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Abstract: The problem of the 3N dimensions of the wave function is of particular interest 

in the philosophy of physics. In this work, we will recall the main positions about the 

nature and dimensionality of the wave function and we will introduce a new perspective, 

coming from quantum chemistry. For this, we will bring to light the formal operations that 

underlie the independent electron approximation. On this basis, we will point out how 

quantum chemistry can offer new arguments that contribute to the debate about the 

ontology of wave function. 

1. Introduction 

The wave function is a central element in quantum mechanics, since it represents the state 

of the system and participates in its dynamics through its evolution according to the 

Schrödinger equation. However, even today, almost a hundred years after the advent of 

quantum mechanics, the meaning of the wave function remains a matter of debate. In this 

context, the problem of the 3N dimensions of the wave function is of particular interest in 

the philosophy of physics. In fact, the debates around the issue have an important impact on 

the way in which we conceive the world around us. This is clearly manifested by the 

intense discussions that have taken place in recent years (see Monton 2006, Ney and Albert 

2013). 

From his early work, Schrödinger tried to endow the wave function with a physical 

meaning, first as a kind of vibration in the atom (Schrödinger 1926a) and later as a tool for 

obtaining the electron density (Schrödinger 1926b). With these proposals, Schrödinger 

intended to develop an ontology of the wave function in a space of three dimensions, in 

agreement with the world in which we live. However, some years later he was disappointed 

with those ideas. 
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In recent years, different views regarding the dimensionality of wave function have 

been proposed. On the one hand, it is possible to propose an ontology in which the wave 

function is the most relevant element of quantum theory, so that its mathematical nature is 

directly related to “reality” (e.g. Albert 2013). In spite of the fact we only perceive three 

dimensions, the authors who advocate for this position, commonly called “wave function 

realism”, consider that the real physical space has actually 3N dimensions. On the other 

hand, the wave function can be conceived as a mere mathematical artifact belonging to the 

formalism of quantum mechanics. The defenders of this view usually postulate a “primitive 

ontology” that inhabits a real space with only three dimensions (e.g. Monton 2013, Allori 

2013). Finally, there is a third position that tries to reconcile the two previous ones. It 

proposes an ontological picture in which both the space of 3N dimensions and that of three 

dimensions coexist (e.g. Monton 2006). This discussion is still relevant not only in the 

philosophy of physics, but also in physics. 

In this work we will introduce a new perspective, coming from quantum chemistry, 

an area of study arising from the direct interaction between quantum mechanics and 

molecular chemistry. In the field of quantum chemistry, the question about the 3N 

dimensions of the wave function has not been discussed as deeply as in the context of 

quantum mechanics. In fact, even the most theoretical objects of chemists exist in real 

space; hence, it is natural to try to turn the wave function into a three-dimensional entity. In 

the context of quantum chemistry, it is common to use the so-called orbital approximation, 

which allows chemists to write the total wave function of a system as a product of mono-

electron wave functions (Atkins and de Paula 2006). Under this approximation, the wave 

function of an electron depends only on the variables of this electron; therefore, it evolves 

in the space of three dimensions (Lowe and Peterson 2006). We will consider how quantum 

chemists use this approximation, which can be conceived as a particular case of the so-

called independent electron approximation. On this basis, we will show that it is possible to 

formalize the quantum chemists’ strategies as the result of the application of two 

mathematical operations: first, a projection in Hilbert space and, then, a change of 

variables. This formalization will allow us to go beyond the approximation itself by 
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propose a new version of the idea of a primitive ontology, now from the perspective of 

quantum chemistry.  

For these purposes, we have structured the work in the following way. In Section 2 

we will introduce a brief historical review of Schrödinger’s proposals on this subject. Then, 

in Section 3, we will recall the main positions about the nature and dimensionality of the 

wave function. We will continue with the detailed description of the orbital approximation, 

as a particular case of the independent electron approximation in Section 4. In Section 5, 

we will bring to light the formal operations that underlie the independent electron 

approximation. Finally, in Section 6, we will point out how quantum chemistry can offer 

new arguments that contribute to the debate about the ontology of wave function. 

2. The Schrödinger´s wave function 

In 1926 Schrödinger published a series of papers in which he introduced his theory of wave 

mechanics. He postulated the now well-known Schrödinger equation, 

𝑖ℏ
∂

∂𝑡
Ψ = [−

ℏ2

2𝑚
𝛻

2
+ 𝑉] Ψ (1) 

where Ψ(𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁)  represents the wave function, which depends on the spatial 

coordinates 𝑟̅𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)  of all the particles of the system. Then, the wave function 

depends on 3N dimensions, where N is the number of particles in the system.  

The dimensionality of the wave function was a problem that Schrödinger did not 

ignore, and he addressed it from the very beginning. Very early in his work, he wanted to 

give a physical meaning to the wave function by associating it with a vibration process in 

the atom (Schrödinger 1926a). However, he later pointed out that it is only in the case of a 

single electron that the interpretation as a vibration in real space of three dimensions can be 

sustained (Schrödinger 1926b). When the system has two or more particles, the wave 

function inhabits a space of six or more dimensions, so it cannot be conceived as a wave in 

the common three-dimensional space.  

In the last of his articles of 1926, Schrödinger emphasizes the idea of dispensing with 

the wave function in the direct interpretation of physical phenomenon, relegating its use to 

obtain what he called the density of electricity (Schrödinger 1926c), a quantity that he 
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supposes does have a direct physical meaning and is defined in the space of three 

dimensions. The process by which he obtains this quantity is described in a letter to 

Lorentz: 

𝜓 ∗ 𝜓 (just as 𝜓 itself) is a function of 3𝑁 variables or, as I want to say, of 𝑁 three 

dimensional spaces, 𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁. Now first let 𝑟1 be identified with the real space and 

integrate 𝜓 ∗ 𝜓 over 𝑟̅2, … , 𝑟̅𝑁 ; second, identify 𝑟2  with the real space and integrate 

over 𝑟̅1, 𝑟̅3, … , 𝑟̅𝑁; and so on. The 𝑁 individual results are to be added after they have 

been multiplied by certain constants which characterize the particles (their charges, 

according to the former theory). I consider the result to be the electric charge density 

in real space. (Schrödinger in Przibram 1967, page 56, emphasis of us) 

In this way Schrödinger offers a wave-function ontology based on electric charge density. 

However, later Schrödinger set aside this approach, and by 1935 expressed his regret in the 

following terms: “I am long past the stage where I thought that one can consider -function 

as somehow a direct description of reality” (quoted in Fine 1996: 82). 

The aim of developing an ontology for the wave function in three dimensions, 

which motivated Schrödinger in the 1920’s, reappeared in the present-day discussions 

about the nature of the wave function 

3. Positions about the nature of wave function and its dimensionality 

The problem about the nature of the wave function and its dimensionality has been 

addressed in the light of questions such as: does the wave function have a real physical 

meaning or is it merely a mathematical artifact? If it has physical meaning, what does it 

represent? And, in that case, does the real physical space have 3N dimensions or only the 

three that we perceive in our daily life? 

In the recent philosophical literature, at least three positions can be identified 

regarding the dimensionality of the wave function: one that conceives the wave function as 

the basic ontological item in a 3N-dimensional physical space; an opposite view that retains 

the three-dimensional physical space and deprives the wave function of a basic ontological 

role; and an intermediate position that admits the coexistence of both spaces. 
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Some authors, such as David Albert, defend an ontology where the wave function in 

3N dimensions represents the physical reality. The problem of this position, commonly 

called “wave function realism”, is that the real ontology turns out to be radically different 

from the way in which the world around us is perceived. According to Albert, the 

appearances in the three-dimensional space are a dynamical result: ultimately, what it 

means to be an object in the real world “is to occupy a certain location in the causal map of 

the world”, and the form in which geometric appearances are constructed is due to a 

question of dynamics (Albert 2013: 54). 

Peter Lewis (2013), in turn, although conceiving the wave function as the central 

element of quantum mechanics, considers that its dependence on 3N variables is only the 

most convenient way to represent the correlation between quantum particles. Lewis admits 

that the common use of the notion of spatial corresponds to a three-dimensional space. 

Nevertheless, he does not rule out the possibility that, in a future paradigm, the use of 

‘spatial’ will change in favor of a notion corresponding to a 3N-dimensional world. 

The stances that relegate the wave function to a secondary role stand at the other end 

of the spectrum. This is the case of Bradley Monton (2013), who claims that the wave 

function can be defined by the properties of the system. From this perspective, the 

information about the system contained in the wave function is “carried” by the properties 

in the real space of three dimensions; hence, the wave function itself is not indispensable. 

In the same end of the spectrum stand those positions that look for a primitive 

ontology as the reference of quantum mechanics. According to this view, any physical 

theory must try to account for the world in which we live, a world that is constituted by 

entities in a three-dimensional space. These entities are the foundation of the real world, 

and the theory must describe them and account for their time evolution. Then, the theory 

must include primitive variables associated with this ontology, and non-primitive variables 

that describe the way in which the former change over time (Allori 2013). In the context of 

this position, the wave function turns out to be a non-primitive variable, which describes 

the dynamics of particles, whose representative magnitudes are the primitive variables. 

The third intermediate position is briefly outlined by Morton (2006), who introduces 

two variants. In the first one, two independent spaces coexist, one of 3N dimensions where 
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the wave function evolves, and the three-dimensional space where the N particles evolve. 

What remains to be explained is the type of connection that links these two spaces: the 

problem is that, although there is a lawful relationship, in principle there is no causal link 

between them. In the second variant, the two spaces are hypersurfaces of a space of (3N+3) 

dimensions, which might be the stage for a kind of causal connection, however it is still 

unclear what kind of connection could link the two spaces. 

A common feature of all the arguments in the debate is that they rely on very abstract 

elements: the discussions are confined to the quantum mechanics as a formal theory. But if 

science is a practice, the way in which quantum mechanics is used should also be taken into 

account. But quantum mechanics is not used in the same way in different disciplines. In 

particular, it is interesting to consider how quantum chemists integrate quantum mechanics 

in the core of their theoretical practice in order to open new ontological questions. 

4. A different approach from quantum chemistry 

Schrödinger original view about the electric charge density was rapidly dismissed in the 

physicists’ community and, for this reason, it was never taken seriously into account in the 

philosophy of physics. But this is not the case in quantum chemistry, where it reappears 

under the name of ‘electronic density’ as the central element of the discipline.  

The issue of the dimensionality of the wave function is not an object of debate in the 

field of quantum chemistry. Although both physicists and chemists deal with phenomena 

that occur in a three-dimensional space, physicists are used to appeal to very abstract 

entities that go beyond the features of our perceived physical world. By contrast, even the 

most abstract entities studied by chemistry inhabit the three-dimensional space. This 

particularity is inherited by quantum chemistry: molecules, its main object of study, are 

three-dimensional objects, and the links between their components are relationships in 

three-dimensional space. Therefore, it is no surprising to find that a basic theoretical move 

in quantum chemistry is to turn the wave equation into a three-dimensional entity. 

In this theoretical background, the usual story proceeds as follows. Given the 

impossibility to apply quantum mechanics in an exact way to the study of chemical 
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systems, alternative approximate methods have been developed. The most popular of them 

is the so-called orbital approximation. This is not a very precise approximation since it 

ignores electronic interactions. Nevertheless, it is a powerful tool for the study of molecular 

structure. As Peter Atkins and Julio de Paula point out in their famous textbook:  

The wave function of a many-electron atom is a very complicated function of the 

coordinates of all the electrons, and we should write it 𝜓(𝑟̅1, 𝑟̅2, … ), where 𝑟̅𝑖  is the 

vector from the nucleus to electron i. However, in the orbital approximation we 

suppose that a reasonable first approximation to this exact wavefunction is obtained by 

thinking of each electron as occupying its “own” orbital, and write 

𝜓(𝑟̅1, 𝑟̅2, … ) = 𝜓(𝑟̅1)𝜓(𝑟̅2) … 

We can think of the individual orbitals as resembling the hydrogenic orbitals, but 

corresponding to nuclear charges modified by the presence of all the others electrons in 

the atom. This description is only approximate, but it is a useful model for discussing 

the chemical properties of atoms, and is the starting point for more sophisticated 

descriptions of atomic structure. (Atkins and de Paula 2006: 336). 

This approach is what justifies the fact that phrases like “the 2p orbital of a fluorine atom is 

compact” are common in the chemists’ discourse. According to quantum mechanics, the 2p 

orbital is an eigenfunction of the Hamiltonian of an atom with only one electron. Since a 

fluorine atom has 9 electrons, the 2p orbital is not an eigenfunction of its Hamiltonian. 

However, under the orbital approximation chemists can talk about the 2p orbital of a fluor 

atom and to make inferences with it.  

The orbital approximation is very imprecise because it does not take into account the 

interaction between the electrons in the atoms. However, the procedure can be refined in 

the so-called independent electron approximation, by taking into account the interactions 

but at the same time retaining of an orbital for each electron. Consider a chemical system of 

N electrons that interact with each other, and that are influenced by the Coulomb potential 

of the positive charges of nuclei. The Hamiltonian of that system is given by the following 

equation (in atomic units),  

𝐻 = −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

− ∑ 𝑉(𝑟𝑖)

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (2) 
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where the 𝑟𝑖 are the coordinates of each electron of the system, the first term corresponds to 

the kinetic energy, the second term includes the traditional coulombic potentials 𝑉(𝑟𝑖) due 

to the nucleus-electron attraction, and the third term represents the electric repulsion 

between each pair of different electrons, where the distance between them is 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|. 

The difficulty to solve this equation lies in the third term, since it couples the electron 

motions. A way to solve this problem is to consider that each electron moves in an average 

potential due to the rest of electrons, in such a way that its motion is decoupled from the 

others; in this way, the Hamiltonian turns out to be a function of a single electron and the 

Schrödinger equation can be solved using independent wave functions 𝜓𝑖(𝑟𝑖)  for each 

electron. Precisely, the Hamiltonian takes the form 

𝐻´ = −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

− ∑ 𝑉(𝑟𝑖)

𝑁

𝑖=1

+ ∑ 𝜐(𝑟𝑖)

𝑁

𝑖=1

 
(3) 

Now, the new problem is to determine the form of the potential 𝜐(𝑟𝑖) for each electron, a 

problem not trivial at all, since it involves fundamental information about the interaction 

between all the remaining electrons inside a chemical system. The solution to this difficulty 

has been the subject of intense research in the field of quantum chemistry. Just to mention 

two of the most important approaches: the Hartree-Fock method and the density functional 

theory (see Gill 1998). In the former, the wave functions 𝜓𝑖 are used to obtain the potential 

𝜐(𝑟𝑖), while in the latter the electron densities 𝜌(𝑟) is appealed to. 

The simplest form to solve the problem is to consider that electrons do not interact 

with each other, so the term corresponding to the interelectronic interaction is neglected and 

the equation (3) becomes, 

𝐻𝐴𝑂 = −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

− ∑ 𝑉(𝑟𝑖)

𝑁

𝑖=1

= ∑ ℎ(𝑟𝑖)

𝑁

𝑖=1

 (4) 

where ℎ(𝑟𝑖) represents a hydrogen-like Hamiltonian. In this way, the orbital approximation 

is recovered. Since each mono-electron Hamiltonian ℎ(𝑟𝑖) corresponds to an hydrogenic 

ion, its eigenfunctions are the same as those of the Hamiltonian of the hydrogen atom, i.e., 

1s, 2s, 2p, … etc., and are called atomic orbitals. It is interesting to stress that these atomic 



 9 

orbitals are one of the foundations for the construction of the electronic configurations of 

the atoms according to the periodic table. 

As it is quite clear, either when interelectronic interactions are considered or when 

they are neglected, the wave function of the total system, which depends on the coordinates 

of all the electrons, is approximated by combinations of monoelectron wave functions, each 

one of them is a function of the coordinates of a single electron. This shows that, long 

before arriving at the problem of interpretation the 3N dimensions of the wave function, 

quantum chemists face a calculation problem. Then, they intervene the theory, modify it: 

the wave function of 3N dimensions is transformed into N wave functions of three 

dimensions in real space, one for each electron. As we will see, this strategy, which 

originally arises as a computational need, becomes the conceptual basis to conceive the 

nature of quantum-chemical systems. 

5. Dimensional marginalization 

In order to understand how the wave function is conceived by quantum chemistry, but now 

from the viewpoint of physics, the strategy described in the previous section will be 

mathematically formalized. 

The wave function 𝜓(𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁)  of a molecule is defined in a space of 3N 

dimensions, since it is a function of the variables 𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁. As usual in these cases we 

assume that the wave function is separable (the results can be generalized to the more 

general case): 

𝜓(𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁) = 𝜓(𝑟̅1)𝜓(𝑟̅2) … 𝜓(𝑟̅𝑁) (5) 

However, in the independent electron approximation, this function is somehow projected 

onto a three dimensional space. Indeed, according to the standard procedure, it is said that 

the function 𝜓(𝑟̅𝑖) corresponds to the orbital occupied by electron i, and this orbital is 

represented in the physical space of three dimensions. This means that the label that 

identifies the electron i is transferred from the variable to the function 

       𝜓(𝑟̅1) →  𝜓1(𝑟̅)           (6) 
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Therefore, a change of variables is introduced, which makes possible to represent the 

different orbitals in the same physical space.  

From a mathematical viewpoint, this procedure can be formalized as the result of the 

successive application of a projector 𝑃̂𝑖 , followed by an operator 𝐶̂  that changes the 

variables to mono-electron wave functions: 

a)In the first step, a projector 𝑃̂𝑖 is defined as an operator that selects the mono-electron 

wave function that corresponds to electron i and eliminates the rest. This can be done by 

means of the following mathematical operation: 

    𝑃̂𝑖𝝍(… ) = ∫ … ∫ 𝝍(… ) 𝜓∗(𝑟̅1)𝑑𝑟̅1 … 𝜓∗(𝑟̅𝑖−1)𝑑𝑟̅𝑖−1𝜓∗(𝑟̅𝑖+1)𝑑𝑟̅𝑖+1 … 𝜓∗(𝑟̅𝑁)𝑑𝑟̅𝑁     (7) 

where 𝝍(… ): 𝜓(𝑟̅1, … , 𝑟̅𝑖−1, 𝑟̅𝑖, 𝑟̅𝑖+1, … , 𝑟̅𝑁). Then, the application of 𝑃̂𝑖  to 𝜓(𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁) 

gives the desired result: 

      𝑃̂𝑖𝜓(𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁) = 𝜓(𝑟̅i)                                                (8) 

b)In the second step, the operator 𝐶̂ can be defined as: 

𝐶̂𝜓(𝑟̅1) =  𝜓1(𝑟̅) 

𝐶̂𝜓(𝑟̅2) =  𝜓2(𝑟̅) 

⋮ 

 

 

 

𝐶̂𝜓(𝑟̅𝑁) =  𝜓𝑁(𝑟̅) (9) 

Thus, the successive application of 𝑃̂𝑖  and 𝐶̂  describe the implicit operation in the 

independent electron approximation: 

𝐶̂𝑃̂𝑖𝜓(𝑟̅1, 𝑟̅2, … , 𝑟̅𝑁) = 𝜓𝑖(𝑟̅) (10) 

Since this operation extracts a mono-electron wave function from the total wave function of 

3N dimensions and projects it onto a three dimensional space, it can be called dimensional 

marginalization. 

6. Toward an ontology of quantum chemistry 
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As explained in the previous sections, although according to quantum mechanics the wave 

function of a molecule cannot be expressed in terms of just three variables, in the field of 

quantum chemistry endowing each electron with its own wave function is a standard 

procedure that lies at the very core of the discipline and, as a consequence, has more 

implications than a mere approximation.  

When trying to solve the Schrödinger equation applied to chemical systems, quantum 

chemists use the orbital approximation for simple cases, and the independent electron 

approximation for more complex situations. By means of these strategies, the energy levels 

in chemical systems can be computed; besides this, they make possible to describe the 

electronic structure in systems of relative complexity.  

According to their names, these strategies used by quantum chemists are mere 

approximations. As such, they should be only formal tools designed to obtain approximate 

solutions of an equation that cannot be solved with complete precision. As Norton (2012: 

207) says, “approximations merely describe a target system inexactly”; they do not even 

carry the novel semantic import carried by idealizations. In Frigg and Hartmann’s words, 

“approximation is a purely formal matter” that is introduced in a mathematical context 

(2017: 8). As a mere tool, the effectiveness of an approximation lies in the adequacy of the 

results that it allows to obtain. If the practical or formal obstacles to obtain the exact 

solution were overcome, the approximation could be removed. To the extent that 

approximations are in principle eliminable, they carry no conceptual import: they do not 

discover new properties of the target nor supply new elements for explanations. 

However, the above characterizations do not apply to the independent electron 

approximation used in quantum chemistry. The idea that each electron can be described by 

its three-dimensional wave function is at the core of the discipline and shapes the quantum-

chemical picture of the molecule: a structure given by the geometrical disposition of the 

nuclei, and electrons that can be conceived as individuals that “occupy” the orbitals, 

identified by the wave functions of the hydrogen atom (1s, 2s, etc.). The orbital 

approximation is an approximation since it ignores the interaction between the electrons of 

this quantum-chemical target. But even when the interactions are reintroduced, the global 

wave function of 3N-dimensions is not recovered: the target is still described in terms of 
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monoelectronic wave functions. In this case, quantum chemists use to talk about, say, how 

the 1s orbital was modified with the new correction, but the idea of each electron with its 

orbital is not set aside. In the context of this picture, the Hartree-Fock method and the 

density functional theory are only approximations to compute the potential that each 

electron “sees” in the presence of the rest of the electrons of the molecule. But even if the 

computational obstacles could be removed and the exact inter-electronic interactions could 

be computed, this would not remove the assumption that the behavior of each electron is 

described by its own wave function, now modified accordingly. 

This quantum chemical picture also plays an essential role in the explanations of the 

processes that occur in atoms and molecules. For example, in order to explain that the SF6 

compound exists while the OF6 does not, although both oxygen and sulfur have the same 

external electronic structure (two s-electrons and four p-electrons), it is usually argued that 

the difference is that the sulfur is in the third period while the oxygen is in the second 

period of the periodic table. Let us see the argument. Sulfur has two electrons in a 3s orbital 

and four in two 3p orbitals; therefore, it has a free 3p orbital, but also has five free 3d 

orbitals, and they allow it to extend its valence shell to be bonded with many fluorine 

atoms. In the case of oxygen, the external electronic structure consists in two electrons in a 

2s orbital and four in two 2p orbitals. But the difference is that there are no 2d orbitals, so 

oxygen only has one free orbital (one 2p-orbital). Then it can only be linked to 2 fluorine 

atoms and the OF6 does not exist while the OF2 does. Explanations of this kind do not make 

any sense from the physical point of view, because according to quantum mechanics there 

are not mono-electronic wave functions, but only multi-electronic wave functions in a 

space of 3N dimensions. However, even if considered approximate, they offer a clear 

understanding of many molecular phenomena: the chemistry of molecules could not exist 

without them. And the scientific status of these studies cannot be denied in the light of their 

empirical success not only in describing and predicting phenomena, but mainly in creating 

new substances. 

The above considerations point to the fact that, actually, the so-called ‘independent 

electron approximation’ is not a mere approximation, but is at the basis of a conceptual 

framework specific of quantum chemistry. In this framework, the notion of orbital as 
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monoelectronic wave function plays a central role, since it is indispensable in the 

descriptions of the electronic structure in atoms and molecules and the explanation and 

production of molecular phenomena. This point to the fact that, in the light of the empirical 

success of quantum chemistry, it is not easy to conceive the description in terms of 

monoelectronic wave functions as a mere fiction that could be left aside in favor of a more 

precise description of the molecular realm. On the contrary, it should be accepted that there 

is a quantum-chemical ontology, that is, the particular reference of quantum chemistry, that 

is essentially different than the ontology of quantum mechanics (whatever it be) (see 

Lombardi and Labarca 2005, Labarca and Lombardi 2010). 

Now, the question is: what is the relationship between the quantum-chemical 

ontology and that based on pure quantum mechanics? According to a traditional 

reductionist view, in spite of its scientific efficiency, the quantum-chemical ontology is an 

appearance arising from a coarse description of the quantum world. However, the 

reductionist position faces several difficulties, in general derived from the fact that 

incompatible assumptions, coming from structural chemistry and quantum mechanics, 

coexist in quantum chemistry and constitute the theoretical body of the new discipline 

(Lombardi 2014, Fortin, Lombardi, and Martínez González 2017, 1018). If the 

antireductionist stance is adopted, then the quantum-chemical ontology can be conceived as 

the primitive ontology of quantum chemistry, different from the primitive ontology 

corresponding to the quantum realm (see Allori 2013, Esfeld, Lazarovici, Hubert, and Dürr 

2013, egg and Esfeld 2015). But the full discussion of the issue of the intertheory relation 

in this case is beyond the limits of the present article, and will be addressed in a future 

work. 
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