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1 Introduction

Consider the collection % of smooth, four-dimensional (connected, Hausdorff)
Lorentzian manifolds (M, g.). One usually identifies this collection of geomet-
ric objects with the models of general relativity (Wald 1984). But within % lurk
‘physically unreasonable’ models of spacetime. For example, take any (M, gqp) €
% and remove a point p € M. The resulting structure (M —{p}, gup) € % seems
to be ‘physically unreasonable’ in the sense that it is not ‘as large as it can be’
(see Earman 1995). How can such examples be ruled out? Let us say that a
model (M, gqp) € % is inextendible if it cannot be properly and isometrically
embedded into some other model (M’,¢/,) € %. (It is immediate that the
mutilated example from above is not inextendible since it can be properly and
isometrically embedded back into the model we started with.) It has been sug-
gested that we limit the number of ‘physically unreasonable’ models in general
relativity by requiring inextendibility to be satisfied (Geroch 1970).

Other examples could be constructed which are ‘physically unreasonable’
in other senses. Stepping back, the general suggestion seems to be that, for a
variety of collections & C %, one could “modify general relativity as follows:
the new theory is to be general relativity, but with the additional condition that
only [Z?] space-times are permitted” (Geroch 1977, 87). Let us take this idea
seriously in what follows. For each ‘physically reasonable’ collection of models
&P C U, we have a variant theory of general relativity — call it GR(Z?). Since
we have yet to identify a privileged collection & C % of ‘physically reasonable’
models, it is helpful to think of ‘general relativity’ in a pluralistic way; we can
study a collection of such ‘physically reasonable’ collections of models. What
do we know about the these non-standard formulations of general relativity? In
this paper, I work to get a better grip on this situation.

After some preliminaries, the paper is divided into three main parts. In the
first part, I consider the ‘modal’ properties of spacetime. These are properties
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— like inextendibility — which are defined relative to a background ‘physical pos-
sibility space’ in the form of some collection of models. Such properties seem to
‘work differently’ in some of the variant theories of general relativity; in the case
of inextendibility, the very same model of spacetime can be considered ‘inex-
tendible’ according to one variant theory and ‘extendible’ according to another.
Given this sensitivity to theory choice, I argue that an exploration of the modal
properties of spacetime among variant theories of general relativity would seem
to be quite appropriate.

In the second part of the paper, I focus attention on the property of inex-
tendibility. Consider GR(Z?) for some ‘physically reasonable’ collection & C
% . 1 investigate two questions of interest. First, does the property of inex-
tendibility in GR(Z?) ‘work the same’ (in the sense mentioned above) as it
does in GR(%)? Second, does every model in GR(Z?) have an ‘inextendible
extension’ like it does in GR(%)? Regarding the first question, I settle some
precise questions posed by Geroch (1970) and generalize the results somewhat;
the emerging picture seems to be that the property of inextendibility is not
well-understood outside of the standard theory. Regarding the second question,
I consider a class of variant theories defined using ‘local’ properties (e.g. the
standard energy conditions) and show that members of this class always return
an affirmative answer. Similar conclusions can be found with respect to a few
other variant theories of interest. But I stress that things can also go the other
way and provide an example concerning a ‘singularity’ of certain type.

In the third part of the paper, I focus attention on the singular structure of
spacetime. Following an argument by Geroch (1970), I show a sense in which
the definition of a ‘singular’ spacetime depends on the standard definition of
inextendibility. A question naturally presents itself: given a ‘physically reason-
able’ collection of models & C %, what is a singularity in GR(4?)? I draw
attention to the fact that the answer is not so clear in some cases. I conclude
the paper with a few remarks concerning the scope of the approach to general
relativity considered in this paper. In particular, I highlight the fact that other
physical theories can be treated in the same way.

2 Preliminaries

We begin with a few preliminaries concerning the relevant background formal-
ism.!  An n-dimensional, general relativistic model of spacetime (for n > 2)
is a pair of mathematical objects (M, gqp) where M is a smooth, connected, n-
dimensional, Hausdorff manifold (without boundary) and g is a smooth metric
of Lorentz signature (—,+,...,+) defined on M. We say the models (M, gap)
and (M, ¢/,) are isometric if there is a diffecomorphism ¢ : M — M’ such that
©sxGab = Ghp- The models (M, gqp) and (M’, gl,) are locally isometric if, for each

point p € M, there is an open neighborhood O of p and an open subset O’ of

IThe reader is encouraged to consult Hawking and Ellis (1973), Wald (1984), and Malament
(2012) for details. Less technical surveys of the global structure of spacetime are given by
Geroch and Horowitz (1979) and Manchak (2013).



M’ such that O and O’ are isometric, and, correspondingly, with the roles of
(M, gup) and (M',g.,) interchanged.

A model (M, gqp) is extendible if there is a model (M’, ¢/,) and a proper
isometric embedding ¢ : M — M’. Here, the model (M’,¢/,) is an extension
of (M, gap). A model is inextendible if it has no extension. We say (M, gap, F')
is an n-dimensional framed model if (M, gqp) is an n-dimensional model and F'
is an orthonormal n-ad of vectors {1, ...,&,} at some point p € M. We say
an n-dimensional framed model (M’,¢/,, F') is a framed extension of the n-
dimensional framed model (M, gqp, F') if there is a proper isometric embedding
@ : M — M' which takes F into F”.

Fix a model (M, gq). For each point p € M, the metric assigns a cone
structure to the tangent space M,. Any tangent vector £* in M,, will be timelike
if gap@€P < 0, nullif g.p€*E® = 0, or spacelike if gop&*E® > 0. Null vectors create
the cone structure; timelike vectors fall inside the cone while spacelike vectors
fall outside. A time orientable model is one that has a continuous timelike vector
field on M. In what follows, we assume that models are time orientable and
that an orientation has been chosen.

For some connected interval I C R, a smooth curve v : I — M is timelike if
its tangent vector £* at each point in [I] is timelike. Similarly, a curve is null
if its tangent vector at each point is null. A curve is causal if its tangent vector
at each point is either null or timelike. A causal curve is future-directed if its
tangent vector at each point falls in or on the future lobe of the light cone. A
causal curve v : I — M is closed if the tangent vector is nowhere vanishing and
there are distinct s, s’ € I such that v(s) = y(s'). (M, gap) satisfies chronology
if it does not contain a closed timelike curve; it satisfies causality if it does not
contain a closed causal curve.

We write p < ¢ (respectively, p < ¢q) if there exists a future-directed timelike
(respectively, causal) curve from p to ¢. For any point p € M, we define the
timelike future of p, as the set IT(p) = {q: p < ¢}. Similarly, the causal future
of p is the set J7(p) = {q: p < ¢}. The timelike and causal pasts of p, denoted
I=(p) and J~(p), are defined analogously. (M, g.) satisfies distinguishability
if there do not exist distinct points p,q € M such that I~ (p) = I~ (q) or
I (p) = I't(q). Tt satisfies global hyperbolicity if it is causal and for any points
p,q € M, the set J*(p) N J~(q) is compact.?

A curve v : I — M is mawximal if there is no curve 7/ : I’ — M such
that I is a proper subset of I’ and v(s) = +/(s) for all s € I. The curve
v : I — M is a geodesic if £*V,£° = 0 where £% is its tangent vector and
V. is the unique derivative operator compatible with g,,. A maximal geodesic
v : I — M is incomplete if I # R. A model is geodesically incomplete if it
harbors an incomplete geodesic and geodesically complete otherwise. A future-
directed causal geodesic v : I — M is past-incomplete if it is maximal and there
is an r € R such that » < s for all s € I.

2]f one replaces ‘causal’ by ‘strongly causal’ one obtains the standard formulation of global
hyperbolicity. One can show that the two formulations are equivalent (Bernal, A., and
Sanchez, M. (2007).



Let the energy-momentum tensor Ty, for the model (M, g.p) be defined by
Einstein’s equation: R,, — %Rgab = 8n1,, where R, is the Ricci tensor and
R the scalar curvature associated with g.,. We say that (M, gqp) is a vacuum
solution if Ty, = 0. The null energy condition is satisfied if, for any null vector
X%, we have Tp,x*x? > 0. The weak energy condition is satisfied if, for each
timelike vector £€%, we have T,,£%¢? > 0. The strong energy condition is satisfied
if, for any unit timelike vector £%, we have (Th, — $7'945)6%¢ > 0. Finally, the
dominant energy condition is satisfied if, for any future-directed unit timelike
€, the vector T%¢% is causal and future-directed.

Let S be a set. A relation < on S is a partial order if, for all a,b,c € S: (i)
a < a, (ii) if a < band b < ¢, then a < ¢, and (iii) if @ < b and b < a, then
a = b. If <is a partial ordering on a set S, we say a subset T' C S is totally
ordered if, for all a,b € T, either a < b or b < a. Let < be a partial ordering on
S and let T' C S be totally ordered. An upper bound for T is an element u € S
such that for all a € T, a < u. A maximal element of S is an element m € S
such that for all ¢ € S, if m < ¢, then ¢ = m. Zorn’s lemma (equivalent to the
axiom of choice) is the following: Let < be a partial order on S. If each totally
ordered subset T' C S has an upper bound, there is a maximal element of S.

3 Possibility

One can think of general relativity as a collection of possible models of space-
time. But what counts as ‘possible’ in this context? As mentioned above, the
collection % seems to be ‘too big’ in the sense that some of the geometric pos-
sibilities it permits do not appear to be genuine physical possibilities. So one
works to pare down the space by examining the “pathological situations with a
view toward deciding which situations are to be ruled out by physical consid-
erations” (Geroch 1971, 72). Let us consider two influential suggestions along
these lines. As mentioned above, it has been proposed that

() “any [physically] reasonable space-time should be inextendible” (Clarke
1993, 8).

The recommendation is that we remove from the background possibility
space % all of the models which are extendible. Indeed, not doing so leads to a
situation in which extendible models count as “counter-examples to seemingly
plausible [physical] conjectures” (Clarke 1976, 17). An analogous position arises
with many other properties of interest. For example, consider one version of the
(strong) cosmic censorship conjecture (Penrose 1979) which states that

(1) all “physically reasonable spacetimes are globally hyperbolic” (Wald
1984, 304).

Now suppose we accept both (1) and (71); suppose we decide to rule out all
models which are either extendible or non-globally hyperbolic (or both) from



our background possibility space % . It is not clear how this is to be done. Let
me explain. On the one hand, it seems natural to begin with the collection
(I) C % of inextendible models and then pare down this space by removing
from it all non-globally hyperbolic models. The resulting space is (I) N (GH)
where (GH) C % is the collection of globally hyperbolic models. On the other
hand, one could begin with the collection of globally hyperbolic models (GH)
and work to pare down this space by removing all of the extendible models
from it. But here is where some tension arises: we cannot simply identify the
resulting sub-collection with (I)N(GH) as before and, at the same time, respect
the intuitive motivation for the definition of inextendibility. To see the point,
consider the ‘bottom half’ of Misner spacetime.? One can show that the model
is globally hyperbolic and extendible, and yet it cannot be extended and remain
globally hyperbolic (Chrusciel and Isenberg 1993). So we have a model in (GH)
which is ‘as large as it can be’ in the sense that it cannot be be reasonably
extended; and yet it does not make it into the collection (I) N (GH).

The tension at issue here can be stated like so: (i) inextendibility is a modal
property which has been defined relative to the background possibility space %
and yet (ii) the collection % does not properly capture the notions of physical
possibility we are after. It seems clear to me that if we are to rule out ‘physi-
cally unreasonable’ models of spacetime, then we ought to rule out ‘physically
unreasonable’ definitions of inextendibility as well. Following Geroch (1970) let
us say that for any collection & C %, a model is a Z-model if it is in the
collection &2. A Z-model is P-extendible if it has an extension in & (such
an extension is a P-extension) and P-inextendible otherwise. We are now in a
position to see clearly how it is that inextendibility ‘works differently’ in some
variant theories of general relativity; the truncated Misner example from above
is (GH)-inextendible but % -extendible.

Given this sensitivity to theory choice, it seems appropriate to study the
property of inextendibility from within each ‘physically reasonable’ variant the-
ory of general relativity. That is, it would seem appropriate to study -
inextendibily for some collection of ‘physically reasonable’ collections & C % .
More on this below. At this stage, we stress that there are a number of other
spacetime properties which depend, like inextendibility, on a background ‘phys-
ical possibility space’ in the form of some collection of models. Some of these
require spacetime to be ‘as large as it can be’ in various senses; the properties of
‘hole-freeness’ and ‘local inextendibility’ are two examples along these lines in
addition to inextendibility.* Properties concerning ‘stability’ are often modal as
well; the condition of ‘stable causality’ is one such example.? For various collec-

3See Hakwing and Ellis (1973) or the proof of Proposition 1 below for a precise definition.

4See Geroch (1977) and Hawking and Ellis (1973) for introductions to such concepts. See
Minguzzi (2012), and Manchak (2014) for discussions and updated definitions.

5Some care is required to see this fact. The original definition of stable causality given in
(Hawking 1969) is clearly modal. But in practice, a non-modal ‘stand in’ definition is often
used instead (see Wald 1984, 198). The two definitions — along with a third (non-modal)
definition concerning the existence of a ‘global time function’ — are all equivalent in GR(%).
But in some variant theories of general relativity, the modal and non-modal properties can
come apart.



tions & C % of ‘physically reasonable’ models, one could make a study of the
properties of ‘Z?-hole-freeness’, ‘P?-local inextendibility’, ‘Z?-stable causality’,
and so on. The associated theorems concerning such ‘&2 properties’ amount to
what I will call the ‘modal structure’ of GR(2).

Because of (ii) above, we see that a focused study of the modal structure of
GR(% ) will be insufficient to properly understand the role of physical possibility
within general relativity. And it does not seem appropriate to restrict attention
to just one variant theory of general relativity either, given that we have yet to
pin down — and arguably cannot pin down — a privileged collection of ‘physically
reasonable’ models (Manchak 2011). The situation suggests a natural pluralistic
position: to better understand the ‘modal structure’ of spacetime, we ought to
study a collection of collections of ‘physically reasonable’ models.%

4 Inextendibility

One response to the discussion above goes something like this: Perhaps for some
suitably chosen collection & C % of ‘physically reasonable’ models, the modal
structures of GR(%) and GR(Z?) will be ‘close enough’ for all practical pur-
poses. In what follows, I will push back on this line of reasoning. We begin
with a question posed by Geroch (1970) concerning inextendibility: For which
collections & C % of ‘physically reasonable’ models does Z-inextendibility
‘work the same’ as inextendibility? In other words, for which such collections
P C % is the following true?

(*) Every -inextendible #-model is inextendible.

We see that if (*) is true for some collection & C %, then it makes no
difference whether one uses &-inextendibility or the standard definition; any &-
model will be Z-inextendible if and only if it inextendible. It is of some interest
that we have yet to identify a (non-trivial) collection &2 of ‘physically reasonable’
models which renders (*) true.” In fact there is a growing collection of collections
& C % for which (*) is known to be false. Here we present a synopsis of the
situation so far and draw attention to open questions of significant interest. All
proofs for new results can be found in the appendix.

Let (Dist), (Caus), (Chr) C % be the collections of distinguishing, causal,
and chronological models respectively and recall that (GH) is the collection of
globally hyperbolic models. Basic results concerning the ‘causal hierarchy’ of
spacetime require that (GH) C (Dist) C (Caus) C (Chr) (Hawking and Ellis
1973). We know from the truncated Misner example from above that (*) is false

60ne would also like to identify theorems which hold across all variant theories of general
relativity. One can think of the logical study of general relativity carried out by Andréka et al.
(2010) as one research program along these lines; the first order axioms that are used cannot
make reference to a background collection of models.

"It is trivial that if one takes & to be the collection of inextendible models or any sub-
collection of that collection (e.g. the geodesically complete models), then (*) is true for 2.



when & = (GH). But even more can be said.

Proposition 1. (*) is false for all & such that (GH) C & C (Dist).
Proposition 2. (*) is false if & = (Caus).

As a corollary to the first proposition above, we see that (*) is false for
collections & C % defined relative to a number of other frequently used causal
conditions including ‘strong causality’ and ‘stable causality’ (see Wald 1984).
Another remark may be helpful here; there is no guarantee that, just because
(*) is false for (Dist) and (Caus) and (Dist) C (Caus), that (*) must also be
false for all & such that (Dist) C & C (Caus). Each such collection &7 must
be either checked independently or some new argument must be introduced for
why this is not needed. As far as I know, the question of whether (*) is false if
& = (Chr) is still open (Geroch 1970).

We now turn to the collection (GI) C % of geodesically incomplete models.
Presumably the singularity theorems of Hawking and Penrose (1970) show a
sense in which (at least some) ‘physically reasonable’ models can be geodesi-
cally incomplete. But it is not difficult to show the following.

Proposition 3. (*) is false if & = (GI).

Finally, let us consider some of the ‘local’ properties of spacetime. Let
(V') C % be the collection of vacuum solutions and let (DEC), (SEC), (WEC),
(NEC) C % be the collections of models satisfying the dominant, strong,
weak, and null energy conditions respectively. Standard results show that
(V) c (DEC) c (WEC) Cc (NEC) and (V) C (SEC) Cc (NEC) (Curiel
2017). The question of whether any of these collections satisfy (*) was asked
by Geroch (1970). Concerning (V'), things are still open as far as I know. If
P = (WEC), we know that (*) is false (Manchak 2017). It turns out that the
result can be generalized to include all of the standard energy conditions.

Proposition 4. (*) is false for all & such that (DEC) C & C (NEC).
Proposition 5. (*) is false for all & such that (SEC) C & C (NEC).

The emerging picture here seems to be that the property of inextendibility
‘works differently’ in a now substantial collection of collections & C % of
‘physically reasonable’ models. So the modal structure of spacetime does not
seem to be well-understood outside of the standard theory GR(%).®

The state of affairs suggests that we explore foundational claims other than
(*) in the manner outlined above. Along these lines, consider that in the
standard theory every extendible model has an inextendible extension (Geroch

8Things are beginning to change on this front, however. See Galloway and Ling (2017)
and Sbierski (2018) for work concerning #-inextendibility in cases where where % C &
rather than & C % . See also some recent work on ‘time machines’ which involves a study of
Z-inextendibility (Earman et. al 2016; Krasnikov 2018).



1970).° Upon this theorem rests a hefty philosophical weight. For one thing,
it underpins the metaphysical justification for the (f) position above (Earman
1995, Manchak 2017). For another, an influential definition of a ‘singular’ space-
time seems to depend on it (Geroch 1970). We will return to the topic of sin-
gularities soon. For now, let us ask: for which collections & C % of ‘physically
reasonable’ models is the following statement true?

(**) Every P-extendible £-model has a P-inextendible &Z-extension.

It turns out (**) is true for all ‘local’ properties of a certain kind. Following
Geroch (1970) and Krasnikov (2014), let us say that a property & C % is
local if for each model (M, gqp) € % and any open cover {V,} of M, we have:
(M, gap) € P = (Vi gap) € P for all V,,.10 We have the following.

Proposition 6. (**) is true for all local & C % .

It should be clear that, as a corollary to this proposition, (**) is true if & is
any one of the following collections: (V'), (DEC), (SEC), (WEC), or (NEC).
A few non-local properties also render (**) true.!! In particular, we have the
following (see Manchak (2017) for a proof of the first of these results).

Proposition 7. (**) is true if & = (Chr).
Proposition 8. (**) is true if & = (GI).

One might be tempted to conclude from all of this that (**) will be true
for any collection of ‘physically reasonable’ models. But consider the collection
(B) C (GI) of models with the property that every maximal timelike geodesic
is past-incomplete. We have the following (Manchak 2016).

Proposition 9. (**) is false if & = (B).

Presumably, the ‘big bang’ in our own universe permits us to view this
property as a ‘physically reasonable’ one.'? In any case, the point here is simply
“to demonstrate by some example that a certain assertion is false, or that a
certain line of argument cannot work” (Geroch and Horowitz 1979, 221). In the
present case, I only wish to stress that it is not yet clear that (**) will be true

9t is of some interest that this result seems to be one of the few in general relativity to
depend crucially on the axiom of choice (in the form of Zorn’s lemma) for its proof. See
Clarke (1976) for a nice discussion concerning the relationship between set theory and general
relativity.

10The definition here differs from the one given in (Manchak 2009). One can show that any
local property as defined here will be a local property by the lights of (Manchak 2009). It is
an open question as to whether the definitions are equivalent.

1See Low (2012) for a discussion concerning some of the obstacles preventing even more
results of this kind from being established.

120n the other hand, one might argue that quantum considerations drastically change our
understanding of the ‘big bang’ singularity. See Ashtekar (2010) for a discussion.



for all collections & C % of ‘physically reasonable’ models. One would like to
see a further investigation (**) with respect to other sub-collections of (GI). In
particular, let (S) C (GI) be a collection of models satisfying the assumptions
of any one of the standard singularity theorems (Hawking and Penrose 1970).
One wonders whether (**) is false if & = (5). More on singularities and their
connection to both (*) and (**) below.

5 Singularities

What is a ‘singularity’ in general relativity? This is a subtle question and a great
deal of ink has been spilled in the attempt to find a suitable definition.!> But
the community seems to have settled on the (non-modal) property of geodesic
incompleteness (or some closely related variant) as an imperfect but suitable
working ‘stand in’ for this definition (Wald 1984). Here I would like to draw
attention to one sense in which the plausibility of such a position seems to rest
on the standard definition of inextendibility. Here is the argument (Geroch
1970, 261-262).

There are two distinct notions to be combined into the defini-
tion of a singular spacetime. Let us consider as an example the
spacetime M consisting of a small open neighborhood of one of the
homogeneous spacelike sections in a Friedmann model. Our M is
not ‘singular’ in the usual intuitive sense (e.g. no scalar invariants
become infinite). We would, nonetheless, like to rule out M as a
model of the universe on the grounds that M represents only ‘part
of the universe’. It is because M is extendible that the singulari-
ties — which are certainly present in the Friedmann models — do not
show up in M. The first step, then, is to recognize the extendible
spacetimes. Suppose now that we have a spacetime M’ which is
inextendible (e.g. the full Friedmann model). We then require a
second criterion to recognize that M’ is ‘singular’. The important
point is that we do not expect at this stage to be able to recognize
singularities in an extendible spacetime because singularities always
appear ‘at the edge’ of the spacetime manifold, and it is precisely
this ‘edge’ which may be missing from an extendible space. That
is, we need only formulate a definition of ‘singular’ which is appli-
cable to inextendible spacetimes. Finally, we may try to generalize
our definition to extendible spaces. Thus, we envisage three steps
in the definition: (1) define ‘extendible’, (2) define ‘singular’ for in-
extendible spacetimes, and (3) define ‘singular’ for all spacetimes.
(Only the second of these steps is difficult.)

13See Geroch (1968; 1970) and Ellis and Schmidt (1977) for exemplary discussions on the
topic. See Weatherall (2014) for recent work on the analogous question concerning geometrized
newtonian gravitation.



Geroch goes on to construct a definition of singular spacetime. For step
(1), the standard definition of inextendibility is used. In the ‘difficult’ step
(2), we seem to be led to the following imperfect but still suitable definition:
an inextendible model is singular* if it is geodesically incomplete. One reason
the definition seems to work is that it allows us to be sure that the geodesic
incompleteness present in a singular* model is not due to its extendibility — one
can show that any extendible spacetime will have incomplete causal geodesics
(see Clarke 1993, 8). In the final step (3), the definition is generalized: an
arbitrary model is singular if (i) it is inextendible and singular* or (ii) it is
extendible and all of its inextendible extensions are singular*.

Clearly this definition of a singular spacetime depends on the standard def-
inition of inextendibility. Given that we have reason to doubt the physical
significance of the standard definition of inextendibility, where does this leave
us? It would seem that, for each ‘physically reasonable’ collection & C % , one
could straightforwardly define a type of ‘Z-singular’ property. Here, we draw
attention to a pair of obstacles in doing so; it is of some interest that the two
obstacles correspond to (*) and (**) from above.

Fix some collection & C % of ‘physically reasonable’ models. Carrying
out the analogous step (1) is not difficult; one can use the definition of £2-
inextendibility. One might be tempted to carry out an analogous step (2) in the
following way: a Z-inextendible &-model is P-singular* if it is geodesically
incomplete. If (*) is true for &2, there is no problem. But suppose that (*) is
false for . In this case, we cannot rule out the possibility that a 2-singular™
model is extendible. There seem to be two ways of looking at the situation.'4
Consider first an extendible &-inextendible model which is such that no scalar
invariants become infinite (as is the case for a number examples given in the
appendix). Such a model seems to be “not ‘singular’ in the usual intuitive sense”
(Geroch 1970, 261). On the other hand, we know that any extendible spacetime
will have incomplete causal geodesics. And it would seem there is “a serious
physical pathology” in any such spacetime since “it is possible for at least one
freely falling particle or photon to end its existence within a finite ‘time’...or to
have begun its existence a finite time ago” (Wald 1984, 216). If such a pathology
is present, the moniker ‘singular’ does not seem inappropriate — especially in a
model which is ‘as large as it can be’ in the sense of Z-inextendibility.

Suppose the second option is favored and one adopts the definition of -
singular*. Complications also arise in carrying out the analogous step (3). If
(**) is true for &, we can define an arbitrary &?-model as &-singular if (i) it
is P-inextendible and &-singular* or (ii) it is H-extendible and all of its &-
inextendible #-extensions are Z?-singular* (at least one such extension must
exist since (**) is true for &2). But if (**) is false for 42, then there do not
exist P-inextendible Z-extensions to some #-models and it is not clear how to
work around such situations. The upshot seems to be that the question ‘what
is a singularity in general relativity?’ is even more subtle than we might have
thought.

14Thanks to Jim Weatherall for the point.
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6 Conclusion

Stepping back, we see that the approach to general relativity outlined above can
also be implemented with respect to other physical theories. As long as one has
a collection of models representing physical possibilities, and as long as there are
some models in the collection which are thought to be ‘physically unreasonable’
in some sense, then an exploration of some collection of collections of ‘physically
reasonable’ models would seem to be fitting.!?

7 Appendix

Proposition 1. (*) is false for all & such that (GH) C & C (Dist).

Proof. Let & be such that (GH) C & C (Dist). Consider the Misner model
(N, gap). Here N =R x S and gap = 2V (4t Vi) — tV Ve where the points
(t, ) are identified with the points (¢, + 27n) for all integers n. Now, let
M ={(t,p) € N : t <0} and consider the extendible model (M, gqp). We know
this model is globally hyperbolic (Chrusciel and Isenberg 1993) and therefore in
Z?. We need only show that all of its extensions fail to be in &. Let (M’, ¢/,) be
any extension of (M, gqp) and let p be a point in 9IM N M’. In any neighborhood
of p, there will be a point ¢ € M N M’ such that g # p. One can verify that
I=(p) = M =1 (q). We see that (M’, ¢/,) is not distinguishing and therefore
not in &. O

Proposition 2. (*) is false if & = (Caus).

Proof. Let (M, gqp) be defined such that M = R x S and gup = V(qtVy)p —
sinh t2V ¢V, where the points (¢, ) are identified with the points (¢, ¢ +2mn)
for all integers n (cf. Malament 2012, 135). One can verify that the closed curve
at t = 0 is causal since (9/0¢)® is null there. Moreover, the model was chosen
so that the closed causal curve at ¢t = 0 is the only closed causal curve present.
Now consider the model (M, g.p) where M’ = M — {0,0}. It is causal — the
‘missing point’ prohibits the causal curve at ¢ = 0 from being closed. But the
model has only one extension: the acausal (M, gqp). O

Proposition 3. (*) is false if & = (GI).

Proof. Let (M, gq) be any geodesically complete model. Now consider the
model (M — {p}, gqp) for any point p € M. It is geodesically incomplete be-
cause it is extendible. But the model has only one extension: the geodesically
complete (M, gqp). O

15Tndeed, Geroch (1977) explicitly considers such an approach with respect to a version of
Newtonian spacetime. See also the related discussion in Norton (2003) and Malament (2008).
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Lemma 1. Let (R* n,) be Minkowski spacetime where 14, = —VtVpt +
VaorVpx + VoyVey + Vo2Vez. Let f : R — R be any smooth function and
let  : R* — R be defined by Q(t,,y, z) =exp[f(t)]. Under Einstein’s equa-
tion, the energy-momentum tensor associated with gqp = %14 is given by
Tup = (p+p)Vat Vit +pna, where p = 3f'(¢)? /87 and p = —(f'(t)2+2f"(t))/8~.

Proof. Let (R*,14,) be Minkowski spacetime where 14, = —V,tVyt+ V2 Vyz+
VoyVoy +Vo2Vyz. Let f : R — R be any smooth function and let Q : R* = R
be defined by Q(t, x,vy, 2) =exp(f(t)). Associated with g., = Q%14 we have the
following (Wald 1984, 446).

Rap =2V Vo f(t) = 1apn““V e Vaf (&) + 2(Va f () (Ve f(2))

=200 (Ve f (£))(Vaf (1))
R = Q7 2[=6n"V,Vyf(t) — 61°(Vaf(t)(Vsf(t))].

Because V,f(t) = f/(t)V,t and V, Vi f(t) = f7"(t)(Vat)(Vpt), we can use
the fact that n?°(V,t)(Vyt) = —1 to simplify.

Rapy = (2f'(t)* = 2f"(£))(Vat)(Vot) + 2F (t)* + 1 () 1ab
R = Q7?6f"(t)+6/(t)?].

Using Einstein’s equation R, — %Rgab = 87T, we have the following.

Tu = (27 (1 = 20" (O)(Vat) (Vo) — (1) + 2" (1))

Letting p = 3f/(t)?/87 and p = —(f'(t)? + 2f"(t))/87, we see that T,;, =
(p+ p)VatVit + prap as claimed. O

Proposition 4. (*) is false for all & such that (DEC) C & C (NEC).

Proof. Let & be such that (DEC) C & C (NEC). We are done if we can
construct an extendible model in the collection (DEC) which has no extension
in the collection (NEC). Consider Minkowski spacetime (R%,7,;) where 14, =
—VatVpt + VoV + VoyVyy + VazViz. Let Q : R* — R be defined by
Q(t, z,y, z) =exp[f(t)] where f(t) = t?/2 +t. By the first lemma, the energy-
momentum tensor associated with gq, = Q2nab is given by

Top = (p + p)vatvbt + DNab

where p = 3f/(t)?/87 = 3(t + 1)?/8m and p = —(f' ()2 + 2f"(¢)) /87 = —((t +
1)2 +2)/8w. So we have the following.

p—Ipl=p+p=(20t+1)*-2)/87

We see that if ¢ > 0, then p — |p| > 0. Consider the extendible model (M, gap)
where M = {(t,z,y,z) € R* : t > 0}. Since p— |p| > 0 on M, it follows that the
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model is in the collection (DEC) (Wald 1984, 220). We need only show that
any extension to (M, g,p) is not in the collection (NEC).

Let (M’,g.,) be any extension to (M, gq) and let ¢ € M’ be a point in the
boundary of M. Let (O, ) be a chart with ¢ € O such that we can extend
the coordinates (t,z,y,2z) on M to M U O. Let gq1,92,93 € R be such that
g = (0,41,¢2,¢93). Consider any smooth functions o, oz, ay, 0, : O — R such
that

X" = ay(9/08)" + az(9/0x)" + oy (9/0y)* + 2(9/0z)"

is a null vector field on O and we have oy = a, = 1 and oy = a, = 0 on
ON M. Now find some ¢ > 0 such that (=6, ¢1,4g2,q3) € O. For t € (=6, 0), let
q(t) = (t,q1,92,q93) € M’'. Consider the smooth function h : (—4§,6) — R given
by h(t) = T’bxaxlfq(t) where 77, is defined on M’ in the natural way (using the
metric g/, and Einstein’s equation). Of course, for all ¢ > 0, we have

h(t) = TcibXaX?q(t) = TabXaleq(t) = (p+P)q)
= (2t +1)* —2)/87 = (2t> + 4t) /87

Smoothness requires A(0) = 0 and h'(0) = 1/27. This allows us to find an
€ € (—4,0) such that h(t) < 0 for ¢ € (¢,0). So the null energy condition is
violated at ¢(t) for all ¢t € (¢,0). O

Proposition 4. (*) is false for all & such that (SEC) C & C (NEC).

Proof. The argument follows the one above very closely. Let &2 be such that
(SEC) C & C (NEC). We are done if we can construct an extendible model in
the collection (SEC) which has no extension in the collection (NEC'). Consider
Minkowski spacetime (R%,7,5) where 74, = —VatVit + VoxVix + VoyVey +
VazVpz. Let Q : R* — R be defined by Q(t,z,y, 2) =exp[f(t)] where f(t) =
—t3/3. By the first lemma, the energy-momentum tensor associated with gq, =
021,y is given by

Tab = (P + p)vatvbt + PNab

where p = 3f/(t)?/87 = 3t* /87 and p = —(f'(t)? + 2f"(t)) /87 = (4t — t*)/87.
So we have the following.

p+p (2t* + 4t) /87
p+3p = 12t/81

We see that if ¢ > 0, then both p+p > 0 and p + 3p > 0. Consider the
extendible model (M, g,;) where M = {(t,z,y,2) € R*:¢t > 0}. Since p+p >0
and p+3p > 0 on M, it follows that the model is in the collection (SEC") (Wald
1984, 220). We need only show that any extension to (M, gap) is not in the
collection (NEC).
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Let (M',g.,) be any extension to (M, g.») and let ¢ € M’ be a point in the
boundary of M. Let (O, ) be a chart with ¢ € O such that we can extend
the coordinates (¢,z,y,2z) on M to M U O. Let ¢q1,¢2,93 € R be such that
g = (0,41, ¢2,93). Consider any smooth functions oy, o, ay, ; : O — R such
that

X¢ = a(0/0t)* + ay(0/0x)* + oy (0/0y)* + a,(0/0z)"

is a null vector field on O and we have oy = o, = 1 and @y = a, = 0 on
O N M. Now find some 6 > 0 such that (=6, 4q1,¢2,q3) € O. For t € (=0,9), let
q(t) = (t,q1,92,93) € M’'. Consider the smooth function h : (—4,0) — R given
by h(t) = Tébx"x’fq(t) where T7, is defined on M’ in the natural way (using the
metric ¢/, and Einstein’s equation). Of course, for all t > 0, we have

h(t) = ToX*Xf) = TasX Xy = (0 + P)jg(y = (24" + 4t) /8

Smoothness requires h(0) = 0 and h’'(0) = 1/27. This allows us to find an
€ € (—=4,0) such that h(t) < 0 for t € (¢,0). So the null energy condition is
violated at ¢(t) for all ¢t € (¢,0). O

Lemma 2. Let §(% ) be the collection of framed models. Let < denote the re-
lation on §(% ) such that (M, gap, F') < (M', g, F') ift (M’, g, F') is a framed
extension of (M, gap, F'). The relation < is a partial ordering on .7 (%).

Proof. See Geroch (1969, 188-189). O

Lemma 3. Let §(.%) be the collection of framed models satisfying any local
property & C % . §(£) is partially ordered by < and every sub-collection of
F(&) which is totally ordered by < has an upper bound.

Proof. Let §(Z) be the collection of framed models satisfying any local property
L C . Since §(L) C F(%), it follows from Lemma 2 that §(.Z) is partially
ordered by <. Let {(M;,g;, F;)} be a sub-collection of §(.£) which is totally
ordered by <. Following Hawking and Ellis (1973, 249), let M be the union of
all the M; where, for (M;, g;, F;) < (M;, g, F}), each p; € M; is identified with
©i;(p;) where ¢;; : M; — M, is the unique isometric embedding which takes
F; into F;. The manifold M will have an induced metric ¢ = ¢;.g; on each
wi[M;] where ¢; : M; — M is the natural isometric embedding. Finally, take
F' to be the result of carrying along a chosen F; using ¢; : M; — M. Consider
the framed model (M, g, F'). Clearly, for all i, we have (M;,g;, F;) < (M, g, F).
Consider the open cover {M;} on M. Since each (M;, g;, F;) € F(.Z), it follows
from the fact that .Z is local that (M, g, F) € §(£). We see that (M, g, F) is
an upper bound for {(M;, g;, F;)}. O

Proposition 6. (**) is true for all local &2 C %.
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Proof. Let £ C % be a local property and let (M, g.p) be an £-model which
is Z-extendible. Let F be frame at some point p € M. So, (M, g, F) € F(Z).
By Lemma 3 and Zorn’s lemma, there is a maximal element (M’,¢/,,F’') €
§(Z) such that (M, gep, F) < (M',g.,, F'). It follows that (M’,g/,) is a Z-
inextendible .Z-extension of (M, gap). O

Proposition 8. (**) is true if & = (GI).

Proof. Let (M, gqp) be a geodesically incomplete model which has a geodesically
incomplete extension — call this extension (M', ¢’). If (M’, ¢’) is inextendible, we
are done. Suppose (M’',¢') is extendible and let (M"”,g"”) be any inextendible
extension to (M’,gl,). If (M",gl,) is geodesically incomplete, we are done.
Suppose (M",g,) is geodesically complete. The model (M"” — {p},g/,) for
p € M"” — M’ is extendible and therefore geodesically incomplete. By construc-
tion, M is a proper subset of M" —{p} and so (M" —{p}, g,) is an extension of
(M, gap). But (M"” —{p}, g//;) has only one extension: the geodesically complete
(M/lv gz/llb)‘ O
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