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Abstract: Although philosophers have often held that causation is a purely descriptive notion, a 
growing body of experimental work on ordinary causal attributions using questionnaire methods 
indicates that it is heavily influenced by normative information. These results have been the 
subject of sceptical challenges. Additionally, those who find the results compelling have 
disagreed about how best to explain them. In this chapter, we help resolve these debates by using 
a new set of tools to investigate ordinary causal attributions—the methods of corpus linguistics. 
We apply both more qualitative corpus analysis techniques and the more purely quantitative 
methods of distributional semantics to four target questions: (a) Can corpus analysis provide 
independent support for the thesis that ordinary causal attributions are sensitive to normative 
information? (b) Does the evidence coming from corpus analysis support the contention that 
outcome valence matters for ordinary causal attributions? (c) Are ordinary causal attributions 
similar to responsibility attributions? (d) Are causal attributions of philosophers different from 
causal attributions we find in corpora of more ordinary language? We argue that the results of our 
analyses support a positive answer to each of these questions. 
 
 
 
1. Introduction 
 
Most studies in experimental philosophy have used questionnaires involving vignettes. There are 

good reasons for the prevalence of questionnaire methods in experimental philosophy, including 

that these methods are fairly easy to use and are well-suited to investigating many of the 

philosophical questions that have been asked. As the present volume amply illustrates, however, 

questionnaire methods are not the only methods available to experimental philosophers, nor are 

they the only ones that experimental philosophers have used. In this chapter we will offer a brief 

introduction to a powerful set of non-questionnaire methods that can aid experimental 

philosophers in investigating a wide range of questions—methods of corpus linguistics.2 

                                                 
1 To appear in Methodological Advances in Experimental Philosophy, edited by Eugen Fischer and published by 
Bloomsbury Press. We would like to thank an anonymous reviewer for the many insightful comments, as well as 
Eugen Fischer for his philosophical and administrative support. 
2 Although a handful of philosophers have used different tools of corpus linguistics (for a brief overview, cf. Bluhm 
2016), and although the interest in the approach seems to have increased recently (e.g., Reuter 2011, Bluhm 2012, 
2013, Hahn et al. 2017, Fischer and Engelhardt 2017, Sytsma and Reuter 2017, and the contribution by Mejia et al. in 
this volume), the use of corpora is still marginal to philosophy.  
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Our primary goal in this chapter is to introduce experimental philosophers to working with 

corpora, to survey some of the tools available, and to demonstrate how these tools can 

complement the use of questionnaire methods. Toward this, we will put some of these tools to use 

in an area of research that has seen a flurry of interest in recent years—investigations of the effect 

of norms on ordinary causal attributions. Specifically, we focus on four questions: (a) Can corpus 

analysis provide independent support for the thesis that ordinary causal attributions are sensitive 

to normative information? (b) Does the evidence coming from corpus analysis support the 

contention that outcome valence matters for ordinary causal attributions? (c) Are ordinary causal 

attributions similar to responsibility attributions? (d) Are causal attributions of philosophers 

different from causal attributions we find in corpora of more ordinary language? We argue that 

the results of our analysis provide evidence for a positive answer to each of these questions. 

Here is how we will proceed. In Section 2, we will briefly discuss recent work in 

experimental philosophy on ordinary causal attributions, highlighting our four questions. In 

Section 3, we introduce corpus linguistics. In Section 4, we bring corpus analysis methods to bear 

on our target questions. In Section 5, we use methods of distributional semantics to support the 

previous analyses. We conclude with some general methodological advice concerning the 

integration of corpus analysis techniques into experimental philosophy and philosophy as a whole. 

 

2. Ordinary Causal Attributions and Injunctive Norms 

Philosophical discussions of causation are often concerned with what has been termed actual 

causation. Actual causation is usually contrasted with general causation. A general causation 

statement describes a law-like relation between two types of events that stand in a causal relation, 

such as ‘smoking causes cancer’ or ‘throwing rocks at windows causes them to break’. An actual 
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causal statement, in contrast, describes the relation between two event tokens, such as ‘Peter’s 

smoking caused his lung cancer’ or ‘Jenny’s throwing the rock caused the window to break’. For 

both general and actual causation, most philosophers assume that the concept of causation is a 

purely descriptive notion, refering to a relation in the world. As a consequence, a causal 

attribution such as ‘A caused B’ is true if and only if the relation of causation holds between A 

and B. Such an understanding of causation, however, means that normative considerations are 

irrelevant to causal attributions. The basic idea here is that whether or not an action is permitted 

by morality or convention simply does not matter for purposes of assessing whether that action, or 

the entity carrying it out, caused the outcome. Similarly, whether an action causes a morally good 

or bad outcome is irrelevant for causal considerations. Call this the standard view on causation.  

Against the standard view, a growing body of empirical findings indicates that ordinary 

causal attributions are sensitive to normative information, prominently including injunctive norms 

(Hilton and Slugoski 1986, Alicke 1992, Knobe and Fraser 2008, Hitchcock and Knobe 2009, 

Sytsma et al. 2012, Reuter et al. 2014, Kominsky et al. 2015, Livengood et al. 2017a).3 Injunctive 

norms include both prescriptive norms, which tell people what they should do, and proscriptive 

norms, telling people what they should not do.4 Moral norms, such as the impermissibility to kill 

or hurt others, are a prime example of injunctive norms, but there is also a variety of non-moral 

norms that have similar action-guiding functions, such as social rules and regulations, etiquette 

norms, and so on.5 

                                                 
3 These results do not directly challenge the standard view. Rather they put pressure on it insofar as philosophers are 
committed to what Livengood et al. (2017a) call the folk attribution desideratum. The folk attribution desideratum 
asserts that a key measure of the acceptability of an account of actual causation is that the verdicts it issues about 
specific cases line up with ordinary causal attributions about those cases. And there is reason to think that many, 
perhaps most, philosophers working on causation are committed to this desideratum.  
4 It should be noted that in the recent literature in experimental philosophy of causation, ‘prescriptive norm’ is often 
used indiscriminately to refer to both prescriptive norms and proscriptive norms as we understand them. 
5 Injunctive norms can be distinguished from descriptive norms (or ‘statistical norms’). While there is an ongoing 
debate among experimentalists about whether descriptive norms have an independent effect on ordinary causal 
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Here are a couple of the empirical findings that have received much attention in the 

literature. Knobe and Fraser (2008) presented people with a story in which a secretary keeps her 

desk stocked with pens, and both administrative assistants and faculty members help themselves 

from this stock. However, faculty members are not supposed to take pens. One day, both 

Professor Smith and the administrative assistant take a pen. Later that day, the secretary has no 

pen left to take an important message. Who caused the problem? In this case, Professor Smith and 

the administrative assistant performed symmetric actions (each took a pen), jointly leading to a 

bad outcome. The key difference between them is that while Professor Smith violated an 

injunctive norm (faculty members are not supposed to take pens), the administrative assistant did 

not (administrative assistants are allowed to take pens). Despite the two agents performing 

symmetric actions, participants were significantly more likely to agree that Professor Smith, the 

norm-violating agent, caused the problem than that the administrative assistant did.  

To make matters more interesting, in a follow-up study, Sytsma et al. (2012) tested what 

happens if you remove the injunctive norm from the Pen Case, such that both Professor Smith and 

the administrative assistant are allowed to take pens. They found that participants now tended to 

disagree that Professor Smith caused the problem, while continuing to deny that the 

administrative assistant caused the problem. 

Livengood et al. (2017a) used a computer case scenario, for which they found the same 

effects. More specifically, their studies revealed that participants were significantly more likely to 

agree that an agent who violated a norm caused a bad outcome, compared to the norm-conforming 

agent. Agreement that the norm-conforming agent caused the bad outcome was significantly 

                                                 
attributions (e.g., Knobe and Fraser 2008, Sytsma et al. 2012, Livengood et al. 2017a), we will focus on injunctive 
norms in this chapter. 
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below the neutral point, while agreement for the norm-violating agent was significantly above the 

neutral point. Similar results were found using a between-participants design.  

While the Pen Case and the Computer Case are probably two of the most prominent 

examples in the literature, similar effects have repeatedly been found in subsequent research, and 

they seem to be robust for different causal structures (Kominsky et al. 2015, Sytsma et al. ms, 

Livengood and Sytsma under review), for both actions and omissions (Henne et al. 2015, 

Willemsen & Reuter 2016, Willemsen 2016), and across multiple test queries (Livengood et al. 

2017a, Livengood and Sytsma under review).  

Several explanations of the relevance of injunctive norms have been proposed in the 

literature. The most fundamental dispute regards the question of whether the observed effects 

reveal a real effect of injunctive norms on causal attributions. In two recent papers, Samland and 

Waldmann (2014, 2016) have denied this. According to their alternative explanation, when 

participants answer the question in studies like those noted above, they do not read the questions 

as being about causation, but about a related notion such as accountability or responsibility.  

The researchers who are convinced that norms do affect causal attributions have offered a variety 

of explanations of why and how this effect occurs. In the following, we will focus on two specific 

explanations, the norm violation and the responsibility account, as they make empirical 

predictions that we believe can be effectively tested with help of corpus analyses.6  

The norm violation account put forward by Hitchcock and Knobe (2009) holds that the 

effects of norms in cases like we saw above are best explained in terms of the cognitive processes 

that lead to causal attributions being sensitive to norms. According to Hitchcock and Knobe’s 

                                                 
6 While we will focus on these two accounts here, it should be noted that these are not the only two plausible 
explanations in the literature nor are they the only two worth discussing. Just a few notable examples are the work of 
Alicke 1992, Cushman 2013, Malle et al. 2014, and Reuter et al. 2014. 
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account, causal judgements serve to identify suitable points for intervention in a system, and 

norms come into play because they affect which counterfactuals are most salient for determining 

the suitability of different intervention points. The basic idea is that in considering a situation, 

people think about how the outcome could have been prevented. But they do not consider every 

way in which the outcome might have been prevented; rather, they focus on those aspects of the 

situation in which something abnormal (i.e., counter-normative) has occurred. As such, while the 

norm violation account holds that the evaluation of norms is a crucial component in causal 

cognition, this does not mean that the concept of causation at play in ordinary causal attributions 

is a normative concept. Instead, norms come into play when people attempt to identify suitable 

intervention points in normatively-laden situations.  

The responsibility account put forward by Sytsma et al. (2012) contends that the concept 

of causation at play in ordinary causal attributions is itself normative. Thus, the cognitive process 

of making causal attributions starts off from a normatively-laden concept. Instead of making a 

purely descriptive causal judgement that is later tainted by norms, the causal judgements are 

already normative. Sytsma and Livengood (2018, 7–8) express the idea this way:  

Saying that an agent caused an outcome… typically serves to indicate something more 
than that the agent brought about that outcome or that the agent’s action produced that 
outcome. Rather, it serves to express a normative evaluation that can be roughly 
captured by saying that the agent is responsible for that outcome or that the agent is 
accountable for that outcome, whether for good or for ill. 
 

The norm violation account and the responsibility account make a number of diverging 

predictions. One such prediction is that while Hitchcock and Knobe hold that normative 

considerations have the same effect on causal attributions regardless of the outcome valence 

(regardless of whether the outcome is good or bad), the responsibility account allows that 

outcome valence might often make a difference.  
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As we noted above, Hitchcock and Knobe explain the influence of norms on causal 

attributions exclusively in terms of shaping the counterfactuals that are considered. And whether 

the outcome is good or bad would not seem to be directly relevant to assessing whether a 

counterfactual in which a candidate cause did not occur was more normal than what actually 

happened. Thus, Hitchcock and Knobe argue that to assess Alicke’s (1992) competing account, 

which they read as explaining the influence of norms in terms of the desire to assign blame for the 

outcome, what is needed are cases in which a norm is violated and yet where no one is assigned 

blame because the outcome is good. They write that for such cases their account ‘suggests that the 

impact of normative considerations should remain unchanged (because people still see that a 

norm has been violated)’ (2009, p. 603; emphasis added). 

The responsibility account, by contrast, does not make a direct prediction about the role of 

outcome valence in ordinary causal attributions; rather, it makes a prediction when coupled with a 

plausible prediction about responsibility attributions—that people are more likely to assert that an 

agent is responsible for a bad outcome than a good outcome.7 If this is correct, and if causal 

attributions are relevantly akin to responsibility attributions, then we would expect that outcome 

valence will often make a difference. 

One way to make progress on the issues concerning the role of norms on ordinary causal 

attributions that we have surveyed in this section would be to run still more questionnaire studies. 

However, we want to suggest that there is also benefit in approaching the problem from another 

angle. What we aim to demonstrate in this chapter is that there is another source of evidence that 

                                                 
7 We find this plausible because we expect that people are generally more concerned with assigning blame than 
praise, as a number of philosophers have noted. For instance, Prinz (2007, 79) writes: “We blame someone for 
stealing, but we don’t issue a medal when he refrains from stealing. We don’t lavish the non-pedophile with praise for 
good conduct. In other words, we tend to expect people to behave morally.” While we will not argue for the veracity 
of this prediction here, it does find some support in the corpus analyses detailed below. 
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can be brought to bear on these questions, namely corpus linguistics, and that its methods can 

both complement and enhance the use of questionnaire studies. After offering a brief introduction 

to corpus linguistics and applying some of its methods to the domain of ordinary causal 

attributions, we will return to the use of questionnaire studies and discuss potential shortcomings 

of such studies and how they can be alleviated through the use of corpus analysis.  

 

3. The Basics of Corpus Analysis 

Corpus linguistics is a discipline of linguistics that is defined by its use of methods of corpus 

analysis. In its most basic sense, the term ‘corpus’ simply refers to ‘a collection of texts’ 

(Kilgarriff and Greffenstette 2003, p. 334) and ‘analysis’ to the process of looking at the linguistic 

data that the corpus contains and assessing it for some research purpose.8  

There are, briefly summarized, three sources of this method (cf. McCarthy and O’Keeffe 

2010a). Its historical roots can be traced back as far as the Middle Ages, when concordances of 

Biblical words and phrases in context were compiled to assist exegesis. One of the basic functions 

of present-day corpora still is—particularly important for qualitative assessment of corpus data—

to provide listings of queried linguistic expressions in context, in much the same mode of 

presentation as the one that medieval concordances used. The second important source of corpus 

analysis is the recognition of the importance of data representing actual use of a language, as 

opposed to data generated by the linguists themselves.9 The third factor driving the development 

of corpus linguistics—particularly important for quantitative analyses of corpus data—is the fast-

paced development and spread of computer technology and the Internet in the late 20th century. 

                                                 
8 Helpful overviews of the discipline are given by Biber et al. 1998, McEnery and Wilson 2001, and McCarthy and 
O’Keeffe 2010b. For a quite comprehensive collection of articles on many aspects of corpus linguistics, see Lüdeling 
and Kytö 2008–2009. 
9 See Leech 1992. 
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Thus, while all corpora used in corpus linguistics basically are ‘collections of texts’, present-day 

corpora typically are collections of digitalized texts that are accessed with computers.  

Paradigmatic examples of well-known, large and freely accessible English-language 

corpora are the British National Corpus (BNC) and the Corpus of Contemporary American 

English (COCA).10 The World Wide Web also offers a rich repository of digital texts, and while it 

is somewhat problematic to simply use the web as a corpus (termed WaC in the literature), there 

are some ways to tap into the Web’s wealth of data by using extracts of it for building a corpus 

(termed WfC in the literature). We will make use both of COCA and a WfC approach below.11  

One of the aspects that make a corpus out of a mere collection of texts is the decision to 

look for evidence of some use of linguistic expressions in it. The access to the data granted by the 

search engine is therefore not at all marginal to corpus analysis. Every run-of-the-mill search 

engine can do a full text search and handle wildcards, that is, it is possible to execute a query with 

a search string (a sequence of alphanumeric characters) in which some letter or letters are 

substituted with a variable. For example, ‘cause*’ will not only find all instances of the use of 

‘cause’ as a verb and a noun in the corpus, but also tokens of ‘causes’, ‘caused’, and more 

unexpected words such as ‘causeway’ and ‘causer’. A more sophisticated corpus is pre-analysed 

and annotated with linguistic information, allowing, for example, to specifically search for the 

lemma ‘cause’. This means that all instances of the root word ‘cause’ regardless of inflection. It 

further allows to find tokens by grammatical category, e.g., only instances of the verb ‘causes’ in 

its third person singular form, instead of the noun in its plural form; or co-occurrences of 

expressions, e.g., the lemma ‘cause’ together with some noun (within a specified distance). Such 

                                                 
10 The number and variety of corpora compiled by linguists is ever-growing. Xiao 2008 and Lee 2010 give an 
overview of extant corpora, usefully sorted by type.  
11 The useful terms ‘WaC’ and ‘WfC’ go back to de Schryver 2002. For a brief introduction to the rapidly growing 
field of ‘web linguistics’, you may turn to Bergh and Zanchetta 2008.     
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queries obviously are much more powerful than mere full text search. They are indispensable if a 

pertinent linguistic expression cannot be specified by a definite search string, or if, as in our case, 

the relevant linguistic phenomena include phrases such as ‘responsible for’ or ‘caused’ followed 

by some noun. 

 

4. Exploring Causal Attributions with Corpus Analysis 

We have already hinted at some very basic search options offered by common corpus search 

engines. Generally speaking, there are two approaches to using corpora (cf. Biber 2010): Corpus-

driven research uses corpora to generate theories on linguistic phenomena from bottom up. 

Accordingly, the corpus is approached with minimal hypotheses as to the linguistic forms relevant 

to a given research question, e.g., searching for tokens of ‘cause’ as a starting point to develop an 

understanding of causal attribution language. Corpus-based research, on the other hand, uses 

corpora to verify or falsify extant hypotheses about the use of language based on available 

theories about linguistic forms, e.g., trying to confirm that ‘cause’ has some specific collocations. 

In practice, these approaches overlap to some extent, with researchers switching back and forth 

between them in their research process.  

Similarly, corpora can be approached in a qualitative manner, that is, focusing on 

interpreting corpus findings with respect to meaning, or a quantitative manner, focusing on 

analyses based on countable objects and statistical facts. Both the methods used in this section and 

the next would count as quantitative on this definition. However, despite relying on frequency 

counts, the methods employed in this section have a somewhat more qualitative aspect to it, while 

the methods employed in the next are decidedly more quantitative, as will be apparent.  
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All the approaches to corpora we have hinted at depend on the existence of linguistic 

phenomena that can be traced with the help of available search engines. But in studying the 

language of causation, broadly construed, it is not immediately clear which linguistic expressions 

to look for. Linguists have identified an astonishing number and variety of ways that arguably are 

used to express causal relations.12 Apart from the verb ‘to cause’ and the noun ‘cause’, as well as 

(partially) synonymous expressions, there are conjunctions for the subordination of clauses like 

‘because’, ‘since’, ‘as’ (cf. Altenberg 1984, Diessel and Hetterle 2011), but also causative verbs, 

adverbs, adjectives and prepositions (cf. Khoo et al. 2002), and no exhaustive list of such means 

to express causal connection is available. There are also linguistic means to express a causal 

relation without lexical means, e.g., the coordination of sentences and text organization (cf. 

Altenberg 1984, Achugar and Schleppegrell 2005). In consequence, it is only possible to find 

some, but not all instances of causal language in a corpus with the help of a search engine. 

Moreover, most of the expressions mentioned above do not only serve to express causal relations, 

but may also be used differently. To give but one example, ‘cause’ may also refer to a concern or 

purpose, as in ‘her cause was just’. 

With these caveats in mind, it is, of course, possible to access some of the causal language 

contained in a corpus. In our present context, we are interested in similarities and differences of 

the language of causal attributions and the language of responsibility attributions, and it seems 

plausible to approach our linguistic study with a focus on ‘cause’ as a relational verb and the 

phrase ‘is responsible for’, matching the type of phrases used in questionnaire studies to elicit 

                                                 
12 We need not pass judgement at this point on whether such utterances really are intended to express or really do 
refer to a causal relation of some kind, let alone whether they express the specific relation at issue for causal 
attributions as we have defined them. 
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causal attributions (e.g., ‘Lauren caused the system to crash’, ‘Marcy is responsible for the death 

of the bystander’).13 

In the second section of this chapter, we surveyed some recent studies on ordinary causal 

attributions. These studies suggest that injunctive norms play a substantial role. Various theories 

have been proposed to account for this effect. We focused on two of these—the intervention 

account and the responsibility account. According to the intervention account, while ordinary 

causal attributions are influenced by norms, the underlying concept of causation is descriptive and, 

thus, diverges notably from the concept of responsibility. Importantly for our research purposes, 

only norms, but not the valence and the severity of the outcome are said to affect causal 

attributions. From that we can infer the empirically testable prediction that the language of causal 

attributions and the language of responsibility attributions should be clearly distinguishable. In 

contrast, the responsibility account holds that the language of causal attributions and the language 

of responsibility attributions are quite similar. Moreover, the responsibility account predicts that 

the valence of the outcome will often have a notable effect on causal attributions.  

If the ordinary concept of causation was a purely descriptive concept, then we would have 

no a priori reason to expect it to be used disproportionately in contexts with any particular 

valence. Rather, we would expect ‘cause’ to be used indiscriminately in the contexts where the 

outcome is good, in contexts where the outcome is bad, and contexts where the outcome is 

neutral. And if this was the case then we should see a good mix of positively and negatively 

connotated causal expressions without one of these types of expression dominating people’s use 

of ‘cause’. This is not what we find, however. 

                                                 
13 The phrase ‘is responsible for’ is used to cue responsibility attributions in studies in Sytsma and Livengood (2018). 
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In order to investigate the nature of the terms most commonly used when expressing a 

causal statement, we looked at the most frequent nouns appearing after the causal phrase ‘caused 

the’ using the Corpus of Contemporary American English (COCA). The ten most frequently used 

nouns (numbers in brackets indicate the number of hits) are ‘death’ (103), ‘accident’ (87), ‘crash’ 

(80), ‘problem’ (79), ‘explosion’ (47), ‘fire’ (46), ‘collapse’ (27), ‘injury’ (26), ‘damage’ (24), 

and ‘loss’ (23). Independent raters classified all of these terms as negative.14 Of the top 50 nouns, 

30 were classified as negative, 19 neutral, and only one positive. This data supports the results 

from questionnaire studies indicating the relevance of norms to ordinary causal attributions, as 

discussed in Section 2. Furthermore, the commanding presence of negative terms strongly 

suggests that ‘cause’ is not only in part normative, but also primarily directed at negative 

outcomes. In other words, the results of our analysis strongly indicate that outcome valence has a 

substantial effect on ordinary causal attributions. 

A key objection against our interpretation of this corpus data might be raised at this point. 

First, one important source of the corpus we have used is newspaper articles. And newspaper 

articles are notorious for focusing on negative events. Accordingly, it would not be surprising to 

find statements about causal relations for which the outcome is often negative. However, when 

we limited our search to sources of other types, like fiction, as is possible in COCA, no 

differences were found. E.g., the top ten list of nouns following the phrase ‘caused the’ for spoken 

language only were: ‘death’ (41), ‘accident’ (40), ‘crash’ (38), ‘fire’ (30), ‘problem’ (30), 

                                                 
14 Three independent raters were given a prompt—‘Please classify each of the following items based on whether you 
think instances of this type are most often positive, negative, or neutral?’—followed by 780 items for classification. 
Items were the top 50 hits for ‘caused the’, the top 50 hits for ‘responsible for the’, and the top 20 hits for each of the 
eight synonymous expressions used below. This produced a list of 260 items that were then presented to each rater in 
three randomized orders. For the ten most frequently used nouns just reported, there was 99.4% agreement across the 
classifications with 169 out of 170 occurrences of these items being classified as negative. Overall, inter-rater 
agreement was high with a Kendall’s tau of 0.751 and Spearman’s rho of 0.803 averaging across the values for each 
possible pair of raters. For subsequent classifications we treated a term as negative (positive) if it was classified as 
negative (positive) at least two-thirds of the time. 
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‘explosion’ (26), ‘plane’ (11), ‘damage’ (9), ‘recession’ (9), ‘collapse’ (8).15 And a similar list 

obtained when the corpus was restricted to academic texts. 

It might be offered in rejoinder that a focus on the negative is simply a part of the human 

condition. As such, it might be suggested that terms that are arguably synonymous with ‘cause’ 

will also tend to be used in negative contexts. If that were true, then we could not conclude that 

we have discovered a specific characteristic of the language of causal attributions, but rather a 

more general phenomenon, for which an entirely different explanation would seem to be required. 

In order to investigate this objection, we posited the following null hypothesis: 

Synonymy Effect: There is no significant difference in the normative use between ‘cause’ 
and synonymous expressions. 
 

If ‘cause’ is indeed specific in being used in a predominantly normative way, then we should be 

able to falsify Synonymy Effect. To test the hypothesis, we executed a corpus search with the 

eight terms that are listed by the English Thesaurus as being often used synonymously with the 

verb ‘to cause’: ‘create’, ‘generate’, ‘induce’, ‘lead to’, ‘make’, ‘precipitate’, ‘produce’, and 

‘provoke’. We inserted the phrase ‘Φed the’ and noted the 20 most frequent nouns that appear 

after that phrase for all eight synonymous terms. (Table 1 lists those terms that were rated 

negatively for ‘caused the’ as well as the synonymous phrases.) 

 

  

                                                 
15 Only ‘plane’ was classified as neutral, with 160 out of 170 occurrences of these ten terms being classified as 
negative by our raters. 
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phrase number of 
negative terms 
(out of 20)  

negative terms 
 

caused the 16 death, accident, crash, problem, collapse, injury, 
damage, loss, crisis, destruction, decline, 
extinction, harm, demise, explosion, fire 

created the 3 problem, need, illusion
generated the 3 waste, war, killing
induced the 4 coma, panic, defendant, opposition 
led to the 7 death, arrest, collapse, demise, loss, firing, end
made the 2 mistake, cut
precipitated the 13 crisis, war, attack, decline, conflict, collapse, 

downfall, fight, invasion, violence, demise, end, 
split

produced the 1 plutonium
provoked the 9 anger, fight, violence, murder, resignation, 

rebellion, strike, crisis, evacuation 
 
Table 1: Most frequent negatively connotated nouns after phrases synonymous to ‘caused the’ 
 

Considering only the 20 most frequent nouns, we calculated whether there was any 

significant difference in the use of ‘caused the’ compared to synonymous expressions. Pearson’s 

chi square tests revealed that only ‘precipitated the’ was not significantly different (χ2(1.13, 1) = 

0.288). All other comparisons were highly significant: ‘provoked the’ (χ2(5.23, 1) = 0.022), ‘led 

to the’ (χ2(8.29, 1) = 0.004); p < 0.001 for all other phrases. 

The results are noteworthy in a couple of respects. (a) The searches demonstrate that the 

COCA corpus is not—at least not strongly—tilted towards texts that feature negative events. (b) 

The Synonymy Effect is likely to be false. Seven out of eight synonymous expressions of the 

form ‘Φed the’ are not only significantly different in their most frequent uses compared to ‘caused 

the’, most of the synonymous terms seem to be used mainly in a neutral fashion. This means that 

the effect we recorded for ‘cause’ seems to be rather specific.  

We have seen that Sytsma and Livengood propose that causal attributions are inherently 

normative, being used to assign responsibility. If this is correct, then we would expect 
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responsibility attributions to be similar to causal attributions, including that they should also tend 

to occur more often in negative contexts. To test this expectation, we ran the same corpus search 

as before, this time entering the phrase ‘responsible for the’ and recorded the most frequent nouns 

that occur after that phrase. The ten most frequent are: ‘death’ (130), ‘attack’ (46), ‘murder’ (44), 

‘actions’ (43), ‘safety’ (42), ‘development’ (42), ‘loss’ (35), ‘design’ (34), ‘decline’ (31), 

‘violence’ (31).16 Of the 50 most frequent nouns occurring after ‘responsible for the’, 19 terms 

were rated negative, 17 neutral, and 14 positive. It should be further noted, however, that many of 

the positive terms seem to belong to an alternative sense of ‘responsible’ from the responsibility 

attributions we are after—a sense indicating the duties involved in a role (e.g., ‘content’, 

‘creation’, ‘design’, ‘implementation’, ‘safety’, ‘security’).  

Nonetheless, the results show that ‘responsible for the’ has a similar environment to 

‘caused the’ in being normatively laden and more often directed at negative events than positive. 

And by looking in greater detail at the respective numbers of hits for various terms, we found 

more striking similarities. For many terms like ‘death’, ‘decline’, ‘damage’, ‘destruction’, ‘crisis’, 

the use of responsibility language is roughly as frequent as causal language, suggesting that at 

least for some terms, both phrases might be used interchangeably (Table 2 below lists the number 

of hits for these terms as well as the frequency ratio). This, of course, would provide further 

support for the hypothesis that the causal attributions and responsibility attributions are often used 

to express the same state of affairs.  

However, other comparative results between ‘responsible for the’ and ‘caused the’ do not 

quite match, which might suggest that we only cherry-picked the data that fits our hypothesis. 

                                                 
16 Every occurrence of six of these terms was classified as negative by our raters. Every occurrence of ‘safety’ and 
‘design’ was classified as positive. Classifications for ‘actions’ and ‘development’ were split, although they were 
positive overall. In total, 154 out of 198 occurrences of these ten terms were classified as negative. 
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Table 2 lists two terms (‘attack’, ‘murder’) which are far more commonly used with responsibility 

language than causal language, e.g., people seem to be far more likely to say ‘she is responsible 

for the attack’ than ‘she caused the attack’. An explanation is easy to give: when we want to 

express a causal relation between a person and an attack or a murder, we would usually just rely 

on the causative aspect of the verbs and say that ‘s/he attacked’ or ‘s/he murdered’. In other 

words, the English language has a simpler means to express causal language when it comes to 

attack and murder. The opposite result was found for the terms ‘problem’ and ‘accident’. The 

corpus analysis revealed that ‘caused the problem’ is far more frequent than ‘responsible for the 

problem’. If both concepts are akin, should we not expect that their uses are similarly frequent? 

Here, a closer look at the search hits is helpful.  

 
word responsible for the caused the ratio 
death 130 103 1.26:1 
decline 31 15 2.07:1 

damage 24 24 1:1 
destruction 18 16 1.13:1 
crisis 11 17 0.65:1 
attack 46 3 15.33:1 
murder 44 2 21:1 
problem 13 79 0.16:1 
accident 11 87 0.13:1 

 
Table 2: Hits for some of the most frequent nouns after the phrase ‘responsible for the’ and 
‘caused the’ and the ratio between them. 
 
 

What we find is that speakers often raise questions like ‘what caused the problem’ leaving 

it open that it was not an agent but rather an event that caused the problem. In contrast, 

responsibility language is mostly used in relation to agents.17 Thus, it is relatively rare that people 

                                                 
17 There is some quite strong evidence coming from further corpus analyses that support such a view. When entering 
the phrases ‘what caused’, COCA delivers 1,189 search hits compared to only 250 hits for ‘who caused’. The situation 
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make claims such as ‘the malfunctioning brakes are responsible for the accident’ but rather speak 

of malfunctioning brakes causing accidents. This in turn suggests that the semantic similarity 

between the language of causal attributions and responsibility attributions might be most 

pronounced for agent causation. A further investigation into this possibility is, however, beyond 

the scope of this paper. 

It might be objected that the similar frequency in use of ‘responsible for the’ and ‘caused 

the’ for many nouns are merely coincidental and do not reveal any semantic similarity between 

these phrases; other phrases may be just as frequent. To counter this objection, we further 

examined which verbal phrases occur most frequently before nouns such as ‘death’, ‘decline’ and 

‘destruction’, for which we have observed the same frequencies. The word ‘death’ was most 

frequently preceded by the verbal phrases ‘caused the’ and ‘responsible for the’.18 For the term 

‘decline’, only ‘contributed to’ was a more common phrase than ‘caused the’ and ‘responsible for 

the’. And for the term ‘destruction’ only ‘stopped the’ and ‘prevented the’ were more common 

than ‘caused the’ and ‘responsible for the’. This data shows that the similarity in use between the 

language of responsibility attributions and the language of causal attributions is unlikely to be a 

mere matter of coincidence. Rather, corpus analysis indicates that these languages are highly 

similar in meaning. This also puts pressure on Samland and Waldmann’s (2014, 2016) alternative 

account of the effect of normative information on ordinary causal attributions: it does not seem to 

be the case that participants read questions in vignette studies to be about a related notion such as 

responsibility. Instead, the data suggests that the notion of causation is in itself inherently 

normative. 

                                                 
is reversed for responsibility language. A search on COCA lists 412 hits for ‘who is responsible for’ but only 16 hits 
for ‘what is responsible for’. 
18 In fact, ‘seek the’, ‘face the’ and ‘get the’ were even more common, but occurred not together with ‘death’, but 
mostly with the fixed expression ‘death penalty’. 
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5. Corroborating the Findings with Distributional Semantics 

In addition to the somewhat qualitative approach to corpus analysis taken in the previous section, 

there is also a more mathematical way of exploiting corpus data by using an array of 

computational methods for investigating word meaning. One prominent approach is based on the 

‘distributional hypothesis’, which follows Firth’s dictum that ‘you shall know a word by the 

company it keeps’ (Firth 1957, p. 11; see also, Harris 1954). Accepting this, word meaning can be 

explored by using computational methods to look at the distribution of words across a corpus. 

One set of such tools are distributional semantic models (DSMs). The typical DSM represents 

terms as geometric vectors in a high-dimensional space that can be compared to give a 

quantitative measure of similarity. This is typically done by taking the cosine of two vectors, with 

a value of 1 being taken to indicate identical meanings while a cosine of 0 would indicate 

completely dissimilar meanings.19, 20 

There are a number of different ways of carrying out distributional analyses. Unfortunately, 

the details of these different approaches can get quite daunting, especially for researchers who are 

new to the area. That said, we believe that even the more accessible techniques for distributional 

analyses are of value. As such, we encourage experimental philosophers to begin employing these 

tools, and to tackle their more complex aspects and sophisticated varieties in due course. We will 

begin with some tools that any experimental philosopher could employ, then expand the analysis to 

tools that require greater familiarity with programming.  

Perhaps the most prominent type of distributional analysis is Latent Semantic Analysis 

(LSA; Deerwester et al. 1990), and this is the method we will begin with in this section. LSA 

                                                 
19 The cosine can also take on a negative value. It is at best unclear how negative values should be interpreted, 
however, and these are generally just treated as being 0. 
20 For more detailed discussions of DSMs see Baroni et al. 2014a, Erk 2012, and Turney and Pantel 2010. 
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begins with the texts of a corpus being broken down into pre-defined documents, such as 

paragraphs of text. The frequency of each term in the corpus is then counted for each document to 

produce a term-by-document matrix. It should be noted that this matrix does not include 

information about the relative location of terms in a document. Because of this, LSA is sometimes 

referred to as a ‘bag-of-words’ approach. And in this, LSA is perhaps most markedly different 

from the approach used in the previous section, which specifically looked at the relative position 

of terms in a sentence.  

While LSA has had a good deal of empirical success, one should be mindful of the 

limitations of the bag-of-words approach and recognize that other approaches are available. In 

LSA, the context for a target word is the rest of the document. Alternatively, window-based 

methods use the terms surrounding the target word as context (while this can be thought of as a 

bag-of-words, it is a relatively small bag of words). For instance, a window of size 5 would take 

the two terms to either side of the target word as context. Another option is to use the words that 

stand in a particular syntactic relation to the target word as the context.21 In contrast to these 

approaches, the ‘new kids on the distributional semantics block’ are what Baroni et al. (2014b) 

term context-predicting models. Instead of counting the terms occurring in a given context around 

a target word, these models use artificial neural networks to set vector weights that ‘optimally 

predict the contexts in which the corresponding words tend to appear’ (238).22  

The easiest way to begin using LSA is to query a premade semantic space. One option is 

the LSA website from the University of Colorado Boulder.23 This website allows users to run a 

                                                 
21 For a comparison of these approaches, as well as a number of other parameters involved in constructing vector-
based DSMs, see Kiela and Clark 2014.  
22 Baroni et al. (2014b) conduct an extensive comparison between context-predicting and count-based models. To 
their surprise, they ‘found that the predict models are so good that… there are very good reasons to switch to the new 
architecture’ (245). 
23 See http://lsa.colorado.edu/ 
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number of different types of queries for a range of semantic spaces. To illustrate, we used the 

pairwise comparison tool for the General Reading up to 1st Year College space24 to look at cosine 

values for ‘cause’ and ‘caused’ as compared to four terms relevant to assessing causal attributions 

and their relation to outcome valence—‘responsibility,’ ‘blame,’ ‘fault,’ and ‘praise’. As 

predicted on the basis of our previous analyses, both terms show a notable similarity to 

‘responsible’. Further, in line with our previous analyses we found that both terms show a notable 

similarity with the negative terms ‘blame’ and ‘fault’, but essentially no similarity with the 

positive term ‘praise’.  

 
 responsible blame fault praise 

cause 0.32 0.28 0.30 0.05 
caused 0.32 0.31 0.26 0.01 

 
Table 3: Cosine values for term comparisons for the General Reading up to 1st Year College 
space on the LSA website from the University of Colorado Boulder. 
 
 

It would be nice to be able to say something absolute about the degree of similarity 

indicated by a given cosine value. Unfortunately, this is complicated by differences in the sizes of 

LSA spaces. As a result, the values should be thought of as relative measures. One option for 

getting a sense of the relative values for a space is to test some comparison terms. For instance, 

the value we found for ‘cause’ and ‘responsible’ is slightly higher than the value we find for ‘dog’ 

and ‘wolf’ (0.30), while the value for ‘dog’ and ‘animal’ (0.15) is half that, and the value for 

‘dog’ and ‘sandwich’ is slightly higher than we found for ‘cause’ and ‘praise’. While such 

comparisons can help you get an initial sense of the space, it is dependent on the terms that you 

select and might be misleading. A more systematic approach is to look at a predefined list of 

                                                 
24 This space is built from a corpus of 37,651 documents and covers 92,409 unique terms. 
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comparisons. One option is to use a list that is part of a benchmark, such as MEN (Bruni et al. 

2013). MEN includes a test set of 1,000 comparisons whose relatedness has been assessed by a 

large sample of human judges. We can run each of these comparisons, then look at the pairs of 

terms that have a similar cosine value to the pairs we want to assess.  

Another tool available through the LSA website of the University of Colorado Boulder is 

to search for the nearest neighbours of a given term. This provides the terms closest to the target 

term in the semantic space. When we did this for ‘cause’ and ‘caused’, we found that the nearest 

neighbours, excluding terms sharing the same word stem, generally have a negative cast (e.g., 

‘damage’ (0.66), ‘symptoms’ (0.61); ‘disease’ (0.69), ‘infections’ (0.67)). Again this is in keeping 

with our previous findings. When we turned to ‘responsible’, however, we found that many of the 

nearest neighbours for this term are of a different sort. For instance, we found that ‘duties’ (0.57) 

is the nearest neighbour, followed directly by ‘supervision’ (0.56) and ‘personnel’ (0.55). This 

suggests that the responsibility attributions we are after are getting drowned out by the alternative 

usage of ‘responsibility’ noted in the previous section—that of the duties associated with a role.  

In addition to getting a sense of degree of similarity indicated by a cosine value in a given 

space, we also assessed whether it is doing a good job in capturing the semantic relatedness of terms. 

To do this we employed the MEN list, mentioned above, and used the list of cosine values for the test 

set to analyse how well this correlates with the scores from the human judges. When we did this for 

the General Reading space, we found that it does a relatively good job: we got a Spearman’s rho of 

0.67. For comparison, Kiela and Clark (2014) report values of 0.66 to 0.71 for the spaces they 

compared in Table 6, while Baroni et al. (2014b) report in Table 2 a top value of 0.72 for the best 

count-based model tested and a value of 0.80 for the best context-predicting model tested. 
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It is also possible to build an LSA space oneself. While the details that go into the 

construction of an LSA space are complicated, a number of tools are available to facilitate the 

process. We will begin with tools that can be used through the statistical software package R. 

While there are several benefits to using R in the present context,25 it also suffers from some 

limitations, as we will see.  

The easiest way to get started with LSA in R is to use the LSAfun package to import a 

premade semantic space (Günther et al. 2015). To illustrate, we used the EN_100k_lsa space to 

further explore the relationship between ‘cause’/‘caused’ and ‘responsible’. This space was 

created from a corpus of some two billion words combining the British National Corpus, the 

ukWaC corpus, and a 2009 Wikipedia dump. We began by looking at the same set of 

comparisons that we performed above. Again we see that ‘cause’/‘caused’ show a notable 

similarity to ‘responsible’, and that both terms are much more similar to ‘blame’ and ‘fault’ than 

to ‘praise’. Next, we looked at the nearest neighbours for ‘cause’, ‘caused’, and ‘responsible’. The 

results were in line with what we saw previously, with ‘cause’ and ‘caused’ being close to a 

number of negative terms (e.g, ‘excessive’ (0.78), ‘suffer’ (0.78); ‘damage’ (0.82), ‘fatal’ (0.71)), 

while ‘responsible’ was close to a range of terms related to duties associated with a role (e.g., 

‘overseeing’ (0.76), ‘supervising’ (0.63)). Like the previous space, the EN_100k_lsa space 

performs well on the MEN benchmark with a Spearman’s rho of 0.67.26     

 

                                                 
25 One is that R supports a large range of statistical analyses of use to experimental philosophers. Another is that the 
only book-length guide to the practice of experimental philosophy currently available (Sytsma and Livengood 2016) 
uses R as its preferred statistical program, and Chapter 10 provides a general introduction to the use of R. 
26 There is also a window-based space available from the same corpus—the EN_100k space—that performs slightly 
better on the MEN benchmark (Spearman’s rho of 0.71). Another option are the spaces available from the 
COMPOSES Semantic Vectors website, which provides the best models from Baroni et al. (2014b) as text files. 
Their context-predicting model performs especially well with a Spearman’s rho of 0.80 on the MEN benchmark. 
Both spaces paint a similar picture to what we saw for the EN_100k_lsa space, both in terms of the comparisons in 
Table 4 and the nearest neighbors of ‘cause’/’caused’ and ‘responsible’. 
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 responsible blame fault praise 

cause 0.32 0.46 0.50 0.23 
caused 0.34 0.47 0.57 0.18 

 
Table 4: Cosine values for term comparisons for the EN_100k_lsa space. 
 
 

R also offers tools for creating corpora and building LSA spaces. To illustrate, we used the 

RCurl package to scrape the text for all entries in the Stanford Encyclopedia of Philosophy and 

the Internet Encyclopedia of Philosophy from their websites. The result was a corpus including 

2,378 entries split into 136,946 paragraphs (the documents for our analyses) and comprised of 

over 149 million words and 115,644 unique terms. We then used the koRpus package, to annotate 

the documents with lemma information. The tm package was used to convert this into a corpus, 

which was fed into the lsa package to generate the term-by-document matrix and create the 

semantic space. It is in this final step that we ran into the limitations of R noted above. 

Specifically, in R the data for analysis is held in RAM, which places severe limits on the size of 

the matrix it can process on a typical home computer. One option is to reduce the size of the term-

by-document matrix by removing infrequently occurring terms before creating the semantic 

space. For the philosophy corpus, we needed to reduce the matrix to the 8,821 most frequently 

occurring terms.  

Given that philosophers have often treated the ordinary concept of causation as being a 

purely descriptive concept and that many have expressed either surprise or outright skepticism 

toward the results surveyed in Section 2, we would not expect to find the valence effect for the 

philosophy corpus that we saw in our previous investigations. With regard to the relation between 

‘cause’ and ‘responsible’, one might predict that these terms would also be largely unrelated. 

Alternatively, one might note that many philosophers hold that causing an outcome is a 
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prerequisite for being responsible for that outcome. As such, one might expect to see a notable 

similarity between these terms in the philosophy corpus. What we found is that ‘cause’ showed 

virtually no relation to ‘blame’, ‘fault’, or ‘praise’, and that it showed virtually no relation to 

‘responsible’.27 The space performed better than expected on the MEN benchmark, with a 

Spearman’s rho of 0.48. Because the term-by-document matrix was significantly reduced, 

however, the correlation was only calculated on 269 comparisons. 

 
 responsible blame fault praise 

cause –0.0003 0.0004 –0.0011 –0.0051 
 
Table 5: Cosine values for term comparisons for the philosophy corpus LSA space. 
 
 

Given the degree to which the term-document-matrix was reduced, the results for the 

philosophy corpus LSA space should be taken with a hefty grain of salt. To further test these results, 

we switched to the Gensim toolkit implemented in Python, which is designed to efficiently handle 

large corpora and is able to carry out a wide variety of distributional analyses, including LSA and the 

context-predicting models using word2vec that performed best in Baroni et al.’s (2014b) 

comparisons. We exported the processed philosophy corpus from R into Gensim, then analysed it 

using word2vec with recommended parameters, including a five-word context window. The results 

were quite different from what we found for the LSA space. Most notably, we found a much higher 

cosine value for ‘cause’ and ‘responsible’. We also saw a moderate relation between ‘cause’ and 

‘blame’ or ‘fault’, but no relation between ‘cause’ and ‘praise’. Further, the nearest neighbours of 

‘cause’ and ‘responsible’ were quite distinct.28 While these results are more like what we’ve seen for 

                                                 
27 We only ran the comparisons for ‘cause’ since we lemmatized the text and ‘cause’ and ‘caused’ belong to the same 
lemma.  
28 Five nearest neighbours for ‘cause’: ‘proximate’ (0.64), ‘efficient’ (0.60), ‘effect’ (0.59), ‘volition’ (0.51), and 
‘necessitate’ (0.50); five nearest neighbours for ‘responsible’: ‘accountable’ (0.69), ‘blameworthy’ (0.64), 
‘attributable’ (0.58), ‘culpable’ (0.56), and ‘negligent’ (0.55). 
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the general corpora, they continue to suggest that the philosophical usage diverges from the ordinary 

usage, as will be spelled out below. The space performed comparably on the MEN benchmark, with 

a Spearman’s rho of 0.48 on a much higher number of comparisons.29 

 
 responsible blame Fault praise 

cause 0.41 0.18 0.17 -0.04 
 
Table 6: Cosine values for term comparisons for the philosophy corpus word2vec space. 
 
 

These same tools can be applied to other corpora that are available for download, 

including COCA. To facilitate comparison to philosophical usage, we excluded academic texts. 

Since COCA comes with lemma information, we did not need to annotate the documents. Other 

than this we followed the same procedure detailed for the philosophy corpus to generate a 

word2vec space. The results were in keeping with what we saw for the other general corpora 

above, with there being a notable similarity between ‘cause’ and ‘responsible’, between ‘cause’ 

and the negative lemmas ‘blame’ and ‘fault’, and no similarity between ‘cause’ and the positive 

lemma ‘praise’. As expected, the space performed extremely well on the MEN benchmark with a 

Spearman’s rho of 0.80.  

 
 responsible blame fault praise 

cause 0.41 0.56 0.48 -0.06 
 
Table 7: Cosine values for term comparisons for the non-academic COCA corpus word2vec space. 
 
 

With access to a full corpus it is also possible to more carefully target causal attributions and 

responsibility attributions by directly comparing multi-word expressions. To do this we replaced the 

phrases ‘caused the’ and ‘responsible for the’ with single tokens before lemmatizing and processing 

                                                 
29 944 of the 1,000 comparisons were used (25 terms were missing from the corpus).  
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the non-academic COCA corpus. We then analysed it using the same predictive model as above.  

The cosine value between the causal attribution token and the responsibility token was quite large, 

and notably larger than for the previous comparison between ‘cause’ and ‘responsible’. Further, each 

token was one of the five nearest neighbours of the other. The nearest neighbours for each token 

included a number of terms with a negative cast (e.g., ‘catastrophic’ (0.68), ‘fatal’ (0.63); ‘culpable’ 

(0.62), ‘complicit’ (0.58)), including that ‘blame’ was one of the five nearest neighbours for the 

responsibility attribution token. In addition, none of the nearest neighbours for this token indicated 

the notion of duties associated with a role that marred our previous results. 

 
 responsible 

for the 
blame fault praise 

caused the 0.63 0.55 0.42 –0.10 
responsible 
for the 

 0.61 0.35 0.16 

 
Table 8: Cosine values for term comparisons for the non-academic COCA corpus word2vec 
space with causal attribution and responsibility attribution tokens. 
 
 

To better compare philosophical usage with ordinary usage, we tokenized the philosophy 

corpus and repeated the analysis. We found that the causal attribution token was quite similar to 

the responsibility attribution token. In line with the alternative prediction noted above, this might 

reflect that many philosophers hold that causing an outcome is a prerequisite for being 

responsible for that outcome. Although the cosine values for the two tokens are similar for both 

the philosophy space and the COCA space, when we look deeper we find evidence that the causal 

attributions of philosophers are quite different from the causal attributions of more ordinary 

language. Thus, while there was a strong relation between the two tokens in the philosophy space, 

the causal attribution token was much less similar to ‘blame’ and ‘fault’. This stands in marked 

contrast to what we saw for the COCA space. Further, the same contrast holds for responsibility 
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attributions. The results suggest that the ordinary usage of both causal attributions and 

responsibility attributions has a negative cast that the philosophical usage lacks.  

 
 responsible 

for the 
blame fault praise 

caused the 0.55 0.16 0.17 0.03 
responsible 
for the 

 0.10 0.07 0.00 

 
Table 9: Cosine values for term comparisons for the philosophy corpus word2vec space with 
causal attribution and responsibility attribution tokens. 
 
 

Overall the results of our latent semantic analyses nicely line up with the results of the 

analyses in the previous section, with the two approaches providing a consilience of evidence. 

Looking across the two sets of analyses, we find compelling evidence for a positive answer to 

each of the questions we opened this chapter with: our results provide independent support for the 

thesis that ordinary causal attributions are sensitive to normative information; they provide 

support for the contention that outcome valence often matters for ordinary causal attributions; 

they indicate that causal attributions are similar to responsibility attributions;30 and they suggest 

that philosophers use the language of causal attribution differently from lay people.  

 

6. Concluding Remarks: Corpus Analysis as a Method for Experimental Philosophy 

Causation is one of the most contested concepts in philosophy. Recent questionnaire studies have 

produced some rather surprising insights into how we use that concept. Most importantly, they 

                                                 
30 It could be objected here that while our results indicate that causal attributions are similar to responsibility 
attributions, they do not indicate that causal attributions are themselves normative. For instance, it might be suggested 
that they are close in semantic space because causing an outcome is a prerequisite for being responsible for that 
outcome. This would not explain the results of our analysis in Section 4, however, or the valence effect observed for 
causal attributions in the semantic spaces. While this could be investigated further using DSMs to assess the 
Synonymy Effect hypothesis, space prevents us from doing so here. Alternatively, expanding on Alicke’s view, it 
might be argued that the desire to blame biases both causal attributions and responsibility attributions. While we 
cannot rule this out based on the present results, we hold that the responsibility view offers the simpler explanation. 
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suggest that normative considerations play a central role in ordinary causal attributions. However, 

it is still an open issue how best to interpret and explain these results.  

We believe that to make progress in deciding between the different accounts of the impact 

of norms on causal attributions, it is fruitful to expand the set of empirical tools used by 

experimental philosophers working on causation. Specifically, we believe that the study of 

ordinary causal attributions can benefit from the tools of corpus linguistics. One reason for this 

belief is that while questionnaire methods are powerful and often well-suited to investigating 

philosophical questions, they also have limitations. And the questionnaire studies on ordinary 

causal attributions that we have looked at in this chapter do suffer from some of those limitations. 

To illustrate, we will focus on the first study we discussed in Section 2, Knobe and Fraser’s 

(2008) investigation of the Pen Case.31  

The basic kind of misgiving one might have about Knobe and Fraser’s study is that it 

relies on an instrument they unintentionally designed in such a way that it would elicit the 

suspected effect, not because norms actually do have an impact on ordinary causal attributions but 

because it leads participants to misread the prompts. For instance, one might object to participants 

being asked which one of the two agents, the administrative assistant or the professor, caused the 

problem. While this is certainly a very natural way to ask the question of interest, we believe that 

asking people who caused ‘the problem’, as compared to ‘the outcome’ or ‘the situation’, might 

trigger an interpretation of the question in normative terms. Alternatively, one might worry that 

by having participants rate two statements—one about the administrative assistant and one about 

Professor Smith—and phrasing this in a way that suggests an all-or-nothing state of affairs (as 

                                                 
31 We would like to emphasize that even though we focus on Knobe and Fraser here, our worries apply to 
questionnaire studies more generally, and the authors recognize that their own work is also liable to these 
methodological concerns.  
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opposed, for example, to asking whether the agent was ‘a cause’ of the outcome) might prompt 

participants to feel that they should agree with at most one of the two questions. Since the only 

distinguishing feature between the two agents’ actions is that one violates a norm while the other 

does not, participants might latch onto this as a relevant cue for fulfilling the task. Or one might 

note that Knobe and Fraser asked participants whether an agent caused an outcome. Typically, 

when philosophers talk about causation, they talk about events as the causal relata, not people. 

Asking about the agent, rather than his or her activities, might therefore create another reason for 

participants to believe that the researcher is asking about something normative.  

All of the potential issues we just noted for Knobe and Fraser’s study could be addressed 

through further questionnaire research. And, in fact, a good deal of work has subsequently been done 

on the Pen Case, or cases like it, that varies these sorts of factors. But follow-up studies addressing 

one potential confound run the risk of introducing others. This is simply one of the difficulties 

inherent to this type of research. It does not mean, of course, that questionnaire studies should be 

abandoned. Rather, the moral we should draw from it is that in the face of these risks we should 

diversify our set of methods. Turning to corpus linguistics seems natural here, as one strength of 

corpus analysis is that it is relatively immune from the pragmatic pitfalls we have just highlighted. 

One of the motivations of corpus linguistics is the preference for ‘real’ language data over 

examples of language use generated by the linguists themselves. While a corpus cannot strictly 

speaking be representative for a language in its entirety, because possible utterances of that 

language are infinite, linguistic corpora aim at balanced sampling from this impressive 

population. Unless the research interest is focused on a specific genre, say, the usage of a given 

term in academic texts, a balanced corpus contains a considered choice of texts of various types 

and from different sources. For example, it does not only contain written, but also (transcribed) 
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spoken language, not only specialised (e.g., academic) language, but also its everyday variety, not 

only fiction or other literary texts, but also mundane ones such as operation manuals. In this way, 

a large corpus does present a meaningful sample of actual language use.   

The preference for ‘real’ language sits nicely with precepts of experimental philosophy, in 

that it emphasises the importance of empirical data over that generated by researchers relying on 

their own intuition or judgement. An important advantage it has over data generated by 

questionnaire studies is that the linguistic data of a general corpus usually has been generated 

independently of the researcher and her specific research questions. The data thus is usually 

uncued, in the sense that the utterances the corpus contains have not been produced in response to 

some prompt of the researcher. It is then plausible to assume that a corpus is unbiased with respect 

to the specific research question a philosopher approaches it with (cf. Schütze 2010).32 And for the 

same reason, such a corpus can be considered free of the biases of experimental pragmatics.  

Having said that, there are, of course, limits to corpus analysis. The linguistic data of a 

corpus can only be evidence in relation to some philosophical issue to the extent that the actual 

use of language is relevant to it. This relevance may be direct or indirect, because the linguistic 

data in a corpus may well allow us to infer something about deeper structures of language. But, 

clearly, if the observation of linguistic phenomena in actual use is irrelevant to a philosophical 

issue, then so is corpus analysis. Moreover, if the pertinent phenomena are of the very particular 

and subtle kind that is common for philosophical problems, even a large corpus may not yield 

any, let alone many, examples of their use. By way of contrast, questionnaires can be constructed 

                                                 
32 It is, of course, possible to come up with examples of corpora that are dependent on the researcher and that contain 
cued language use. Most simply, for example, in the case that the corpus consists of written responses to a vignette. It 
is the choice of texts that determines whether the data contained in a corpus is indeed independent and uncued. If a 
pre-existing general language corpus is used, this objection can be assumed to be moot. 
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to elicit informants’ responses to precisely worded prompts, and in doing so, the wording can be 

varied easily to bring out and test subtle differences in language.  

Therefore, it is clear that corpus analysis is best viewed as a fruitful addition to the 

methodological toolbox of experimental philosophy. Not only can it be used effectively to explore 

the actual use of linguistic expressions—something that is called for in philosophy on many 

occasions. It can, more specifically, be used to complement experimental studies in several 

helpful ways: to pre-test hypotheses that inform such studies, to help with the general construction 

of questionnaires and the precise wording of their items, and, most importantly, we believe, to test 

the findings from questionnaire studies, either giving them independent support from another 

empirical source or providing evidence against them.  
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