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The Nature of Dynamical Explanation*

Carlos Zednik†‡

The received view of dynamical explanation is that dynamical cognitive science seeks
to provide covering-law explanations of cognitive phenomena. By analyzing three
prominent examples of dynamicist research, I show that the received view is misleading:
some dynamical explanations are mechanistic explanations and in this way resemble
computational and connectionist explanations. Interestingly, these dynamical expla-
nations invoke the mathematical framework of dynamical systems theory to describe
mechanisms far more complex and distributed than the ones typically considered by
philosophers. Therefore, contemporary dynamicist research reveals the need for a more
sophisticated account of mechanistic explanation.

1. Introduction. The theoretical frameworks of computationalism and con-
nectionism are often construed as a search for cognitive mechanisms, the
specific structures and processes from which cognitive phenomena arise. In
contrast, the framework of dynamicism is generally understood to be a
search for principles or laws—mathematical regularities that govern the
way cognitive phenomena unfold over time. In recent philosophical dis-
course, this difference between traditional and dynamical cognitive science
has been framed as a difference in scientific explanation: whereas compu-
tationalist and connectionist explanations are mechanistic explanations, dy-
namical explanations take the form of covering-law explanations (for dis-
cussion, see van Gelder 1995, 1998; Clark 1997, 1998; Bechtel 1998; Bechtel
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and Abrahamsen 2002; Chemero and Silberstein 2008; Walmsley 2008;
Chemero 2009).

In this article, I challenge the received view of dynamical explanation.
After briefly outlining the principles of covering-law explanation and
mechanistic explanation in section 2, in section 3 I introduce a well-known
dynamical model—the Haken-Kelso-Bunz (HKB) model of coordination
dynamics (Haken, Kelso, and Bunz 1985; Kelso 1995)—that is regularly
used to articulate and promote the received view. Although this model is
often considered to be a paradigmatic example of dynamical explanation,
in section 4 I introduce two very different dynamical explanations: Thelen
et al.’s (2001) explanation of infant perseverative reaching and Beer’s
(2003) explanation of perceptual categorization in a minimally cognitive
agent. Although both of these dynamical explanations invoke the math-
ematical tools and concepts of dynamical systems theory, they resemble
mechanistic explanations. Therefore, the received view is misleading: al-
though the mathematical tools and concepts of dynamical systems theory
are frequently used to describe principles and laws, they are also sometimes
used to describe cognitive mechanisms.

Insofar as some dynamical explanations are mechanistic in nature, they
have much in common with traditional computational and connectionist
explanations. Among others, like other mechanistic explanations in cog-
nitive science, these dynamical explanations are reductive explanations
(Craver 2007; Bechtel 2008) and may be amenable to representation hunt-
ing (Chemero and Silberstein 2008). Nevertheless, this does not mean that
dynamicist research is not interestingly novel and important. Indeed, in
section 5 I show that dynamical explanations are well suited for describing
extended mechanisms whose components are distributed across brain,
body, and the environment. Moreover, I argue that dynamical explana-
tions may be uniquely able to describe mechanisms whose components
are engaged in complex relationships of continuous reciprocal causation
(Clark 1997). Therefore, a closer look at dynamical cognitive science will
reveal that the extant philosophical conception of mechanistic explanation
may have underestimated practicing scientists’ willingness and ability to
describe increasingly complex and distributed cognitive mechanisms.

2. Covering-Law Explanation, Mechanistic Explanation, and Traditional
Cognitive Science. According to the principles of covering-law explana-
tion, scientific explanation involves the subsumption of a target phenom-
enon under natural law. That is, a phenomenon is explained when it can
be logically deduced from statements of relevant antecedent conditions
and one or more laws of nature (Hempel and Oppenheim 1948). Two
aspects of this conception are worth highlighting. First, saying that a
phenomenon is explained when it can be logically deduced is tantamount



240 CARLOS ZEDNIK

to saying that a phenomenon can be explained when it can be (or could
have been) predicted. Second, although “law of nature” has proven to be
a notion of significant philosophical controversy, the core idea is one of a
highly general, counterfactual-supporting regularity (for discussion, see
Cartwright 1983; Salmon 1989). Thus construed, Newton’s explanation of
celestial motion is a paradigmatic example of covering-law explanation: his
laws of motion and universal gravitation predict not only the Earth’s effect
on the motion of the moon but also (purport to) predict the relative effects
between any physical objects in actual and counterfactual circumstances.

Alas, it is becoming increasingly clear that the principles of covering-
law explanation are of limited use for understanding contemporary cog-
nitive science. Although many aspects of cognitive scientific practice are
concerned with the discovery of lawlike behavioral regularities, cognitive
scientists tend to treat such regularities—sometimes also called effects—
not as explanations but as explanatory targets (Cummins 2000). Indeed,
after having been discovered, behavioral regularities are typically ex-
plained by describing the mechanisms responsible therefore (Bechtel and
Richardson 1993; Machamer, Darden, and Craver 2000; Craver 2007;
Wright and Bechtel 2007). One particularly influential conception of mech-
anism is due to William Bechtel: “A mechanism is a structure performing
a function in virtue of its component parts, component operations, and
their organization. The orchestrated functioning of the mechanism, man-
ifested in patterns of change over time in properties of its parts and op-
erations, is responsible for one or more phenomena” (Bechtel and Abra-
hamsen 2010, 323; see also Machamer et al. 2000; Bechtel and Abrahamsen
2005; Craver 2007). In this conception, mechanistic explanation consists of
describing the particular organized collection of parts and operations that
is responsible for the behavioral regularity being explained.

Mechanistic explanation is by no means trivial. Although scientists may
be able to observe that a complex system exhibits a particular behavioral
regularity, they may not know which features of that system are involved
in producing it. That is, before it can be described, the mechanism re-
sponsible for a behavioral regularity has to be discovered. The discovery
of mechanisms is frequently facilitated by the explanatory heuristics of
decomposition and localization (Bechtel and Richardson 1993), the former
of which comes in two forms. Structural decomposition involves breaking
a complex system down into a collection of simpler subsystems or parts.
But not all structural decompositions lead to the discovery of a mecha-
nism; the parts being revealed should be working parts, meaning they
should behave in ways that contribute toward the production of the be-
havioral phenomenon being explained (Craver 2007). Therefore, struc-
tural decomposition is usually followed by an attempt to characterize the
behavior of individual parts so as to show that they are in fact the working
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parts of a mechanism. In contrast, functional decomposition involves re-
describing the behavioral phenomenon as a series or organized collection
of simpler behaviors or operations. Importantly, functional decomposition
leads to the discovery of a mechanism only if the operations being posited
are actually realized in the system from which the phenomenon arises.
One way of showing that this is the case is to localize individual operations
in corresponding parts—thus simultaneously showing that the operations
are realized in the system and that the parts with which those operations
are identified are in fact working parts of a mechanism. Of course, such
straightforward localization is not always feasible; scientists frequently
have to find more roundabout ways of showing that a given collection
of operations is actually realized in the system from which the target
phenomenon arises (for discussion, see Bechtel and Richardson 1993;
Bechtel and Abrahamsen 2005; Craver 2007).

A better understanding of mechanisms and mechanistic explanation
can be attained by considering some examples from traditional cognitive
science. In classical computationalism, functional decomposition is achieved
through the practice of computational modeling, in which the target phe-
nomenon is reproduced by way of an organized series of algorithmic
operations on symbolic representations (Cummins 1983). Frequently,
computational models are accompanied by a stated commitment, al-
though rarely an explicit attempt, to identify individual operations with
specific neurobiological structures—consider David Marr’s (1982) attempt
to localize the detection of zero-crossings in the so-called simple cells of
the visual cortex. Therefore, computational models specify the component
operations of a mechanism that are then (in ideal cases) localized in
neurobiological component parts.

Whereas computational models are used to describe a mechanism’s
component operations, artificial neural network models provide abstract
descriptions of the neurobiological systems in which cognitive mechanisms
are realized.1 After a neural network model is trained to reproduce a
particular behavioral phenomenon, a variety of mathematical techniques
can be used to reveal the mechanism responsible for that phenomenon.
Consider Jeffrey Elman’s (1991) simple recurrent network model of lan-
guage processing. After training the network to predict the word or word
category that immediately follows an English sentence fragment, Elman

1. Note that the components of an artificial neural network model—nodes and con-
nections—need not correspond to individual neurons and synapses in the brain. Nev-
ertheless, connectionist researchers routinely assume that such models capture basic
neurobiological principles such as Hebbian or back-propagation learning, spreading
activation, and graceful degradation (Rumelhart et al. 1986; Churchland 1996; Bechtel
and Abrahamsen 2002).
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conducts a principal components analysis of the network’s hidden-layer
activity to describe three operations: (a) identifying number (singular/
plural), (b) identifying noun role (subject/object), and (c) identifying verb
type (direct object is required/allowed but not required/precluded). Al-
though each one of these operations is distributed across the network’s
hidden layer and thus cannot be directly localized in any single neural
unit, Elman’s analysis shows that items a–c are in fact the component
operations of a mechanism for word prediction and that they are realized
in the system from which it arises.2

3. Dynamical Explanation: The Received View. Whereas classical com-
putationalism and connectionism are both typically construed as a search
for cognitive mechanisms, dynamicism has traditionally been viewed as a
search for principles and laws. Dynamical explanations consist of dynamical
models (sets of differential or difference equations that capture a particular
cognitive system’s behavior) and dynamical analyses (formal analyses that
invoke the tools and concepts of dynamical systems theory to describe the
modeled system’s abstract mathematical properties).3 Consider Scott Kelso’s
(1995) dynamical explanation of bimanual coordination, a robust behavioral
phenomenon in which the rhythmic oscillatory motion of two opposing
index fingers spontaneously becomes coordinated in a way that depends
on the frequency of oscillation. At low frequencies, opposing index fingers
reliably settle into one of two patterns of motion: an in-phase pattern in
which both fingers alternate between simultaneously pointing inward and
outward, or an anti-phase pattern that resembles the parallel motion of
windshield wipers on most cars. At high oscillation frequencies, in con-
trast, the index fingers settle into the in-phase pattern only.

Kelso’s dynamical explanation of bimanual coordination is grounded
on the HKB model of coordination dynamics (Haken et al. 1985). This
dynamical model consists of a single differential equation that describes
in-phase as well as anti-phase motion and that accurately predicts the
phase transitions that occur between low and high frequencies:

J̇ p �a sin J � 2b sin 2J.

In this model, changes in the between-fingers phase relation J (where
� corresponds to perfect in-phase motion and � correspondsJ p 0 J p 0

to perfect anti-phase motion) are expressed as a function of a and b (where
b/a corresponds to the inverse of the index fingers’ oscillation frequency).

2. For further discussion of connectionism and mechanistic explanation, see Bechtel
(1998), Cummins (2000), Bechtel and Abrahamsen (2002).

3. A formal introduction to dynamical modeling, dynamical analysis, and dynamical
systems theory can be found in Strogatz (1994). For a philosophical introduction, see
Port and van Gelder (1995).
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Figure 1. Vector field diagram of the HKB model with J as the state variable and
b/a as the control parameter. When , motion is stable whenb/a 1 0.25 dJ/dt p 0
and � (in-phase) or � (anti-phase). In contrast, when , mo-J p 0 J p 180 b/a ! 0.25
tion is stable only when and � (in-phase). An inverse pitchforkdJ/dt p 0 J p 0
bifurcation at transforms the anti-phase attractor into an unstableb/a p 0.25
equilibrium point. Figure adapted from Kelso (1995). Color version available as
an online enhancement.

A dynamical analysis of the HKB model (fig. 1) shows that bimanual
coordination can be understood as a dynamical system with two point
attractors when (one each corresponding to in-phase and anti-b/a 1 0.25
phase motion), one point attractor when (in-phase motion),b/a ! 0.25
and an inverse pitchfork bifurcation that annihilates the anti-phase at-
tractor when .b/a p 0.25

The HKB model accurately describes bimanual coordination and sup-
ports a variety of testable predictions. Quantitatively, it predicts the pat-
tern of motion that will be exhibited at any given frequency and initial
phase relation. In dynamical terms, for any value of b/a and initial J, it
is possible to determine the attractor basin that will constrain J’s trajec-
tory through state space. Qualitatively, the model predicts a hysteresis
effect in which phase transitions occur when the oscillation frequency
changes from low values to high but not when the oscillation frequency
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changes from high values to low. Once again in dynamical terms, if J

begins in the attractor basin corresponding to anti-phase motion and
b/a decreases, it is forced to settle into the in-phase attractor when the
anti-phase attractor is annihilated; if, in contrast, J begins in the attractor
basin corresponding to in-phase motion and b/a increases, it remains in
that basin indefinitely.

Kelso’s dynamical explanation of bimanual coordination is a clear ex-
ample of covering-law explanation. First, the HKB model is invoked in
patterns of deductive inference that conclude with a description of the
target phenomenon. Given any particular oscillation frequency and initial
phase relation, it can be used to predict the phase relation that will even-
tually be observed. Second, the HKB model describes a lawlike regularity
that is both counterfactual supporting and highly general. On the one
hand, this is because the HKB model’s predictive power extends to sit-
uations in which one or both fingers are forced out of their regular os-
cillatory motion; although perturbing J away from its stable in-phase or
anti-phase motion temporarily results in a phase relation between 0� and
180�, the structure of the attractor landscape predicts that J will inevitably
return to one of those two stable attractors and that it will do so within
a predictable amount of time. On the other hand, variations of the same
model can be used to describe and predict several kinds of coupled os-
cillatory motion, including animal locomotion (Kelso 1995), speech pro-
duction (Port 2003), and behavioral coordination between individuals
(Oullier et al. 2005). In other words, the HKB model is not restricted to
any particular system but rather describes a “general principle of pattern
formation” that applies “regardless of what elements are involved in pro-
ducing the patterns or at what level these patterns are studied or observed”
(Kelso 1995, 2). Thus, in general, Kelso’s dynamical explanation of bi-
manual coordination is an example of covering-law explanation because
it relies on a lawlike regularity to deduce properties of the target phe-
nomenon.4

But Kelso’s dynamical explanation is more than just a well-known
example. A brief review of the relevant philosophical literature demon-
strates that the features of this particular dynamical explanation are often
assumed to be features of dynamical explanation in general. Building on
some of the themes in Kelso’s (1995) seminal book, Tim van Gelder first
introduced the HKB model to the philosophical community “to illustrate
the dynamical approach to cognition” (1998, 616) and to draw an analogy
between dynamical explanations of cognition and Newton’s law-based
explanations of celestial motion. Bechtel (1998) was the first to explicitly

4. For further discussion of the HKB model, see Kelso (1995), van Gelder (1998),
Walmsley (2008), Chemero (2009).
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associate Kelso’s brand of dynamicism with the principles of covering-
law explanation, and Walmsley recently invoked the HKB model to defend
the general claim that “the explanatory goal of dynamical cognitive sci-
entists is to provide covering-law explanations” (2008, 343). Chemero and
Silberstein have recently appealed to Oullier et al.’s (2005) adaptation of
the HKB model to illustrate the practices of “a growing minority of
cognitive scientists” who “have eschewed mechanical explanations and
embraced dynamical systems theory” (Chemero and Silberstein 2008, 11),
and Chemero has further articulated this view by characterizing the HKB
model “as a unifying model and guide to discovery for [dynamical] cog-
nitive science” (2009, 86). These remarks indicate just how profound the
influence of Kelso’s dynamical explanation has been: It has served not
only as a template for future empirical and modeling work (e.g., van
Rooij, Bongers, and Haselager 2002) but also as a paradigmatic example
on the basis of which general philosophical claims about dynamicism have
been articulated and defended. One such claim is the received view of
dynamical explanation, the view that dynamical explanation is just a
special case of covering-law explanation.

In the next section I will argue that the received view of dynamical
explanation is misleading. Kelso’s explanation of bimanual coordination
is not in fact representative of dynamical explanation in general, and many
dynamical explanations actually resemble mechanistic explanations rather
than covering-law explanations. In the meantime, however, it is worth
noting that the received view renders dynamical explanation susceptible
to a well-known philosophical worry. Recall that, according to the prin-
ciples of covering-law explanation, a phenomenon is explained when it
can be predicted from antecedent conditions and one or more lawlike
regularities. Frequently, this predictive ability is afforded by lawlike reg-
ularities that are phenomenological in kind—regularities that are specified
primarily in terms of the target phenomenon’s observable properties (Cart-
wright 1983; Craver 2006). The HKB model is a case in point: J and b/a
each refer to observable features of bimanual coordination itself, rather
than to the underlying neural, biomechanical, or other physical structures
and processes from which that phenomenon arises. Now, a well-known
philosophical worry about phenomenological laws is that they merely
describe rather than genuinely explain. But although this mere description
worry is already well established in the theoretical literature on dynam-
icism (see, e.g., Eliasmith 1996; Dietrich and Markman 2001; van Leeuwen
2005), it is frequently brushed aside by proponents of dynamical expla-
nation who appeal to the fact that even phenomenological laws may
support counterfactuals (see, e.g., Clark 1997; Walmsley 2008; Chemero
2009). Because phenomenological laws like the one expressed by the HKB
model extend to counterfactual circumstances, they go beyond describing
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what is actually observed and therefore do more than merely describe the
target phenomenon.

Unfortunately, this simple appeal to counterfactuals fails to address the
core intuition behind the mere description worry. In particular, it is easy
to think that covering-law explanations based on phenomenological laws
leave something important to be desired: “Because phenomenal models
summarize the phenomenon to be explained, they typically allow one to
answer some [what-if-things-had-been-different] questions. But an expla-
nation shows why the relations are as they are in the phenomenal model,
and so reveals conditions under which those relations might change or
fail to hold altogether” (Craver 2006, 358). That is, although a phenom-
enological law may predict what happens in actual and counterfactual
circumstances, it often remains unclear why the law applies in the first
place. Put differently, phenomenological laws by themselves provide no
means of determining when they can or cannot be used in deductive
inferences about the target phenomenon. Consider once again Kelso’s
dynamical explanation of bimanual coordination. The HKB model can
be used to deduce properties of the target phenomenon just because mov-
ing index fingers can be understood as a system of coupled oscillators.
Although this is explicit in Kelso’s (1995) extended discussion of the way
in which the HKB model was originally derived, the model itself does
not provide any means of determining whether a given system can or
cannot be understood as a system of coupled oscillators. In comparison,
a (hypothetical) description of the neurobiological and biomechanical
mechanisms responsible for bimanual coordination would likely provide
a description that resembles a system of coupled oscillators. Unlike cov-
ering-law explanations based on phenomenological laws, mechanistic ex-
planations provide a means of determining which systems fall under the
scope of the explanation and when they do so. As long as dynamical
explanation is viewed as a form of covering-law explanation as the re-
ceived view suggests, the mere description worry looms.

Of course, the mere description worry can be resisted by stipulating
that covering-law explanations (even those that are grounded on phe-
nomenological laws) qualify as genuine explanations. This seems to be
the view espoused by philosophical proponents of explanatory pluralism
(see, e.g., Chemero and Silberstein 2008), as well as (implicitly or explicitly)
by practicing cognitive scientists who choose to employ various descriptive
(explanatory?) techniques to accommodate different kinds of phenomena.
Short of adopting this kind of pluralist stance, however, the received view
of dynamical explanation implies that dynamicist researchers should more
thoroughly engage in well-established philosophical worries about cov-
ering-law explanation.
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4. Dynamical Explanation as Mechanistic Explanation. Before proceeding
to cases of dynamical explanation that are mechanistic rather than covering-
law in nature, it is important to recognize that there are no a priori reasons
to deny that dynamical models and dynamical analyses can be used to
provide mechanistic explanations of cognitive phenomena. As Wright and
Bechtel (2007) go to great lengths to impress, mechanistic explanation is
an epistemic activity that centers on the practice of describing a mechanism.
Such description can be achieved via a variety of descriptive schemes, in-
cluding verbal characterizations, schematic box-and-arrow diagrams, more-
or-less detailed pictures, and physical or simulated two- and three-dimen-
sional models. The differential (or difference) equations that constitute a
dynamical model—as well as the mathematical constructs and graphical
representations that figure in dynamical analyses—are, I claim, equally
viable descriptive schemes. Variables and parameters can be used to describe
structural and functional properties (e.g., size, location, velocity, activation)
of the parts and operations of a mechanism, and differential equations can
be used to capture spatial and temporal relations between those properties
as well as to describe the way they change over time.5 Likewise, graphical
representations such as state-space trajectories, attractor landscapes, bifur-
cation diagrams, and so on—the representational currency of dynamical
analysis—can be used in much the same way. The general point is this: like
English, the mathematics of dynamical systems theory is a language, an
important feature of which is its capacity to represent. What is being rep-
resented—a mechanism, law of nature, or my neighbor’s pet iguana—is not
determined by the language being used but by the way in which tokens of
that language are interpreted. The claim at the heart of my argument is
that the differential equations and graphical representations that figure in
many dynamical explanations can be, in principle as well as in practice,
interpreted as representations of cognitive mechanisms.

One more preliminary issue: there have been at least two other explicit
attempts to relate dynamical explanation and mechanistic explanation.
Clark (1997) and Bechtel (1998; see also Bechtel and Abrahamsen 2010)
each discuss hybrid explanations that combine the mathematical tools
and concepts of dynamical systems theory with connectionist and other
traditional modeling techniques. Although both Clark and Bechtel un-
derstand these hybrid explanations to be mechanistic in nature, what

5. Incidentally, it is also common to describe artificial neural network models as systems
of equations (see, e.g., Rumelhart et al. 1986; Elman 1991). Although such models are
frequently accompanied by schematic circle-and-arrow diagrams, these diagrams do
not (I claim) add significantly to the explanatory power provided by the equations.
Rather, they provide alternative (possibly more accessible but typically less detailed)
descriptions of the same properties being represented as equations.
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renders each one of their examples mechanistic is something other than
the mathematics of dynamical systems theory. Consider the explanation
of circadian rhythms discussed by Bechtel and Abrahamsen (2010). After
describing a molecular mechanism that shows how circadian oscillations
arise from the negative feedback relationship between per mRNA and the
PER protein in the nerve cells of drosophila (Hardin, Hall, and Rosbash
1990), Bechtel and Abrahamsen introduce a dynamical analysis by Gold-
beter (1995) of that mechanism’s oscillatory behavior. The purpose of
Goldbeter’s analysis is to show that the negative feedback relationship
produces stable (as opposed to damped) circadian oscillations. That is, it
does not itself describe the molecular mechanism but rather analyzes how
that mechanism behaves over time. In Bechtel and Abrahamsen’s words,
dynamical analyses such as Goldbeter’s “are not proposals regarding the
basic architecture of circadian mechanisms; rather, they are used to better
understand the functioning of a mechanism whose parts, operations, and
organization already have been independently determined” (2010).

Bechtel and Abrahamsen clearly identify one way in which the dynam-
ical toolkit can be employed in a thoroughly mechanistic cognitive science.
Moreover, they recognize that practicing scientists tend to look beyond
well-established philosophical dichotomies—in this case, the apparent di-
chotomy between dynamical and mechanistic explanation—and employ
whatever techniques prove most insightful with respect to their explan-
atory goals. Nevertheless, the hybrid explanation of circadian rhythms
does not in fact resemble the dynamical explanations offered by many
prominent dynamicist researchers. In what follows, I present two examples
in which dynamical models and dynamical analyses are themselves used
to describe the parts and operations of a mechanism as well as its or-
ganization. Rather than contrasting with mechanistic explanation as the
received view suggests, or being complementary to it in the way recently
suggested by Bechtel and Abrahamsen, in these examples dynamical ex-
planation is an instance of mechanistic explanation.

As a first example, consider Thelen et al.’s (2001) dynamical field
theory model of infant perseverative reaching in Jean Piaget’s classic A-
not-B task:

′ ′˙ [ ]tu(x, t) p �u(x, t) � S(x, t) � g u(x ); x .

This model describes the way the activation level (u) of every point (x)
on a dynamic motor planning field changes (over time t) as a function of
the field’s previous activation (�u), an input vector (S), a cooperativity
parameter (g), and a temporal decay constant (t). Every point on the field
corresponds to a particular spatial location in the A-not-B task environ-
ment. If at any moment the activation of a single point increases beyond
a particular threshold level, a reach is induced toward the corresponding
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location. The likelihood that this threshold level is surpassed depends in
part on the value of the cooperativity parameter g, which determines the
degree to which any individual point on the field excites or inhibits the
activity of its neighbors. Psychologically, g corresponds to a develop-
mental parameter that influences the extent to which maturing infants are
able to perform accurate goal-directed reaches at various developmental
stages. Appropriately fixing the value of g allows the model to predict
performance in perseverative (for infants 7–12 months of age) as well as
nonperseverative (12 months and over) episodes of the A-not-B task.

For current purposes, the most significant feature of Thelen et al.’s
dynamical model is the fact that the input vector S is a function of three
independent inputs: a task input that captures the unchanging features of
the A-not-B task environment, a specific input that corresponds to the
cuing event provided during each trial, and a memory trace that captures
the influence of remembered reaches from earlier trials:

S(x, t) p S (x, t) � S (x, t) � S (x, t).task specific memory

This tripartite definition of S is significant because it exemplifies the
explanatory heuristic of functional decomposition. The individual con-
tributions of task input, specific input, and memory trace can be construed
as the (posited) component operations of a mechanism for goal-directed
reaching. Expressed as variables, these operations are linked in an equa-
tion that captures their role in a mechanism for goal-directed reaching.
To be sure, this way of describing a mechanism is fairly abstract—but
not any more so than, for example, a flow chart or schematic diagram.
Indeed, Machamer et al. (2000; see also Craver 2007) argue that mech-
anistic explanation frequently starts as a relatively abstract mechanism
sketch that leaves ample room for elaboration. In the same spirit, Thelen
et al. voice their intention to “speculate further as to possible neuroan-
atomical areas where such a field might evolve” (2001, 16). Such specu-
lation not only achieves the goal of elaborating on the mechanism sketch
provided by their mathematical model but also demonstrates that the
authors eventually seek to localize the operations described in the equation
in specific neurobiological parts. In other words, Thelen et al. rely on (or
at least allude to) the dual heuristics of decomposition and localization
to provide a mechanistic explanation of infant perseverative reaching.

Interestingly, Walmsley (2008) articulates two reasons for thinking that
Thelen et al.’s dynamical explanation is in fact a covering-law explanation
rather than a mechanistic explanation. First, the way the model is ex-
pressed—a single mathematical equation—bears a superficial resemblance
to many well-known covering-law explanations, including Kelso’s dy-
namical explanation of bimanual coordination. But as I have already
suggested above, this is largely inconsequential; what matters is not the
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language of description being employed but the way the tokens of that
language are interpreted. Second, Walmsley emphasizes the fact that The-
len et al.’s model can be used to derive, by way of deductive inferences,
predictions about goal-directed reaching in actual and counterfactual cir-
cumstances. But although this is true, it is misleading to emphasize this
feature of Thelen et al.’s model over their statement that the model will
be used “to explain, . . . in terms of the normal processes involved in
reaching, behavioral phenomena [in the A-not-B task environment]”
(2001, 10; emphasis added). That is, the model is not merely a formalism
that can be used to derive predictions about the target phenomenon but
is also a means of showing that the complex process of goal-directed
reaching arises from the organized activity of a particular collection of
simpler processes—specifically, low-level processes of perception and ac-
tion rather than high-level processes of concept-formation as originally
posited by Jean Piaget.

As a second example, consider Randall Beer’s (2003) dynamical expla-
nation of perceptual categorization in a simulated brain-body-environ-
ment system (fig. 2). The simulated system consists of a single minimally
cognitive agent, equipped with a 14-neuron continuous-time recurrent neu-
ral network (CTRNN) brain and situated in a simple two-dimensional
environment that features a single circular or diamond-shaped object. A
16-dimensional dynamical model defines the system’s behavior:

˙ts p �s � I (x, y; a) i p 1, . . . , 7, (1–7)i i i i

7 12

˙ [ ]ts p �s � w j g(s � 0) � w j(s � 0 ) i p 8, . . . , 12, (8–12)� �i i i ji j ji j j
jp1 jp8

12

˙ts p �s � w j(s � v) i p 13, 14, (13, 14)�i i i ji j
jp8

˙ [ ]x p 5 j(s � v ) � j(s � v ) , (15)13 13 14 14

ẏ p �3. (16)

Equations (1)–(16) define the change over time in the brain’s neural
activity (s1 . . . s14), the agent’s horizontal position (x), and the object’s
vertical position (y). Neural parameters w, t, j, and v are predetermined
by an artificial evolutionary process and remain constant during as well
as between trials. In contrast, the brain’s neural activity is continuously
affected by the changing sensory input vector I, a function of shape pa-
rameter a and of the relative positions of agent and object. Over the
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Figure 2. The simulated agent, (A) its continuous-time neural network brain, and
(B) its task environment. Figures adapted from Beer (2003).

course of a single trial, a circular or diamond-shaped object falls vertically
toward the agent, to which the agent responds by moving horizontally to
catch circles and avoid diamonds, thus performing a categorical discrim-
ination. Notably, discrimination is always preceded by an episode of active
scanning: as the object falls, the agent repeatedly moves from side to side
before eventually settling on a position either directly beneath the object
or away to one side. Because this active-scanning behavior is an unex-
pected result of the artificial evolutionary process and cannot be straight-
forwardly read off the equations of the dynamical model, it constitutes
a target phenomenon of significant explanatory interest.
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Beer’s goal is to use the tools and concepts of dynamical systems theory
to explain how the observed active-scanning behavior (and thus, percep-
tual categorization) arises from the brain-body-environment system de-
fined by the equations of the dynamical model. To this end, he adopts a
clearly stated decompositional strategy: “We will decompose the agent-
environment dynamics into: (1) the effect that the relative positions of
the object and the agent have on the agent’s motion; (2) the effect that
the agent’s motion has on the relative positions of the object and the
agent” (Beer 2003, 228; see also Beer 1995).

This brief statement requires elaboration. In dynamical terms, equations
(1)–(16) define a dynamical system composed of the simulated agent, its
CTRNN brain, and the falling object. This dynamical system is mathe-
matically equivalent to a pair of coupled dynamical systems (henceforth
labeled “B” and “E”) defined by equations (1)–(14) and (15)–(16), re-
spectively. Whereas B is a model of the embodied CTRNN brain that
transforms sensory input into motor output, E is a model of the envi-
ronment in which motor output is converted into sensory input. The
couplings between B and E are defined by variables s13 and s14 in equation
(14) and x and y in equations (1)–(7) and are best understood as a model
of the two-way interface—the agent’s body—that mediates between the
brain and the environment. On this interpretation, Beer’s aim is to show
how the phenomenon of active scanning arises from the simultaneous and
coupled activity of the embodied brain on the one hand and of the en-
vironment on the other.

At the heart of Beer’s dynamical explanation lies a dynamical analysis
that describes the activity of each of the two components—embodied brain
and environment—identified above. This analysis comes in the form of
a pair of steady state velocity fields and superimposed motion trajectories
(fig. 3). The steady state velocity fields (colored regions) describe E’s effect
on the qualitative behavior of B—how the sensory input received at a
particular position (x, y) constrains , the agent’s horizontal velocity. Theẋ
motion trajectories (colored lines) describe B’s effect on the state of E—
how causes a change in x and thus a change in the environment definedẋ
by (x, y).

The motion trajectories are superimposed on the steady state velocity
fields in order to describe the spatiotemporal organization of embodied
brain and environment. Of particular importance is the way the motion
trajectories overshoot some colored regions while performing reversals over
others. What determines whether a particular motion trajectory performs
an overshoot or a reversal is the color of the region over which it is
moving, as well as the amount of time it spends in that region. Specifically,
a motion trajectory of a particular color (red or blue) performs a reversal
whenever it is situated over a region of the opposite color and remains
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Figure 3. Steady state velocity fields with superimposed motion trajectories for
circle trials (left; “catch”) and diamond trials (right; “avoid”). Axes designate the
relative positions of agent (x) and object (y), which together define the state of
the environment. Colored regions describe the effect of the environment on the
qualitative behavior (steady state velocity) of the embodied brain: blue indicates
a steady state velocity directed toward the object; red indicates a steady state
velocity directed away from the object; green designates a steady state velocity
that may go in either direction. Colored lines correspond to a sampling of recorded
motion trajectories several starting locations. Their color indicates the agent’s
instantaneous horizontal velocity according to the same color scheme as above,
their shape indicates the way the relative positions of object and agent change
over time, thus determining the agent’s sensory input. Figure courtesy of Beer
(2003). Color version available as an online enhancement.

in it long enough for the agent’s instantaneous horizontal velocity to
approach the steady state velocity indicated by that region’s color (red
indicates velocities directed away from the object; blue indicates velocities
directed toward the object).6 Because active scanning is nothing but a
particular combination of overshoots and reversals, it is explained by the
particular details—shape and color—of the motion trajectories and steady
state velocity fields in figure 3. That is, perceptual categorization via active
scanning arises from the detailed ways in which B converts sensory input
into motor output and E allows motor output to feed back on sensory
input.

Although this discussion provides merely a rough sketch of Beer’s dy-

6. The exact amount of time required for this to happen is a function of the neural
decay constant t. If t is high, the agent’s instantaneous velocity will approach the
prescribed steady state velocity quickly and, therefore, quickly perform a reversal when
trajectory and region are of opposite color (see Beer [2003] for details).
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namical explanation of perceptual categorization via active scanning (but
see sec. 5.2 below), it suffices to show that the explanation is mechanistic
in nature. First, Beer relies on the explanatory heuristic of structural
decomposition to identify two working parts—the embodied brain on the
one hand and the environment on the other—of a two-component mech-
anism realized in the simulated brain-body-environment system. Then, he
provides a detailed dynamical analysis to describe the operations asso-
ciated with each part—the way the embodied brain’s steady state con-
strains motion in the environment and the way that motion affects the
embodied brain’s steady state at every possible relative position of agent
and object. Finally, Beer describes the mechanism’s spatiotemporal or-
ganization by discussing the detailed relationships between steady state
velocity fields and motion trajectories that lead to overshoots and rever-
sals. In summary, therefore, Beer describes the component parts, com-
ponent operations, and organization of a mechanism for perceptual cat-
egorization via active scanning.7

One additional feature of Beer’s dynamical explanation is worth high-
lighting. Although the mechanistic explanation of perceptual categori-
zation via active scanning is contained in his description of the mechanism
composed of B and E, the behavior of at least one of those components
affords further explanation. Why does the embodied brain behave the
way it does in response to changes in the environment? Beer answers this
question by describing the contributions of individual neurons in the
agent’s CTRNN brain. To this end, he provides separate steady state
velocity fields for interneurons s8, s9, s11, and s12 (fig. 4) and shows that
their sum is approximately equivalent to the steady state velocity field on
the left side of figure 3.8 That is, he describes a neural-level mechanism
to explain the behavior of one of the two components of the agent-level
mechanism responsible for active scanning.9 In this sense, Beer’s expla-

7. Note that the plausibility of this construal depends on two critical assumptions I
will defend in sec. 5 below: that the components of a single mechanism may span the
boundaries between brain, body, and the environment (sec. 5.1) and that the operations
associated with the components of a mechanism may take the form of continuous
reciprocal interactions (sec. 5.2).

8. The equivalence is approximate because the agent’s motor output is not a linear
combination of the four interneuron outputs (Beer 2003, 233). Note that interneuron
s10 is omitted from this analysis because it does not appear to “play any significant
role in the circuit’s operation” (231).

9. Importantly, Beer’s explanation of active scanning is not mechanistic because it
describes a neural-level mechanism. The description of the neural-level mechanism does
not explain the phenomenon of perceptual categorization via active scanning but rather
explains the behavior of B as described in the steady state velocity fields of fig. 3 (for
further discussion, see sec. 5.1).
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Figure 4. Steady state velocity fields for interneurons 1–4 of the agent’s CTRNN
“brain.” Axes and coloring schemes as in figure 3. The color at any (x, y) in each
of the four fields indicates the corresponding interneuron’s contribution to the
agent’s steady state horizontal velocity during circle (“catch”) trials. Summing
these four interneuron steady state velocity fields yields a steady state velocity field
that closely resembles the one on the left side of figure 3. Figure courtesy of Beer
(2003). Color version available as an online enhancement.

nation is hierarchical in a way that closely resembles mechanistic expla-
nations in other scientific domains; the components of a mechanism at
one level of organization are further decomposed and explained in terms
of mechanisms at lower levels of organization (Machamer et al. 2000;
Craver 2007; Bechtel 2008).

It is time to take stock. Thelen et al. (2001) and Beer (2003) each offer
a dynamical explanation of a (minimally) cognitive phenomenon. In each
case, the explanation proceeds by identifying the component parts and
operations of a mechanism and by showing how the organized activity
of these parts and operations produces the phenomenon being explained.
Therefore, Thelen et al. and Beer each provide a counterexample to the
received view of dynamical explanation: some dynamical explanations are
mechanistic explanations rather than covering-law explanations.

5. Cognitive Mechanisms: Extended and Complex? Section 4 shows that
dynamical cognitive science sometimes seeks the description of cognitive
mechanisms. In this sense, many branches of dynamical cognitive science
resemble computationalist and connectionist cognitive science as discussed
in section 2. Although this may appear disappointingly conservative to
the more radical proponents of dynamicism, I do not intend to deny that
dynamicism is interestingly novel and important. Indeed, I agree with the
popular assessment that dynamicist researchers are far more willing and
able than some of their traditional colleagues to account for cognitive
phenomena that arise from complex reciprocal interactions between brain,
body, and the environment (for discussion, see Thelen and Smith 1994;
Beer 1995, 2003; Kelso 1995; van Gelder 1995, 1998; van Gelder and Port
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1995; Clark 1997; Chemero and Silberstein 2008; Chemero 2009). Nev-
ertheless, in this section I argue that this willingness and ability does not
follow from a rejection of mechanistic explanation but from the invocation
of the mathematical tools and concepts of dynamical systems theory.
Indeed, a closer look at the dynamical explanations introduced in section
4 will show that the extant philosophical conception of mechanistic ex-
planation may be underestimating the degree to which cognitive scientists
are able to describe increasingly complex and distributed cognitive mech-
anisms.

5.1. Extended Mechanisms. To a large extent, the philosophical con-
ception of mechanistic explanation in cognitive science has been articu-
lated with a view to the work of cognitive neuroscientists who seek to
describe brain-bound neurobiological mechanisms (see, e.g., Machamer
et al. 2000; Craver 2007; Bechtel 2008). Although it is widely recognized
that mechanistic explanation also occurs at more abstract levels of analysis
(e.g., those relevant to the computational and artificial neural network
models discussed in sec. 2), it is a widespread assumption that cognitive
mechanisms are localized entirely within biological brains. Alas, this as-
sumption is at odds with the claim that Beer’s dynamical explanation is
mechanistic in nature. Recall that although B—the embodied brain—is
responsible for converting sensory input into motor output, the phenom-
enon of active scanning arises only from B’s interaction with E, the en-
vironment through which motor output feeds back on sensory input.
Insofar as it makes sense to talk of B and E as the components of a
(minimally) cognitive mechanism, that mechanism is extended; its com-
ponents are distributed across brain, body, and environment.

Although previously unarticulated, the idea that cognitive mechanisms
may be extended is consistent with the extant philosophical conception
of mechanisms and mechanistic explanation. Carl Craver (2007, 2009)
has recently explored the question of how scientists determine the bound-
aries of mechanisms and has argued that they do so not via considerations
of spatial proximity or between-component interactivity but “by reference
to the phenomenon that the mechanism explains” (Craver 2007, 123).
More precisely: “Within the boundaries of a mechanism are all and only
the entities, activities, and organizational features relevant to the phe-
nomenon selected as our explanatory, predictive, or instrumental focus”
(Craver 2009, 590–91). Therefore, insofar as the phenomenon of interest
is perceptual categorization via active scanning (as opposed to, e.g., the
conversion of sensory input into motor output), and insofar as active scan-
ning results from the interactions between the embodied brain and the
environment as suggested by Beer, the mechanism for active scanning
must span the boundaries between simulated brain, body, and environ-
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ment. To further illustrate this point, consider the fact that although the
steady state velocity fields in figure 3 can be reconstructed from the in-
terneuron steady state velocity fields in figure 4, the latter only describe
one of the two operations that contribute to the observed behavior; active
scanning can only be reconstructed by superimposing the steady stated
velocity fields with motion trajectories. Therefore, a description of the
environment is essential to the explanation of the target phenomenon.

Beer’s extended mechanism is unlikely to be an isolated example. Many
empirical findings in the literature on “embodied and embedded cogni-
tion” suggest that extended mechanisms figure far more prominently in
the explanatory practices of cognitive scientists than the extant philo-
sophical conception of mechanistic explanation acknowledges. Andy
Clark (2008) has recently suggested that cognitive scientists frequently
rely on the explanatory heuristic of distributed functional decomposition—
roughly, the heuristic of functional decomposition outlined in section 2
applied to the behavior of systems that span the physical boundaries
between brain, body, and the environment. Rumelhart et al.’s (1986) well-
known reflections on chalkboard-based long division, Kirsh and Maglio’s
(1994) studies of Tetris game-playing, and Thelen and Smith’s (1994)
explanation of infant treadmill-stepping, among others, can each be
thought to employ this heuristic. Although many of these studies have
yet to be worked out in as much detail as the canonical examples of
mechanistic explanation, such as the explanations of the action potential
(Machamer et al. 2000; Craver 2007) and the Krebs cycle (Bechtel 1998,
2008), it is no stretch to think that they too seek to describe “structure[s]
performing a function in virtue of [their] component parts, component
operations, and their organization” (Bechtel and Abrahamsen 2010,
323)—albeit ones whose parts, operations, and organizations are distrib-
uted across physical boundaries. Therefore, I submit that an adequate
account of scientific explanation in embodied and embedded cognitive
science will have to take seriously the notion of extended mechanisms.

To what extent have philosophers of science already considered the
possibility that cognitive mechanisms may be extended? Bechtel (2009)
acknowledges that the environment plays an important role in providing
the background conditions necessary for mechanisms to perform their
adaptive function and that mechanisms are frequently responsible for
governing an organism’s interaction with its environment. Nevertheless,
he denies that cognitive mechanisms themselves extend into the environ-
ment: “For mental phenomena it is appropriate to treat the mind/brain
as the locus of the responsible mechanism and to emphasize the boundary
between the mind/brain and the rest of the body and between the cognitive
agent and its environment” (Bechtel 2009, 156).

Bechtel’s emphasis on “mental” is meant to highlight “behavioral or
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psychological” phenomena, as opposed to the “prototypically social” ones
in which “the agent is so intertwined with entities outside itself that the
responsible system includes one or more cognitive agents and their en-
vironment” (Bechtel 2009, 156). But if the empirical findings from the
literature on embodied and embedded cognition are to be taken seriously,
Bechtel is wrong to draw such a strong distinction between the social and
the mental; both kinds of phenomena can arise from systems in which
organisms are strongly intertwined with their environments. Accordingly,
extended mechanisms are just as likely to figure in explanations of em-
bodied and embedded cognition as they are in explanations of social
cooperation. Philosophers wishing to understand the nature of these ex-
planations are well advised to take note.

Finally, it is worth considering the potential importance of dynamical
modeling and dynamical analysis to the description of extended mecha-
nisms. As others have already suggested, “dynamical systems theory is
especially appropriate for explaining cognition as interaction with the
environment because single dynamical systems can have parameters on
each side of the skin” (Chemero and Silberstein 2008, 14; see also Clark
1997). I see no reason to assume that this appropriateness—afforded pri-
marily by the abstract nature of the dynamical toolkit—applies any dif-
ferently to the description of extended mechanisms than it does to the
characterization of principles or laws. As Beer demonstrates, it is possible
to define equations to describe the changing state of the brain and couple
them to equations that capture the changing state of the body or the
environment. Indeed, by using a single mathematical language to describe
brain, body, and environment, cognitive scientists will be able not just to
develop a formal understanding of individual components of extended
mechanisms but additionally to develop a formal understanding of the
ways in which such components interact.

5.2. Dealing with Continuous Reciprocal Causation. There is a second
way in which a closer look at contemporary dynamicist research should
influence the philosophical conception of mechanistic explanation. Recall
that the dynamical system defined by equations (1)–(16) is equivalent to
a pair of coupled dynamical systems, B and E, defined by equations (1)–
(14) and (15)–(16), respectively. Coupling is a technical term that applies
whenever two or more dynamical systems mutually influence one an-
other’s change over time. In the philosophical literature, such mutual
influence is more commonly known as continuous reciprocal causation
(Clark 1997). Systems B and E are engaged in a relationship of continuous
reciprocal causation because each system’s behavior is at all times deter-
mining, as well as being determined by, the other’s. Despite the presence
of continuous reciprocal causation, however, Beer’s dynamical analysis
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adequately describes the mechanism for perceptual categorization via ac-
tive scanning.

The significance of this feat is not to be missed; continuous reciprocal
causation is commonly thought to preclude mechanistic explanation (see,
e.g., van Gelder 1995; Clark 1997; Wheeler 2005). In particular, the pres-
ence of such a relationship is thought to impose limits on the explanatory
heuristics of structural and functional decomposition: “With increasing
continuous reciprocal causation, it will become progressively more difficult
both to specify distinct and robust causal-functional roles played by re-
liably identifiable parts of the system, and to explain interesting system-
level behavior in terms of the properties of a small number of subsystems”
(Wheeler 2005, 260–61).

Whether or not it is possible to divide a system into a collection of
structural parts, the presence of continuous reciprocal interactions is likely
to prevent researchers from describing how any one of those parts con-
tributes to the system’s behavior as a whole—it will prevent them from
showing that parts are in fact working parts. Similarly, although it may
be possible to analyze a complex system’s behavior into a set of functional
operations, continuous reciprocal interactions make it difficult or impos-
sible to allocate responsibility for any particular operation to one part of
the system, as opposed to allocating responsibility to the system as a
whole. Because continuous reciprocal causation seems to impose limits
on the heuristics of decomposition and localization, it is frequently
thought to preclude mechanistic explanation.

Although it is by no means original to propose dynamical explanation
as a way of dealing with continuous reciprocal causation (see, e.g., Thelen
and Smith 1994; Kelso 1995; van Gelder 1995; Clark 1997; van Orden,
Holden, and Turvey 2003; Wheeler 2005), I suggest that dynamical systems
theory can be used to deal with this relationship from within the frame-
work of mechanistic explanation. The reason dynamical systems theory
can be used in this way is that its tools and concepts are purpose-built
to describe the qualitative behavior of a system in a way that does not
depend on a prior description in precise quantitative terms. Once again,
Beer’s (minimally) cognitive mechanism for active scanning can be used
to illustrate this distinction. Because B and E are engaged in a relationship
of continuous reciprocal causation, it is effectively impossible to make
precise quantitative predictions about either system’s behavior over time.
Nevertheless, the steady state velocity fields in figure 3 describe an im-
portant qualitative feature of B relative to the possible states of E—the
velocity the agent would assume if (counterfactually) its sensory input
were to be held constant for an extended period of time.

Does this kind of description suffice for the purposes of mechanistic
explanation? Craver suggests that an adequate description of a mechanism
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should render it “potentially exploitable for the purposes of manipulation
and control” (2007, 94). That figure 3 satisfies this requirement is evi-
denced by the fact that Beer explains the difference between catching and
avoiding by referring to specific details in the steady state velocity fields.
Manipulating the model system in a way that changes the size of certain
colored regions leads to (predictively) novel behavior: while decreasing
the size of the central black region leads to more frequent (correct as well
as incorrect) avoiding, increasing it at the expense of the size of the sur-
rounding red regions leads to more frequent catching (Beer 2003, 228–
30). Moreover, although not explicitly mentioned by Beer, similar changes
in performance can be achieved by manipulating the velocity of the agent’s
horizontal motion; increasing the velocity would inevitably lead to more
frequent overshoots of individual regions as well as of the midline of
figure 3, thus affecting the agent’s catch/avoid behavior. Because figure 3
allows for this kind of predictive reasoning, it provides an adequate de-
scription of the operations of the mechanism for perceptual categorization
via active scanning.

The moral of the story is that the tools and concepts of dynamical
systems theory can be used to describe mechanisms that exhibit continuous
reciprocal causation. Although important questions do remain about the
degree to which Beer’s methods will scale up to larger and increasingly
realistic systems in which continuous reciprocal causation is increasingly
prevalent, Beer’s analysis shows that continuous reciprocal causation does
not necessarily preclude mechanistic explanation. Apparently, while phi-
losophers have spent their time worrying about the threat of continuous
reciprocal causation, practicing dynamicist researchers have busied them-
selves developing ways to meet the threat head-on.

6. Conclusion. Dynamical explanation is undeniably novel and impor-
tant. As has already been argued elsewhere (e.g., Elman 1991; Thelen and
Smith 1994; van Gelder and Port 1995; Bechtel and Abrahamsen 2010),
in addition to introducing a very different mathematical framework to
the study of cognitive phenomena, dynamical explanations are able to
offer new perspectives on the role of temporal structure in behavior and
cognition. In section 5, I argued that dynamical explanations are also
uniquely well suited for dealing with continuous reciprocal causation and
with interactions between brain, body, and the environment. As it hap-
pens, although in some well-known cases these explanations specify prin-
ciples or laws, in other cases they describe the component parts, opera-
tions, and organization of mechanisms. Therefore, contrary to the received
view, some dynamical explanations are mechanistic explanations rather
than covering-law explanations. Moreover, contrary to the extant phil-
osophical conception of mechanistic explanation, cognitive science may
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after all be in a position to describe mechanisms that exhibit continuous
reciprocal causation and whose components span the boundaries between
brain, body, and the environment.

In closing, it is worth noting some of the broader conceptual ramifi-
cations of the claim that some dynamical explanations are mechanistic in
nature. First, mechanistic explanation is a form of reductive explanation;
phenomena manifested at one level of organization are explained in terms
of component parts and operations at lower level(s) of organization (Ma-
chamer et al. 2000; Craver 2007; Bechtel 2008). Because some dynamical
explanations are mechanistic explanations, dynamical cognitive science is
not as thoroughly antireductionist as many early proponents of dynam-
icism have claimed (see, e.g., Thelen and Smith 1994; Kelso 1995; van
Gelder 1998). Rather than being solely interested in identifying the prin-
ciples that govern behavior and cognition at the “highest relevant level
of causal organization” (van Gelder 1998, 622), dynamicist researchers
seem equally interested in questions concerning the ways in which such
regularities result from structures and processes at lower levels of orga-
nization.

Second, those dynamicist researchers who seek to provide mechanistic
explanations rather than covering-law explanations may be steering to-
ward reconciliation with proponents of representationalism. By describing
cognitive mechanisms rather than principles or laws, these researchers
describe structures that are amenable to what Chemero and Silberstein
(2008) have called representation hunting—characterizing the components
of a mechanism as representation producers and representation consumers
and understanding their operations in terms of the transfer and manip-
ulation of information. Notably, episodes of representation hunting have
already occurred both for Beer’s dynamical agent (Ward and Ward 2009)
and for Thelen et al.’s dynamical field theory model (Spencer and Schöner
2003). Although true reconciliation between dynamicism and represen-
tationalism will be possible only if a suitable notion of representation can
be articulated—one that accommodates the emphasis on temporal struc-
ture, continuity, and physical distribution distinctive of dynamical cog-
nitive science—the search for such a notion is very likely to be intriguing.
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