> %'"#$M Xbjbj== WW9l
000DT"T"T"8"(#tDiY#:#"$$$&&&8W:W:W:W:W:W:W$+[ K]z^W0&%@&&&^WO7$$#YO7O7O7&8$0$8WO7&8WO7O7Q=T08W$#TW=DT"- U8W9Y0iYU]O7]8WO7DDIntroduction to Pavel Tich and Transparent Intensional Logic.
Life.
Pavel Tich (1936-94) was born on 18 February 1936 in Brno, Czechoslovakia. He studied philosophy and mathematics at Charles University, Prague, from 1954-60, where he subsequently taught in the Department of Logic from 1961-1968. In 1968-1970 he was a Research Fellow in the Department of Philosophy, University of Exeter, England. In absence from the Socialist Republic of Czechoslovakia, he was sentenced to 5 years hard labor for illegally emigrating. He moved to New Zealand in 1971, where he taught for the rest of his life in the Department of Philosophy at the University of Otago, Dunedin, becoming a full professor in 1981. He spent a year (1976-1977) as Andrew Mellon Postdoctoral Fellow, Department of Philosophy, University of Pittsburgh. In 1995 he was to return to the Czech Republic, to become Head of Department of Logic at Charles University, Prague, but died tragically on 26 October, 1994, in Dunedin, New Zealand. He was married to Jindra, and they had two children.
Introduction: Work and Reputation.
Tich was a highly original philosopher, semanticist, and logician. Perhaps his most enduring claim to fame lies in his theory called Transparent Intensional Logic, the culmination of his extensive work on semantics and logic. This has become the basis of an important research program, based in the Czech Republic and Slovakia, and I will concentrate in this essay mainly on explaining the central concepts of this theory. But his work includes important contributions to a wide range of subjects in the philosophy of language, science, and metaphysics. For instance, he is well known for his 1974 proof of the failure of Poppers theory of verisimilitude (or likeness to truth). Characteristically, he was never satisfied with giving purely negative criticism, and in this case, with his student and collaborator Graham Oddie, he went on to develop a new approach to redress the flaws in Poppers initial conception.
Tichs work in semantics and philosophical logic is firmly in the tradition of objectual semantics, generally regarded as originating with Frege. The first part of the 20th Century saw the first waves of this approach in the work of Russell, Church, Godel, Carnap, Tarski, and then a growing body of work from about 1950-1970. The second major watershed in the subject is generally regarded as the work of Richard Montague, who in 1970 published the first formal systems of what is now called Montague Grammar. The more general name for systems of this kind is intensional logic, or intensional semantics. This led to a proliferation of subsequent work in modern semantics, encompassing a variety of different approaches, including programs in AI (Artificial Intelligence), computational logic, philosophical logic, and new approaches to conceptual analysis and linguistics.
Remarkably, Tich discovered intensional logic independently of Montague, and published his first system (in English) almost simultaneously. Those who know this work often regard Tichs system as more elegant and perspicuous than Montagues, although the essential idea is the same. But unfortunately for Tich, his theory was first published in 1971, shortly after Montagues papers of 1970, and he has received little credit for his originality.
Tichs first paper on this, in English at least, is An Approach to Intensional Analysis (1971). (I cannot judge whether the idea is formulated in earlier papers in Czech, although obviously, the ideas were some time in gestation). After an elegant presentation of an intensional system of logic, Tich concludes by discussing Montagues paper of 1969, The Nature of Some Philosophical Entities, and demonstrates a problem with it, which his own theory solves. To this critique of Montague, he subsequently adds a footnote (fn. 10; p.294), Added in proof: This particular objection loses its weight in the light of Montagues Pragmatics and Intensional Logic, an article which was not available when I was writing the present paper. , with a brief but formally precise observation of how Montague escapes the particular problem raised at this point. Although Tich partially withdraws his criticism, the system he presents here is decisively better than Montagues earlier attempts. Montague only solved the problems satisfactorily in his two subsequent landmark papers of 1970, English as a formal language and Universal grammar, and Tich was unaware of these papers when he wrote his (1971). This is one of the first critical discussions of Montague, and it shows Tichs critical acumen, as well as the independence of their conceptions.
But while Montagues two main papers on intensional logic established his reputation as a seminal figure in the subject, Tich has gained almost no recognition. Montague was murdered in 1971, but he rapidly became one of the most famous modern semanticists, whereas Tich has remained obscure, despite making many further advances in the subject. A good gauge of this lack of recognition is evident in the influential source, Handbook of Logic and Language, (van Benthem and ter Meulen (Ed.), 1997). This begins with a long article on Montague Grammar by Barbara Partee, which contains a couple of acknowledgements of Tich, (particularly p.74); but he is only mentioned in passing; and the only reference is to his 1988 book, The Foundations of Freges Logic. His contributions to the treatment of time in intensional logic, and the concept of compositionality, are completely overlooked in the articles on Temporality (Steedman), and Compositionality (Jansen) in the same volume, despite his original and challenging articles on these subjects.
This brings us to the difficult subject of Tichs reputation. Tichs work is still not widely known, except perhaps in the Czech Republic and Slovakia, and among a few of his colleagues and students from his time in New Zealand, and his reputation has yet to be settled. However, in the light of his original discoveries, and the deep interest and high regard shown by a number of important contemporary philosophers, it seems inevitable that, like Frege before him, his achievements will eventually be reassessed in a far more positive light by scholars in the future.
A number of reasons can be found for this lack of recognition, but the most obvious is a polemical feature of Tichs work, which sets him at odds with many influential contemporary writers. He wrote many critical and challenging commentaries on the approaches of other writers. These serve to establish the context for proposing solutions of his own. His critical studies are very important, and explain much of the rationale for his creative ideas. He has unique insights into earlier writers, such as Frege, Russell, Church, Carnap, Tarski, and Popper. He criticizes modern interpreters of Frege and Russell, in particular, arguing that authorities such as Dummett and Quine have misunderstood their ideas, and imposed their own views instead. He also gives sharp and succinct arguments against approaches of many of his contemporaries. He was especially opposed to a certain dominant line of development in mid-to-late 20th century logic and semantics, which he calls the linguistic tradition, typified by the technique of semantic ascent to solve semantic paradoxes, or interpret belief statements (see below). Among those whose views he criticizes on one point or another are Quine, Montague, Kripke, Hintikka, Dummett, Kleene, Putnam, Goodman, Prior, Lewis, Stalnaker, Cresswell, Richards, Dowty, Partee, Tenant - and Tich himself. (He criticizes some of his own earlier views in exactly the same tone that he criticizes others). Materna (1994, p.2) observes that these authors almost never responded.
Tichs criticism of much contemporary work in semantics may appear negative, in the first instance. But his critiques are by no means negative: they are rather his way of introducing problems, before offering new solutions of his own. Even his most original theories are introduced by first offering critiques of other approaches and other scholars, before presenting his own original contributions. His book The Foundations of Freges Logic is an example - it might have been better entitled The Theory of Transparent Intensional Logic. And many of his papers are titled or introduced as critiques of other writers, although their greatest interest often lies in the original alternative analyses he offered.
Tich seemed to lack any instinct for self-promotion, often a vital ingredient for obtaining recognition of new ideas. The social dimensions of intellectual success are well recognized in modern sociology of science popular success or failure is not determined by the quality of intellectual work alone, especially in fields that are young and ideologically fragmented, like modern semantics, and Tich would no doubt make a good case-study of this.
But while few targets of his criticism have responded, the problems he raised have remained central issues. And perhaps a dozen or so writers who have considered his theories seriously have been deeply impressed or indeed, judged that he has decisively solved some problems of fundamental importance! Collaborators in the Czech TIL program have made important developments of his theories, and provided useful critical appraisals and presentations. Writers such as Pavel Materna, Graham Oddie, Marie Duzi, and others, have emphasized their debt to Tich, whose theories have provided the original starting point for their approaches to many problems.
I will concentrate in this article on explaining some of the central ideas of Transparent Intensional Logic, with the aim of introducing the reader to Tichs general approach. A few detailed examples are given, but these are only illustrative: it will be clear that this article is far from a full or adequate summary of his work.
Objectual Semantics.
The idea of objectual semantics is credited to Frege, and is fundamental to Tichs approach. The starting point is factual language, in which we compose an endless variety of complex expressions, called sentences or statements, using a limited set of basic terms, or words. We use language to communicate information, referred to as expressing facts, or stating propositions. Expressions such as sentences and words are called linguistic or syntactic items. These are what we find written on a page. We perceive them as physical symbols of distinct types. We refer to the symbols themselves by using quotation marks, e.g. the word moon is a type of symbol, not to be confused with the moon itself, which is a physical object. Using these symbols to communicate requires us to understand the meanings of the symbols: we have to learn that the moon refers to an object, the moon. But the connection between the symbols and the objects, which is connected by the meanings of the symbols, is very mysterious - it almost seems magical! How do words mean things? How do they make connections to external reality?
The idea of objectual semantics is not really to explain how words mean things, in the sense of a giving a causal explanation, but just to define what they mean. The aim is to specify the direct connections between the expressions and the things, or objects of reference. But we should emphasize something of crucial importance here from the beginning: the meanings of expressions cannot be just the physical things that they happen to refer to. E.g. the meaning of the moon is not just the physical object (the physical moon); rather, it appears to be something conceptual, that comes between the expression and the physical object. Objectual semantics does not assume that meanings are identified simply with actual references. The term object of reference as it was used above is to be taken in a wide sense, to include abstract objects for instance, concepts are regarded by Frege as objects of meaning.
This approach is to be contrasted with non-objectual theories of meaning, which typically appeal to the causal processes that underpin language use - but processes that are not explicitly mentioned by the expressions themselves. For instance, some philosophers explicate meanings as mental states (e.g. Hume), or social behaviors (e.g. the later Wittgenstein). These kinds of theories interpret the meanings of expressions as the mental states they conjure up, or as behaviorist systems of rules for using expressions even though the expressions in question do not explicitly (or even implicitly) refer to any such mental states or rules of language behavior. E.g. when we say It is raining, we only refer to a fact about the weather not to our mental image of rain, nor to behaviorist rules about the appropriate use of the expression.
Thus non-objectual theories involve detours into realms of objects or processes which underlie the use of language, but which are not mentioned by the expressions being analysed. This kind of detour is rejected in objectual semantics, which seeks a system of direct associations between expressions and objects of reference, to represent literal meanings of expressions. It is this focus on the literal meaning that distinguishes objectual semantics as a study of the logic of meaning, rather than a study in anthropology or psychology.
Now of course, as human beings, our use of language actually involves mental states, and learning language actually involves social behavior. But this does not mean that mental states or behaviors are a part of the meanings of expressions. Consider the analogy with describing a certain bridge. An objectual description can be given by an engineering specification of the materials and dimensions of the bridge. The bridge might consist of a certain arrangement of steel girders, of certain sizes, welded together in certain ways, and so on. Naturally, we also build the bridge, we perceive the bridge, and we use the bridge. But we dont have to describe how a bridge is built, or how it looks to the eye, or what we use it for, to define it as an object.
Similarly, objectual semantics attempts to define meanings directly, without specifying how we learn meanings, or use meanings, or perceive meanings. Our ability to learn and use meanings is a fundamental constraint on what they can be: we cant have a good theory if it implies that meanings are impossible to learn, or impossible to use. So an objectual theory must be consistent with a reasonable epistemology of meaning. But objectual semantics separates the two: the epistemology of meaning is not part of the definition of what meaning is.
The Objects of Reference.
The obvious difference between bridges and meanings, in the analogy above, is that the former are concrete physical objects, while the latter are very abstract. We want to define meaning as a system of direct connections between expressions and objects: but what are the objects, and what are the connections?
The connections are easiest to deal with: we will simply define them by direct functional connections between expressions and objects. That is, we specify mathematical functions, which map expressions to objects, without worrying (initially at least) about how these are implemented in practice. Our practical grasp of meaning clearly involves thinking, and a complex cognitive machinery of mental states, functional states of the brain, and so forth, comes into play when we actually use language. But this detailed machinery is precisely what objectual semantics ignores. This is a common device in scientific theories: e.g. the classical theory of gases specifies a relationship: PV = nRT, connecting pressure, volume and temperature, without initially explaining how this connection is generated. This is a common kind of mathematical idealization, found throughout science.
The nature of the objects is much more problematic, however, partly because their abstract quality makes them difficult to define. The example of the term the moon referring to the (physical) moon may suggest that we can use physical objects as referents, but this simple example is misleading, as Frege showed. (Plato recognized this too in his Theatatus and other dialogues.) Here are three reasons the simple idea of referential meaning fails.
First, language contains abstract logical terms: for instance, what objects do terms like and, or, not, the, all, and some refer to? These have essential functions in factual language: but they surely do not refer to physical objects. If we want to associate them with objects, these need to be rather abstract objects. (In fact, the dominant formalist tradition of C20th logic baulks at this problem, and treats logical terms as different in kind to empirical terms, and merely defines syntactic rules for their use, without assigning any objectual meaning; but in objectual theories, they are interpreted as abstract functions of one kind or another.)
Second, even simple terms like the moon are problematic, because although the moon may refer to the physical moon, it connects to this object through what we colloquially call a concept. This is more obvious with a term like unicorn: there are no physical unicorns, and unicorn does not refer in fact to real, physical unicorns. But we clearly have a concept of unicorns, and it is most natural to take the term to refer in the first place to the concept. Similarly, we can have a concept of a moon of Jupiter, even if it has never been observed, or if it is unknown whether there is any such thing. We describe this concept in language, express a belief that there is a moon of Jupiter, and subsequently attempt to observe it. So even the simplest kinds of empirical terms seem to require a level of abstract objects concepts - to interpret. This is one of Freges fundamental insights.
Third, we understand complex expressions, not just single words. Statements are the most important: we say that they express propositions, or that they refer to facts. But what are propositions, or facts? They are not just the statements or sentences i.e. the linguistic items - they are what the statements or sentences mean, and in our objectual theory, they belong to the class of objects that we use to explicate the meanings of the expressions. On the other hand, propositions can be made about physical objects and events: but they are not those physical objects or events themselves. Again, it is natural to say that propositions express conceptions or concepts of how the world might be.
This suggests that there are two levels of meaning: expressions in a language first of all denote what we intuitively call concepts; and these concepts may or may not refer to specific actual things, or actual values. Frege proposed the first detailed theories of this kind, and his approach ultimately led to the development of intensional logics. In the simplest understanding of intensional logic, we can take the conceptual objects to be represented by what are called intensions, and actual values to be represented by extensions.
I should hasten to say that Tich does not identify concepts or meanings as intensions. (In fact, he does not use concepts as a technical term in his own theories, and it is only being used in an informal sense here). We will see shortly why he rejects this two-level theory as too simplistic, but I will first explain the interpretation it initially suggests.
In this two-level theory, the solid line from expressions to intensions (or the denotation) indicates that this is taken as the primary relation of meaning; the relation to extensions or actual values (or the reference) is secondary. The actual reference is not itself part of the conceptual meaning, since the meaning of an expression is generally the same whether or not it refers to an actual object. E.g. we understand the meaning of terms like a moon of Jupiter before we learn whether anything satisfies them. (The rejection of references as providing meanings is quite widely accepted except perhaps for some special disputes about whether certain primitive meanings might be based on a direct knowledge of the references).
We need different names for the two kinds of relations: here I have used denotes and refers, which is common, although there is still no widely agreed standard notation.
It should also be emphasized that intensions are not excluded from the class of actual values for we can also refer to them as things. E.g. Tichs favorite intension denotes a higher-order concept, but refers to some actual intension perhaps that of political freedom, for instance. However, most kinds of actual values are not intensions (or concepts) e.g. the actual moon, a physical object, is not a concept (although there is a concept of it).
In fact, most kinds of actual values are not simple concrete objects either: one example, to be examined shortly, are truth values, which are taken as the actual values of propositions.
This kind of two-level structure is common to many objectual theories, but Tich rejected this scheme, and introduced a third level of structure, which looks something like this:
The main point here is that Tich introduces a new level, which he calls constructions. This is his radical invention. In his view, complex expressions do not directly pick out intensions; instead, they represent (depict) ways of constructing or generating intensions from simpler constructions and intensions. For complex expressions are understood from their simpler parts; we construct the meaning of a complex term from the meanings of simple terms from it is composed; and it is this process of construction that Tich focused on. It is a dimension of meaning that intensional logic alone does not describe.
The meaning of an expression is now seen as the construction. Constructions are said to be structured objects, because rather than just grasping them as objects, they involve us in grasping structured procedures. While this is still an objectual theory, meaning is no longer a simple denotation relation, as in the two-level theory.
Before going on to illustrate some details of Tichs theory, I will briefly comment on some important background issues: what are concepts, or abstract objects? Is it plausible to have a theory that appeals to such things? And what is the aim of logic?
Abstract Objects and Logic.
We have appealed to a system of abstract objects to provide objects of meaning but what are they? Frege introduced a class of Concepts, and insisted they are neither physical nor mental - in particular, they are not thoughts, or mental images. The belief in the existence of abstract objects is called Platonism. And this brings us to a struggle philosophers have had over many centuries ever since Plato of understanding what abstract objects could be. How do they exist? How do we perceive them? Are they necessary to our picture of the world or are they merely figments of the philosophical imagination? This is one of the great historical divides in Western philosophy: philosophers who accept abstract objects in their scheme of things are called Platonists, or sometimes metaphysical realists, while those who reject them are often called nominalists, or anti-realists.
Tich, like Frege, was a Platonist. In fact, every serious attempt at giving an objectual theory of semantics seems to incorporate some form of Platonism because the class of concrete existing things is not sufficient to represent the richness of the concepts that we use language to refer to and discuss. This remains a main ideological divide throughout 20th Century semantics. Those who reject objectual semantics like the later Wittgenstein, Quine, and many others do so primarily because they reject the idea of abstract objects, which they regard as viciously metaphysical. Since objectual semantics requires abstract objects, they reject objectual semantics, and try to explain meanings by appealing only to non-abstract things typically, physical or mental objects and events, or actual human behavior, or linguistic use.
I will not go into the general dispute about metaphysics here. Instead, I suggest we should simply side-step it to begin with - just as we side-step it when we learn mathematics. For although mathematics is typically explained in a Platonist manner (by appealing to the existence of the natural numbers for example), we rarely worry about metaphysics when we learn mathematics. Our first concern is just how it works, in a very practical sense.
We can regard an objectual theory of semantics in the first place as providing a framework for giving specific normative analyses of interesting parts of real languages. The test is whether the framework allows an accurate analysis of our judgments about logical inferences, semantic relationships, computations of information, and so on. This is something we can check independently of whether we agree on metaphysics. We will soon see an argument, for instance, that the intensional framework alone is simply not rich enough to reflect the logic of propositional belief accurately but this argument has nothing to do with abstract objects: it has to do with judgments about logical inferences, and the information we can sensibly extract from various kinds of propositions.
Now the general framework of any objectual theory inevitably seems to involve certain metaphysical ideas, and we can hardly ignore this. But I think we can suspend judgment on the most abstract questions about metaphysics, which philosophers often like to begin with - at least until after we see whether an objectual theory works or not as an effective tool for logical analysis. Does a given theory successfully capture the mechanics of meaning, evident in ordinary meaning computation, ordinary judgments about conceptual inferences and logical relationships, and so forth?
Tich maintained the objective reality of certain kinds of abstract objects, and his arguments about this are very interesting, and worth studying in their own right. He also gives original analyses of various traditional metaphysical arguments. But I think his conclusions about metaphysical problems can be separated from the immediate aim of his semantic theories, which is to provide a framework for the study of meaning as we know it, rather than to advance a metaphysical theory for its own sake.
In this respect, Tichs notion of what logic is about is also an important break from earlier traditions that dominated mid-20th Century logic and philosophy. He takes logic to be based on the study of meaning. While he introduces a number of formal systems to help perform logical analysis, he is not interested in the study of formalism for its own sake. Formal systems are only proposed to help with the analysis of meaning. He is particularly opposed to the formalist program associated with Hilbert. This approach generally takes logic as a study of formal systems, or purely symbolic systems, or grammars, without reference to meaning as it is exemplified in real language. This approach remains common in many modern approaches to logic as the study of abstract algebras. These are often studied as purely formal structures, with the potential to represent information in one way or another, but divorced from the analysis of meaning in natural language. Tich is opposed to this kind of approach, and insists that logic is driven by meaning, and should not be treated as an autonomous formal discipline separated from the logical analysis of meaning.
This became very clear in the last major project he was engaged in before his death, which he called Meaning Driven Grammar (MDG):
MDG is based on the hypothesis that form and meaning are inseparable and that an adequate grammar must generate not just well-formed sentences but sentence-meaning pairs. (Meanings are identified with logical constructions, a notion proposed and expounded in previous publications, especially The Foundations of Freges Logic.) [From: Abstract of Current Research Project, 1994].
This reflects Tichs conviction that our understanding of meanings is a primary source of knowledge about the formal mechanics of language, and is essential to understanding the real processing of information in language. Formalist approaches reject this point of view, often because of philosophical objections to abstract objects. Formalists often express the desire to clean up logic by ejecting the ethereal domain of meanings, or abstract objects, and sticking directly to the level of expressions and formal rules of syntax. They do want to study how formal systems can be used to represent information: but their concept of information is abstracted from the analysis of meaning in real languages.
Whether a formalist approach to information theory or to natural language processing can succeed without attention to a theory of meaning is not a question I will try to comment on. But I think the refusal to contemplate objectual semantics because of prior philosophical convictions against metaphysics is premature, and adherents of the purely formal approach are missing out on some of the most exciting developments in 20th Century semantics and logic for the wrong reasons.
However, although we can usefully side-step general metaphysical controversies for a time, it should be emphasized that conceptual epistemology remains central in Tichs theory. An account of meaning certainly needs support from a plausible account of conceptual knowledge. Many of Tichs arguments appeal directly to principles or observations about conceptual knowledge and conceptual judgments. He also advances a more general theory of an epistemic framework, as a basis for his main theory of semantics. I will not try to give a general account of this part of his theory here. But one principle is of special importance to his approach, which I will describe next.
Compositionality.
After the Fregean notion of objectual semantics, perhaps the most central principle in Tichs approach is called the principle of compositionality. Tich also calls this the Frege-Church principle, and identifies it as originating with Frege, and being given precision by Alonzo Church (who after Russell was Freges most important early interpreter and advocate).
This principle states that: The meaning of a complex expression is a function of the meanings of its parts, and the way they are combined.
This brings us back to a fundamental observation about language: we have only a limited number of basic terms words but we can combine them in an endless variety of ways to produce meaningful complex expressions. And yet, we usually seem to understand the meanings of the complex expressions just from our knowledge of the meanings of component terms. Complex meanings are built up by combining meaningful parts. This is a kind of part-whole determinism: the combination of parts determines the whole, without adding anything extra or external.
Now this principle is not meant to rule out the fact that real language is often ambiguous expressions do not always determine a single meaningful reading. Some expressions have multiple meanings puns. But dealing with puns is considered a fairly trivial problem, and this hardly threatens the Principle of Compositionality. A more serious problem is with what are called de dicto and de re suppositions, where the same expression appears to take on alternative types of meaning in two different contexts. This was a stumbling point for Freges theory and it is a point where he appears to abandon the principle of compositionality. This is a test-case for Tichs theory, which solves the problem without abandoning compositionality, as we will see shortly.
We must recognize that natural language obviously has ambiguities and peculiarities, and we have to interpret our way through these. Natural language also has functions not connected with communicating information but objectual semantics generally does not deal with these. It is intended to deal only with the primary communicative functions of language. The principle of Tichs approach is that we should be able to provide accurate and objective logical analyses of factual language. To do this, we will often have to disambiguate natural language expressions, and explicate their intended content which is why analysis is necessary in the first place.
To represent an explicit logical analysis, he introduces the idealized logical language of TIL. This is a tool for explicitly representing the intended meanings of natural language expressions. Now the symbolic language of TIL itself has a strong property of compositionality i.e. it represents meanings in a way that adheres to the Principle of Compositionality. To apply it accurately to real language, we have to analyse meanings accurately and we often have to disambiguate between possible readings of natural language expressions. This is by no means always trivial - as the treatment of simple puns usually is but this does not in itself represent a challenge to compositionality.
The serious challenge to compositionality is found in the idea that meanings are only determined, in general, by aspects of the context in which statements are made, and that this context-dependence should itself be reflected in the logical language used for analyzing meaning. In fact, this is the fundamental point on which Tich criticizes both Freges theory, and recent intensional semantics. As well as the de dicto de re problem, we will also see a most important example of this in the treatment of statements about propositional beliefs. This problem is one reason Tich found it necessary to introduce the concept of constructions, in addition to intensions.
This difficulty is now well-recognized in semantics but Tich was arguably the first to recognize the depth of the problem for intensional theories. And while some theorists have chosen to abandon compositionality, Tich thinks this is a premature capitulation.
Focusing on compositionality also draws our attention to something that Tich, again following Frege, took as of profound importance. The simple fact that simple terms are combined with each other to generate meaningful complex terms shows - in an objectual theory - that the objects that provide the meanings of simple terms can be combined with each other, to generate other objects, which provide the meaning of the complex expression. For instance, The moon is yellow combines the meanings of the moon and is yellow, to make a complex proposition. How does this happen?
For it to happen at all, the objects that provide meanings of terms must be quite special: they must be able to combine with other objects. But what kinds of objects combine with each other?
The answer provided by Frege is that functions combine with arguments to produce values, or results. This is the essential nature of functions: they take objects of one kind, and give objects of another kind. We generally represent the combination of a function with some arguments by writing the terms for the functions and arguments next to each other: e.g. 1+2. The syntactic juxtaposition of terms reflects something important: functional application.
Now the principle of Compositionality is routinely defined in terms like: the meaning of a complex expression is a function of the meanings of the component terms and their syntactic combination. Their syntactic combination means their order of juxtaposition in a sentence or phrase. But Tich would not accept this: in his view, the syntactic combination also corresponds to something objectual namely, functional application. His theory of constructions might very well be taken as an objectual theory of the meanings of syntactic combinations. Now this is something that is rarely explicated or even noticed it is like an invisible framework of language but a little reflection shows that placing two terms adjacent to each other in a sentence also has a meaning. E.g. placing Fred adjacent to is asleep means that we combine their meanings in a definite way. Or placing + in between 1 and 2 means we combine their meanings in a definite way. It is intuitively a functional application: + is a function; we can fill in the gaps with numbers, and calculate a result.
Tich usually explained constructions by appealing to the idea that when understand complex expressions, we have calculate what they mean somehow from their simple constituents; we go through some kind of procedure, where we put component meanings in one end, and get a newly constructed result out the other end. And he showed the value of this extension to ordinary intensional semantics by its success in solving certain stubborn semantic problems, for instance about individuating our beliefs about propositions. We will go on this shortly; but I think it is also useful to see this theory as a natural development in explicating the central notion of compositionality, which plays such an overriding role in his theory.
Seen in this way, Tichs constructions can be taken an explicit theory of the meanings of the kinds of combinations of meanings required in a fully objectual theory. He proposed a formal theory, which identifies a few basic or primitive types of constructions, and iterative rules for combining them to give an open-ended hierarchy of constructions. The most intuitive examples of primitive constructions correspond to what we normally call functional application and functional abstraction, which he gives the technical names composition and closure. Other primitive constructions, which are not so intuitively obvious are called trivialization, variables, and execution. His precise formulation of this theory seems to me an indisputable stroke of genius. But first, let us start with a quick look at his theory of intensions.
Extensions and Intensions.
The notion of intensionality, or intensional meaning, is contrasted with extensionality, and was recognized by earlier writers. An important treatment is given in Carnaps (1947) system in Meaning and Necessity, and the concept was widely discussed in the 1960s. Tichs first achievement, in creating an intensional logic, lay in reanalyzing this notion, and formalizing it effectively. He proposes a system in which we use a small number of explicit categories of fundamental objects, essentially: worlds, times, individuals, and truth values, to construct intensions. The most revolutionary feature of this logic is that it introduces explicit quantification over worlds.
The idea is most obvious when we consider propositions. We regard factual propositions as being true or false (or sometimes as having no truth values, which we can ignore for the moment). For instance, the proposition that: the author of Waverly is Scott is true. But the truth values of typical propositions can change with time, and they are also generally only contingent. They are only the values that propositions take, at certain times, and in certain states of affairs. If the world were different, some propositions would have different values to those they actually have. Clearly, we understand the meanings of propositions in general before we know whether they are true or false. We have to investigate whether a given proposition is true or false by learning about the world.
Now if propositions take true and false as their values, what are propositions themselves? This is a characteristic kind of question that Tich asks: he demands precise definitions of things like propositions, meanings, worlds, and so on. Tichs first approach was to identify propositions as mappings or functions, which take us from worlds and times to truth values. To find the value of a proposition, we apply it first to a world, and then to a time in the world.
Worlds are conceived in the first instance as maximal classes of facts including all historical past, present, and future facts about everything that ever happens. Of course we do not know what world we inhabit in this sense we can never know all the facts about the world. But we can find out about some of the facts that hold in our actual world. This is generally what we must do to find out whether a given proposition is true or false. We can evaluate propositions at different times, because we can obtain knowledge about the actual world.
Thus, we come up with a kind of mathematical picture of propositions. If we let P be a proposition, then we identify it as a specific mapping, from worlds and times to truth values. Mathematicians indicate the structure of such mappings schematically, like:
P: (w,t)(o
Or to be more precise, Tich separates this mapping into two steps:
P: w ((t(o )
The symbols refer to basic categories of objects:
w is the class of possible worlds.
t is the class of times.
o is the class of truth values, i.e. {True, False}.
We evaluate an intensional proposition, P, in two steps: we first of all apply it to a world, w, (from the class w) and this gives us a mapping from times to truth-values; we then apply this to a time, t (from the class t) and this gives us a truth-value.
We can say that the actual truth-value of a proposition P at the present time is the extension of P, while P itself is the general mapping (an intension). This is called an intensional theory of propositions, and is the first major step in defining Tichs system.
There is a similar duality between intension and extension for almost every semantic category. E.g. a set or class is defined by its specific members, and classes are the extensions (or values) of properties. A class is defined by its members, whereas a property may pick out one set of things in one possible world, at one time, and another set in a different possible world, or at a different time. Thus a property U is an intension that looks like:
U: w ( (t({i})
Where we symbolize:
i is the class of individuals (or objects)
Notice that the property maps to a sub-class of individuals, not just a single individual. This may be an empty class, as always the case for an impossible property, e.g. the property of being round and square.
Note that Tich also treats classes themselves as mappings from members of the class to truth-values; hence the sub-class indicated above by: {i} is defined as a mapping of the form: (i(o), where an individual i maps to true just in case i is in the sub-class.
A trickier case involves the distinction between names, like Scott , and definite descriptions, like The author of Waverly . In the simplest case, we can take a name to refer directly to an individual. That is, Scott is assumed to name the same individual in every possible world, and at every time (similar to what Kripke calls a rigid designator). A definite description, on the other hand, refers to different individuals or objects at different times or in different possible worlds. Tich calls this kind of semantic category an office (from the notion of a political office, like the office of President).
The simplest kind of office is a mapping from worlds and times to individuals. It is different to a property, because the mapping is to a single individual, not to a class i.e. the extension of an office is an individual. This mapping looks like:
A: w ( (t(i)
But there is also a question about whether proper names should be taken as hidden descriptions rather than being directly interpreted as particular world-independent individuals. If so, we may take them as offices as well (as with the Moon below). If we took all proper names as offices, we might be left only with variables for individuals: but we still need individuals in Tichs system to provide references, and to interpret variables over individuals. But I will not go into this tricky question here.
A above is an example of an individual office. But we may also specify offices like Scotts favorite proposition, for example, where the office is filled (if at all) by a proposition which is already a complicated function. Thus, we can build up higher-order objects, with functions embedded in other functions.
Because of the need to do this, the basic theory of classes or functions that Tich employs is a hierarchical type theory, like Russell and Whitehead developed in Mathematica Principia. The use of this theory, called the ramified theory of types, allows us to construct higher-order classes and functions in a consistent way, and to quantify over and refer to higher-order objects. This is the most unfamiliar part of the theory from the point of view of modern mathematical logic, which rarely goes beyond the study of first-order logic. First-order logic is preferred in mathematics, because it is deductively complete, while second and higher-order logics are not deductively complete. However, higher-order logics have far more expressive power (for instance, Godels famous theorem that there is no complete axiomatisation of arithmetic only applies to first order axiomatisations: in second order logic, we can indeed give a complete axiomatisation of arithmetic, but now the proof theory is incomplete).
This increased power is necessary for any theory like Tichs. The deductive incompleteness may seem regrettable to mathematicians, who prefer to be able to prove all the logical consequences of their theories deductively (and consequently limit the range of theories they contemplate to ensure this); but it is logically unavoidable in the analysis of real languages, which allows reference to higher-order entities, such as properties-of-properties, properties-of-propositions, and so forth.
Another example involves the propositional connectives, such as And, Or, and Not. E.g. given two propositions, call them P and Q, we can form the new proposition: P and Q, meaning that both P and Q are true. An extensional treatment lets us define the operator And as a mapping from a pair of truth-values to a new truth-value. This has the functional form: And: (o,o)(o. It is world-independent, or analytic it represents the same mapping in every world. In intensional logic, the propositions P and Q that we connect are not just truths values, but intensions, and the result is not just a truth-value, but another intension. However the term And is still analysed in Tichs theory as just a simple truth-function, which operates on the truth-values, because we can define the truth conditions simply by: P and Q is true at a world w and time t just in case P is true at w and t, and Q is true at w and t. And similarly with other truth-connectives, like not and or.
The treatment of these logical terms also illustrates the difference between formalist conceptions of logic and objectual semantics. In the formalist view, which is very common in modern texts, logic is said to treat the formal or syntactic rules for a special category of logical symbols, such as and, or, not, all and some. These purely syntactic rules are often claimed to define the meanings of these terms; and this is regarded as a completely different kind of meaning to empirical meanings, of empirical terms. But in objectual semantics, the meaning of logical terms is treated continuously with the meanings of empirical terms they are all given objectual meanings. The difference is not that that there are two kinds of meanings, logical and empirical, but that the logical terms have world-independent meanings: they refer to the same functions in every possible situation, which makes it possible to define them exhaustively.
Tichs Symbolism for Transparent Intensional Logic.
Tichs term transparent intensional logic reflects the use of a symbolism to transparently reflect the logical structures of expressions. Two main features are the definition of a system of logical types, and the use of world-time indices. For example, he uses the type symbolism (1988, p.202):
Office: Type: Description:
A itw the office of the author of Waverly
P otw the proposition that the author of Waverly is a poet.
U (oi)tw the property of being a poet.
The type of extension of the object is indicated by the main symbols on the left; the subscripted world-time indices indicate the type of mapping. Note that a class in this system corresponds to a type of function: (oi), which maps individuals from i to truth-values from o - an individual is mapped to True if it belongs to the class.
More complex objects then have embedded types: e.g. the tricky relation of propositional belief: ... believes ... is initially analysed (p. 202) with the type:
Office: Type: Description:
B (oiotw)tw the relation between individuals and propositions they believe.
otw is the type of a proposition; (oiotw) represents a relation between individuals and propositions (i.e. the extension of beliefs at a particular world-time); and (oiotw)tw represents the intension of this relation.
This means, for instance, that the term A defined above names a function: it can take a world, w, and a time, t, as arguments, to give an individual, i i.e. the author of Waverley in world w at time t. (This mapping has two distinct steps: first A is applied to the world w, to generate a mapping from times to individuals; then this is applied to t to generate an individual.)
Tich writes functional applications with subscripted indices, like: Awt. Note that the Greek letters w and t are used for the classes of worlds and times, respectively; the Arabic w and t are variables over particular worlds and times.
In explicating the logical forms of sentences or phrases, Tich then shows world-time dependences explicitly, by using abstractions on world-time indices to construct these functions, and give a vivid depiction of the structures of the logical mappings involved. E.g. he explicates the sentence: The author of Waverley is a poet as:
lwlt.UwtAwt
The lambda is the abstraction operator: it is the inverse of functional application; so whereas: Awt applies the world-time function A to the values w and t to generate a value (an individual in this case), lwlt.Awt reverses the process, and returns us to the original function, A. We could just write: UA but the expansion to: lwlt.UwtAwt shows the functional construction, in a transparent and logical way, and this symbolic system is one of the keys to the success of Transparent Intensional Logic.
This symbolic system is quite different to Montagues system, which does not show world and time quantifications explicitly, and gives a much more opaque symbolism.
The application of Tichs theory is illustrated next with an important example.
The De Dicto - De Re Distinction.
An important application of TIL is to solve an old semantic problem that was first investigated by medieval philosophers, who defined a distinction between de dicto and de re occurrences of certain terms. For example, suppose that Edward has actually murdered John, and consider:
(1) The detective is arresting the murderer of John [de re]
(2) The detective is looking for the murderer of John [de dicto]
In the first sentence, it is natural to say that Edward (the person who actually murdered John) is being spoken about even though his proper-name, Edward, has not been used. For given that the detective is arresting the murderer of John, and Edward is the murderer of John, it follows that the detective is arresting Edward. So (1) is about Edward. Note that this implies that we interpret the relation: is arresting as a relation between individuals. Here we say that the term the murderer of John is used with a de re supposition, because it makes reference to the individual who satisfies the office, i.e. Edward.
But the second sentence is potentially ambiguous. There are two ways to understand it.
A. de dicto case. The detective does not know who the murderer of John is, and is trying to find out who the murderer is.
B. de re case. The detective knows who the murderer is, and is looking for that person i.e. Edward.
In case (B), the situation is similar to (1): Edward is being spoken of. In this case, we clearly interpret the relation: is looking for as a relation between individuals.
But in case (A), Edward himself is not being spoken of at all. For instance, we may suppose the detective knows Edward, and knows where he lives, but does not know that Edward is the murderer. If he were looking for Edward, he would go to Edwards house; but he does not go to Edwards house, and we must conclude that the detective is not looking for Edward even though the detective is looking for the murderer of John.
Thus, in case (B), it seems the term the murderer of John is being used to refer to Edward, while in case (A), it is not used to refer to Edward. But this seems to contradict the Principle of Compositionality: the term the murderer of John seems to be interpreted with two quite different meanings, and the ambiguity needs to be decided from the context, before the meaning can be decided.
But Tichs theory allows a way of solving this kind of problem, without contradicting Compositionality, and without making the term the murderer of John ambiguous at all. In his view, the ambiguity is real, but it is found in the term is looking for. In case (B), we saw that: is looking for is a relation between two individuals (the detective and Edward); in case (A), looking for must be interpreted as a relation which holds between an individual (the detective) and an office (in this case, the office of being the murderer of John). It is a different relation altogether from that assumed in case (A).
It may first appear a little odd to say that a person looks for an office, rather than for a physical object. But it makes sense when we consider that looking for the murderer of John in case (A) really involves something like seeking an item of knowledge about the office, rather than directly seeking to locate the abstract object. It does not involve locating the office in space, which is impossible, because offices do not have locations in space. Rather, we would say that the detective has succeeded in his search for the murderer of John when he has correctly identified which individual satisfies the office. And this is a search to identify an abstract object, not a physical object.
Let us symbolize the logical structures of these sentences, using D for the detective (which we will take to be an individual), E for Edward (an individual), M for the murderer of John (an office of individuals), A for is arresting (a relation between individuals and individuals), and two different symbols for the two different meanings of: is looking for, LA for the first meaning (a relation between individuals and offices), LB for the first meaning (a relation between individuals and individuals). Then we analyse:
(1') lwlt.AwtDMwt
(2'.A) lwlt.LAwtDM
(2'.B) lwlt.LBwtDMwt
Tichy uses a Polish notation, without brackets. In a bracketed notation, we would write: lwlt.Awt(D,Mwt), to indicate that D and Mwt are the arguments of the relation A. This can seem a little confusing if you are used to bracketed notation.
Now we have taken a single analysis of the term M it is the office of the murderer of John. But there is a clear difference in the logical structures of (2.A) and (2.B).
Now neither proposition mentions Edward directly by name; but there is a clear sense in which (1) and (2.B) are about Edward (given that Edward is the murderer), whereas (2.A) is not about Edward at all (whether or not he is the murderer). To see this, suppose that we evaluate these intensional propositions and objects at a specific world and time, w, t, and we get the values:
(1*) The value of: AwtDMwt is True
(2*.A) The value of: LAwtDM is True
(2*.B) The value of: LBwtDMwt is True
And we add that Edward is the murderer of John in world w at time t, so that:
(3*) The value of: Mwt is E
Now it follows from (1*) and (3*) that:
(1**) The value of: AwtDE is True
I.e. the detective is arresting Edward (in world w at time t). This process of evaluating the references of the terms is called semantic descent: we go from the office, M, to its value or reference in a world at a time, Mwt .
In exactly the same way, it follows from (2*.B) and (3*) that:
(2.B**) The value of: LBwtDE is True
But it does not follow from (2*.A) and (3*) that:
(2.A**) The value of: LAwtDE is True
In fact, (2.A**) is badly formed (a null construction), because we have specified LA as a relation between individuals and offices, but E is an individual not an office. However, the meaningful statement, (2.B**), also does not follow from (2*.A) and (3*).
Thus Tichs solution does not depend on any ambiguity in the meaning of the phrase the murderer of John. It depends instead on an ambiguity in the phrase: is looking for.
This ambiguity is real it is an ambiguity of ordinary English. To analyse the statements accurately we have to disambiguate the intended meaning. In the accurate logical language of TIL, this ambiguity evaporates TIL has perfect compositionality. Naturally, TIL is a more explicit logical language than ordinary English since if English was perfectly explicit there would be no need for a separate logical language to explicate meanings.
The failure of compositionality occurs in other logical theories, like Freges, for example, where the term the murderer of John is taken to have two different meanings in two different contexts acting as a name of an individual in case (B), and as the name of a Fregean sense in case (A). Tichys analysis seems to show that this is the wrong way to analyse the problem.
Inadequacy of Intensions to Serve as Objects of Propositional Belief.
Intensional logic is extremely useful and enlightening for semantic analysis: but Tich seemed to recognize, even as he conceived it, that it has a serious limitation. The problem is that intensions alone are not fully capable of representing propositional meaning, seen through the logic of propositional beliefs. A simple argument shows this.
The intensions of any two true mathematical theorems are the same, because a true mathematical theorem is true in every possible world, at every time. Take for instance: 1+2=3, and: 16x16 = 256. These are both true in every world at every time, and hence their intension is simply the mapping from every world and time to the value true.
But many people believe that: 1+2=3 is a true proposition, without believing that: 16x16=256 is true. Hence, the intensions cannot completely represent the full propositional meaning, in the intuitive sense of that term, where we say that we believe one proposition but not the other. There are far more mathematical theorems than available intensions.
The most popular response to this initially is called semantic ascent, advocated by Quine. This says that we individuate mathematical theorems in a more fine-grained way, on the basis of their expressions through mathematical sentences. Obviously it may be true that Fred knows that 1+2=3, while it is not true that Fred knows that 16x16=256. On the semantic ascent view, we distinguish the two cases by observing that Fred knows that the sentence: 1+2=3 is true, but he does not know that the sentence 16x16=256 is true. On Quines view, we are supposed to reduce all talk about our beliefs in propositions to talk about beliefs in the sentences or statements (linguistic items) that we use to express them.
But Tich argues that this proposal fails for another reason. If Fred knows that 1+2=3, then surely Fred knows that one plus two equals three. These are just two different ways of expressing the same item of mathematical knowledge, one in mathematical symbols, the other in English. Yet, suppose Fred is Czech, and does not know English. He does not recognize the meaning of the English sentence: one plus two equals three. So on the semantic ascent view, we would have to say that he does not know that one plus two equals three, while he does know that 1+2=3. Yet these two statements seem to represent exactly the same item of mathematical knowledge.
The problem arises for empirical beliefs as well; the mathematical example is just a particularly simple one. The problem arises as long as we hold that we can express the same item of propositional knowledge in different languages, i.e. using different expressions. If propositional knowledge was differentiated not just by its objective content, but by the expressions used to state it, this would not be possible. Hence, Tich concludes that:
Propositions (construed as [intensions]) are thus too coarse-grained, and sentences too fine-grained to serve as objects of mathematical beliefs. We obviously need a category of objects which falls between these two extremes. The category of constructions is an obvious candidate. (1988, p.222).
This mathematical example is used because it is very simple, but the same argument applies to empirical language generally, and Tichs aim is to give a framework for semantics of factual natural language, not just mathematics. This point is a more general objection to what is known as the Tarskian view of meaning: that the meaning of an expression is given by its truth-conditions. This seems a sensible idea to begin with: to explain what an expression means, we need to explain what would have to be the case for it to be true. But in its simplest form, at least, it suffers the same problem as taking intensions to represent meanings: logical tautologies and mathematical theorems are always true, so their truth conditions are identical: they are true. But we do not explain what they mean just by saying that they are true. We have to explain what they are about.
Let us now consider Tichs concept of constructions, which is used to solve this problem.
Constructions.
In intensional logic, a meaningful statement denotes an intension a mapping from worlds and times to truth values. But when we understand a complex expression, we do not just jump automatically to the correct intension: rather, we go through a procedure to calculate it, from our knowledge of the meanings of the more basic parts of the expression. This is what the Principle of Compositionality tells us. Tich identifies meaning with the procedures for calculating meanings, which he calls constructions.
The constructions involve the objects mentioned in the complex expressions. So, for example, we have to calculate that: 16x16=256, by considering all the objects involved: the numbers 16 and 256, and multiplication function, and equality. This is different from the calculation of 1+2=3. On the other hand, the calculation of 1+2=3 is the same thing as the calculation of one plus two equals three at least, it is the same as long as we identify the objects named by the terms 1, 2, 3, +, and = as the same objects as one, two, three, plus and equals respectively.
Hence, if we take the calculations we make into account, we may be able to satisfy both these requirements: (a) differentiate the meanings of true propositions that nonetheless involve different objects (1+2=3 involves a different calculation to 16x16=256), and also (b) identify the meanings of some propositions expressed in two different languages, or using two different expressions (1+2=3 involves exactly the same calculation as one plus two equals three).
Tichs theory of constructions is an explicit theory of what is involved in the calculation of intensions. We can easily see how we need to do this in specific cases. For instance, the intension of the statement: The moon is yellow is arrived at by starting with the basic objects: the moon, and is yellow. These must be taken as intensions to start with. We then construct a new intension by taking the combination of these two more basic intensional objects. This new intension is a proposition, i.e. a mapping from worlds and times to truth values. Let us call this P. The mapping for P is determined as follows:
For any world-time couple, (w,t):
P maps (w,t) to true just in case (i) the office the moon maps (w,t) to an individual object, i, and (ii) the office yellow maps (w,t) to a class of individuals, which contains i as a member.
P maps (w,t) to false just in case (i) the office the moon maps (w,t) to an individual object, i, and (ii) the office yellow maps (w,t) to a class of individuals, which does not contain i as a member.
P maps (w,t) to nothing (null) just in case (i) the office the moon fails to map (w,t) to any individual object, i, or (ii) the office yellow fails to map (w,t) to any class of individuals.
(The third case is important, and explains how some meaningful expressions may fail to have any value in certain circumstances. E.g. on this view, the proposition: the King of France is bald currently has no value (is null), rather than being false, because the King of France has no value. This differs from Russells famous analysis of such statements, which would make this proposition false at the present time. It also differs from accounts that attempt to introduce more than two truth-values: null is not a third truth-value, it is the lack of any truth-value.)
Tich would symbolize the logical structure in intensional logic as:
lwlt.YwtMwt
with Y representing the property is yellow and M representing the office of the moon. And this constructs the same object as: YM, but with the construction displayed more explicitly.
But Tich s theory of constructions goes a step further, and explicitly analyses the constructions represented by complex symbols. In the present case, the construction is called application, or functional application: the intensional object Y is applied to the intensional object M, as a function is applied to an argument, to generate the intensional object: YM. The construction itself is explicitly symbolized in Tichs theory as: lwlt.[0Ywt 0Mwt] (see below).
It seems plausible that we actually grasp such logical constructions , somehow, as abstract procedures , and this is central to our grasp of meanings. But how many different kinds of constructions are there? Can we define them all? Given that we seem to understand how to perform complex constructions by combining simpler constructions, Tich proposes that constructions can be defined recursively, from a few simple or primitive types, which can be applied to each other to build more complex constructions. Tichs main theory of constructions proposes six types of primitive constructions:
Variables are primitive constructions, denoted by terms like: t, w, i, x, y, z, etc.
Trivialization is the simplest construction: it takes an object, X, and generates the same object. This construction is written: 0X.
Composition corresponds intuitively to functional application: if F is a function and x is an argument, we often write: Fx to indicate the application of F to x. This construction is written: [F x].
Closure corresponds intuitively to what we call functional abstraction: if: Fx expresses the application of F to x, then we can return to F itself by leaving a gap for the argument x. This construction is written as: lx.Fx .
Execution corresponds to carrying out or executing a construction. The execution of X is written: 1X .
Double Execution is used if X constructs a construction; it corresponds to the execution of the latter. This is written: 2X .
(There is some dispute about whether the last two types of construction are ultimately necessary; Materna (1998) dispenses with them).
This small set of constructions can be applied recursively, to build complex constructions. To define this consistently, Tich was forced to adopt a typed hierarchy of constructions, and the full theory is quite complicated. (In fact, his first formulation of the theory, in his (1986) Constructions, does not use a typed hierarchy, but consequently suffers from an inconsistency, similar to that which Russell found in Freges theory of logic. He corrected this flaw in subsequent versions. Materna (1998), Chapter 3, gives a good presentation of the essential theory).
I will not try to explain the technical details here. But the conception of variables as constructions deserves special comment, as a most remarkable and unusual feature of the system.
Variables as Constructions.
The standard treatment of variables in mathematics and logic just takes them as letters: x, y, t, etc. We write formulas using these letters, and we quantify over them. We evaluate their meanings through the notion of Tarskian valuations, which involves assigning objects or individuals as values to variables. E.g. a universal quantification: (For all x)(Fx) is true just in case: Fx is true on every valuation of x. Tich uses the same concept of valuations, but he has found a way to interpret variables themselves objectually, rather than taking them as letters, or syntactic items. That is, he has found a way to identify variables as objects. The objects in question, however, are not ordinary objects, or functions, or anything contemplated in purely intensional semantics: variables are a special kind of primitive construction. Variable letters (x, y, etc) are therefore treated as names of special objects.
Variables are called incomplete constructions, because they only construct specific objects when they are combined with valuations. We still use Tarski-type valuations to bring variables into play. Superficially, the mechanics of the system is little different to the ordinary treatment of variables. But there is a deep impact: expressions for variables, like all other expressions, are given an objectual interpretation, and this allows a fully unified objectual semantics.
I will now sketch how this system is used to analyse the previous problem about propositional beliefs.
Propositional Attitudes.
The role of constructions comes to the fore in Tichs analysis of propositional attitudes, such as beliefs about propositions. I will not try to explain the mechanics of this in detail, because the theory of constructions is too involved, but the general idea of the solution is fairly simple.
Tich analyses the proposition that: John believes that 1+2=3 as stating a relation between John (the individual) and the construction represented by 1+2=3 (not just the intension). Now the construction is a complex, structured entity, in which the primitive constructions of 1, 2, 3, +, and = are parts. The construction (when executed) takes these parts, and gives a truth-value as a result.
Since beliefs are taken as being about constructions, a belief about the construction: 1+2=3 is distinct from a belief about the construction: 16x16=256. The first belief, for example, is in part a belief about the number 3; the second is not a belief about the number 3 at all.
This theory also allows us to infer that if: John believes that 1+2=3, then: John believes that one plus two equals three, because we would analyse the sentence: 1+2=3 as representing exactly the same construction as: One plus two equals three.
This is how Tich proposes to solve the problem of individuating propositional beliefs, in a purely objectual way. As he says, constructions provide a category of objects which falls between intensions (which are too coarse-grained to individuate propositional beliefs), and sentences (which are too fine-grained).
The fact that constructions: (i) seem to provide objects which individuate beliefs with exactly the right degree of detail, and (ii) seem intuitively correct for their role of explaining how complex meanings are formed from simpler meanings, and (iii) allow us to satisfy the Principle of Compositionality in a precise way, gives a strong case for adopting them as the fundamental objects of meaning in an objectual theory of semantics.
Further Topics.
I have sketched some details of Tichs conception of TIL; but this is only a brief sketch, and the full development of his system involves a lot of fascinating problems. Tich has pursued deep questions about time, worlds, truth, individuals, identity, logical possibility, logical paradoxes, logical limitations on languages, counterfactuals, conceptual epistemology, logical analysis, and many other concepts that are intimately involved in our systems of understanding meaning, logic, metaphysics, and empirical knowledge. He has done a considerable amount of technical work on foundational theories of logic, and his fluent use theories such as the ramified theory of types, recursive function theory, abstraction operators, and Godelisation techniques can be quite demanding at times. However the primary focus in most of his work is on conceptual analysis and arguments, rarely on formal results for their own sake, and although his arguments are quite detailed and dense at times, much of his work is approachable without requiring much specialized training in mathematical logic.
General References.
Materna, Pavel. 1998. Concepts and Objects. Acta Philosophica Fenica, vol. 63.
The best book on Tichs theory of Transparent Intensional Logic to date, Materna presents many of the ideas of TIL, and develops his own original treatment of many points. Quite technical.
Montague, Richard. 1974. Formal Philosophy: Selected Papers of Richard Montague. (Edited by Richmond Thomason.) Yale University Press.
The classic collection of papers by the famous inventor of intensional logic.
Oddie, Graham. 1986. Likeness to Truth. D. Reidel.
This presents the theory of verisimilitude, originated by Oddie and Tich , to try to solve the problem of how the veracity of scientific theories can be judged. Inspired by Tich s (1974) paper on Poppers theory, this contains clear and simple explanations of the concept of the logical space employed by Tich.
TIL (Transparent Intensional Logic) Website: HYPERLINK "http://www.phil.muni.cz/fil/logika/til/index.html" http://www.phil.muni.cz/fil/logika/til/index.html
This website is a primary reference point for scholars interested in Tich, and contains an extensive collection of papers, references, and biographical details. Two good papers for the specialist to begin with:
Du~, Marie and Pavel Materna. Constructions
HYPERLINK "http://www.phil.muni.cz/fil/logika/til/constructions_duzi_materna.pdf" http://www.phil.muni.cz/fil/logika/til/constructions_duzi_materna.pdf
Du~, Marie and Pavel Materna. Parmenides principle
HYPERLINK "http://www.phil.muni.cz/fil/logika/til/materna_duzi_parmenides.pdf" http://www.phil.muni.cz/fil/logika/til/materna_duzi_parmenides.pdf
Tich , Pavel. 1988. The Foundations of Freges Logic, de Gruyter, Berlin and New York.
Tich s most important single work, this book introduces many of the ideas of TIL, although it does not replace many of the detailed discussions found in his earlier papers.
van Benthem, Johan and Alice ter Meulen, 1997. Handbook of Logic and Language. M.I.T. Press.
A generally outstanding scholarly reference on modern logic and intensional semantics, but unfortunately with little acknowledgement of Tich s work.
Bibliography: Pavel Tich.
The following is a fairly complete bibliography of Tichs work.
Books.
Logika pro PI (Logic for Pedagogical Institutes), Prague 1963, 191 pp.
Logicka stavba vedeckeho jazyka (The Logical Structure of the Language of Science), Prague 1968, 272 pp.
The Foundations of Freges Logic, de Gruyter, Berlin and New York 1988, 333 pp.
Collected Papers in Logic and Philosophy.
Eine Exposition des Gdelischen Unvollstndigkeitsbeweises in der einfachen Typentheorie, Acta Universitatis Carolinae, Philosophica et Historica 5, 95-7, 1962.
Maj logicky pravdiv vty obsah?, Filosofick asopis 13, 1965, 82-86.
K pojmu problmu a Yeaitelnosti, Kybernetika 3, 1966, 105-109.
K explikaci pojmu obsah vty, Filosofick asopis 14, 1966, 364-372.
Smysl a procedura, Filosofick asopis, 1968.
Intentions in Terms of Turing Machines, Studia Logica 26, 1969, 7-25.
An Approach to Intensional Analysis, Nos 5, 273-97, 1971.
On the Vicious Circle in Definitions, Studia Logica 28, 19-40, 1971.
Synthetic Components of Infinite Classes of Postulates, Archiv f. Mathematische Logik und Grundlagenforschung 17, 167-78, 1971.
Plantinga on Essence: A Few Questions, The Philosophical Review 81, 82-93, 1972.
On de dicto Modalities in Quantified S5, Journal of Philosophical Logic 2, 387-92, 1973.
On Poppers Definitions of Verisimilitude, British Journal for the Philosophy of Science 25, 155-88, 1974.
What Do We Talk About?, Philosophy of Science 42, 80-93, 1975.
A Counterexample to the Stalnaker-Lewis Analysis of Counterfactuals, Philosophical Studies 29, 271-3, 1976.
Verisimilitude Redefined, British Journal for the Philosophy of Science 27, 25-42, 1976.
Verisimilitude Revisited, Synthse 38, 175-96, 1978.
Two Kinds of Intensional Logic, Epistemologia 1, 143-64, 1978.
A New Theory of Subjunctive Conditionals, Synthse 37, 433-57, 1978.
Questions, Answers, and Logic, American Philosophical Quarterly 15, 275-84, 1978.
De dicto and de re, Philosophia 8, 1-16, 1978.
Existence and God, The Journal of Philosophy 76, 403-20, 1979.
Merrill on What a Sentence Says, Philosophical Studies 37, 197-200, 1980.
The Transiency of Truth, Theoria 46, 165-82, 1980.
The Logic of Temporal Discourse, Linguistics and Philosophy 3, 373-369, 1980.
The Semantics of Episodic Verbs, Theoretical Linguistics 7, 264-96, 1980.
Foundations of Partial Type Theory, Reports on Mathematical Logic 14, 52-72, 1982.
The Logic of Ability, Freedom and Responsibility, Studia Logica 41, 227-48, 1982, co-author Graham Oddie.
Kripke on Necessity a posteriori, Philosophical Studies 43, 225-41, 1983.
Ability and Freedom, American Philosophical Quarterly 20, 135-47, 1983, co-author Graham Oddie.
Subjunctive Conditionals: Two Parameters vs. Three, Philosophical Studies 45, 1984.
Do We Need Interval Semantics?, Linguistics and Philosophy 8, 263-82, 1985.
Indiscernibility of Identicals, Studia Logica 45, 257-73, 1986.
Putnam on Brains in a Vat, Philosophia 16, 137-46, 1986.
Frege and the Case of the Missing Sense, Grazer Philosophische Studien 27, 27-47, 1986.
Constructions, Philosophy of Science 53, 514-34, 1986.
Two Fallacies of Formal Semantics, Essays in Honour of Bob Durrant Martin Frick (ed.), 156-177, Otago University, 1986.
Einzeldinge als Amtsinhaber, Zeitschrift f. Semiotik 9, 13-50, 1987.
Resplicing Properties in the Supervenience Base, Philosophical Studies 58, 259-69, 1990, co-author Graham Oddie.
Sinn und Bedeutung Revisited, From the Logical Point of View 1, 1-10, 1992.
The Scandal of Linguistics, From the Logical Point of View 1, 70-80, 1992.
The Tractatus in the Light of Intensional Logic, From the Logical Point of View, Vol. 3, No.2, 32-41, 1994.
Cracking the Natural Language Code, From the Logical Point of View, Vol. 3, 6-19, 1994.
The Myth of Non-Rigid Designators, From the Logical Point of View, Vol. 3, No.2 20-30, 1994.
The Analysis of Natural Language, From the Logical Point of View, Vol. 3, No.2, 42-80, 1994.
Constructions as the Subject-Matter of Mathematics, The Foundational Debate, Vienna, 1995.
On Inference, The Logica Yearbook 1998, Timothy Childers (ed.), Filosofia, Prague, 73-85, 1999, co-author Jindra Tich.
Acknowledgements.
Grateful acknowledgements go to Dr. Marie Duzi and Professor Pavel Materna for detailed comments on earlier drafts, and providing an up-to-date bibliography of Tichs work. Any remaining errors are the responsibility of the author. Value judgments expressed in this article are entirely the opinion of the author.
Andrew Holster.
Pavel Materna has informed me that the origins of TIL are first evident in Tichs (1968) Smysl a procedura (Sense and procedure), and in his (1969) Intensions in Terms of Turing Machines, but I have not read these papers.
PAGE
PAGE 1
' )
'*A}~Glrt3 '6XR T :$[$$$*+>++++, ,%,*,/,,,,,./////00Y0e0m0t0001 1K2Q2R2^244A4R4b4=8@8A8S8^9g9u9w999::::::;;
=&=>>
j0JUH*6]`?E"FO_x"h%-')) ++~/3g68};==``$h`ha$$`a$$a$$a$WXXX>>>>?AAAAyBBLC]CCCEEEECHKHJJJJJJJKK
KK%K(K/KKKKK$L&LRLsLLLLMM M=MVM}MMMMMNoNNO
O6OCOkOnOPPPPQQJQQQcQnQqQQQQQQRHRRRRRHSJSSSTSiTtTTTTTT jUH*6]a=>gB-DFbJMCODOPSGTVVWWWYE[D\a\_)cdg@j8l
```TTU UUU,V:VVVVVWWWW8XBXgXXYYYY#Z/ZNZbZ]]a_m_z______FaHaKdgh
#~'֏ߏz)6]Ȗ5Xdhoۘߘzęٙ`wěӛߛ?Er(GJNҝٝvz6]dϠܠ %234;ĤƤȤʤ̤ΤФؤhnprtvxz|68:Zhjlʦ̦Ц &~ܧ$dhΨBF|:ڪު j6]6OJQJ]6]^]4[ؤڤfh6hЦҨsprİϳ`$ `$ *9Ez{*.:Npxz|~ެX:Hbdh֯دޯ*,.06^br|&4X±
".òĲ|¶ʶطڷv5\OJQJ j6]6OJQJ]6]ZطP@$
@`a$$a$$`a$$
@^`a$`vϹq2:CGLsuy|ʿ
&.ACLN[,6@PRTVZ\4H>Z B*ph6H*OJQJ]5\ j6]6OJQJ]6]VZf<>z@BDFLPRVX "(,.*,268<>\p%-5=cd,.2lջջն 6H*]56\]H*OJQJ6OJQJ]OJQJ5\6]B*OJQJph6B*OJQJ]ph B*ph6B*]phHJWXfHI ^```$
@`a$
$
@a$
$
@a$prtvxz|04dfhjlnptvzLOPU4BYdfw7KL^{ 6H*]5\OJQJ6]^*FV
#Ky
')-/09
(*,.0246:@NPRTVXZ\`dh "$&(*.06:bfnp 6H*]OJQJ 5H*\5\6]\,R]^@jl)YZ !@Ajk$`a$$
`a$`
``ptYZJ|;?PYmnpru{ 458>?#2:=DJMWmnq'()+-.48 5H*\6]5\ 6H*]^t9:<%lR$a$`$
`a$$`a$$`a$8(3_v0]pw|8>TUmv?GxLg|LXQ/ : 1
9
(
]
`
5CJ6] 5H*\5\_9
23U:<XZ<r``$a$$
&Fa$$a$$`a$$^`a$w}.OSUW]`ej!&,HQWZux#14PSfm{~C^y}$*<>@BDFHOJQJ5\6]^HLNRdhVZ:hNPVj
<r| & 5 V W Y \ h !!!&!.!V!n!H*B*H*ph6B*H*]ph5B*\phB*H*phOJQJ6B*]ph B*ph6]5\ 6H*]Kr\ &!""#$$&~'''<+---.O0g1a23S5T5f59$a$$`a$` ^`
&Fn!s!w!!!!!!!!!"
""""."""""""#0#4####%<%'+''''((()))) )#).)D)c)o)))*+****+Q+k+++-..//"/LSLLLLLM M\MdMMMMMN%NYNnNNNNN$O;OqOOOO,PAPiPPPP(QCQtQQQQQR$R4RIRRRRRRSJSbSSSST'T0TTTrTTTU*UmUUUUV$VvVxVW6OJQJ]6OJQJmHsHOJQJmHsHOJQJ6OJQJUL2MwMMM8NNNOMOO
PTPPQTQQQ%R\RRSSS#TTTFUU
&FdhUUvVxVVWWWXXXXXXXXXXXXh]h&`#$$`a$
&FdhWWXXXXXXXXXXXXX0JmHnHu0J
j0JU
j0JU$&P 1h. A!"#$}%`!_c
{1[=.@
@Sm!kxڥWklU>mmw-]]J+ЪبF]i&b"$?
G"jCHT,$QB"ؘHhb Z3wf.3[Rs3;{[b>UPm`_UrZXS\!%4]1Xٝ̚Krdϰ"tE
^UDg
*+1KelTftFBT6E1`PiE( q+ظg_lDio4a4By3a!iz
Fo20fwHeҙ[Q['RBkŇ(R:])sG&dT8T(gPS^AjglFVWS릂`㨖kcXN3i]1B..
a^TzCKpFToGVD.URF+vY(O˶Kw
6+K[-r)S~xm#"]ADZzXDrWjeet'|x/_h|;\q8e|ӸOhK',sg2yQ*uyM@ncϊP_0kuӰ|7HD7R ٴxړ?C`!0 S#p7b+/@S%xڥ |NW9XBKAU(Sړ1hjo+]):JkelZZK-5K$Ln&}~7{=1+yjY =8T-P؋7}ԴH賓>ä~emEu˸<D̴`Zl Zj +a;f֘y:$%u6]jr
a˜g._'#Rݻ3煆VqBd5鐔o،~iWыr^iEWSd"3'KQiCbS&{$5/xG] "|3rf"~응N_Me0g̞D{:k??/ՄW7?#?9_=k'LΈ\LOOJMI`(F_$uyw{7*{zO9{"u>~¨ty\B{9E\I q|%bp~#}*v+wGMg!5%5#SLWUcrwfOJ Ez9B~%}'y_Og=G$$W|*«~Օy>JW(xxde&dHE~JGߣ$]|YgaT&'Q\ʕhL132ysG?w*=EI<%y
g{XNS%O
3DDGSik'؏R߱~QsfkqṞ
=cs$1I}8ezt]qpO/{"a{{彧>e]3"9;^X;g%;T"z7eO*\mm||9{F,s2s5e]>(Zs{Y
q2cCМk/`]x2g{ZWqk.rS~|K$'xW^A{A^%{CeoፕW/卑?xd@L~D&bbp5%fRb 2/bO%kEKe-PKdC\sawD| ɦ"[5X'ۋMdQv[eOK>^K}2Y|)9L_tqX'd0q\y9Kr8+'rȒ)glqC?לW/jUWKE\բZ|Z#LQ:_Ama!b>QEr/*C:!j#U_ꌸ_]YQă*KawwdL&7Cx|o%7g[ HO'?}|
>L IÐx\:1O;w2 >36??ĳn0͏č̇˽#a(K0Z_XxW`qg40~^gl~6U%q0~^glM:ބs:co߂$>mx//-w#PkXu/%,>ox/ͯ-//PgX+WuW?U"\lX
ku>+W
`=z&F ,kM~3^gl~n+laE^auww~!oR2:cq`/6~8@36/]jOhaxcpQVcR xSTS4iy98,9b8/u//E
.+xk<7\7:c&MI]p)<,B] @"PX͇@@(͇ Bu!"#:cE* KA}^gl$.J0/P5R:c堬*c!>36_ WbǪ
ԱJP2^gl:TUueCuՄk*jA<}<^gl|]B5}=|CPy}GChH36(Q=M0OOi=t~0fgp,Գ
a\_ސ@hX+Wu3aU*HǰЯgZQ'zxqn#l`Aalߌ5S`;vn.|Jh
{u3}W=ip^gl0d~PePg#xqU/ p^g>? ߨ!0z?YgՋ
θ} .0z2\A,Gцp^g>7K0z6ܡ!2HP
3n?^oPP|.lHHθ}_adC1gpPy
JB)Rxq4C*B,XLC%L_3nW,W
!>3nՄkjA<}<^g>uu7@=zxq!ϼ&\ChH36_C&xqqhʼۆfМ9^gl%_1'gpOAkԋm-}[θ}û3:\'ȼz3tAW=XFwCwA3n%@o!HgVR`H:\
$3OAʐ
u3tH?kI?^k
u30Q7Q:ccqc%/Pj/ӿ_qH0&Ogp`"fa
θ}?[`+6I?3n
S0goI0gpo|{oxER3,wgpKa %~`2J
X_R4?gp*Cԇ
a
θ}1WG
`=zθ}60>n7u3?_Scu3]N$)nC3ni8Ca??Aθ}wp^gl4d~ҿH}pПgP_5:cWpKY+p*^g>Y5N}pngp&on;xqLnm; ^u3`@}xq>gpE"EA}^gl$DP:P
Jӗgp,PꂆC :PWgpՠ*HCukA@a(B]ku3Py@1(P^g>C hChH3n5G?(I]7gC@i(C]7gp-r
I':S:c
m-}[|\{hǼ]"u%Cxθ} :*C}|\wƼ[*u5CI3n'@@u!Aθ}j@MZ$O3n@2@*B*CJOJQJS*Y(^JaJo(ph, @",Footer
!&)@1&Page NumberFR@BFBody Text Indent 2$`a$6@R6
Footnote TextCJaJ8&@a8Footnote ReferenceH*<Br< Body Text1$7$8$mHsHtHZZBody Text 2x5$7$8$9DH$^CJaJmHsHtH O Strong5.U@. Hyperlink>*B*phNSNBody Text Indent 3dh^OJQJ>P>Body Text 2dh6OJQJ],@,Header
!
:::?E"FO
_xh!-#%% ''~+/g24}799:g>-@BbFICKDKLOGPRRSSSUEWDXaX[)_`c@f8hlOmPmnnqzsv1vw,xTzT}KTY(nHH]4[^lmàĠ4his89H]]bϩȪɪ֪תجɷƻ;x]LL^_)dW !3F[\OFGfg67_`bK@x _XY{<CDRS1; D
E
=
>
[
@Y& \%g|} !d!e!!""z#O$P$$%R%%%A&&&P'''(G(O(P(()T)~))!*i***+b+++c,,
-y--$.}...6////A0t001_112s223S333444K555O667b775878K8999:::::::::::0(00?(00"0"0"0"0"0"0"0"0"0"0"0"(00 '0 '0 '0 '0 '0 '(009090909090909090909090909090909090909(00DX0DX0DX0DX0DX0DX0DX0DX0DX0DX0DX0DX0DX0DX(00v0v0v0v0v0v0v0v0v0v0v0v0v0v(00000000000000000000000000000000000000(00000000000000000000000(0000000000000000000000000000000000000000000000000000(00K0K0K0K0K0K0K0K0K0K0K(0000000 0 0 0000000000 0 0 0 0 0 000000(00>
0>
0>
(00@0@0@0@0@0@0@(0000g0g0g@0g@0g@0g@0g@0g0g@0g0g0g@0g@0g@0g@0g@0g0g0g0g0g@0g0g0g00'(0'0G( 0G( 0G( 0G((0'0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0 T) 0
T) 0T) 0T) 0
T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0T) 0 T) 0!T) 0"T) 0#T) 0$T) 0%T) 0&T) 0'T) 0(T) 0)T) 0*T) 0+T) 0,T) 0-T)0(0@06(0(0@0
0@0@0@0@0@0@0
00>TvZp8Hn!2~DJWX=8l]r9*DLUXX#F#x#$$%R%%%:XXX!!/X2$_c
{1[=.@&o2$ S#p78˱o@(
<
#A<
#AB
S ?IS:4Z48={.5:=>DIPUZW\hnpxz==??]];vBv{{KPFN/0KLîvw
|`eW\/4'2;ENZZ]MS!,-`a23vwEOz{24;Cgrz{!!P$T$%%%%%& &*&,&?&&&'''''''(9(=(>(G(L(P((((())$)%)/)1)R)T)~))))** *!*%*&*-*.*6*7*;*<*A*D*O*P*W*i****************++
++D+J+K+Q+++++++,!,%,2,3,8,=,P,,,--..../#/////1111113#3'3133393:3@3n3y3333334 4]4^4444444T5]55577789999:::::?D4848<knu
v
m_b -#0###%% ''**,,A-B-11g2k234556688&9)999<<AA-D0DE4F
G
GDKEKvLwLOORRUUWW%X(XYY)_*____`ddffgg4r5rss4uAu{u|uuuv/vyy"{%{||hbq%(HK1?H"ėPS͜ݝJMcemFR תڪج٬
?AY\Ļ;vxxXd,.QSj
5bf
jmK@CSbx{}~W\0<>AvxEGPcSWvy B
>
Y
(+@Xq~ijjk\" z !!b!t!!!!!!%@&&&!'@'P'''((((G(N(P((())S)T)})) *A*C*i****,,--//22344444?6D6w777788I8999::::333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333Andrew HolsterMC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of IEP Tichy.asdAndrew HolsterMC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of IEP Tichy.asdAndrew HolsterMC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of IEP Tichy.asdAndrew HolsterMC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of IEP Tichy.asdAndrew HolsterMC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of IEP Tichy.asdAndrew HolsterC:\Work\IEP Tichy.docAndrew HolsterC:\Work\IEP Tichy Draft.docAndrew HolsterC:\Work\IEP Tichy Draft.docAndrew HolsterIC:\work\Introduction to Pavel Tichy and Transparent Intensional Logic.docAndrew HolsterIC:\work\Introduction to Pavel Tichy and Transparent Intensional Logic.doc
1t"pqm42FLC*>q]-8SSLDw`pRXK\-(mӒhhh^h`OJQJo(h88^8`OJQJo(oh^`OJQJo(h ^ `OJQJo(h^`OJQJo(ohxx^x`OJQJo(hHH^H`OJQJo(h^`OJQJo(oh^`OJQJo(h^`OJQJo(h^`OJQJo(ohpp^p`OJQJo(h@@^@`OJQJo(h^`OJQJo(oh^`OJQJo(h^`OJQJo(h^`OJQJo(ohPP^P`OJQJo(h^`OJQJo(hTT^T`OJQJo(oh$ $ ^$ `OJQJo(h^`OJQJo(h^`OJQJo(oh^`OJQJo(hdd^d`OJQJo(h44^4`OJQJo(oh^`OJQJo(h^`.hTT^T`.h$ L$ ^$ `L.h^`.h^`.hL^`L.hdd^d`.h44^4`.hL^`L.h
^`6hH.h
^`hH.h
pLp^p`LhH.h
@@^@`hH.h
^`hH.h
L^`LhH.h
^`hH.h
^`hH.h
PLP^P`LhH.0^`0o(()^`. L ^ `L.^`.xx^x`.HLH^H`L.^`.^`.L^`L.^`o((.^`. L ^ `L.^`.xx^x`.HLH^H`L.^`.^`.L^`L.hhh^h`OJQJo(h88^8`OJQJo(oh^`OJQJo(h ^ `OJQJo(h^`OJQJo(ohxx^x`OJQJo(hHH^H`OJQJo(h^`OJQJo(oh^`OJQJo(h^`OJQJo(h^`OJQJo(ohpp^p`OJQJo(h@@^@`OJQJo(h^`OJQJo(oh^`OJQJo(h^`OJQJo(h^`OJQJo(ohPP^P`OJQJo(3 3 ^3 `o((.^`.
L
^
`L.\
\
^\
`.,,^,`.L^`L.^`.^`.lLl^l`L.
1K\`pRqmq]-C2SL(m
Zhw Z[j Z[j @>>i> &&&& #$%)*+:@@@@@@T@@@@@d@@@l@@@@@@@@@@@@@@@@@@@@@4@@@<@@"@H@@>@@@@@F@H@@UnknownG:Times New Roman5Symbol3&:Arial;WingdingsMCentury SchoolbookABook Antiqua?1 Courier New"qh\{&]{&^=y]-'.0!20d=4582QTichy, PavelAndrew HolsterAndrew HolsterZOh+'0 (
DP\
ht|
Tichy, PaveloichAndrew HolsterndrndrNormalHAndrew Holster3drMicrosoft Word 9.0@G@t:u@=@NE6=]-Z՜.+,D՜.+,8hp|
/'=
Tichy, PavelTitle` 8@_PID_HLINKSA]Chttp://www.phil.muni.cz/fil/logika/til/materna_duzi_parmenides.pdf3pFhttp://www.phil.muni.cz/fil/logika/til/constructions_duzi_materna.pdfQ2http://www.phil.muni.cz/fil/logika/til/index.html
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
!&Root Entry F@W=(1Table]WordDocumentSummaryInformation(DocumentSummaryInformation8CompObjjObjectPool@W=@W=
FMicrosoft Word Document
MSWordDocWord.Document.89q