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Abstract

Going from two dimensions (curl and circulation) to three (divergence and flux in
electrostatics or ‘Newton-Poisson gravity’) can shed light on the Aharonov-Bohm
debate. The three-dimensional analogy is misleading if taken too literally; it makes
sense on a more abstract, formal level (where, for instance, the electromagnetic
field is viewed somewhat metaphorically as a ‘source’—of electromagnetic turbu-
lence). A slight tweak is enough to produce (a fictitious) gauge freedom in three
dimensions.

1 Introduction

In the literature one finds three or even four interpretations (§4) of the Aharonov-Bohm
effect! (§2); going from two to three dimensions can shed light on all of them. What
I propose is an analogy and by no means an exact rendering of the effect in three
dimensions—which in any case would be impossible. More precisely, one has to dis-
tinguish between the formalism and (an unduly literal understanding of) the physics:
we’ll see that the ‘overly literal’ physics is misleading, whereas the analogy works
well on a more abstract, formal level. The scheme depends on differential forms, and
is harder to understand in the old vector calculus of curl, divergence efc.

Strictly speaking, the Aharonov-Bohm effect isn’t even two-dimensional to begin
with: it is three- (or even four-)dimensional. But it is rightly discussed in the litera-
ture as two-dimensional: one thinks of a horizontal section, an xy plane.” Most of the
relevant features vary relatively little along the vertical direction z; even if some (such
as the wave-function) can vary more, the emphasis on two dimensions remains legiti-
mate. And indeed the version of ‘Stokes’ that’s used is the ‘two-dimensional’ theorem
involving the curl and the circulation around a loop.

Reformulation in three dimensions involves a translation of the main entities; again,
some of the correspondences can be surprising, even misleading: the electromagnetic
field F in the solenoid (2D) becomes the charge density p (3D), the electromagnetic
potential A (2D) becomes the electric field £ (3D) and so on. To avoid misunderstand-
ings it will be best to have not two but three ‘languages’ or ‘vocabularies’: one for

1Ehrenberg & Siday (1949), Aharonov & Bohm (1959); see also Franz (1939, 1940, 1965), Olariu &
Popescu (1985), Hiley (2013).

2The nature of an n-form depends on the size of the environment; so a two-form a3 € /\2 R3 corre-
sponds to a vector in R3 but to a density az € /\2 R?in R2.



two dimensions, one for three, and an abstract vocabulary for both. For instance: loop
(2D), membrane (3D), boundary (abstract); electromagnetic field (2D), charge density
(3D), source (abstract); electromagnetic potential (2D), electric field (3D), primitive
(abstract). All this is in the table below (§3).

The three-dimensional treatment sheds light on a number of philosophical and
foundational issues: non-locality, the relationship between empirical accessibility and
gauge freedom, the rdle of topology and so forth.

In §2 I briefly describe relevant features of the Aharonov-Bohm effect, in §3 I go
into the electrostatic analogy, in §4 I look at the three-dimensional versions of the four
interpretations.

2 The Aharonov-Bohm effect

A wave-function is split into two, and these, having enclosed a (simply-connected)
region £, containing a solenoid, are made to interfere on a screen. The encircling wave-
function is sensitive to any electromagnetism inside inasmuch as the electromagnetic
potential A € /\1 R2, a one-form, contributes a phase

expi A
0L,
to (the wave-function along) the boundary 0£5 and hence to the interference pattern
on the screen. The electromagnetism on £s is related to the circulation around the
boundary by Stokes’s theorem

=g a=[[ aa
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One can think of concentric circles: The electromagnetic field® F' = dA € /\2 R? pro-
duced by the solenoid is confined to a central disc Jo C £9 surrounded by an annulus
Dy = £9—T9 where F vanishes but not A. Usually there’s just one (cylindrical) shield,
around the solenoid; but for the clean delimitation of an (arbitrarily large) intermediate
annulus it can be useful to think of two coaxial cylindrical shields: one keeping the
electromagnetic field in inside a larger shield keeping the wave-function out.*

Varying the current through the solenoid changes the arbitrarily distant interference
pattern, which is perhaps surprising. The effect is differential, not binary (on/off).

3 In three dimensions

We can begin with a table outlining the correspondences, which should in due course
become intelligible.

31t is best to view F' as a purely magnetic field B produced by the current density J = d % B in the
solenoid, where the star indicates Hodge duality.

4In fact there are not two but three ‘discs’ or ‘circles’ or ‘loops’: first, the support of F'; then, the shield
delimiting the annulus on the outside; and finally, the loop running through the wave-function. To simplify,
I have conflated the last two. If one would rather distinguish, there is an ‘integration loop’ outside a circle
‘keeping the wave-function out’ (outside the support of F’).
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holonomy interpretation
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In three dimensions we have a charge p = dE € /\3 R? radiating an electric field
DS /\2 R? which is then caught by an enclosing membrane B3 = 0L3; Stokes’s

theorem becomes
e ffm Lo 1]
L3 £3 £3

Here we can think of the (nonsimply-connected) isolating region ® as the difference
®3 = £3 — J3 between the region £3 bounded by the membrane ‘B3 and the support
J3 of p. To obtain a satisfactory analogy, it won’t even be necessary to modify standard
electrostatics: a slight tweak will be enough. What we need is a three-dimensional
(electrostatic) freedom analogous to

[A] = [A+d\, =d'F,

where A € /\0 R? is a function and [A] the equivalence class of all one-forms differing
by an exact term d \A—which corresponds to the kernel® of the curl d : /\1 R? — /\2 R2.
In a sense we already have the right freedom in

(1) [E] = [E+d€]le = d'p,

where d¢ € /\2 R3 is the curl of a one-form ¢ € /\1 R3. The difference being that
the electric field F is empirically accessible, whereas the potential A isn’t. So we’ll
have to assume that the individual electric field E (as opposed to the class [E]) is just
as unmeasurable as A in two dimensions. The electric charge p and flux §3, which
remain measurable, determine the class [E], not an individual electric field E.

In what sense is F' a source ©? Just as the charge p = &3 is the source of the
electric field E = 3 (a perturbation of the surrounding medium) which is then caught

SDifferential operators are destructive, their kernels are not trivial; but the loss can be overcome, or rather
reversed, by an appropriate specification (along the lines of a ‘constant of integration’)—here a zero-form.
Each element of [A] = d~'dA corresponds to a different zero-form; a particular X restores the original A.



by the boundary B3, the electromagnetic field F' = G3 (a curl, after all) is the source of
the surrounding electromagnetic ‘turbulence’ which, carried by the potential A = B,
is likewise caught by the boundary B5.

Newton-Poisson gravity® (where p is the gravitational source density, £ the gravi-
tational field and so on) is isomorphic to electrostatics and would be equivalent for our
purposes. I've concentrated on electrostatics which is no doubt more familiar.

4 The four interpretations in three dimensions

In two dimensions the interpretations can be called:
(1-2) electromagnetic field interpretation’

(2-2) potential interpretation®

(3-2) holonomy interpretation’

(4-2) topology interpretation.'”

This is not the place to summarise the whole two-dimensional debate, details can
be found in the cited literature; the two-dimensional interpretations can moreover be
largely inferred from the three-dimensional treatment, for which I propose the follow-
ing terms:

(1-3) electric charge interpretation

By this I just mean Newtonian gravity with Poisson’s equation.

7 Aharonov & Bohm (1959) p. 490: “we might try to formulate a nonlocal theory in which, for example,
the electron could interact with a field that was a finite distance away. Then there would be no trouble in
interpreting these results, but, as is well known, there are severe difficulties in the way of doing this.” See
also Healey (1997).

8 Aharonov & Bohm (1959) pp. 490-1: “we may retain the present local theory and [...] try to give
a further new interpretation to the potentials. In other words, we are led to regard A, (x) as a physical
variable.” See also Feynman, Leighton, Sands (1964) §15-5.

9See Wu & Yang (1975), Healey (1997, 2001, 2004, 2007), Belot (1998), Lyre (2001, 2002, 2004a,b),
Myrvold (2011).

10See Afriat (2013), especially footnote 6, especially Batterman (2003, p. 544): “We now have a U(1)
bundle over a nonsimply connected base space: R2 — {origin}. This fact is responsible for the AB effect.”
Ibid. pp. 552-3: “most discussions of the AB effect very quickly idealize the solenoid to an infinite line in
space or spacetime. The flux, in this idealization, just is the abstract topological property of having space
or spacetime be nonsimply connected. [...] The issue is whether the idealizations—[ ...] and nonsimply
connected space in the AB effect—do better explanatory work than some less idealized description. I believe
that the idealized descriptions do, in fact, do a better job.” Ibid. p. 554: “It seems to me that for a full under-
standing of these anholonomies, one needs to appeal to the topology and geometry of the base space. [...]
If we take seriously the idea that topological features of various spaces [...] can play an explanatory role
[...]” Footnote 29, same page: “it is most fruitful to treat the AB solenoid as an idealization that results in
the multiple connectedness of the base space of a fiber bundle.” Ibid. p. 555: “The different cases are unified
by the topological idealization of the solenoid as a string absent from spacetime which renders spacetime
nonsimply connected. [ ...] This topological feature enables us to understand the common behaviour in dif-
ferent AB experiments [...]. [...] how can it possibly be the case that appeal to an idealization such as the
AB solenoid as a line missing from spacetime, provides a better explanation of genuine physical phenomena
than can a less idealized, more “realistic” account where one does not idealize so severely? [ ...] quite often
[...] appeal to highly idealized models does, in fact, provide better explanations.”



(2-3) electric field interpretation
(3-3) membrane interpretation

(4-3) topology interpretation.

4.1 The electric charge interpretation

This interpretation can be expressed as follows: Since (1) is a class, full of individuals,
it has to be a physically meaningless'' mathematical fiction; which means there’s noth-
ing at all between the source and the boundary 83. The flux §3 through the boundary
is therefore a non-local effect, in the sense that it isn’t conveyed by a ‘carrier’ E.

4.2 The electric field interpretation

The flux §3 is carried from the source to the boundary B3 by the electric field E € [E].
To the question “which E € [E] in particular?” there are at least three answers:

a) Ttreally doesn’t matter, any E € [E] will do—all elements of [E] are on an equal
footing.

b) The elements of [E] are not all on an equal footing; only one of them, F, is the
right one. But since the distinguished element E is assumed to be empirically
inaccessible, any element of [F] will do.

¢) The elements of [E] are all on an equal footing, empirically. But measure-
ment isn’t the only way of selecting or ruling out elements of [E]: some could
be @sthetically or pragmatically (or even historically'?) privileged; simplicity,
elegance, beauty, economy, convenience or even computational considerations
could be relevant.!?

A wave-function is in fact an equivalence class [¢)] of functions that differ only on
a set of vanishing measure; is the cardinality of [¢)] enough to rule out the physical
relevance of wave-functions and indeed the objects (e.g. electrons, the universe) they
describe, consigning them all to a shady realm of mathematical fictions? Is embarras
de richesses so embarrassing that the riches should all be altogether renounced?

4.3 The membrane interpretation

Since (1) is a class, full of individuals, it has to be a physically meaningless mathemati-
cal fiction. But to avoid the non-locality of the electric charge interpretation, something
in ®3 has to carry the flux §3 from the source to the boundary. Since the flux is the

11See Nguyen, Teh, Wells (2018) on the status of structure often called “superfluous.”

2Duhem (1989) p. 388ff

13For instance, one could favour a primitive 93 characterised by purely radial lines; in standard electro-
statics, with measurable F, this geometrical criterion would (with a spherically symmetric charge) give the
right electric field lines. In two dimensions, where the lines are level sets, the criterion would correspond to
a very natural gauge choice. Why wouldn’t the lines be purely radial? Must they really be allowed to bend
and wiggle?



same for the whole homotopy class $3, we can replace E with $3; so a class of bound-
aries somehow conveys the electric field, or rather [E] (or whatever it is that manifests
itself on the boundary as an electric flux §3). In other words: There has to be something
in ©; if it can’t be the class [J3], it has to be the class $).

So far we’ve assumed that the individual 9 € [3] is unmeasurable. The homotopy
class $) owes its physical legitimacy to the empirical inaccessibility of *J3. Now suppose
that °3 becomes measurable—a new experiment is devised to pick a single I3 out of the
class [B]. The new experiment dissolves $), degrading it into a mere mathematical
fiction. But how can an experiment concerning [J3] change the ontological status of £?

There would be ways of making the measurability of 3 a matter of degree: more or
less measurable, to some degree or other (say one-half, or perhaps 0.73, on a scale from
zero to one), rather than just entirely measurable or not at all. Would the ontological
status of $) vary accordingly? Very real rather than somewhat real? One can imagine an
‘ontological intensity lever’ which, by controlling the measurability of B3, determines
the ontological intensity or degree of reality of the homotopy class $): at one end the
lever makes $) a mere mathematical abstraction, at the other it gives § full physical
legitimacy.

Summing up, these first three interpretations can be distinguished by what they put
in the isolating region ®:

(1-3) nothing at all
(2-3) electric field

(3-3) homotopy class .

4.4 The topology interpretation

If a differential form 3 is closed on a simply-connected region £,
dB = 0|g,"

the integral § through the (outer and only) boundary 8 = £ will vanish. In other
words if no source radiates any “3’ anywhere inside the outer boundary ‘B, the flux
§ through ‘B has to vanish—the topological condition means there can be no inner
boundary that might contain a “PB-producing’ source, whose flux through the inner
boundary would reach the outer boundary as well.

But if instead of the simply-connected region £ we have ©, with a hole J, the logic
of the matter gets more complicated: the absence of a source on ® no longer allows us
to conclude that no “P’ is produced anywhere inside the outer boundary ‘B—for there
may be an inner boundary containing a “P-producing’ source (whose flux through the
inner boundary would reach the outer boundary as well). So even if dJ8 = 0|¢ means
that § = 0 through 9, the condition dJ38 = 0|o is compatible with both § = 0 and
§ # 0 through the outer boundary 8.

The topology interpretation in electrostatics can be summarised as follows: If
there’s no charge contained in ‘B3, the flux §3 through B3 will vanish; if there may

14The notation, with the vertical bar, means that the statement holds where indicated (here on £).



be a charge in B3, the flux through §3 may not vanish. More generally, if there’s no
source in ‘B, the flux § through B will vanish; if there may be a source in ‘B, we may
have § # 0.

But the flux is produced by the source, not the hole. Without a source, the (desired)
implication

[dF = Olo] = [§ # 0]

is groundless, indeed wrong.!> If one cannot avoid attributing the flux to the source
that produced it, why bother with all the supposedly autonomous topological circum-
locution? The ‘topologist’ seems to want to ‘shift the explanation’ from the source to
the topology, replacing the source with an appropriate topological condition. There’s
nothing wrong with an emphasis on the flux over the source; but a mere hole on its own
doesn’t even provide the flux.

5 Final remarks

The physics of the analogy, if taken too literally, can be misleading: in two dimensions,
the electromagnetic field F' is viewed as a ‘source’; in three dimensions, the electric
field E has the same rdle as the potential A in two; and so on. The analogy makes sense
on a more abstract level. A single stipulation is enough to make it work: the individual
E € [E] = d~'p must be empirically inaccessible.

Indeed we have seen that the problem, the paradox, the whole debate is produced
by the unmeasurability of a primitive (A in two dimensions, which corresponds to F
in three): if the individual primitive B (rather than the whole inverse image [P] =
d~'& of the source) were measurable, it would carry the effect from the source to
the boundary, without non-locality—or the need to look, beyond E, for an ‘invariant’
medium (a homotopy class of boundaries) to carry the effect in its place.

As to the topology interpretation, one wonders how a flux can be due to a mere
hole, that may or may not contain a source; it is clearly produced by the source itself.

Again, I am only claiming that the three-dimensional analogy sheds light on the
debate, not that it captures absolutely everything—indeed it is easy to find features of
the two-dimensional case that get ‘lost in translation.’
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