ¢, i.e. the instantaneous velocity Xx:

DEFINITION.

- o x(r+Ar)—x(r—Ar)
o Alzlglou(t’m) = b, 2At

s

Consider what these definitions might suggest about the metaphysics of po-
sition and velocity: First, it is sometimes assumed that position functions can
take any form in classical mechanics. In principle one may even allow discon-
tinuous functions. This is because position is taken to be a truly instantaneous
property. It is therefore taken to be a component of an object’s instantaneous
state, where the state of an object is understood to be the most complete de-
scription of all dynamical (changeable) properties of that object at an instant.

Is instantaneous velocity a truly instantaneous property like position? While
instantaneous velocity is certainly defined for particular times ¢, Albert and
Arntzenius argue that it is not truly a quantity possessed by an object at an in-
stant. As Albert says, “What needs to be kept in mind is just that there is all
the difference in the world between being uniquely attachable fo some partic-
ular time and being the component of the instantaneous physical situation of
the world at that time!” (Albert, 2000, 17, emphasis in original). So, although
an instantaneous velocity can be defined for instants when an object’s position
development satisfies the conditions of differentiability, it would be a mistake,
according to Albert and Arntzenius, to say that this velocity is actually a prop-
erty of an object at an instant.

As this is an essential point to grasp for what follows — and since Albert
and Arntzenius only offer a few remarks on why this is so — it is worth expand-
ing on the underlying reasoning. The basic reasoning is clearest in the analo-
gous case of average velocity. Of precisely what is average velocity a property?
In general, given some average velocity centered at time ¢ and over an interval
t — At to t + At, an object in motion does not possess an instantaneous velocity
at ¢ equal to the given average velocity, except perhaps at isolated instants (un-
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less of course it is in uniform motion). One would surely not want to say that
average velocity is a property of an object only at these points, since average
velocity is generally well-defined regardless of whether it equals instantaneous
velocity. One would also not want to say it is a property of the object at each in-
stant in the given interval, since average velocity in general changes depending
on the chosen interval Az. If one did allow this, then the object would possess
inconsistent velocital properties. Indeed, this is why At is included explicitly
as an argument of the average velocity function. What the definition suggests,
then, is simply that average velocity ought to be understood as the property of a
temporal stage of an object, i.e. of the object over the specific interval between
t — At and 1 + At (that is, insofar as averages should be thought of as properties
at all).

Similar reasoning suggests that instantaneous velocities are not truly instan-
taneous properties on the at-at theory. Refer to the definition of instantaneous
velocity above. It makes reference to positions associated with a sequence of
intervals (denoted by Ar) neighboring a given instant ¢. Instantaneous velocity
is therefore better thought of as what Arntzenius calls a neighborhood property.
Neighborhood properties are properties possessed by an object not at an instant
but in certain arbitrary neighborhoods of an instant.? It is crucial to understand
that a neighborhood property is not to be thought of as a property of any specific
interval around the instant, for it is not to some particular interval which one
attributes the property but to the development of the function in neighborhoods
of the instant, which can be arbitrarily small but must be nonzero.

Arntzenius’s explication of the notion of neighborhood properties is rather
compressed, relying on an intimate familiarity with differential calculus. To
better understand the concept of neighborhood properties and the unusual kind
of reference at work here, one needs to attend carefully to the concept of a limit,
so let us examine the usual € — § definition:

DEFINITION. The function f approaches the limit | near a means: for every

2. ‘Neighborhood’ here is meant in the topological sense: a neighborhood of a point in
general is a set that contains an open set containing that point. A temporal neighborhood
of an instant, then, will simply be any interval containing the instant. No presupposi-
tion of size of the neighborhood or distance from the interval’s boundary to the point is
therefore intended apart from those allowed for in properly topological senses.
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€ > 0 there is some 6 > 0 such that, for all x, if 0 < |[x—a| < §, then |f(x) —1| <
E.

To put this definition to work in the case of instantaneous velocity, replace the
symbols in the previous definition with the ones used above in the definition of
instantaneous velocity, recalling that the instantaneous velocity is equal to the
limit of average velocities in the neighborhood of 7, i.e. X(¢) = lima,_ou (7, At):

DEFINITION. The average velocity u(t,At) approaches the limit % near t
means: for every € > 0 there is some & > 0 such that, for all At, if 0 < |At] < 6,
then |a(t,Ar) —x(t)] < €.

It will help to unpack the limit definition a bit to clarify the conceptual role
of neighborhoods. Here is what the definition says: First we pick any positive
real number € we like. If the instantaneous velocity exists at ¢, then what the
definition requires is that there is some neighborhood around ¢, i.e. a temporal
interval between ¢ — 0 and ¢ + 0, such that the difference between the instan-
taneous velocity X and the average velocity wi(r,At) is less than g, for every
interval inside of the neighborhood, i.e. for all Az < §. Since € is arbitrary, this
means that the average velocities must become arbitrarily close to the instan-
taneous velocity and stay at least that close for all smaller intervals. Indeed,
we can require the difference between them to be as small as we like; if the
instantaneous velocity exists, there will always be some & for which all tempo-
ral intervals inside t — § and 7 4 § have the required difference (or less). Note
that this arbitrariness means that one can always choose a different € which
forces a different 6 that “moves inside” of any particular neighborhood with
which one might think to associate the property of velocity. Thus the instanta-
neous velocity does not depend on any particular choice of € or any particular
neighborhood given by a particular 6. But instantaneous velocity does clearly
depend on more than the position of the object at ¢ to exist: it depends on the
behavior of the position function in certain arbitrary temporal neighborhoods
of the instant in question.

To illustrate the application of these concepts, it is useful to consider an
example of discontinuous motion. Suppose that there is an object in uniform
motion which at some instant # jumps discontinuously to position L before im-
mediately returning to its previous inertial trajectory. The limits of the object’s
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position x(#) and its instantaneous velocity X(¢) are well-defined in this exam-
ple. Because it is defined by way of ¢’s neighborhood, the limit of its position
is where it would have been had it not made the jump, and its velocity is the
velocity it was traveling at before and after the jump. The limit of position is
thus a neighborhood property here, and the example demonstrates that the limit
of position does not necessarily agree with the instantaneous position at time
t. Similarly, the instantaneous velocity X(¢) is a neighborhood property. Since
this is a case of discontinuous motion, however, it is not clear what to say about
the object’s “actual” state of motion at its “jump” location, except perhaps that
it is moving “discontinuously” (which, observe, still requires reference to its be-
havior at other times).> Now suppose, as a second case, that the object jumped
to another position M # L. In both of these cases the instantaneous positions of
the two objects at time ¢ differ but their “neighborhood positions” are identical.
While it may sound strange to say that the object is at one place (in the usual
sense) and in another sense not there, once one recognizes that neighborhood
position is just a way of describing the continuity of some object’s position
development (in the neighborhood of an instant), it is clear that instantaneous
velocity too is a way of describing an aspect of the object’s position develop-
ment, namely, how fast it is changing (in the neighborhood of an instant).

1.2 Determinism and Motion
Albert and Arntzenius take it to be an objectionable consequence of a theory of
motion if by “definition and logic alone” determinism is rendered impossible.
Their objection depends on the main conclusion of the previous section, that
instantaneous velocity is not a truly instantaneous property. Let us see first how
this objection is raised against the at-at theory of motion. I will then show that
Arntzenius and Albert are mistaken: the preclusion of determinism is not at all
a logical, definitional consequence of the at-at theory of motion.

Arntzenius and Albert have a particular kind of determinism in mind, usu-
ally called Laplacian determinism, as it is evoked by Laplace in this oft-quoted
passage:

Given for one instant an intelligence which could comprehend all the

3. See (Jackson & Pargetter, 1988) for related discussion.
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forces by which nature is animated and the respective situation of the
beings who compose it ... it would embrace in the same formula the
movements of the greatest bodies of the universe and those of the light-
est atom; for it, nothing would be uncertain and the future, as the past,
would be present to its eyes. (Laplace, 1840/1902)

Albert (2000, 10) describes the present state of the world as the instantaneous
states of every object in the world at the present instant, a description that ac-
cords with Laplace’s. It is also the one that Arntzenius adopts. These instan-
taneous states, along with the appropriate dynamical law (determined by the
various classical forces at work), are the things one would need to know in
classical mechanics to deduce the trajectories of all the objects in the world, if
classical mechanics were deterministic in the Laplacian sense. It would then
be in this sense that Laplace’s intelligence could know the movements of all
objects for all times, past and future.

If, however, the at-at theory is correct and instantaneous velocity is not an
instantaneous quantity in classical mechanics, then classical mechanics is not
deterministic in the Laplacian sense. As a consequence of Newton’s Second
Law, both position and velocity are in general required to determine future and
past evolution. If velocity is not truly instantaneous, then the present state of the
world only includes the positions of all the objects in it. In this case Laplace’s
intelligence would be left scratching its head looking at its impoverished sit-
uational report, unable to determine anything whatsoever about the future or
the past on its basis — all this, according to Arntzenius, because instantaneous
velocity was simply defined to be what it is in classical mechanics. It is for this
reason that he says that determinism is rendered impossible by definition (and
logic) alone.

The obvious rejoinder to Arntzenius’s objection is to say that it is actually
our definition of determinism (or alternately, present state of the world) which
is mistaken. If one is unperturbed by giving up Laplacian determinism, then
a simple solution is obviously at hand. Just allow the Laplacian intelligence
to have access to neighborhood properties as well as the truly instantaneous
state of all objects. In so doing we modify the notion of “present state of the
universe” to include arbitrarily small neighborhoods of the present, in which
case determinism comes to depend on both neighborhood and properly instan-
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taneous properties. If we say this, though, then we may seem to find ourselves
in an uncomfortable dilemma over definitions. On the one hand, we can insist
that the definition of instantaneous velocity is correct and, on the other, that
Laplacian determinism (or present state of the world) is defined correctly. Why
prefer one definition to the other?

Yet it is surely a mistake to characterize the issue in this way, as a matter of
definitional preference, since it is not the case that definitions alone are at issue.
As Earman observes, “We cannot begin to discuss the implications of physics
for the truth of the doctrine of determinism until we know what determinism
is; on the other hand, no precise definition can be fashioned without making
substantive assumptions about the nature of physical reality” (Earman, 1986).
In other words, we have to make some substantive assumptions about the world
even to begin evaluating the notion of determinism. So long as we are making
substantive assumptions about the nature of physical reality in defining deter-
minism — and velocity — the issue at hand is not simply a matter of logic and
definition alone.

What, then, are the “substantive assumptions” underlying the definitions
employed here? To some extent they appear to depend importantly on interpre-
tive matters concerning laws of nature. One who believes that the function of
laws is to produce new physical situations from old ones may find any relax-
ation of the definition of determinism from the Laplacian version objectionable.
If one thinks instead that laws are merely a description of regularities that can
be gleaned from the physical facts, then relaxing the definition of determinism
is unproblematic. The state of the world does not have to be instantaneous on
this view; it may be whatever the most physically salient notion of determinism
requires. In the case of classical mechanics, the relevant state of the world is
then naturally taken to be the neighborhood state of an instant.

That Arntzenius has the former point of view in mind follows from a related
objection to the at-at theory he makes. That objection begins with the observa-
tion that assuming the standard definition of instantaneous velocity imposes
certain non-dynamical constraints on evolution. This is objectionable, he says,
because

... surely our notion of a physical state is such that being in a particular
physical state at some time does not by definition and logic alone put
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any constraints on what physical states the system can be in at other
times. Physics may impose constraints on the possible developments of
the physical states of systems, but surely logic and definition by itself
should not do so. And that implies that neighborhood properties and
neighborhood states are not physical states, they are features of finite
developments of physical states. (Arntzenius, 2000, 195)

If one has the idea that laws act on truly instantaneous states of affairs to pro-
duce new states of affairs, this concern appears reasonable. Let us accept this
view of laws for the moment. Then for this objection to be sustainable, it must
be that Arntzenius is right about two things: that only physics can impose such
constraints, and that physics is not responsible for the constraints that instanta-
neous velocity places on position developments. I maintain that he is wrong on

both counts.

Figure 1: Some trajectories compatible with an object on surface X located at

position p.

What exactly are these constraints to which he objects? Arntzenius’s expli-
cation is again compact, and it is necessary to provide a detailed exposition
in order to rebut his objections. To first clarify what he has in mind, consider
for simplicity the case of some object constrained to move on a surface X. At
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some time let the position of the particle be p. If position is the only instanta-
neous property of the object at that time, then any trajectory on the surface is
kinematically possible (see Fig. 1), i.e. possible in advance of consideration of
the constraints imposed by forces and the dynamical laws. This is in keeping
with the convention noted above, namely that any (continuous) position devel-
opment is taken to be possible in classical mechanics.

Figure 2: Trajectories compatible with an object on surface ¥ located at posi-
tion p with velocity i.

If one allows instantaneous velocity to be part of the state of the particle (not
necessarily presupposing for the moment that this velocity is the time deriva-
tive of position X), then the possession of a particular velocity, say u, restricts
the possible position developments to the past and to the future (see Fig. 2).
Only those developments which have u as their derivative at p are kinemati-
cally possible when both p and u are part of the state. Note that velocity im-
poses this constraint only in the “neighborhood sense” since for any point q
in some neighborhood of p there exists a kinematically possible trajectory that
passes through q from p. It is fair to say that it is a weak constraint, but it is
a constraint nonetheless (Butterfield, 2006, 724—725), since certain trajectories
are precluded by its imposition, namely those that do not have velocity u at p
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(for example, trajectories in Fig. 1).

There are, as I see it, two reasonable ways to respond to Arntzenius’s
charge that kinematical constraints like this are imposed “by definition and
logic alone”.

First, we may suppose that the constraint imposed by instantaneous veloc-
ity is actually a metaphysical constraint. Note that this constraint need not be
imposed in such a way that instantaneous velocity becomes truly instantaneous.
Rather it may be imposed in much the same way that dynamical constraints
are imposed, namely via laws. For example, the requirement that trajectories
be continuous, which classical mechanics generally presupposes, might be con-
sidered a metaphysical law, one that is understood to be prior to any physical
law. Similarly, the constraint imposed by instantaneous velocity might be con-
sidered to be a metaphysical law in this way as well.

Why think that this constraint is a metaphysical law rather than a physical
law? Perhaps because it expresses “what we mean” by velocity, or maybe be-
cause it is merely a pre-condition on any physics that would describe what we
call classical motion. However one explicates the notion of metaphysical law,
the mere possibility of this view challenges the notion that only physics can
constrain position developments as Arntzenius assumes. Either one accepts this
possibility — physics is, after all, obviously committed to many metaphysical
presuppositions already — or one has the burden of showing why there cannot
be constraints like this.

One objection to taking this course might be based on the popular view
of metaphysics where only metaphysical necessity could potentially ground a
metaphysical law of the kind I suggest. On this view the exhibition of a possible
world where that law does not hold is sufficient to undermine its lawhood. Then
one only has to point to worlds where there is discontinuous motion, as Tooley
(1988) and Carroll (2002) do, to see that the metaphysical constraint imposed
by instantaneous velocity does not hold. If one allows that metaphysical laws
do not need to constrain all metaphysical possibilities in this way, then such
thought experiments do not militate against this suggestion. Such laws would
then be akin to special science laws, which are often considered bona fide laws
despite being violated in physically possible worlds.

Nevertheless, there is a second way to respond that to some extent obviates
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the former, so I will not argue further for it. That second way is to recognize that
the kinematical constraint imposed by instantaneous velocity already follows
from the dynamical constraints imposed by the laws of classical mechanics (in
which case I suppose it ought to be properly called a dynamical constraint).
The general form of dynamical constraints in classical mechanics is given by
Newton’s Second Law:

ZF:ma;

that is to say, the instantaneous sum of forces on an object is equal to the mass
of the object times its acceleration. The acceleration a is defined as the time
derivative of the instantaneous velocity X; in other words, Newton’s Second
Law is equivalently expressed as

prev-2 ()

where the acceleration X is the second time derivative of position. To make

acceleration the second time derivative of position, one obviously must have a
first time derivative of position, i.e. an instantaneous velocity, to differentiate.
Given that Newton’s Second Law is a dynamical constraint of the kind that
Arntzenius accepts as a physical constraint, it follows as a matter of course that
the constraint imposed by instantaneous velocity is a physical constraint as well
— it is, from this point of view, a constraint that simply follows from Newton’s
Second Law.

The point is especially transparent when one rewrites Newton’s Second Law
as two first-order differential equations:

ZF: mu;

u=x,

where u is the instantaneous velocity. Here the “kinematical” constraint that is
part of Newton’s Second Law is made explicit in the second line.

Let me summarize this section. I have argued that the objections related
to determinism raised against the at-at theory of motion are unfounded. Al-
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though I do agree with Arntzenius and Albert that instantaneous velocity is not
truly instantaneous according to the at-at theory and is better understood as a
neighborhood property, I disagree with the claim that instantaneous velocity
threatens the determinism of classical mechanics. If one does insist on holding
onto the idea that only truly instantaneous properties can figure into the phys-
ical state of the world (or a system), then it is true that one must give up on
the idea that the laws produce future states on this basis alone (in keeping with
Laplacian determinism). It is indeed a fundamental fact of classical physics that
the world cannot be deterministic in this sense. But it is not true that this is a
matter of logic and definition alone, as Arntzenius insists. If one allows that
the state of the world include neighborhood properties (and arguably one may
do this however one chooses to interpret laws of nature), then there is a clear
and substantive sense in which classical mechanics is deterministic.* This idea
is motivated by attending to the kinematical constraints imposed by instanta-
neous velocities. If they are seen as either falling under a metaphysical law or
following simply from Newton’s Second Law, as I claim they should, then in-
stantaneous velocities are rightly considered a part of the physically relevant
state of the world. This move renders the at-at theory satisfactory as an account
of motion, at least in view of Arntzenius’s challenges. Although there are other
challenges to the theory, especially related to causation, I believe similar con-
siderations to those raised here can be adapted to address them. Pursuing this
line would perhaps be an interesting exercise, but it would be a distraction from
the larger aim of this paper. Satisfying that requires moving now to the impetus
theory of motion.

2. Impetus Theory of Motion

The impetus theory of motion holds that what it is to be in motion is to pos-
sess a non-zero quantity of motion, i.e. a non-zero instantaneous velocity. In
the context of classical mechanics this velocity should be a truly instantaneous
velocity — in the same way as position is taken to be truly instantaneous. It
follows that it should be considered a component of an object’s physical state.
However, since it is customary in classical dynamics to call the time rate of

4. Thatis, in physically significant cases, setting aside well-known failures of determin-
ism like Norton’s dome (Norton, 2008) and “space invaders” (Earman, 1986).
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change of position, i.e. X, the instantaneous velocity, I will call the ¢ruly instan-
taneous quantity of motion of an object its impetus and denote it v. To further
avoid confusion I will also prefer to call X the kinematical velocity. In this sec-
tion I investigate the prospects of the impetus theory of motion in the context
of classical motion. First, in agreement with Arntzenius (2000), I reject rescu-
ing Laplacian determinism by simply supplementing classical dynamics with
impetuses and quickly rehearse the basic argument to provide relevant context.
I then raise a new challenge to the at-at theory of motion by re-conceiving clas-
sical mechanics in a way that takes velocity rather than position as basic and
makes position a derived quantity.

2.1 Super-addition of Impetus to At-At Theory of Motion
I showed in the previous section that the Laplacian picture of determinism —
a state of the universe at an instant evolving deterministically forward by the
laws of motion — is untenable on the at-at theory of motion. The issue was
that velocities are non-instantaneous on the at-at theory of motion while the
laws of motion require truly instantaneous velocities in order to be determinis-
tic in the Laplacian sense. An obvious solution to this problem is to supplement
the instantaneous properties of objects with a truly instantaneous velocity, i.e.
an impetus. Then one may ostensibly maintain the intuitive definitions of deter-
minism and physical state preferred by, among others, Albert and Arntzenius.
This kind of impetus theory, which super-adds impetuses to the account
of motion given by the at-at theory, is, however, an unacceptable theory of
motion (as Arntzenius himself argues). Insofar as objects follow continuous
trajectories in classical mechanics, kinematical velocity x exists and correctly
describes the time rate of change of position (it is a velocity). Now, if impetuses
are to describe these actual motions, then they have to agree exactly with the
corresponding kinematical velocities, i.e. it must be the case that v = X. As the
kinematical velocity and the impetus are both meant to be velocities describing
motion, such a relation introduces a kinematical constraint between them. Such
constraints are to be considered, following the discussion in the previous sec-
tion, as either metaphysically or physically necessary in classical mechanics.
Yet, given the necessity of this kinematical constraint, impetuses appear to be
incapable of doing any additional “work” in the theory over and above kine-

VOL. 18, NO. 9 (APRIL 2018)



C. D. MCCOY

matical velocity (which, again, is given in the theory since position is). They
are physically idle: one cannot say anything more with them than what one can
already say with position developments.

Although impetus is necessarily constrained to equal kinematical velocity
for differentiable trajectories, perhaps one might persist with the super-additive
impetus theory by supposing that the conceptual independence of the two ve-
locities becomes manifest in a wider context, viz. one where trajectories are not
continuous. This is not so. If position is not a differentiable function of time at
some instants, then the impetuses must likewise be undefined at these instants,
else they would be irrelevant to the description of actual motion. To see why,
let us suppose that impetuses could disagree with the kinematical velocities. In
the case of differentiable position functions from above, the impetuses would
not function as quantities of motion as intended, since they would give the
wrong dynamical evolution of the objects’ positions. Now, in cases where the
position function has undefined kinematical velocities at some instants, if im-
petuses were to possess a defined value, then they would also give the wrong
dynamical evolution of the object, as they would indicate a future motion that
does not occur. Impetus is therefore entirely expendable in this wider context as
well. Both velocities must agree when kinematical velocity describes motion,
yet the kinematical velocity is not beholden to impetus in any way.

It will simply not do to add physically superfluous properties and con-
straints solely in order to preserve a particular metaphysics of laws. We should
eschew impetuses (rendered thus), along with their associated kinematical con-
straints.

2.2 Position Reduced to Velocity Developments

Insofar as one makes the usual assumption that position is included in an ob-
ject’s instantaneous physical state, impetuses are therefore superfluous and in-
stantaneous velocity is not really instantaneous. If the arguments in §1 that the
at-at theory of motion does not preclude determinism are correct, then one has
reason to believe that the at-at theory should be our preferred theory of classi-
cal motion. Although I do believe that the at-at theory gives us a satisfactory
account of the metaphysics of motion, I also believe that there exists an un-
appreciated impetus alternative to the at-at theory. Moreover, I claim that this
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alternative, taken at face value, seriously underdetermines our interpretation of
classical motion, for only epistemically inaccessible facts could possibly decide
between them.

The incipient idea is to take velocity as a quantity of an object’s instan-
taneous state and position as a quantity derived from velocity by integration:
x(r) = [v(t)dr. Whereas the at-at theory considered above reduces velocity
developments to position developments, this theory reduces position develop-
ments to velocity developments. It gives rise naturally to a kind of impetus
theory, since velocity is now taken as a truly instantaneous quantity, although
in this case v = X not because they are equal by a kinematical constraint but
because the fundamental theorem of calculus applied to the definition of posi-
tion just given informs us that the terms on both sides simply refer to the same
property.

Arntzenius in fact briefly raises the possibility of such a theory of motion
in his response to (Smith, 2003) but quickly overrules it since there are “ve-
locity developments that are incompatible with calculus” — in particular the
“calculus definition of velocity” (Arntzenius, 2003, 282). In essence, he claims
that one cannot allow arbitrary velocity functions (as one allows arbitrary posi-
tion functions in the at-at view), because time derivatives of position functions
cannot recover a (very) large class of these arbitrary velocity functions, viz.
those functions which are not the derivatives of any function. Since the defini-
tion of velocity (as time derivatives of position) would limit which functions
could be used to describe velocity,“logic and definition alone would still imply
constraints between instantaneous states at different times” (Arntzenius, 2003,
282).

Arntzenius again does not spell out the details of his objection, so, to see
how his objection is supposed to work, let us consider his example, the patho-
logical function known as the Dirichlet function. It is defined as follows: let
v(r) be defined such that v(z) = 1 for rational 7 and v(¢) = 0 for irrational ¢.
The particular details of this function are not visualizable at any scale — if one
tries to plot it, the best depiction is two apparently unbroken lines at v =1 and
v = 0. (The Thomae function is a similar alternative function that is better able
to be visualized.)

Assume that there is actually a position development x(7) whose derivative
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%(t) is this just defined velocity development v(z). Recalling the definition of
instantaneous velocity in §1, it must then be the case that v(z,At), i.e. (x(z +
At) —x(t — At)) /2At, approaches the limit v near 7. This cannot be the case,
however, since for any € such that 1 > & > 0 the inequality |v(z,Ar) —x(r)| < €
will not hold. This is because, as one moves closer to 7, the Dirichlet function
repeatedly jumps between 0 and 1 as ¢ goes from rational to irrational numbers.
There is never an interval which “traps” the sequence of positions such that a
limit is approached. Since velocity functions with characteristics similar to the
Dirichlet function cannot be recovered by differentiating position functions in
this way, it seems that this definition of velocity imposes constraints on possible
velocity developments merely by “logic and definition”.

I say this is a bad argument. Before explaining in full why it is, though,
some preliminaries are needed. Suppose that we do take pathological functions
like the Dirichlet function seriously (for the moment) as physically possible
velocity developments. In the impetus view under consideration, position is a
derived property, as it is defined via integration. It therefore becomes important
precisely which notion of integration we use. The notion of integration familiar
from basic calculus, Riemann integration, cannot be applied to the Dirichlet
function (the function has no Riemannian integral). Thus one might conclude
that an object with the Dirichlet velocity development, paradoxically, has no
position development.

Surely this makes for a serious problem with the proposed account of mo-
tion. One cannot allow the potential absence of well-defined positions! Yet this
is not a defect of the impetus theory alone, if a defect it even is. Suppose that
we allow everywhere continuous but nowhere differentiable position develop-
ments in the at-at theory of motion. Then an object whose position development
is described by the Weierstrass function, the most well-known function of this
kind, has no velocity development. This is because the position development is
nowhere differentiable; hence the object with this position development has a
velocity nowhere! Such a case, I submit, is neither more nor less strange than
the previous. If pathological functions are a problem for the impetus theory,
then equally they are for the at-at theory as well.

Perhaps one might object to the cases being treated equipollently, for exam-
ple by saying that it is possible to imagine an object moving along a trajectory
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with the functional form of the Weierstrass function but not possible to imagine
an object failing to have a position. This objection, however, begs the question
against the impetus view under discussion. We are of course used to thinking
of objects moving in space. But we should not allow a mere prejudice or lack
of imagination to preclude an alternative theory of motion. Only if the theory
suffers from legitimate defects, for example an inability to recover empirical
content or to provide a coherent account of classical motion, should it be disfa-
vored. This, I claim, cannot be shown.

As it happens, Arntzenius’s own objection is not that the mere lack of a
position development is problematic. Rather it is that there exist velocity devel-
opments which are not the derivatives of any position development according
to the previously given definition of derivative. But why should we assume this
definition of velocity in the present impetus theory of motion? Velocity is not
and should not be defined in the impetus theorys; it is rather taken as basic, like
position is in the at-at theory. Position is derived and hence must be defined
in the impetus theory. Arntzenius’s objection depends on duplicitously treating
velocity as both basic and derived. And that is not right.

If one were to do the same in the context of the at-at theory, i.e. treat posi-
tion as both fundamental and derived, then one would have precisely the same
problem: there exist position developments which are not the integrals of any
velocity development. A position development following the Weierstrass func-
tion would be precisely such a case. In this case there would be position devel-
opments that are incompatible with calculus, namely the “calculus definition of
position” (via integration). Arntzenius’s objection cuts both ways (if it cuts at
all).

That said, it is perhaps worth pointing out that there are alternative defi-
nitions of integration according to which functions like the Dirichlet function
are integrable. The well-known Lebesgue integral, for example, generalizes the
notion of Riemann integration by utilizing a measure with respect to which
integration is performed. Given a set X and a measure (t on the measurable
subsets of X, the Lebesgue integral of a function f over the set A C X is writ-
ten [, fdu. If we take the f to be the Dirichlet function, X as the set of real
numbers R, A = [0, 1], and u the standard Lebesgue measure associated with
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the real numbers, then

/Afduzl.

When one makes use of the Lebesgue integral, one finds that the integral of the
Dirichlet function over this finite interval is just a constant.

If we adopt this alternative definition of integration, then we have what
appears to be an unpalatable consequence: the usual derivative of a constant
is zero, which is obviously not the same as the Dirichlet function. When pre-
viously we used Riemannian integration, we could rely on the fundamental
theorem of calculus to guarantee a certain duality between differentiation and
integration, such that a function could be equated with the derivative of its an-
tiderivative. This kind of duality holds for Lebesgue integration as well when
one introduces a suitable definition of derivative. The simplest way to do this
is just to define differentiation in terms of Lebesgue integration: the derivative

of a function f at a point x is

) 1
}%m'/lgf@)dﬂ,
where B(x,r) is the open ball centered at x of radius r. The Lebesgue differ-
entiation theorem guarantees that this derivative exists and, more importantly,
equals f at almost every point in X. If we take f to be the Dirichlet function,
the derivative of its antiderivative is almost the Dirichlet function, i.e. is equal
to the Dirichlet function everywhere except for a set of measure zero. Although
one does not recover the Dirichlet function, one does obtain a function which
is “almost” the same, but this is, as expected, still the zero function.

The mere fact that the derivative of the Dirichlet function’s antiderivative
is only almost the Dirichlet function should not be cause for much concern.
According to the reductive impetus theory of motion under discussion, it is ve-
locity which is basic, not position. From a metaphysical point of view it does
not matter whether one can recover the velocity development by differentiation.
That one cannot in this case is nothing more than a technical defect. Neverthe-
less, recalling some concerns raised earlier, it does seem puzzling why an object
with a constant position development (derived via integration of the Dirichlet
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function) would have such a complicated velocity development (the Dirichlet
function), as the deviations in that velocity development appear to have no phys-
ical effect on the object’s position development.

I expect by this point it should seem that this deepening excursion into
niceties of mathematical analysis is becoming rather strained. It has not further
clarified motion much at all (although I would insist that it was not entirely
pointless, since it does serve to address several spurious objections that might
be raised against the reductive impetus theory). Indeed, I think the discussion
of pathological functions is rather strained in the context of classical motion.
For the purposes of mechanics and motion, we would, I think, do well to heed
the words of Poincaré:

Logic sometimes makes monsters. For half a century we have seen a
mass of bizarre functions which appear to be forced to resemble as little
as possible honest functions which serve some purpose. More of conti-
nuity, or less of continuity, more derivatives, and so forth. Indeed, from
the point of view of logic, these strange functions are the most general;
on the other hand those which one meets without searching for them,
and which follow simple laws appear as a particular case which does
not amount to more than a small corner.

In former times when one invented a new function it was for a prac-
tical purpose; today one invents them purposely to show up defects in
the reasoning of our fathers and one will deduce from them only that.

If logic were the sole guide of the teacher, it would be necessary
to begin with the most general functions, that is to say with the most
bizarre. It is the beginner that would have to be set grappling with this
teratologic museum. (Poincaré, 1952, 125)

The central lesson which the tortuous course so far followed in this section
is intended to evince — and what I believe Poincaré’s pleads in this quotation
— is that logical and mathematical possibility do not correspond neatly to meta-
physical and physical possibility. When one reasonably restricts attention to
suitably well-behaved functions to describe the motion of objects, one is able
to keep the relevant physical notions in plain view. In so doing, it is clear that
the reductive impetus theory of motion proposed here is permissible just as
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much as the reductive at-at theory of motion discussed in the previous section
is. The wider context of functions in mathematical analysis is, from the point of
view of (meta)physics, a distracting teratology — for the at-at theory as much
as for the impetus theory.

Perhaps the foregoing discussion belabors a banal point, but it seems neces-
sary given that many arguments in the literature, including Arntzenius’s dis-
missal of the reductive impetus theory, have been based on the “dishonest”
possibility of objects following bizarre paths. Many authors discussing motion
have relied on examples involving various physical pathologies, e.g. discontinu-
ous (or not differentiable) position developments, in order to conjure intuitions
about the nature of motion (Jackson & Pargetter, 1988; Tooley, 1988; Carroll,
2002). Insofar as we wish to understand classical motion, it is surely enough to
focus on the relevant kinds of motion treated by successful theories describing
it — and that kind of motion is (at the very least) continuous.

That said, I can now turn to explicating this reductive impetus account of
motion and its take on the “honest” kind of classical motion described by clas-
sical physics. Recall, for purpose of contrast, that the at-at theory of motion
takes position as basic. It is therefore naturally bound up with the existence of
space and time: objects have a position in virtue of their embedding in space (a
la substantivalism) or in virtue of their spatial relations with other objects (a la
relationalism). It is worth stressing that objects have an absolute position solely
in virtue of the existence of absolute space, as is supposed in the doctrine of
substantivalism. This supposition is, strictly speaking, an additional metaphys-
ical posit above and beyond the metaphysics required for the at-at theory of
motion.

What does the reductive impetus theory suggest? It takes velocity as basic,
so, in analogy to the at-at theory, it is naturally understood as depending on
the existence of some sort of “velocity space” (whether understood in a way
analogous to relationist or substantivalist space). Objects have a velocity, one
would say, in virtue of their embedding in velocity space or in virtue of their
velocity differences with other objects. Although one could also posit absolute
“locational” space in addition to the assumed velocity space, it would seem to
go completely against the idea of taking velocities as basic. Thus “locational
space” is naturally taken to be a derivative concept (and perhaps in some sense
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emergent) according to this theory of motion.

Granted, as spatial reasoning is so familiar, this velocital view can seem
rather strange and unintuitive. I insist that it is not thereby implausible — at
least it is no less plausible than the at-at theory. A simple imaginative exercise
may be helpful to see the dualistic relationship of the two accounts of motion.
Suppose that we are out along the Bruntsfield Links watching a chipped golf
ball in flight. Suppose that we were able, for a moment, to perceive its instan-
taneous physical situation from our vantage on the adjoining walk. Look at the
ball. Is it moving? On the at-at theory, we would certainly be able to say where
it is (in relation to ourselves) but not whether it is moving (in relation to our-
selves), since it has no instantaneous property of velocity. If we only knew the
positional facts about the temporal neighborhood of that instant, by allowing
time to pass, say, then we could say for sure that it is in fact moving. On the im-
petus theory, the situation is just the opposite. In this case we would certainly
be able to say that the ball is indeed moving (with respect to ourselves), but
we could not at all say where it is (with respect to ourselves). Yet if we knew
the velocital facts about the temporal neighborhood of that instant, by allow-
ing time to pass, say, then we could say well enough where the ball is (with
respect to us). Of such facts we are of course normally in possession (whereas
we obviously never perceive instantaneous physical situations).

On the face of it these two accounts are metaphysically distinct, since each
acknowledges facts that the other does not: they allege different things about
the world at instants of time, even if they do not in ordinary circumstances. It
might seem, then, that they are not metaphysically intertranslatable, given their
different verdicts in the example. Supposing that metaphysical accounts which
are not intertranslatable are not equivalent (Miller, 2005; Hirsch, 2009), the
possibility of the reductive impetus account of motion would underdetermine
our account of classical motion. This conclusion might be too quick, however.’
There may, for example, be a subtle translation between the accounts such that
facts in one which appear to be denied in the other actually have a suitable trans-
lation. One might also suppose that the instantaneous facts on which the two
accounts differ, the untranslatable differences, are merely pseudo-differences

5. Tam grateful to Neil Dewar and a reader for this journal for drawing my attention to
alternate possibilities.
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which do not depend on facts in the world or which do not reflect reality (Miller,
2005).5 Or perhaps there is a third perspective from which one can derive the
purported facts of each, in this case a unified account of motion, as suggested by
McSweeney (2016) in a discussion of metaphysical equivalence.” It is not clear
to me how to effect such a translation or whether the at-at account and impetus
account should be considered metaphysically equivalent, so for the present I
choose to rely on the thought that the reductive impetus account at least pur-
ports to differ from the at-at account on the metaphysical facts at instants.

I suspect it will have already occurred to some readers, however, that there
is at least one further salient difference which distinguishes it from the at-at
theory and which seemingly gives rise to a serious objection. That difference is
the one secondary students learn between derivatives and integrals: the deriva-
tives of well-behaved functions are determined, whereas (indefinite) integrals
of well-behaved functions are determined only up to an additive constant, the
so-called constant of integration. Thus, on the at-at theory, given a temporal
neighborhood, the velocities would be fully determined, whereas on the impe-
tus theory, given a temporal neighborhood, the positions would be determined
only up to a constant.

Something must be said to defuse worries which arise from this well-known
difference. As it happens, the most salient objections rest merely on a misunder-
standing of mechanics. It is especially worth seeing how so, since it helpfully
illustrates important facets of the impetus account and classical motion in gen-
eral.

The first thing to note is that the fundamental dynamical law in Newtonian
mechanics, Newton’s Second Law, does not by itself force the problem upon
us. Re-expressing F = ma in the impetus theory’s basic terms yields F = mv,
which makes no reference to position, so no reference to derived quantities, so
no reference to integrals which could give rise to undetermined integration con-
stants. It is therefore only when the forces themselves depend on positions, i.e.
F = F(x), that the Second Law necessarily becomes a second-order ordinary

6. This circumstance might even incline one towards a “no instants” view of time, al-
though see (Arntzenius, 2000) for criticisms of such views.

7. One might think that Lagrangian or Hamiltonian mechanics provides this perspec-
tive, but that is not so; see §3 below.
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differential equation. Then, since x = [vdr, there will be derived quantities
determined by integrals and, hence, constants of integration which potentially
become physically significant.

Let us consider a few examples to see what comes of these constants of
integration. Suppose first that there is but a single inertially moving particle in
the universe. In this case, v is constant and mv = 0 = F. What is the position of
the particle? Since the particle experiences no forces, one is not forced to say
anything at all about space and position. If we like, however, we can integrate
the velocity to yield a position function, i.e. [ vds = x(¢) +X, where X is a con-
stant. What is X ? If there were absolute space, then X would be the difference
between the relative position x and the absolute position of the object. But there
are no absolute positions from the point of view of the reductive impetus theory
of motion. So in this case the constant of integration should be neglected, just
as it would be in the relationist version of the at-at theory of motion.

Suppose next that there are two free particles in the universe. In this case the
velocities of both particles are constants and both particles experience no forces.
Again, we are not forced to say anything about space and position, but we can
integrate the two independent velocities to yield two position functions with
two constants of integration. Now it would seem that there is a problem, since
even if we rid ourselves of one spurious constant of integration, because of the
absence of absolute positions, there still remains one which ought to represent
the relative positions of the two particles. But our assumptions do not indicate
any spatial relation at all between the two particles, as they are free particles
which experience no forces. The only facts in such a universe are the velocity
developments, from which we can infer the “distances” they travel, understand-
ing that these distances should be measured out in fully independent positional
spaces. This circumstance, i.e. of independent locational spaces, is somewhat
analogous to the tangent (velocity) spaces of curved manifolds (spaces) in ge-
ometry, which cannot be automatically identified as they are in Euclidean space
without the addition of some way to parallel transport tangent vectors, i.e. a con-
nection. It is of course usual to think that there is only one unified “locational”
space in which motion takes place, but that intuition is unsupported in this case
since the particles are free. Fortunately for our intuitions, the weirdness of in-
dependent locational spaces of motion depends on the unrealistic idealization
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of force-free motion.

So let us next consider the more realistic example of motion within the
scope of Newton’s Law of Universal Gravitation, which of course depends on
relative positions to determine motion. For simplicity, consider the gravitational
system of two objects and the law applied to one:

Fi; = Gmlmzﬂ,
% —xi[?

where F;; is the force on object i due to object j, G is Newton’s gravitational
constant, m; is the mass of the object, and x; is the position of the object i. In
the impetus theory of motion the positions are derived quantities, so we would
want to re-express Newton’s Law of Universal Gravitation as follows:

J(vo—v)dr +X
|f(V2—V1)dl‘+X

Fip = Gmim; 3

where X is a constant equal to the difference of the two constants of integration
introduced by re-expressing the relative positions as indefinite integrals. What
the gravitational force at a particular instant is clearly depends on what X is.
Presumably this is the kind of circumstance that the impetus theory’s detractor
envisions as fatal for the view.

Plainly, if one were to have the view that laws act on instantaneous states,
then the integration constants would be essential for securing determinism,
since different choices of X — essentially different choices of relative distance
between the two particles — would entail different forces, accelerations, and
future motions. The reductive impetus theory of motion, however, like the at-at
theory of motion, does not rescue Laplacian determinism. Instantaneous veloc-
ities in concert with Newton’s Second Law cannot fully determine future and
past states alone, just as instantaneous positions in concert with Newton’s Sec-
ond Law cannot, as argued at length above. So, while the desire to save this
kind of determinism motivates some to consider super-added impetuses, it is
certainly not a motivation which would lead one to consider the reductionist
impetus theory.

If one does not expect the impetus theory to rescue Laplacian determin-
ism, then I claim that there is in fact no underdetermination of the physically
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relevant integration constants. An extended example would perhaps usefully il-
lustrate why, but the following general argument is far more straightforward:
Consider that classical mechanics (in the abstract) is a theory of possible mo-
tions, where a motion is a specification of each object’s position and velocity at
each instant. A natural way of conceiving a mechanics problem is to begin with
the set of kinematically possible motions; a motion in this set is a collection of
trajectories of the objects in the system. What dynamical laws then do is select
from this set the dynamically possible motions — dynamical laws, that is, are
constraints on the set of kinematically possible motions. In physically reason-
able cases, dynamical evolution is deterministic, in the specific sense that these
dynamically possible motions never “cross” (do not ever share all the same
positions and velocities for all trajectories). It is not enough to pick out a par-
ticular motion to specify just the velocities of each object at a particular instant,
since many motions have the same velocities at an instant but different position
specifications. This is why there is the constant in the gravitational force func-
tion above: specifying the velocities at a time alone is insufficient for picking
out the forces at that time. It is a well known fact, however, that it is enough
to specify the positions of each object at two instants to pick out a particular
motion. This is essentially because Newton’s Second Law is a second-order
differential equation. But there is nothing special about positions here: it is just
as well to specify the velocities of each object at two instants to pick out a par-
ticular motion. It is also enough to specify the positions and velocities of all the
objects at a single instant. But to do this one needs neighborhood properties on
both the at-at and impetus theory, since velocities and positions, respectively,
are reduced to position and velocity developments (respectively).

Returning now to the example of Newtonian gravitation, if we express New-
ton’s Law of Universal Gravitation with definite integrals (which represent po-
sition displacements by integrating velocity developments in the neighborhood
of an instant), i.e.

Al (v —vi)di

LA (va = vi) e

Fio =Gmimy
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then the constant of integration disappears (it is, after all, a definite integral)
and the gravitational forces are fully determined by the given velocity devel-
opments. This is because we are in effect using neighborhood properties of
the objects to determine their trajectories and, hence, the actual motion of the
system.

Since some integration constants are physically significant, i.e. are required
to fully specify the position developments (these being the antiderivatives of
the velocity developments), it might appear that some additional information
is still required in the impetus theory in comparison with the at-at theory. I
stress that this appears so only when one confines attention to a single instant.
Since picking out a particular motion (by, for example, specifying velocities at
two instants or even during some small temporal neighborhood of the velocity
development) determines an entire position development, whatever physically
relevant integration constants there are will be included automatically in those
determined position developments. There is in fact no conceptual problem cre-
ated by the presence of integration constants at all in the reductive impetus
account. Indeed, only persisting in believing the myth that classical motion is
Laplacian deterministic will lead one to find a problem with it (or the at-at
theory).

My hope is that the foregoing discussion has made it plausible that the re-
ductive impetus view I have developed is coherent and, moreover, dual to the
at-at theory of motion in such a way as to underdetermine our choice between
them. To rehearse the story, recall that the at-at theorist denies that kinematical
velocity is truly instantaneous, giving a reductive account of kinematical veloc-
ity in terms of position developments. One adds impetuses to this account at
the cost of ontological redundancy. In the reductive impetus theory, however,
the roles of position and velocity are exactly reversed. By the same arguments,
one finds that velocities are truly instantaneous and that positions are not; the
latter are instead reduced to velocity developments. One could add truly instan-
taneous positions back to try to regain Laplacian determinism, but the argument
against them would mirror the argument against truly instantaneous velocities
being added to the at-at theory of motion. Thus we are left with two reasonable
alternatives: the at-at theory of motion and the reductive impetus theory of mo-
tion (where, note, the reduction mentioned here is of position developments to
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velocity developments, not of motion).

I claim that there is no available reason to prefer one over the other as an ac-
count of classical motion, due to their differences lying in epistemically inacces-
sible facts. Already Carroll has argued that the at-at theory is irreproachable as a
theory of motion because of our epistemological limitations. As he says, know-
ing that the at-at theory is false would “require powers of discrimination well
beyond us” (Carroll, 2002, 64), since any counter-example concerns goings-
on at infinitesimal temporal intervals. If he is right, and it certainly seems to
be hard to dispute it, then the impetus theory of motion that I have presented
is similarly irreproachable. The impetus version of reality describes classical
motion of the same kind as the at-at theory would, differing only on what is
happening in epistemically inaccessible infinitesimal temporal intervals. So far
as I can see, due to the symmetry of the two views, there are no obvious rea-
sons to favor one theory over the other; only long custom and convenience
motivates a preference for the at-at theory. Recognizing this, that there are ac-
tually two dual, viable interpretations of classical motion, is, it seems to me, of
considerable interest, especially for what it suggests about the possibilities for
the metaphysical grounds of motion (particularly vis-a-vis the spaces in which
motion occurs). Yet there remain difficult questions about how to interpret the
significance of this apparent underdetermination and whether the two accounts

are indeed metaphysically inequivalent.

3. Analytical Mechanics

Although classical mechanics’s most familiar presentation is through Newton’s
Laws, most physicists understand the subject in terms of the more sophisti-
cated Hamiltonian or Lagrangian frameworks. As philosophers have become
acquainted with these frameworks through recent work that makes use of them,
e.g. (North, 2009; Curiel, 2014), I offer some further remarks in this section on
the preceding arguments by discussing motion in them.® Although the frame-

8. It would also be worth including some remarks on the Hamilton-Jacobi approach, as
it provides a distinctive picture of mechanics (Butterfield, 2005). Indeed, it even strongly
suggests the equivalent defensibility of the two accounts of motion considered in this
paper, as it furnishes a neat demonstration that only one half of the kinematical quanti-
ties (position, velocity) are actually required to completely describe motion in classical
mechanics. However it is best left as a topic for another time, particularly due to its
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works are suggestive of different interpretations, I claim that the issues raised
in the previous sections nevertheless remain entirely the same.

First, Hamiltonian mechanics. The basic quantities in Hamiltonian mechan-
ics are (generalized) positions q and (generalized) momenta p. These quantities
(for each object) are taken to compose the state of the system. The equations of
motion are given by solving the following two first-order ordinary differential
equations, Hamilton’s equations:

dH . dH

= = — 1
dq 4= M

p=
where H is the Hamiltonian, a function defined on the phase space (the space
of states) of a system. The phase space of Hamiltonian mechanics is 6n-
dimensional, where 7 is the number of objects in the system (three for the
position and three for the momentum of each object). On the face of it, the
quantities q and p are on a par: they are both basic quantities in the framework,
Hamilton’s equations are nearly identical for each (they differ only by a minus
sign), and there are no apparent kinematical constraints that break the equal
footing on which they stand.

How can Hamiltonian mechanics give the same classical motions as the sim-
pler Newtonian approach, since it seemingly allows non-classical possibilities,
i.e. motions that do not satisfy the kinematical constraint ¢ = p/m, which links
momentum and change in position? The only place where constraints like this
can be imposed in the framework is in the Hamiltonian. Indeed, only Hamil-
tonians that satisfy a couple requirements will result in classical motions: H
must be a function that is second-order in the momenta and otherwise solely a
function of the positions. In systems treated by classical mechanics, the Hamil-
tonian can then be understood as the total energy of the system.

Arntzenius (2000) mentions Hamiltonian mechanics as a modern example
of an impetus theory. Given appearances alone, this would be the natural clas-
sification, since both position and momentum are taken as basic quantities. Yet
one should not be too easily taken in by formalism — supposing that the Hamil-
tonian respects the requirements mentioned in the previous paragraph, the sec-

unfamiliarity among philosophers.
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ond of Hamilton’s equations above is actually just ¢ = p/m, i.e. merely equates
the product of mass and velocity with momentum. It is in essence just a physi-
cally motivated definition of momentum, not a dynamical law per se.

It should be clear now that the interpretive situation is not so simple. One
may insist that the Hamiltonian framework affords the possibility of a complete
instantaneous state, one including both position and momentum (velocity). But
the second of Hamilton’s equations suggests two interpretations. One is that it
imposes a kinematical constraint, in which case we have once more the prob-
lems of the super-additive impetus theory of motion of §2.1. The other is that
it merely reveals momentum as velocity in disguise, i.e. merely as a neighbor-
hood property, in which case we have once more the at-at theory of motion.
Integrating Hamilton’s equations leads one to the dual possibility of the impe-
tus theory of motion of §2.2. Thus Hamiltonian mechanics affords precisely
the same two metaphysical possibilities discussed in the previous sections: the
at-at theory of motion and the reductive impetus theory of motion.

Second, Lagrangian mechanics. Here the relevant quantities are called the
generalized coordinates (positions) and generalized velocities, commonly la-
beled q and q. The Lagrangian, L, is a function defined as the difference be-
tween kinetic energy and potential energy of the system. Now, it may seem as if
Lagrangian mechanics builds in the usual kinematical connection between posi-
tion and velocity at the start, since (notationally at least) q is the time derivative
of q. There is a slight subtlety, however. The two different classes of variables
(the velocities and positions) are on par in how they are initially treated in the
Lagrangian framework. When one derives the equations of motion from the
Lagrangian analog of Newton’s Second Law, i.e. the Euler-Lagrange equation

=0 @)

— one takes an independent derivative of the Lagrangian with respect to each
of q and q. In the derivation of the equations of motion of a particular system,
they are treated as if they had no dependence at all on one another (whereas
normally the chain rule of calculus would have to be applied). It is only af-
ter the equations of motion are derived that ¢ becomes understood as the time
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derivative of q. Thus, as with Hamiltonian mechanics, the Lagrangian frame-
work ostensibly allows non-classical motions, i.e. ones which do not satisfy the
kinematical constraint between time derivatives of position and velocity. Only
those motions that do satisfy the Euler-Lagrange equation end up satisfying this
constraint, which is why the constraint is understood to be enforced after the
derivation of the equations of motion. So one has, once more, an at-at theory
of motion. Naturally, one could re-interpret that constraint in terms of integra-
tion rather than differentiation, in which case one has, once more, the reductive
impetus theory of motion.

Although there is therefore no novelty in these frameworks vis-a-vis a the-
ory of motion, there is perhaps a novel issue to be found here with respect to the
status of the non-classical motions which is worth mentioning. These motions
do not enforce the relation v = X, i.e. the relation that velocity is the time rate
of change of position (or the impetus theory analog). Are they mathematical fic-
tions, introduced merely for the purpose of formulating the powerful analytic
techniques of Hamiltonian and Lagrangian mechanics? Or should we counte-
nance these as genuine metaphysical possibilities? My inclination is towards
the former, since it is difficult to understand what v is meant to represent, if it
is not representing the velocity determined by the object’s trajectory. Could it
perhaps be, though, some sort of unactualized “causal power”? It just so hap-
pens, of course, that in our world — insofar as it is classical — all such powers
are fully actualized. One would like to know why rhat would be so. That they
should be is enshrined in the principle of least action (or Hamilton’s principle),
but little philosophical work has been done to explain why the principle should
be necessary (and not just true).

4. Conclusion

I have defended two theories of motion, the at-at theory and a novel impetus
theory of motion. I claim that the choice between these two theories is epistemi-
cally underdetermined. It may indeed simply be a matter of convention whether
one understands motion in one way or the other given the epistemic irreproach-
ability of each theory. Assuming that there is some fundamental “space” that
grounds the basic properties of the two theories, it would also perhaps then be
a matter of convention whether one sees the world as fundamentally spatial or
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as fundamentally velocital, as they differ only in their instantaneous ontologies.
It may also be possible, however, to see these two metaphysical accounts as
intertranslatable and hence equivalent, but this would require a subtle account
of translation to handle the contrary facts concerning instants in the two views.

To review the main arguments, I began in the first part of the paper by
defending the at-at theory of motion against the criticism that it makes deter-
minism impossible by fiat. The impossibility of the Laplacian version of deter-
minism is indeed a feature of classical mechanics, but it is not so merely by
how velocity is defined. While I agree with the critics that velocities should
not be thought of as really instantaneous in the at-at theory of motion, that
they are still reasonably considered part of the physical state of a system fol-
lows from the nature of the laws, whether these laws be metaphysical laws or
physical laws. The kind of determinism relevant to mechanics is thus not Lapla-
cian determinism, but determinism based on states including instantaneous and
neighborhood properties.

In the second part of the paper, I considered two impetus theories of motion.
I rehearsed the argument against an impetus theory of motion that makes veloc-
ity truly instantaneous by fiat. Kinematical velocity is a derived quantity in the
at-at theory of motion, but one that fully accounts for motion without reference
to some super-added impetus. Thus we are led to conclude that this impetus
theory should be discarded. The second, novel impetus theory of motion turns
the at-at theory on its head by assuming that velocity is basic and truly instan-
taneous and position is derived (reduced to velocity developments). I defended
this view from two major criticisms, namely that it is at odds with the standard
definition of velocity and that integration introduces undetermined constants of
integration. I concluded that this impetus theory of motion and the at-at theory
are dual theories of motion, sufficiently symmetric so that there is no evident
way to decide between them as accounts of motion, at least on any epistemic
grounds.

Finally, I wish to remark that it is not inconceivable that people could have
naturally conceived of motion in the velocital way which I suggest, although
admittedly the possibility does seem remote to us, since we are so used to think-
ing of the world in spatial terms. As it happens, Borges provides an intriguing
report of the people of Tlon whose perception of motion can perhaps be inter-
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preted in a manner friendly to the impetus view (although his favored analysis
of their philosophy is a kind of idealism):

It is no exaggeration to state that the classic culture of TI6n comprises
only one discipline: psychology. All others are subordinated to it. I have
said that the men of this planet conceive the universe as a series of men-
tal processes which do not develop in space but successively in time.
Spinoza ascribes to his inexhaustible divinity the attributes of exten-
sion and thought; no one in Tlon would understand the juxtaposition
of the first (which is typical only of certain states) and the second —
which is a perfect synonym of the cosmos. In other words, they do not
conceive that the spatial persists in time. The perception of a cloud of
smoke on the horizon and then of the burning field and then of the half-
extinguished cigarette that produced the blaze is considered an example
of association of ideas. (Borges, 1961, 116)

It might be thought that it is the perception of motion which is direct and fore-
most from the point of view of psychology; space is, as it were, something
inferred, “typical only of certain states”. It would be natural, from this point of
view, to suppose that recourse to a concept of space be gained only by speci-
fying particular forces of interaction which could give rise to a unified spatial
description — and thus only in particular (although perhaps ubiquitous) states.
If one were to think so, then the impetus account might be natural to adopt as a
way of conceiving the world around us; although of course, as argued above, to
do so would be no more justified in the epistemic sense than adopting the at-at
account is from our favored spatial point of view. Nevertheless, I do think it
worth emphasizing that the impetus picture does give a conceptually coherent
way of proceeding in theorizing about the world, albeit one that has so far not
found favor, neither in physics nor in everyday life. Still, there is perhaps an
intriguing hint of the duality of motion emphasized here in quantum physics,
between the “position representation” and the “momentum representation” of
wave functions, for example, to which these accounts of classical motion might
relate.”

9. Thanks to Craig Callender, John Dougherty, Gil Hersh, Nat Jacobs, Wayne Myrvold,
Matt Pead, David Schroeren, Christian Wiithrich, and two referees for helpful comments
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