
lable at ScienceDirect

Studies in History and Philosophy of Modern Physics xxx (2018) 1e11
Contents lists avai
Studies in History and Philosophy of Modern Physics

journal homepage: www.elsevier .com/locate/shpsb
Emergence without limits: The case of phonons

Alexander Franklin*, Eleanor Knox
Department of Philosophy, King's College London, Strand, WC2R 2LS, UK
a r t i c l e i n f o

Article history:
Received 17 July 2017
Received in revised form
14 May 2018
Accepted 6 June 2018
Available online xxx

Keywords:
Emergence
Asymptotic limits
Phonons
Reduction
Quasi-particles
Novel explanation
* Corresponding author.
E-mail addresses: alexander.a.franklin@kcl.ac.uk (A

ac.uk (E. Knox).

https://doi.org/10.1016/j.shpsb.2018.06.001
1355-2198/© 2018 The Authors. Published by Elsevier

Please cite this article in press as: Franklin, A
Modern Physics (2018), https://doi.org/10.10
a b s t r a c t

Recent discussions of emergence in physics have focussed on the use of limiting relations, and often
particularly on singular or asymptotic limits. We discuss a putative example of emergence that does not
fit into this narrative: the case of phonons. These quasi-particles have some claim to be emergent, not
least because the way in which they relate to the underlying crystal is almost precisely analogous to the
way in which quantum particles relate to the underlying quantum field theory. We offer an account of
emergence which encompasses phonons, and argue both that emergence may thus be found in cases
where the use of limits is not required, and that it provides a way of understanding cases that do involve
limits.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

‘Emergence’ is a tricky term, but an important one. Leaving aside
its traditional philosophical use, the term has been widely used in
the physics community at least since Anderson's “More is Different”
(Anderson, 1972). And there's reason to believe that the term
latches on to something, and that that something is a philosophi-
cally interesting trait which may be ascribed to a reasonably well-
defined cluster of phenomena. Philosophers of physics have thus
rightly offered various analyses of emergence. As none of these
analyses cover the full range of examples towhich the term applies,
we suggest that they fail to capture an important feature of emer-
gence. In what follows, we'll look at one such example, that of the
emergence of phonons in a crystal, argue that it isn't well captured
by accounts of emergence that rely on the presence of limits or
essential idealisations, and suggest an account that might do better.

Perhaps the broadest definition of emergence in the philosophy
of physics literature comes from Jeremy Butterfield, who tells us
that emergent behaviour is behaviour that is “novel and robust
relative to some comparison class” [Butterfield, 2011b, p.1065].
We'll take this as a jumping off point for our analysis, but as But-
terfield is perfectly aware, the wide applicability of this definition
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lies in its lack of specificity. It provides the scaffolding for a full
account of emergence; an analysis of novelty and robustness is
needed to finish the construction. While robustness is reasonably
well understood and amounts to invariance under relevant per-
turbations (see section 3.2), novelty has proved harder to spell out.
However, an account based on asymptotic limits has received
particular attention in recent years.

Although we devote significant space to the demonstration that
phonons do not fall under any limits-based account, we also think
that no other account in the literature is sufficient. As such, we
argue that the conception of novelty defended in section 3.3, pre-
viously articulated in Knox (2016), is uniquely able to capture the
salient features which make phonons emergent; we also believe
that this account captures many other instances of emergence
across science.

We'll argue that the phonon description is novel because the
change to phonon variables makes certain abstractions salient,
which allow for novel explanations. In a little more detail: a
description is novel if it allows for explanations of explananda
which could not be explained in the terms employed by the un-
derlying description. By virtue of the fact that variables have been
changed and certain details have been abstracted away, new ex-
planations are available in the emergent description. We claim that
this pairing of changing variables with abstraction from underlying
details secures sufficient novelty for a robust description to count as
emergent.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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By contrast, the asymptotic limits account suggests that
behaviour is novel (and robust) relative to some more fine-
grained (lower-level) behaviour when the higher-level mathe-
matics is derived from the lower-level mathematics via an
asymptotic limit; see e.g. (Batterman, 2002b, 2011; Butterfield,
2011b; Butterfield & Bouatta, 2011). Phase transitions have been
held to be emergent in this sense, because relating this thermo-
dynamic behaviour to a statistical mechanical description re-
quires us to take the thermodynamic limit. In Butterfield's view,
this kind of relationship allows a novelty that is compatible with
(Nagel-Schaffner) reduction:1

my meanings of ‘emergence’ and ‘reduction’ are in tension with
each other: since logic teaches us that valid deduction gives no
new “content”, how can one ever deduce novel behaviour? (Of
course, this tension is also shown by the fact that many authors
who take emergence to involve novel behaviour thereby take it
to also involve irreducibility.) My answer to this ‘how?’ question,
i.e. my reconciliation, will lie in the use of limits. …, the idea is
that one performs the deduction after taking a limit of some
parameter: so the main morals will be that in such a limit there
can be novelty, compared with what obtains away from the
limit, and that (pace some authors) this should count as
reduction, not irreducibility [Butterfield, 2011a, p.1068].

Butterfield further notes both that the limits of interest need not
be asymptotic and that the account is unlikely to capture all pu-
tative examples of emergence. But, despite this disclaimer, a casual
reader of the literature would be forgiven for thinking that limits
(or even singular limits) were the only game in town.

The fan of an asymptotic limits analysis faces a dilemma. On the
one hand, one can, with Batterman, hold that the use of an
asymptotic limit indicates a failure of reduction. But this makes the
use of an asymptotic limit look mysterious at the lower level.
Otherwise, one might agree with Butterfield that emergence is
compatible with reduction. But, in order to make this gel with the
asymptotic analysis, we need to give some explanation of the
applicability of the limit in question. And these explanations often
seem to dissolve the novelty that made the asymptotic analysis
look emergent in the first place. It's therefore helpful to look
explicitly at an example of emergence that does not fit the
asymptotic limit mold: our case study will provide an example of a
kind of emergence that maintains explanatory novelty even in the
face of reduction, escaping the tension engendered by the asymp-
totic analysis.

Phonons are the remarkably particle-like vibrational modes of a
crystal. Their behaviour, and the way in which they are modelled,
bears a startling similarity to that of particles as described by
quantum field theory. The relation of quantum particles to the
underlying quantum fields is often taken to be a paradigm case of
emergence, claims that phonons are emergent therefore carry
considerable weight e such claims are further defended in section
3.1.

Section 2 discusses the relevant physics, starting with a simple
example of normal modes in masses on springs, which will serve to
illustrate the way in which a change of variable can lead to novel
explanation. We'll then move on to discuss the more complex
example of phonons, emphasising the various approximations and
idealizations needed to move to the phonon description.
1 Batterman, notably, disagrees with Butterfield on this point, taking the infinite
idealisations required in deriving the asymptotic limit to imply explanatory irre-
ducibility; see [Butterfield, 2011a, p.1033].
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As elaborated in section 3, the phonon example fits our favoured
account of emergence; in this section, the sense in which the
phonon description is novel and robust is evaluated.

In section 4 we examine how the physics of phonons fits with
the asymptotic account. We'll argue first that the move to the
phonon description does not involve limits in any important sense,
let alone singular ones. It does involve approximations and ideali-
zations, but these are not essential in the way that essential ide-
alisations accounts of emergence require.

2. Some important variable changes

Phonons are often called quasi-particles, and their particle-like
behaviour will be important to our presentation. However, at
their most basic, phonons are modes of vibration in crystal lattices,
and the move to a phonon description is characterised by a change
of variables that suitably simplifies the description of these modes
of vibration. This section introduces the physics of phonons in a
fairly standard way by first introducing another example e masses
on springs e which also makes use of a change of variables to
simplify the description of modes of vibration. Our aim here is not
merely to summarise the physics, but also to emphasise a particular
feature of these variable changes: both allow us to abstract in ways
that are particularly helpful for explanation.

2.1. Masses on springs

Consider the following, very simple, case of two particles of
equal mass m oscillating on springs with constants k and k0 as
shown in Fig. 1:

Their motion is characterised by the following equations:

m€x1 ¼ �kx1 � k0ðx1 � x2Þ (1)

m€x2 ¼ �kx2 � k0ðx2 � x1Þ (2)

Despite the simplicity of the model, the standard (and only
straightforward) way to solve these equations involves trans-
forming the variables,

h1 ¼ x1 þ x2
h2 ¼ x1 � x2:

(3)

One can thus convert equations (1) and (2) into linear uncoupled
differential equations for two simple harmonic oscillators:

m€h1 ¼ �kh1 (4)

m€h2 ¼ �ðkþ 2k0Þh2: (5)

If one makes the substitutions u1 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, u2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2k0Þ=m

p
,

these equations have the following solutions:

h1 ¼ a1e
iu1t þ a�1e

�iu1t (6)

h2 ¼ a2e
iu2t þ a�2e

�iu2t (7)

where a1, a�1, a2 and a�2 are set by initial conditions. These two
equations and their solutions characterise normal modes of the
system, and general solutions of the equations are superpositions of
these normal modes. We'll call the variables h1 and h2 that define
these modes ‘normal mode variables’.

This system is much simpler than the phonon case. In particular,
in the phonon case, themove to normal mode variables will involve
important approximations and, as we'll see in section 3.3, it might
be thought to exhibit more novelty. But the case in hand suffices to
out limits: The case of phonons, Studies in History and Philosophy of



Fig. 1. Coupled masses on springs.
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highlight some aspects of the interest and importance of normal
modes. In addition, in writing down these equations, we implicitly
incorporate assumptions which may be seen as analogous to the
harmonic approximation discussed below.

The change of variables described in equation (3) is obviously of
great calculational value. But it could be useful for other reasons
too. For example, the change of variables might aid the explanation
of certain phenomena: suppose (in a rather stretched example) that
the central spring is composed of a material that glows only when
compressed, and that we seek to explain the frequency with which
the spring lights up with the system in steady state. If we remain in
the original displacement variables, any explanation of this phe-
nomenon will require two variables and two equations. But if we
move to the normal mode variables, only h2 and its associated
equation are relevant. By leaving out reference to h1, this expla-
nation in terms of the normal mode variables abstracts away from
irrelevant details in a way that an explanation based on displace-
ment variables cannot. This feature of a well-chosen change of
variables is appealed to in Knox (2016) and plays a role in our
analysis of the emergence of phonons.
2.2. Phonons

Needless to say, a real crystal lattice is a more complicated
system than a pair of masses on springs.2 Here we have a quantum
system comprised of electrons and different kinds of nuclei, ar-
ranged in a 3-D lattice. A number of approximations are required if
we are to get a tractable description of normalmodes.We start with
the adiabatic approximation, which assumes that we can treat
electronic and nuclear degrees of freedom independently (because
electron masses are small and their velocities are fast relative to
nuclear masses and velocities). Using this approximation, the ac-
count that follows will focus only on nuclear degrees of freedom
and not electronic ones.

Now let's outline the physics of a classical three-dimensional
crystal with n atoms.3 We could try to describe the vibrations of
this crystal using 3n displacement variables and 3n coupled dif-
ferential equations. But, happily, a crystal is a highly symmetric
system, and things are a little easier than this. We start by
considering the unit cells of the crystal e the basic repeating unit
with m atoms e defined by the primitive translation vectors a1, a2
and a3; see Fig. 2. For a very simple monatomic lattice, m ¼ 1, for a
very simple diatomic latticem ¼ 2, and so on. We need to consider
enough of these unit cells to model inter-cell interactions
2 This section should be treated with the usual philosophy of physics proviso. Our
aim here is not to teach the reader solid state physics, but merely to highlight some
selected features of philosophical interest. The reader unfamiliar with the physics
and interested in more detail should look at e.g. [Kantorovich, 2004, Ch.4].

3 An alternative way to derive the existence of one type of phonon (acoustic
phonons) involves the recognition that such phonons are the Goldstone bosons
which arise as a consequence of the breaking of translational symmetry. As our
focus is on how phonons emerge from the lattice, rather than how the lattice
emerges from a more symmetric mathematical description, we think it more illu-
minating to elucidate the derivation of the phonon description as below. We discuss
this further in section 4.1.
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adequately, but we do little to change the physics if we impose
periodic boundary conditions and consider only the cells in some
larger supercell containing N cells. In a 3-D lattice, we can impose a
boundary condition after N1, N2 and N3 (where N ¼ N1N2N3)
repetitions of the translation vectors a1, a2 and a3 respectively.
Exploiting this translational symmetry means we now have 3Nm<
n coordinates uLsa, where L labels the cell, s labels the atom within
the cell and greek indices label the cartesian components of
displacement vectors. Although in some cases this reduces the
number of coordinates, in many cases the supercell is taken to be of
the order of the size of the crystal itself. Moreover, merely reducing
the number of coordinates involved in the problem does little to
make it calculationally tractable: more simplification is needed.

We therefore make a further approximation: the harmonic
approximation. We assume that atomic displacements are small
relative to interatomic distances. This allows us to expand the po-
tential energy function in terms of the interatomic distances and
drop terms above second order. If we now derive equations of
motion from the Lagrangian in the usual way, we have a (very!)
large set of coupled differential equations. The key to uncoupling
these is e in close analogy with the method used for the masses on
springs e to look for wave solutions, and then look for variables
distinguished by wavevector k rather than by the individual atoms.
This effectively moves us from the real lattice to the reciprocal
lattice, related by a discrete Fourier transform to the original. The
result is a set of normal mode variables qkj labelled by their
wavevectors k, with an additional index j that tells us whether the
mode described is optical or acoustic. When redescribed in terms of
these variables, our original problem becomes one of a series of
uncoupled harmonic oscillators; each normal mode variable obeys
the equation of motion:

€qkj ¼ �u2
kjqkj (8)

Each of these variables corresponds to a particular mode of vi-
bration of the crystal, and the atomic displacements naturally
described by our original coordinates can be captured as linear
combinations of the vibrational modes. Our normal mode variables
are sometimes called phonons, but there's an ambiguity in the
terminology here: physics texts use the term ‘phonon’ to refer both
to the variables themselves, and to the normal modes of vibration
associated with them. This becomes particularly confusing when
we talk about numbers of phonons e the number of coordinates
remains the same for a given model! We'll henceforth use the
terms ‘phonon coordinate’ or ‘phonon variable’ to refer to qkj and
reserve the term ‘phonon’ for the physical modes themselves.

With the new variables in hand, we naturally describe the
crystal not in terms of individual atomic displacements, but in
terms of aggregate properties of the whole supercell. This is not
because we've moved to fewer variables; as noted above, there are
3Nm phonon coordinates just as there were 3Nm displacement
coordinates. Whilst we still have as many variables available it
turns out that certain behaviours (e.g. heat transport) can be
characterised very simply using only relevant phonon variables.
This, to foreshadow, is an abstraction which was unavailable before
the variable change: had we continued towork in the displacement
variables, such behaviour may have been inexplicable.

The phonon coordinates are just coordinates e linear combina-
tions of the displacement coordinates. It's only in the harmonic
approximation that they give us perfectly uncoupled equations of
motion, and hence only the harmonic approximation that allows us
to derive them as a particularly interesting class of variable, but
there's nothing to stop us using them to describe systems where
the approximation doesn't apply. Oncewe have derived the phonon
variables using the harmonic approximation, we are free to relax
out limits: The case of phonons, Studies in History and Philosophy of



Fig. 2. Lattice vectors are defined on the left for a simple cubic Bravais lattice, and on the right for a face-centred cubic Bravais lattice. Figure from [Ashcroft & Mermin, 1976, p.65, 69].
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the approximation, and reintroduce terms beyond second order in
the atomic displacement. These anharmonicities are essential to
explaining the properties of real crystals, and, indeed, are essential
to some of the most characteristically particle-like features of
phonons (although some of these will only become apparent once
we move to a quantum description). As temperatures increase, the
harmonic approximationwill become less and less accurate until, at
some high temperature, normal modes of vibration are no longer
distinguishable even approximately. At this point, we might say
that the phonons themselves disappear, even though the phonon
variables still exist. But most interesting cases will lie somewhere
in-between; the ontology of phonons, like that of most physical
phenomena, is a fuzzy and approximate matter.

The description thus far has been entirely classical, and has
given us no reason to think of phonons as resembling particles. For
this we need quantummechanics, specifically, we'd like to perform
second quantization on the phonon mode variables qkj and their
associatedmomenta pkj. Recall that our phonon variables feature in
independent harmonic oscillator equations. The quantization pro-
cedure for a harmonic oscillator is part of elementary quantum
mechanics. Given some set of independent harmonic oscillators, we
can define operators that add or subtract a quantum of energy e

these are sometimes known as creation and annihilation operators.
A creation operator, bay, adds a quantum of energy, and increases the
occupation number for a given oscillator. The annihilation operatorba removes a quantum of energy and decreases the occupation
number. Since our phonon problem is just a harmonic oscillator
problem, we can introduce creation and annihilation operators for
each vibrational mode picked out by a choice of k and j:

qkj ¼
ffiffiffiffiffiffiffiffiffiffi
Z

2ukj

s �
ay�kj þ akj

�
(9)

pkj ¼ i

ffiffiffiffiffiffiffiffiffiffi
Zukj

2

r �
ay�kj � akj

�
(10)

We can now think of phonons as quanta of vibration with en-
ergy Zu, and of states of the crystal as characterised by phonon
number state

���nkji, which is raised and lowered by the creation and
annihilation operators.4 The parallels with the physics of photons
will now be obvious to some readers; the above equations could
have been written for photons rather than phonons. And indeed,
4 ��nkji ¼ 1ffiffiffiffiffiffi
nkj !

p ðbaykjÞnkj ��0i.
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once we reintroduce anharmonic terms, the mathematics of
phonon-phonon interaction is represented by diagrams which look
remarkably particle-like. Fig. 3 depicts a variety of such in-
teractions, for example the top left diagram features the annihila-
tion of two phonons and the consequent creation of one phonon.
These diagrams either represent N-processes or U-processes which,
respectively, do and don't conserve phonon momentum; see
[Kantorovich, 2004, pp.175e176] for more details.
3. Emergence and phonons

Various authors have seen phonons as emergent (Falkenburg,
2015; Lancaster & Pexton, 2015; Morrison, 2006; Wallace, 2001,
2012); for the most part, we endorse the claims made by those
authors. Moreover, the claim that phonons are emergent seems
relatively natural: we started with an atomic lattice description,
and moved to a description of particles which could be thought of
as interacting, both with other phonons and with other particles
such as neutrons and photons.

In this section we, first, give further reasons that phonons ought
to be regarded as emergent entities, and, second, we argue that
their description counts as novel and robust. Therefore, we claim
Fig. 3. Diagrams for three phonon processes: for example the top left diagram rep-
resents bay�k1 j1

bak2 j2
bak3 j3 .

out limits: The case of phonons, Studies in History and Philosophy of
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that phonons are emergent in virtue of the fact that their descrip-
tion is novel and robust, where novelty involves the availability of
novel explanations and robustness is stability with respect to a
given set of perturbations.

3.1. Are phonons really emergent?

There are those who will define emergence in such a way that
phonons do not fall under the definition; any definition (for
example Batterman's) that precludes the compatibility of emer-
gence and reduction will do this. But, if we stick with our original
analysis of emergence as novel and robust behaviour, there is
reason to think that phonons are not merely a phenomenon that
has been called emergent, but rather a phenomenon that stands to
be particularly revealing as to the nature of the novelty involved in
emergence. In section 3.3 we articulate the kind of novelty that
phonons display. But, first, we defend the claim that phonons
deserve to be called ‘emergent’, even before we give an analysis of
their novelty.

The relation that phonons hold to the underlying crystal
description is almost identical to the relation that quantum parti-
cles hold to the underlying quantum field. And if any inter-theoretic
relation betokens an interesting emergence, surely the relationship
between quantum particles and the field does.5

Phonons are bosons and behave as such. The superficial
resemblance between the physics of phonons and the physics of
photons is striking (though many other bosons would allow for an
equally striking analogy). Both obey Bose-Einstein statistics. Both
contribute quanta of energy Zu, and the energy of the quantum
system depends on the number of photons or phonons. One can
even build a saser (sound amplification by stimulated emission of
radiation) much like a laser. But emergence is a relational property
e phonons, if they are emergent, are emergent by virtue of the
relation between their physics and that of the underlying crystal.
It's thereforemuchmore compelling to look at the way inwhich we
derive a photon description from the electromagnetic field in the
standard model, and compare this to the way in which we derive
the phonon description. And here the similarities are much more
than skin-deep.

It is no coincidence that quantum field theory (QFT) textbooks6

sometimes begin with solid state physics and the physics of pho-
nons. The process by which we derive a particle description from a
quantum field is much like the one described in section 2.2. In
particular, one looks for a normal modes description that allows
one to describe the system in terms of independent harmonic os-
cillators, and then derives a description with creation and annihi-
lation operators, and particle occupation numbers.

If one wants to deny that phonons are emergent, one must
either deny that the two cases are appropriately analogous, or deny
that particles emerge from quantum field theory. Start with the first
option: how might one challenge the analogy? At a formal level, it
5 Note that this argument may be run both ways: we aim the argument at those
who regard quantum particles as clearly real and emergent, but who are sceptical
that phonons deserve the same ontological status; those who, by contrast, accept
that phonons are real and emergent, but doubt that the same can be said of
quantum particles, do not need to be persuaded.

6 E.g. (Lancaster & Blundell, 2014).
7 Note that photons, unlike acoustic phonons, may not be understood to arise as a

consequence of Goldstone's theorem. This serves to highlight the claim, made in
more detail in section 4.1, that, while symmetry breaking is involved in construc-
tion of the atomic lattice description, it is not essential to the specific relation be-
tween phonons and the lattice; the latter relation is the one which we claim is
analogous to the relation between photons and the quantum field. Although the
derivations of phonons and photons may differ, the above list of their shared
properties serves to underwrite the claim that both are emergent.
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is hard to drive a wedge between, say, phonons and photons: the
mathematics involved in both is strikingly similar.7

A challenge to the analogy will therefore need to come from
elsewhere; and if the inter-theoretic relation itself is analogous, any
differencemust somehow lie in the nature of the phonons, photons,
crystals and quantum fields themselves. Doubtless some readers'
intuitions will push them to deny that phonons should be taken as
ontologically seriously as quantum particles. But such attempts to
block the analogy clearly beg the question; our analysis here aims
to demonstrate that phonons are a novel and robust phenomenon,
and thus, by the lights of the emergence programme, belong in the
ontology at relevant energies and length scales.

So we should look to the more fundamental level of description
for any prospective disanalogy. The most striking difference be-
tween the phonon case and the case of quantum particles lies not in
the description of the particles, but in our access to the underlying
field or lattice fromwhich they are derived. In the phonon case we
have direct access to the physics of the crystal e we can experi-
mentally confirm the lattice physics itself. In the case of the
quantum field, our experimental evidence is often mediated via the
particle description; our major sources of evidence come from, for
example, particle accelerators.8

It is, however, difficult to see how one might move from this
legitimate disanalogy between phonons and quantum particles to
an argument against the emergence of phonons. Worries about the
epistemic status of the quantum field could shake our faith that
there is a quantum field for particles to emerge from; as a conse-
quence one might become wary of an emergentist account of
quantum particles. But even if we grant such concerns, one could
still mount a case that phonons are an emergent phenomenon, and
one might likewise grant that if the status of the quantum field
were settled satisfactorily, quantum particles would look equally
novel and robust with respect to that field.

The above style of argument does not, therefore, undermine the
analogy itself. But it might threaten our argument that we should
accept phonons as emergent because quantum particles clearly are.
Some interpreters of quantum field theory would deny that parti-
cles emerge fromQFTat all. These deniers could fall into two camps.
The first camp (exemplified by Doreen Fraser (2008)), holds that
there are no particle states in realistic quantum field theories. The
second camp contains those who hold that particles, rather than
fields, are fundamental to quantum field theory.

Doreen Fraser has argued against the existence of exact particle-
states, and hence by her lights, the existence of particles in quan-
tum field theory. Her 2008 paper argues that the kind of particle
states derivable from non-interacting fields are not precisely
definable in interacting systems. But a lack of precise definability of
particle states is no obstacle to viewing particles as emergent; it is
characteristic of emergent phenomena that they involve approxi-
mation. Fraser implicitly acknowledges this compatibility when
discussing Wallace's (2001) emergentism:

For this to be a viable response, the cogency of the distinction
between fundamental and less fundamental entities must be
defended and a case must be made for admitting additional,
non-fundamental entities into our ontology [Fraser, 2008,
p.858].

Although we have not much discussed the distinction between
fundamental and non-fundamental entities here (though we
8 One could deny even this distinction and claim that observation of, say, the
arrangement of iron filings around a bar magnet is fairly direct experimental evi-
dence for the underlying quantum field.

out limits: The case of phonons, Studies in History and Philosophy of
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mention it again at the end of section 3.3), we take it that the kind
of emergence literaturewe are building on does take the distinction
to be cogent.9 And the account of novelty we develop here and
elsewhere is, in part, intended to form part of a case for admitting
non-fundamental entities into our ontology.

We've so far argued that once one accepts that QFT is a theory of
quantum fields, an account of emergent particles is not far behind.
But must one accept this? Some sources (for example (Kuhlmann,
2015)) discuss ‘particle interpretations’ of quantum field theory.
Such a view would hold that particles are in fact fundamental to
QFT. Even in the absence of a settled definition of emergence, we
can agree that if particles are fundamental to a theory they are not
emergent with respect to that theory! But it's hard to find aworked
out version of such a view in the contemporary literature, although
Paul Teller (1995) is sometimes held up as an example. There are
good reasons why particle interpretation defenders are hard to
find; Doreen Fraser's arguments, mentioned above, preclude exact
particle states for interacting systems, and the presence of inter-
esting vacuum state physics (when particle number is zero), also
speaks against QFT being fundamentally about particles. Credible
defenders of the existence of particles in QFT (e.g. Wallace, 2001,
2011) think of them in precisely the emergent way that we advo-
cate here.

We therefore stand by our claim that particles in QFT are
emergent if anything is. Granted, one must interpret QFT as being
fundamentally about a field, and one must meet Fraser's challenge
by putting some flesh on the bones of a general account of emer-
gence. Our main concern here is not to defend the thesis of emer-
gentism in general, but rather to counter certain assumptions about
emergence among the emergentists. Once one is working within
such a framework, it is natural to say that particles emerge from
quantum field theory, and, as a result of the analogy, to claim that
phonons emerge from the crystal lattice.

So phonons seem to be well described as an emergent phe-
nomenon, and hence a good candidate for demonstrating novel and
robust behaviour. What can they teach us about the right way to
analyse robustness and novelty?

3.2. Robustness

Robustness is important, but, unlike in the case of novelty, the
ingredients of an analysis have been provided in the literature. To
show that a phenomenon is robust is to show that its description
and dynamics are stable with respect to perturbations in the un-
derlying physics; in order to be emergent, a phenomenon must not
be too fragile or too fleeting. The robustness we are concerned with
here is robustness as it applies to an actual concrete system: might
perturbations of the physics of this crystal arising from, say, small
temperature changes, displacements, or knocks, destroy the phe-
nomenon of interest? If the answer is ‘yes’ for ordinary small
changes to the system, then the phenomenon would be insuffi-
ciently robust to form an interesting part of higher level physics.

Phonons are robust in this sense. They exist over long periods of
time in real crystals under different conditions; the nature and use
of approximations in their derivation gives us clues as to the source
of their stability. For one thing, the harmonic approximation holds
in a wide range of conditions; Debye temperatures are 200� 500K
for many common elements, and are much higher in some cases.
Below these temperatures, we can apply the low temperature
Debye model in which the harmonic approximation holds and
phonons do not interact. But the phonon description survives even
9 Indeed, as (Egg, Lam, & Oldofredi, 2017) points out, Fraser and Wallace are
really in agreement about the non-fundamentality of particles.
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when we relax the harmonic approximation; at higher tempera-
tures, we reintroduce anharmonicities and these lead to phonon-
phonon interactions. Phonons remain a useful description at very
high temperatures e indeed, they can be used to describe the
system more or less as long as the system remains an approxi-
mately rigid structure.10

A great deal of work in the philosophy of physics goes into
particular robustness demonstrations; both Butterfield's (2011b)
and parts of Batterman's work (notably his discussion of the
rainbow in his (Batterman, 2002a, 2002b)) can be seen as providing
such demonstrations. In fact, we think that the importance of the
asymptotic limits analysis lies much more in its relation to
robustness than its connection to novelty. Consider, for example,
the use of the thermodynamic limit in explaining a phenomenon
like a phase transition. If we think that the use of the thermody-
namic limit demonstrates novelty, we fall on the horns of the
dilemma mentioned on p. Introduction: either the use of the limit
indicates a failure of reduction, inwhich case the phase transition is
novel but the novelty is mysterious, or use of the limit is reducible
and it is hard to see where the novelty lies. By contrast, the use of
the thermodynamic limit, properly justified, can easily be seen as a
demonstration of the robustness of phase transition behaviour.11 If
one demonstrates the appropriateness of the thermodynamic limit,
in which the number of particles, N, goes to infinity, then one has
demonstrated that the exact number of particles doesn't matter, so
long as it is large. That is, one has demonstrated that phase tran-
sitions are robust under changes to the size of the system (as well as
many other changes). Of course, there is much work to be done in
justifying the use of the limit. One can see the work of Jeremy
Butterfield (2011b) as going some way towards providing such a
justification and hence giving an argument for the robustness of
phase transition phenomena.

One must be careful when discussing robustness, for it is easy to
conflate two related ideas connected to perturbations of the un-
derlying physics.12 On the one hand, we can consider varying the
exact conditions of a particular system e i.e. changes which the
system might actually undergo. On the other, we can consider
varying the very nature and make-up of the system itself e these
are counterfactual or imagined changes which bring out features
such as common structure. There has been considerable interest in
the invariance of higher level theories under changes of the second
kind; it goes under the title of ‘universality’ or ‘multiple realiz-
ability’. It is demonstrated, for example, by phase transition
behaviour, which is similar in ferromagnets and fluids; see
(Batterman, 2017; Franklin, 2018). But we do not think that this kind
of behaviour is an essential trait of emergence, despite the histor-
ical discussion of ‘multiple realizability’. For suppose some novel
phenomenon is only demonstrated in a specific class of materials e
particular kinds of metal, for example. Now suppose that the
phenomenon persists in a range of circumstances e it survives
many knocks, movements and environmental changes. Is the re-
striction to metals really relevant to its emergent status? The
literature on multiple realizability suggests that it is, but it's also
famously difficult to understand exactly why this should be the
case. By contrast, the robustness discussed above is obviously
11 This point was originally made to one of us by Adam Caulton; this is also a claim
with which we believe Batterman would agree.
12 Note that a similar distinction is made in (Hüttemann et al., 2015) between
actual and counterfactual stability.
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relevant to emergence, precisely because it's related to the use-
fulness, lifetime, and observability of the phenomenon in question.

Why then, is multiple realizability often focussed on in lieu of
robustness? The confusion turns out to be understandable; the
features that lead to robustness often lead to multiple realizability
as well. In order to demonstrate that some phenomenon is immune
to changes in a given system, one will often, but not always,
highlight features of the phenomenon that render it immune to
changes of the material make-up of a system. The features that
make phase transitions insensitive to particle number may help to
make them insensitive to other details as well. But the connection is
not guaranteed. Although phonon behaviour is demonstrated in a
wide range of kinds of crystal, and is thus stable under counter-
factual or imagined changes, we claim that phonon phenomena
would count as emergent even if phonons were only realised in,
say, aluminium lattices.

In addition, multiple realizability has repeatedly (although in
our viewmistakenly e see for example, (Wilson, 1985)) featured in
arguments against reduction; see e.g. (Fodor,1974). In this paper we
defend the view that emergent phenomena are best understood as
novel and robust, but a well-established tradition in philosophy
regards claims to emergence as shorthand for the denial of
reduction. As such, multiple realizability is seen to serve as an
argument for emergence insofar as it undermines reductionist
claims. Thus multiple realizability and emergence have often been
linked despite the fact that this link detracts from a clear under-
standing of both concepts.

3.3. Novelty

The sense in which phonons are novel requires more explana-
tion. In this section, we offer our own view of the novelty of pho-
nons, and in section 4 we argue that, if phonons are to be
considered novel, their novelty does not come via the use of ap-
proximations and idealizations involving singular limits.

First, we briefly consider an intuitive characterisationwhich has
been defended in the literature. This relates novelty to unpredict-
ability. Two forms of unpredictability may be distinguished: in-
principle unpredictability would preclude reduction and thus be
inappropriate to the phonons case; Bedau, in e.g. (Bedau, 2008), has
developed a view of emergence which corresponds to in-practice
irreducibility or the requirement to use computer simulations in
bottom-up modelling. We think that his account is interesting, but
worry that this too would be inapplicable to the case of phonons
where the derivationmay be carried out by hand. Our contention in
this paper is that phonons ought to count as emergent despite the
fact that they are straightforwardly predictable from the underlying
description.

To our minds, phonons do fall very nicely under an alternative
account of novelty. Knox (2016) argues that novelty might be
analysed as explanatory novelty, and that this explanatory novelty
might come about as the result of particular kinds of changes of
variable or quantity between theoretical levels. In this section, we'll
demonstrate how the phonon example fits into this account.

Let us start with the simple normal modes example of section
2.1. In this case, we noted that not only did a move to normal mode
variables help us to solve the equations of motion, but that it might
also help with explanatory goals. It is quite obviously possible for a
phenomenon to be linked to the normal mode variables rather than
the displacement variables; our (admittedly rather contrived)
example involved a light that flashed when the central spring was
compressed. The most concise explanation of this phenomenon
appeals only to the normal mode variable h2 and equation (5). That
is, after the variable change we can make a novel abstraction
whereby the explanation does not refer to h1. While the
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phenomenon is explicable in the original displacement variables,
both such variables must be appealed to in order to provide the
explanation. As long as we think that good abstractions lead to
better explanations, the normal mode variables offer a better, more
powerful explanation by virtue of allowing an explanatory
abstraction.13

It's this kind of abstraction that we think is the key to the nov-
elty displayed by phonons. But the example above might leave one
unconvinced, for our normal mode variable is a function of just two
displacement variables, and the explanation is not terribly complex
when translated back into the original variables. One might very
well be able to understand the value of an explanation that appeals
to an equation that calculated x1 � x2 without actually changing
variables. So the sense inwhich our abstractive explanation is novel
may seem very weak indeed.

The case is different whenwemove to a more complex example.
As with the normal modes example above, we can highlight just a
small number of phonon variables in the explanation of a phe-
nomenon, abstracting away from other phonon variables. Phonon
variables are linear combinations of a vast number of atomic
displacement variables. So one can imagine that it will be much
harder to ‘see’ the abstraction offered by the move to phonons in
the physics described by the displacement variables before the
variable change.

The introduction of phonon variables allows for information to
be aggregated in new ways and facilitates the selection of a few
salient variables to explain a given phenomenon. Phonons are not
merely calculationally powerful but also explanatorily powerful, at
least if we agree that the right abstraction enhances explanatory
power.

However, the use of the harmonic approximation and the
number of variables involvedmean that the value of an explanation
which appeals only to a small number of phonon variables may be
completely obscure from the perspective of the displacement
physics. Indeed, from such a perspective, the ‘abstraction’, with its
vast number of variables, will not look like an abstraction at all. It is
in this sense that we think that the phonon description has novel
explanatory power.

But this novel explanatory power does not indicate any kind of
failure of theoretical reduction. We know perfectly well what
function of the displacement variables leads to the phonon vari-
ables, and we can back-translate the physics into our original
description. But that does not mean we can understand why the
description thus obtained is explanatorily useful without appealing
to the phonon description. Even though the phonon description is
translatable into the displacement variables, its explanatory value
is invisible unless we choose the right class of variables. One might
think that the explanatory value of two mathematically inter-
translatable sets of variables would be equivalent; however,
consider the counterfactual account of explanation: it's apparent
that different variable choices would invoke different sets of
counterfactuals and thus different explanations would be available.
out limits: The case of phonons, Studies in History and Philosophy of
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In this case, the newly available (novel) explanations account
both for the observed properties of phonons e their dispersion
relations, relaxation times etc. e and for the properties of the
material such as its thermal and electrical conductivity.

This account of novel explanatory power follows that given in
Knox (2016), but that account focussed on the relationship between
thermodynamics and statistical mechanics, where the mathemat-
ical relationships between quantities (the bridge laws) involve
summations, coarse-grainings, and limiting procedures. These re-
lationships mean that the thermodynamic description possesses
less information than the statistical mechanical one e details are
washed out, or abstracted away from, when we move between
descriptive levels. So even if we have a good reduction in the sense
that we can derive the thermodynamic variables from the statistical
mechanical ones, we won't be able to recover the exact statistical
mechanical description from the thermodynamic one. Knox (2016)
proposed that this “mathematical irreversibility” was important to
novelty.

The phonon example is importantly different. The phonon var-
iables, qkj are just linear functions of the displacement coor-
dinatesuLsa. And, of course, the latter are also linear combinations
of the former. So a complete translation between descriptions is
possible in either direction. In this sense, the two descriptions seem
to express a duality, rather than a standard reductive relationship.
This leads to a question that has been pressed on us by David
Wallace: if the relationship here is really one of duality, can one
nonetheless talk about novelty and emergence?

We think (contra (Knox, 2016)) that the answer, at least to the
questionwith regards to novelty, is yes: explanatory novelty can be
displayed even when the descriptive change is entirely reversible.
The phonon case demonstrates this. But emergence is plausibly a
relation that is, by definition, asymmetric; one cannot both think of
phonons as emerging from the crystal lattice and of the crystal
lattice as emerging from the phonons. This sounds right to us, and
suggests that mere robustness and novelty may not be enough for
emergence. We thus may wish to define emergence as a relation
that holds between less and more fundamental phenomena.14
4. Phonons and limits

The account above is not the standard account in the literature.
Muchmore attention has been paid to a viewwhich ties emergence
closely to the use of asymptotic limits; if phonons are well captured
by such an account, one might think that the above discussion is
redundant. However, in this section, we'll argue that asymptotic
limits do not play a role in the derivation of phonons. This should
bolster our claims in the previous section that our view of emer-
gence is best placed to identify the distinctive features which lead
to the emergence of phonons.
4.1. Asymptotic limits

What relation could the example of phonons possibly have to
the asymptotic limits literature? On the face of it, our derivation of
the phonon picture involved the taking of no limits, let alone sin-
gular ones. But it did involve a series of approximations or ideali-
zations: the harmonic approximation, the imposition of a periodic
boundary condition, and the adiabatic approximation. Given that
the asymptotic limits analysis is related to discussions of essential
14 Of course, this leaves open the question of defining a fundamentality relation
sufficient to provide the requisite directionality to emergence, but that project is
beyond the scope of this paper.
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idealizations, it's worth taking a look at the approximations used in
the derivation of the phonon description.

We start with a very basic presentation of what has become the
paradigm example of an asymptotic limit that signifies emergence:
the use of the thermodynamic limit in connecting a thermody-
namic description of phase transitions with a statistical mechanical
account. Thermodynamics tells us that phase transitions occur
when there is a discontinuity in a derivative of the free energy. The
statistical mechanical free energy function is analytic and can have
no such discontinuity. One solves the problem by taking the ther-
modynamic limit of the free energy function e the limit of this
function as the number of particles tends to infinity. Real systems,
of course, are composed of finitely many particles. There is a
reasonable philosophical consensus (Batterman, 2005, 2011;
Butterfield, 2011b; Butterfield & Bouatta, 2011) that phase transi-
tions are novel phenomena of the kind required for emergence
(where the hallmark of emergence is novelty coupled with
robustness). And many commentators locate the source of the
novelty in the use of the thermodynamic limit.

Batterman thinks that the need for the limit shows that finite
statistical mechanics cannot account for the phase transition. He
claims that the limit is required in order to describe the emergent
behaviour corresponding to the phase transition: that is, one may
locate the phase transition only after the limit has been taken.
Butterfield thinks that the limit flags a novel behaviour that in fact
emerges, albeit weakly, in finite systems before the limit. But both
agree that the novelty in this case springs from two related fea-
tures: that limits are used in deriving phase transitions, and that
the relevant limit is singular. All agree that it is crucial that there is a
contrast between behaviour in large but finite systems and infinite
systems; a large gradient in the derivative of the free energy is not
the same thing as an actual non-analyticity.

Perhaps basing our asymptotic account on this one example is
unfair. There is a broader but connected literature on essential
idealizations that might provide the basis for something like the
asymptotic limits account. The essential idealizations literature
stresses that the representation of some phenomena requires the
incorporation of false assumptions into our physical models; such
assumptions cannot be de-idealized in the sense discussed in
McMullin (1985). There has been much discussion of phase tran-
sitions and essential idealizations, but no explicit connection of
essential idealizations with the novelty required for emergence,
although the work of Sorin Bangu (e.g. Bangu, 2015) seems some-
times to hint at this. In fact, we find it difficult to view anything in
the essential idealizations literature as an account of emergence e

essential idealizations involve representational failures exhibited
by our models; this does not look like a good recipe for novelty.

Nonetheless, for the sake of completeness here, we'll consider
the idea that novelty somehow arises whenever the derivation of a
phenomenon from the lower level involves an essential idealization,
that is, an idealization that cannot be de-idealized without losing
the phenomenon in question. We'll see that even if essential ide-
alizations do lead to novelty, the derivation of the phonon
description does not involve such idealizations.

Much subtlety has been glossed over in the above, and there is
no univocal account in the literature of exactly how to characterise
the purported novelty of phenomena like phase transitions. But we
can use this rough sketch as a comparator for our phonon physics:
can anything like the accounts above capture the sense in which
phonon behaviour is novel? Do any of the approximations required
for the derivation either look like essential idealizations or involve
singular limits?

In order to evaluate this we should first distinguish approxi-
mation from idealization. Here, we will follow John Norton (2012, p.
209) in defining approximation as involving an “inexact description
out limits: The case of phonons, Studies in History and Philosophy of
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of a target system” and idealization as involving reference to a
distinct system “some of whose properties provide an inexact
description of some aspects of the target system”.15

Let usmove on to our evaluation of the approximations involved
in the derivation of the phonon description. Might some of these
involve singular limits, or be idealizations in disguise? We start
with the harmonic approximation. Recall that this approximation
depends on assuming that the displacement of the atoms in the
lattice is very small in comparison to the lattice spacing: hu2i≪ a2

where a is the lattice spacing and u is the atomic displacement.16

This breaks down as temperatures approach the melting temper-
ature of the solid. Once the harmonic approximation has been
made, and we have transformed to a set of decoupled equations in
phonon variables, so-called anharmonic terms may be re-
introduced e these are crucial for the modelling of phonon-
phonon interactions and in order for phonons to have finite mean
free paths, these thus play crucial explanatory roles. Such anhar-
monicities may be expressed as terms of the adiabatic potential
beyond second order in the displacement variable expansion.

One could scarcely find a more standard style of approximation
in physics. And on the face of it, there are no limits applied at all. But
might one be able to think of the approximation as a limit of some
sort nonetheless? It's hard to see how. The value of this approxi-
mation relies on not taking the limit of the ratio that we take to be
small; in the limit, there would be no reason to reintroduce higher
order terms, and most equations would reduce to triviality. And
even if there is some way of shoehorning this kind of approxima-
tion into limits talk, there are two reasons why the friend of sin-
gular limits should not go down this route. For one thing, there's no
reason to think there are singular limits around, and most com-
menters agree that it is the singularity of the thermodynamic limit
that is relevant to novelty. And for another, these kinds of
approximation are endemic in physicse if these lead to emergence,
then emergence would be so ubiquitous as to be utterly un-
interesting.

What of idealization, essential or otherwise? The case above
seems to be a classic case of approximation. The description de-
pends on a ratio being small, and thus certain higher order terms
being negligible. These things are literally true of the target system;
no further idealized system is required. The point at which
approximation comes in is the point at which we set higher order
terms to zero; this, of course, is not literally true. But all reference is
to the original system, hence, in Norton's terms, we are discussing
approximation, and a humdrum approximation at that. It's worth
emphasising that while this approximation is central to standard
derivations of the phonon description, limited de-approximation is
essential to recover phonons with realistic properties. Thus it
would be a mistake to regard the harmonic approximation as an
essential idealization.

Next, consider the periodic boundary condition: imposing a
boundary condition like this involves no limits, singular or other-
wise. Might it be an idealization? Perhaps. But it is certainly not an
essential one. There is no particular size of supercell at which we
must set the periodic boundary; pragmatic considerations are the
only issue here. We can set the boundaries as wide as we like e

indeed, they could be of the order of the size of the crystal. There's
no question that normal modes can be defined for large boundaries.
15 A third category, abstraction, which has sometimes been called “Aristotelian
idealization” (McMullin, 1985), is relevant to section 3. This involves the stripping
away, or throwing out, of features in our explanations and representations.
16 There are systems for which this assumption doesn't lead to the harmonic
approximation: for example, quantum hydrogen and helium crystals.
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However, the imposition of periodic boundary conditions does
involve an idealization of sorts, because it allows us to deal with a
model of the crystal without edges which might have otherwise
affected the description of the phonons. This idealization is related
to the more basic assumption that each cell of the crystal has
identical properties e although this holds approximately, it is not
exactly true of any real crystals.17 Essential idealization claims in
this context can be dispelled by observing that we can, here, de-
idealize: small defects, imperfections and edge effects can be
introduced without undermining the physical picture developed
above.18 Large defects or widespread imperfections may lead to
modelling failures, but the behaviour of the real systems thus
represented would deviate from standard phonon behaviour and,
as such, the assumption of no large defects is justified.

The adiabatic approximation is also invoked in the derivation of
the phonon description. Recall that this means that the electron
states and nuclear motion dynamically decouple. This allows us to
start from the assumption that the total systemwavefunction is the
product of the nuclear and electronic wavefunctions, to solve for
this assumption, and to reintroduce interaction effects into the
potential perturbatively. But it is an approximation in just the same
sense as the harmonic approximation. Again, if limits were intro-
duced to model this approximation they would be both gerry-
mandered and non-singular, and no idealization is involved.

Finally it's worth considering an alternative derivation of some
aspects of the phonon picture. Recall from section 2.2 that the
derivation of phonons results in two kinds of mode: acoustic and
optical. The existence of acoustic phonons may be directly pre-
dicted from the translational symmetry breakingwhich leads to the
formation of a crystal lattice. Thus, here, we ask if symmetry
breaking introduces an additional limiting idealization/approxi-
mation which might restore an asymptotic limits account of
emergence.

Goldstone's theorem states that for any theory which is
invariant under a continuous symmetry transformation, if that
symmetry is broken by the ground state, then there will be mass-
less excitation modes. One may construct a translationally and
rotationally symmetric mathematical description which represents
all the particles whichmake up the crystal lattice; in order to derive
a description of the lattice, such symmetries must be broken.
Acoustic phonons are the massless excitations which result from
this symmetry breaking. This account of phonons seems particu-
larly relevant to the present discussion because symmetry breaking
requires an asymptotic limit: one can only have the degeneracy in
the ground state required for the symmetry to be broken if one
considers the system in the infinite limit. As such, one might think
that phonons are not a case of emergence without limits.

However, it's important to note where the limit is taken. The
limit in this case is necessary to break the translational symmetry
and thus is a step in the (purely theoretical) construction of the
crystal lattice from the symmetric mathematical model. The limit is
taken prior to the formation of the phonons. As youmight expect in
a reductive scenario, some features of phonons follow from a more
basic physical description: in particular the same limit-involving
story that leads to the existence of the crystal lattice also leads to
the prediction of acoustic phonons; however, if we start from the
17 Note that this basic periodicity of the crystal results in the momentum con-
servation properties of phonons: momentum is only conserved up to the addition
of an integer number of reciprocal lattice vectors.
18 [Kantorovich, 2004, x1.5.2] is a brief taxonomy of crystal defects, Kantorovich
later discusses how crystal defects can be taken into account as anharmonicities,
and can otherwise lead to shorter mean free paths of phonons. In the limit, defects
will lead to an amorphous (non-crystalline) solid; see (Thorpe and Mitra, 1976) for a
discussion of techniques for modelling phonons in amorphous solids.
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crystal lattice, no limiting relation is involved. This should be clear
from the discussion above e we have outlined the derivation of
phonons without appealing to any symmetry breaking, as is stan-
dard in many textbook treatments. Moreover, our derivation ap-
plies to both acoustic and optical phonons, rather than just to the
special case of Goldstone bosons. While the existence of these
particular bosons, and hence acoustic phonons, is directly pre-
dictable from the symmetry breaking involved in lattice construc-
tion, on our view predictability and emergence are compatible.

It should be clear from the analysis in this section that the
relation between phonons and the lattice does not essentially
involve any limits, singular or otherwise, or any idealisations which
cannot be de-idealized.
5. Conclusion

This paper has demonstrated that a physical phenomenon can
be emergent despite its description not requiring appeal to an
asymptotic limit. The description of phonons is both novel and
robust with respect to the description of the underlying atomic
lattice. It is in virtue of this novelty and robustness that the phonon
description, and, as a consequence, that phonons are taken to be
emergent; but the phonon description is not derived by any
limiting procedure, and the phonon variables are, in fact, exactly
translatable into the displacement variables. Nonetheless, we think
that the phonon description allows for abstractions that are not
available in the underlying description, and therefore involves
novel explanations. Insofar as phonons are also robust under per-
turbations of the underlying crystal physics, and are described by a
theory that is less fundamental than the basic theory of the crystal,
they are emergent.

In addition, we draw the conclusion that, while asymptotic
limits play a role in robustness analysis, and, thus, for cases in
which there are limits employed, the limit helps establish the
emergence of the relevant phenomenon, pointing to such limits
does not explain the novelty of emergent phenomena. Moreover,
the example of phonons illustrates that recognisably emergent
phenomena neither require limits nor essential idealisations to
figure in their derivation from the more fundamental description.

By way of summing up, it's worth considering what kind of
account of emergence is on offer in this paper. Strong emergentists
often claim that emergent phenomena are in-principle irreducible,
and, as such, their account is rightly regarded as metaphysical;
while weak emergentists may claim in-practice irreducibility and
thus a merely epistemological account. Our account, by contrast,
holds that emergence and reduction are compatible but features
both metaphysical and epistemological aspects. On the one hand,
one reason to accept phonons as emergent is that phonon variables
are useful and allow us to understand phenomena that would be
incomprehensible were we forced only to appeal to displacement
variables. On the other hand, the fact that phonons allow for such
good explanations tells us something about the world e phonon
variables pick up on real dependency relations. Despite the fact that
we can translate the phonon description directly into an account in
terms of atomic displacements, phonons are emergent both
because they allow for otherwise unavailable explanations and
because, in some sense, they're really out there.
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