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1 Introduction

Several misconceptions about the application of information theory in natural science are

widespread in philosophy. It is therefore necessary to clarify the assumptions required

for informational measurements to have significance. Contemporary accounts of informa-

tional measurements in the natural sciences are stuck between “the Scylla of meaning and

the Charybdis of causation.” [26, p. 191]. Here I promote a view that retains the benefits

of each while dispensing with problematic commitments. Information is a contribution to

accurate performance of a function. It increases the efficiency of function performance by

better apportioning the physical resources available.

In the next section an outline of the logical map of information concepts is presented.

Assumptions in various domains lead to differing significance for different information

measurements. A lightweight understanding of the positive thesis – what a functional

account of information looks like roughly – follows. Three advantages of a functional

approach are then discussed. First, traditional emphasis on the indicative aspect of infor-

mation is supplemented with its counterpart instructional aspect, supporting contempo-

rary work on subpersonal content. Second, an influential distinction between causal and

semantic information, argued recently to be misconceived, is further denigrated. Finally,

mathematical results adverting to utility are recast in terms of function, allowing us to

apply information theory in evolutionary biology, neuroscience and elsewhere.

1

https://doi.org/10.1007/s13164-018-0413-4


2 Perspectives on information theory

In order to properly locate the positive thesis, an overview of recent philosophical claims

about the application of information theory across the natural sciences is in order.

Phenomena in several subdisciplines of biology and cognitive science recommend the

use of information theoretic formalism. But differing assumptions entail different interpre-

tations of formal results. Unfortunately, the special details of mathematical communication

theory lead many to import one of its central tenets into areas where it does not belong. It

is often claimed that Shannon and Weaver established that information theoretic formal-

ism, in any domain, is irrelevant for the meaning of information transmitted. The claim is

false but widely believed [7, p. 344 col. 2] [21, p. 395] [38, p. 21] [25, p. 1984]. Philosophical

understanding of information in natural science is misshapen. The problem is no doubt

caused by many factors, but one particular fallacy stands out.

Mathematical communication theory (MCT) deals with symbols that stand for symbols.

The coded message for which information is quantified represents a primary message

whose meaning is irrelevant for this quantification. In other contexts, information can be

quantified for symbols that stand for things other than symbols. The engineering context

is special, but its mathematics are general. A coherent account of information, and an

understanding of the fruitful application of existing mathematical tools across natural

science, results from rejecting the assumption that only meta-symbols can be quantified.

This is the subject of the present essay.

The remainder of this section introduces MCT, after which section 3 promotes a gen-

eralisation of the concept of information that renders it suitable for application in various

domains of natural science. Three advantages of this approach are then discussed. First, a

new perspective on the coded messages of MCT is described in section 4. The distinction

between natural and intentional information is explored in section 5. Finally, section 6

examines recent applications of information theory in microbiology and cognitive science.

I argue these treatments accord well with a functional account.
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Two key components of mathematical communication theory are pressed into service

in philosophy. Both were introduced by Shannon as part of his foundational text. First, the

central transmitter-receiver model finds analogies across science, and philosophy helps de-

termine whether purported applications are appropriate. Second, the engineering problem

whose solution is the aim of communication theory has sometimes been taken as funda-

mental to the broader domain of information theory. The crux of the present essay is that

contemporary philosophical interpretations of both of these factors are largely incorrect.

In the remainder of this section I survey them in order.

2.1 The central model

In MCT, information is quantified as the extent to which the source message can be

recovered at the target. It is a function of statistical properties of the source message and

the channel through which it is sent, and as such is nothing to do with its meaning (insofar

as statistical properties of a source have nothing to do with meaning).

As an example of communication, the central model is a rather peculiar case. Rarely

does it apply exactly outside communications engineering. In order to apply information

theory in other domains, the formalism has to be generalised. To this end, consider one

of the special properties of messages in the central model. Because the symbols are about

symbols, encoded messages usually carry two meanings, one folded within the other. The

first is the instruction how to recover the original message.1 The second is the meaning of

the original message. It is often pointed out that the formalism of information theory is

blind to the second meaning. But there are communication systems whose messages are

not encoded in this way. In these systems, the meanings of messages are precisely what is

quantified by information-theoretic formalism.
1Although a general-purpose mechanism for decoding messages must be contained within the receiver, the specific instruction of

which primary message to reconstruct is contained in the coded message itself. The message possesses this instruction partly due to

that general capacity of the receiver. On the functional account advocated here, the same is true of any signalling system. No signal

has meaning independent of sender and receiver mechanisms.
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Since Bar-Hillel and Carnap [2], philosophers have been told there is a deep divide

between “Shannon information” – codes – and “semantic information” – what is expressed

by codes. But whether or not the source message has a semantic meaning, the encoded

message certainly does, and it is a meaning that is directly relevant to the quantification of

information transmitted by it. Below in section 4 I demonstrate that the first meaning of an

encoded message – the information (indicative) about what the primary message was, or

equivalently the instruction (imperative) how to recover it – is a kind of primitive content

familiar from signalling games. It is only because the central model is a very special

kind of system that its relation to other forms of communication has been neglected by

philosophers. In this way, contemporary positions on the use of information theory in

natural science are inordinately pessimistic.

The central model has been applied in diverse ways in the natural sciences. There

has been some difficulty establishing the conditions under which it is appropriate. Below

in section 6 two examples are presented, and the justification for the application of the

central model in those domains is examined.

2.2 The fundamental problem

Shannon described the problem of his art as “that of reproducing at one point either

exactly or approximately a message selected at another point” [46, p. 379]. A similar lesson

applies here. Just because the fundamental problem does not reappear exactly in natural

science does not mean the formalism of information theory cannot be applied outside

mathematical communication theory. Mathematical formalism, appropriately generalised,

is never so rigorously context-bound. Shannon was hopeful about the application of the

mathematical theory elsewhere in natural science [45].

To see how information theoretic formalism can be generalised beyond the fundamen-

tal problem of MCT, consider the qualifier “approximately” in Shannon’s quote above.

Where exactitude is not required, the system may be optimised to transmit at a rate of
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‘just enough’ information. But how can we determine how much is enough unless the

measurement of information has relevance for what the receiver does with it? In other

words, how do I know how many bits I need unless I know what actions those bits are

helping me choose between, or which states of the world those bits are helping me infer?

The cost of information loss is always measured relative to the goal that information trans-

mission subserves. Cognitive science and microbiology are applying these ideas already

(see below section 6). Philosophy of information needs to catch up.

The aim of this section was to pump intuitions against the received view of information

theory and its application outside MCT. The next section carries those doubts which

have hopefully been raised, and soothes them by providing an inclusive understanding of

information.

3 Functional interpretations of information

Functional accounts are familiar from Millikan [29], Jablonka [18], and Bergstrom and Ros-

vall [4, 3]. The latter work was concerned primarily with genetic information. Stegmann

[50] and Rathkopf [39] have independently noted the potential breadth of the view beyond

the genetic domain. The present work is a step in the same direction. Arguments that

quantification of information is best approached with reference to a user can be found in

Millikan [29] and Scarantino [43].

One strand of the philosophy of information aims to unpack the notion of uncertainty

at the foundation of mathematical definitions. One might think ‘uncertainty’ requires

the role of a user. However, Dretske, Skyrms and others place information-theoretic

formalism on a foundation of objective probability. They argue that information is a

user-independent quantity which, like any other natural resource, can be leveraged by

organisms to help achieve their goals. In MCT, uncertainty is a quasi-mathematical, quasi-

engineering concept. Mathematical formalism does not provide its own interpretation, so

we have no prima facie reason to constrain Shannon’s definitions and theorems to their
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original domain. However, we do need good reason to apply them elsewhere. Here

I argue that the first major attempt to adopt information theory in philosophy, due to

Dretske, was inappropriate. It focused on the wrong aspect of MCT information – its

relation to probability – and ignored its relevant functional characteristics. I counsel an

alternative route.

3.1 The causal interpretation

Dretske argued that both the mathematical tools and the central model that interprets

them are universally applicable. Any medium through which correlations are borne is

a channel. Any source of correlation – biological, artificial or inert – is a transmitter.

And anything capable of interpreting that correlation – given a plausible construal of

“interpretation” – is a receiver. His target was a naturalistic foundation for epistemology.

He was not concerned with information per se but the tractability, in a sense crucial for

methodological naturalism, of information by the scientific method. Central to Dretske’s

account of belief was a distinction between “genuine cognitive systems” and mere “con-

duits of information” [10, p. 172]. Only the former are capable of bearing semantic content.

In the 1970’s when the book was written, there was no foundational account of content

(except perhaps Lewis’s Convention [24], and even that focused on rational actors). There

was not yet a subpersonal notion of content, one that could be studied from the design

stance. As argued below, in line with the theoretical work of Dennett and Millikan, low-

level content is a suitable concept for natural science. Its formal underpinnings are found

in evolutionary models designed by Skyrms and colleagues [49].

Dretske’s interpretation, which was to become the canonical account of causal infor-

mation, made “information” extremely broad. To distil the narrower notion of semantic

content he showed how extraneous properties are winnowed out in the process of belief

formation. Neander [35], Skyrms [49, §3], Kraemer [20] and Scarantino [43] are among the

neo-Dretskeans pursuing a similar line. From the perspective advocated here, in contrast,
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information should start narrow. Functional information is already narrow: it entails only

what the receiver’s functional state is sensitive to, both actions and states of the world. The

following subsection outlines a functional generalisation of the basic tenets of information

theory, rendering it suitable for use across natural science.

3.2 A faithful generalisation of the central model

Causal interpretations, insofar as they cast information as independent of any user,

face the reference class problem (see Harman’s commentary on Dretske’s Précis [11], and

Dretske’s reply). Millikan [29] and Scarantino [43] target the problem in their accounts.

Scarantino points out that information can be quantified with respect to a hypothetical

user. Unfortunately, he treats users as essentially epistemic. More basic than inference,

contests Millikan, is function. Information is interpreted in light of what a user’s functional

behaviour depends upon, as opposed to what the user believes. Most natural science takes

place at the level of the design stance, making use of information without reference to epis-

temic concepts. Relativising informational quantities to function performance allows us

to retain Scarantino’s solution to the reference class problem (which is itself an extension

of Millikan’s solution [29]), without commitment to the epistemic complexity of potential

users. In line with that approach, I claim that the minimum machinery needed to specify a

non-arbitrary reference class is a proper function (in the sense of goal-oriented behaviour)

of a potential user. There is a measure of function performance that increases upon re-

ceipt of relevant and useful information. Received information is quantified with respect

to this increase. The approach accounts for biological practice in the most flat-footed way

possible. Information talk in biology describes a real, quantifiable relation.

It follows that there is a principled and useful generalisation of the central model that

differs from what Dretske had in mind. He emphasised the notion of probability-raising,

casting the ultimate problem of information as epistemic. While information does raise

the probability of states of the world, it also raises the favourability of actions available
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to its receiver. Information is a practical as well as theoretical resource. Further, the

problem of reconstructing a message has no central place on this view. The fundamental

problem which information helps solve is that of behavioural coordination. By discarding

the causal interpretation in favour of a functional one, we are left with an account broadly

in accordance with the sender-receiver framework.

A little more must be said on the relation between the fundamental problem of MCT

and the more general problem of behavioural coordination. Reconstructing a message is a

special case of behaviour, whether of an evolved organism or designed machine. In MCT,

reconstructing a message to a desired level of accuracy is the goal of behaviour. Insofar as

information transmission is a measure of how accurately a message can be reconstructed,

it is more generally a measure of how accurately a piece of behaviour can be performed.

Information transmission measures how much more efficiently or accurately a receiver can

achieve its goals than if it received no information at all.

In MCT, lexicons are tidy sets with well-defined probability distributions. The space

of all possible messages has an entropy, and information is defined derivatively on this

property. Receiving a transmission reduces uncertainty about which message was se-

lected. If we replace the epistemic notion of uncertainty about the selected message with

a functional notion of accuracy, we get a generalised interpretation of the same equa-

tions. Suppose the receiver were simply a box for converting the received code back into

the primary lexicon. When the received code does not uniquely determine a message,

the box must choose from among the possible messages with probabilities determined by

what has been received. On this interpretation, the decoding box has a space of possible

actions corresponding to available primary messages. Action space is made more certain

– sharper, less entropic – by receipt of a coded message. MCT applies to this case with a

functional understanding of ‘uncertainty’ in place of an epistemic one.

Dretske generalised MCT in the wrong direction. He sought to retain an abstract

epistemic notion of increased probability. He should have opted for a functional notion

of increased accuracy.

8



To reiterate, reconstruction of a message is an example of a goal than can be achieved

more or less accurately. There are many others. For an example in the biological realm,

consider honey bees. Foragers in eusocial colonies communicate the location of food by

dancing inside the hive. Hivemates who might otherwise search randomly for food are

guided towards reliable food sources by following the dance. These recruited foragers are

more accurate, on average, as a result of responding appropriately to their compatriots’

behaviour. It is this notion of increased accuracy I contend is an appropriate generalisa-

tion of MCT.

A similar argument is made by Lean [22, pp. 239–40]. We can generalise commu-

nication to “adaptation” of the receiver to the sender, rather than identification of a

reconstructed message with a source. In the examples just described, two conditions are

important. The first is that action-space is measurable in terms of its favourability. It

is this that is changed by the instructional aspect of information (see below section 4).

Second, sender and receiver are in full cooperation, whether codesigned or coadapted by

natural selection. I do not here consider the case of divergent interests, though it is crucial

to the debate over animal communication. The example above used honey bees, who can

be fairly idealised as cooperating fully in a foraging task. Other cases of animal signalling

are not so simple. Perhaps further generalisation of information-theoretic results will yield

understanding of the link between communication theory and game theory. Figure 1 de-

scribes relations between theorems of MCT. From left to right, each arrow denotes a more

general theorem derived from a special one. Each is obtained by allowing parameters

held fixed in the special case to vary. Speculatively, something similar will happen when

we generalise further, allowing the interests of sender and receiver to vary.

I now survey three areas, two conceptual and one empirical, that recommend a gener-

alisation of MCT centred on a functional interpretation of information.
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Figure 1: Relationships between formal aspects of information theory. Arrows designate the relation from

special to general case. The dashed line suggests a boundary between MCT and game theory.

4 First result: information and content

Emphasis on the indicative aspect of information and a focus on its potential user’s

knowing (rather than doing) mutually support each other. We can de-emphasise both

simultaneously by bringing out the equally significant instructional or imperative aspect

of information and its potential user’s action. In line with recent work on subpersonal

content, epistemic metaphors are displaced [47, 4].

A growing (perhaps by now established) trend in naturalistic epistemology is the use

of a concept of content that does not require personal-level intentional states. Its value

lies in its explanatory role describing the behaviour of organisms and artificial devices too

simple to be ascribed personalities [30, 47]. The classic example of this move is Skyrms’s

appropriating of Lewis’s analysis of content in game-theoretic models [49]. Lewis [24]

applied a mathematical framework to study the behaviour of rational actors, extracting

a notion of content from the dynamics of behaviour observed in such games. Skyrms

demonstrated that rationality on behalf of the actors is unnecessary. The same notion of

content – the same explanations and descriptions of behaviour of the players – can be

put to work when agents in the game are interpreted as evolutionary rather than rational.

As with the theoretical approach spearheaded by Millikan and Shea, this move can be
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regarded as a demonstration that concepts previously developed for the intentional level

are applicable at the design level too.

Consider the following similarity between the formal concept of information and sub-

personal content. One of the important aspects of content, discussed by both Millikan

and the game theorists, is its dual aspect of indicative and imperative conditions. Signals

– intentional signs – can say both how things are and what is to be done. When it comes

to information we tend to implicitly adopt a purely indicative stance. In turn, we favour

an epistemic interpretation of its use, on which information is what it is only with respect

to some knower, independent of how they might act in response. They may be actual or

hypothetical, but it is their actual or possible knowing that lends an indicative flavour to

“information”. I contend that once we focus not just on knowing but on actual or possible

doing we regain the instructional aspect of signals, thus moving closer to the contempo-

rary understanding of content. Where 1 bit of information allows the receiver to infer

one out of two equiprobable states of the world, 1 bit of instruction allows the receiver to

choose one out of two equifavourable acts.

First an example. In terms of subpersonal content, an encoded signal in the central

model of communication theory is primitive. Primitive content denotes a signal that is

equally indicative and imperative. We can see that this is true of the encoded signal

in the central model by overlaying a sender-receiver model on the inner portion of the

Shannon system, taking the sender to be the encoding transmitter and the receiver to be

the decoding receiver. The signal is then the stream of encoded symbols. Sender and

receiver are dealing with encoded information whose ‘meaning’ is the primary message.

The information can equally be seen as telling the decoder what the source message is

(informative) and telling the decoder which target message to construct (instructional).

A test for primitivity is deliberation [24, p. 144] [16, p. 410]. Where receivers are

permitted to deliberate over the action they will perform, the signal they receive has a

more indicative flavour. In contrast, where senders are permitted to deliberate over what

signal to send, it seems they are telling the receiver what to do. (If both are permitted to
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deliberate, the correlational link between world and act is in danger of being destroyed,

and communication breaks down.) In the present case, neither encoder nor decoder

deliberates. Neither draws on information outside the channel through which the signal

in question is flowing. The encoder takes the message as input and produces a stream

of code. The decoder takes that code as input and produces a message. Since the same

primary message cannot give rise to a different code, the encoder does not deliberate. And

since the same code cannot be translated into different messages, the decoder does not

deliberate. Finally, since neither deliberates, the code is an instance of primitive content.

It is worth noting this holds regardless of the meaning of the primary message. Indeed,

the primary “message” need not be composed of syntactic symbols. It need only be an

element or sequence selected from a probabilistic distribution. Similarly, the target need

only be an element or sequence drawn from a distribution, and it need not be the same

distribution as the source. As mentioned above, Lean [22, pp. 239–40] makes a similar

point, forging a path for the adoption of informational models in other domains.

Compare Piccinini and Scarantino [38, p. 19]: “Shannon’s messages need not have

semantic content at all – they need not stand for anything.” (Compare also Owren et

al. [36, p. 761].) Taken literally, this is false. An encoded message in the central model

must stand for its primary message, otherwise there can be no definition of information

rate. The authors might reply that what they meant to say is that the meaning of the

primary message is irrelevant to the quantification of information transmission. It could

be a string of meaningless symbols and transmission rate would not change. But this latter

point is repeatedly conflated with the much stronger and entirely unsupported claim that

“Shannon information” is irrelevant for meaning in all domains in which information can

be quantified. It is by failing to appreciate the special nature of the central model that the

claim of universal irrelevance gains traction.

Back to primitive content. It is prevalent in simple systems, which is why it was chris-

tened “primitive” by Harms [15]. Where what matters is coordinated behaviour, being told

that another agent is performing act A is equivalent to being told to perform act B. It is
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not just because simple agents are not literally knowers that we should shift to a functional

gloss. It is just that the indicative and imperative aspects of subpersonal content – the

informative and instructional aspects of the quasi-engineering concept of information –

are useful concepts to apply at the design level too. The causal interpretation encourages

inordinate emphasis on the epistemic. Naturalistic intentionality is better off grounded in

function. Both informative (indicative, descriptive) and instructional (imperative, prescrip-

tive) aspects are of equal significance.2

Finally, a word on Skyrms, who adopts a similar approach that differs in one crucial

respect. He takes the imperative aspect of a signal to be information about the act to be

performed. It is noteworthy that even when we recognise the dual aspect of content, it is

hard to disabuse ourselves of epistemicity.

To sum up: within the informational paradigm, there is something that looks like

instruction or can fruitfully be interpreted as such. Information and instruction look like

indicative and imperative content. We already have a comprehensive account of content

– the teleosemantic/evolutionary game theory approach whose unification has recently

been argued by Artiga [1] – that endorses amalgamating indicative and imperative content

for simple systems. That the bottom-up approach of signalling systems coincides with

the top-down approach of teleosemantics is a sign of coherence that we should embrace.

Concordance is not available on the causal interpretation because it has no notion of user

action. It embodies an epistemic approach that focuses on knowing rather than doing.

So far we have talked only about information in communication channels. The next

section surveys information picked up from the environment.
2A recent trend seeks to distinguish two concepts I treat as equivalent. The distinction advocated by Rescorla [40] and Lean

[23] runs as follows (Rescorla cites Burge [6] as inspiration; Dan Hutto also promotes something like this). Simple signalling systems

carry information in the guise of reliable correlation (“functional isomorphism”, “Shannon information”) – tokens that correspond to

worldly states in a manner sufficient for successful behaviour. But correlational information is to be distinguished from the much richer

notion of content, which is characterised by truth conditions. If the present reader is troubled by this purported conflation, they are

encouraged to read Millikan’s response [31] which I cannot improve upon.
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5 Second result: supplanting the causal/semantic distinction with

the natural/intentional distinction

We have already noted confusion engendered by the term “Shannon information”. At-

tributing Dretske’s interpretation of MCT to Shannon encompasses many of the miscon-

ceptions recognisable in the literature on philosophy of biology and natural epistemology.

Shannon had little to do with what the term now connotes. For the most part, it is Dretske’s

legacy. Those who endorse a distinction between causal and semantic information invoke

Shannon’s name to lend authority to the claim that MCT has no relevance for questions of

meaning. Used in this way, “Shannon information” threatens to beg the question against

the approach advocated here.

For one who accepts the distinction between causal and semantic information, it is

possible to accept or reject the utility of the former. I endorse neither. Instead, along

with Bergstrom & Rosvall [4], Rathkopf [39] and others, I reject Shannon information as a

faulty concept. It conflates too much, and as such tracks nothing uniquely.

There is, however, a useful distinction to be made within biological and cognitive

sciences. We will borrow Millikan’s terminology and call this the natural/intentional dis-

tinction. While section 4 emphasised intentional communication, we need to talk about

natural information too. In brief, natural information is not transmitted by an entity

codesigned with its receiver. It is, therefore, not an appropriate domain in which to ask

questions about the efficiency of information transmission. Instead, we can ask about the

efficiency of the use of the information so received.

The causal/semantic distinction [38, §§4.1-2] [13, §§2-3] has at least two sources. It is

firstly a mutated form of an earlier distinction between natural and intentional meaning,

which may be traced back at least to Brentano and found its clearest statement in Grice

[14]. Prompted by Dretske [10, 9] the distinction took centre stage in the teleosemantic

literature of the 90’s [34]. The original distinction is still hard at work in Millikan’s

teleosemantics [27, §§11-12], but its mutated form is misleading. A second source is Bar-
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Hillel and Carnap’s clarification of “information” as it appears in MCT. They distinguished

the mathematical quantity from the semantic notion which is of interest to philosophers

[2]. Dretske compared Grice’s approach, as well as that of Bar-Hillel and Carnap, to his

own project [10, pp. 241-2, n. 1 and n. 10]. Soon after, the “still imperfectly understood”

distinction was cited by Dennett [7, p. 344 col. 2] and picked up by Krebs and Dawkins

[21, §§4.1-2], whence it found its way into the behavioural ecology literature and prompted

ongoing scepticism about the use of information theory in the study of animal signalling

[37, 36, 42].

Teleosemantic theories are theories about signs and how they can be false. The natu-

ral/intentional distinction cuts between two kinds of sign, and I assume without argument

signs are not restricted to minds. Of the major players in the teleosemantic debate,

Dretske, Millikan and Fodor agreed on at least one thing. The distinction made by Grice

between two meanings of the term “meaning” is a respectable and useful one, and cap-

tures a difference of some import between these two kinds of sign [34, p. 116]. What is

more, they agreed on the character of that distinction. Intentional signs are just those that

can be false. Three rings on the bus mean that the bus is full even if the bus is not full.

The vervet’s chutter, when given in a situation typified by the potential presence of snakes,

means that a snake is present even when snakes are absent. In contrast, clouds cannot

mean rain if it does not actually rain. And smoke cannot mean fire if it was not produced

by fire in the normal way. Grice, Fodor, Dretske and Millikan all agree that natural signs

cannot be false, though they differ in the details of how and why intentional production

entails the possibility of falsity.

One might think all a communication system needs to do is leverage natural informa-

tion. Then the only difference between natural and intentional information is that the

latter is being pressed into service, while the former is freely given and serves no function

by itself. This is a lightweight view of intentional information, which causes problems

when it encourages thinking of causal information as purely descriptive. Intentional signs

are not simply reports about the world, they are also exhortations for the respondent to do
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something. More importantly, the distinction entails application of different mathematical

models. What matters to cognitive science and biology is optimal behaviour. The ques-

tion how to optimise behaviour is different for natural information and communication.

In communication the signal itself is optimised. Natural information can only support op-

timal receiver behaviour; the sign itself cannot be optimised. Below in section 6 I present

two case studies in which optimal information transmission is investigated by applying

tools from MCT.

A porous barrier separates natural and intentional signs. As is well known to be-

havioural ecology, many signals start life as cues. Through a process of ritualization,

information that is originally a by-product of behaviour becomes codified and stream-

lined for purposes of efficient transmission. From a game-theoretic perspective, natural

information is just communicated information where the sender’s payoff matrix is un-

related to receiver behaviour. Popular models of communication are able to describe

natural information by setting various parameters to zero on the sender side, rendering

it less player-like and more nature-like. Skyrms [49, §1] is a case in point. There are

two agential players – the familiar sender and receiver – but the information provided

by Nature to the sender also has sender-receiver structure. Skyrms does not explicitly

describe Nature as a “player”, but in formal models it has that character. While represent-

ing natural information as a special case of communication might sometimes be useful,

Millikan [27, Part II] argues that this can blind us to the important differences between

the two kinds of phenomena. The most significant difference is described above: that

natural signs cannot be false [14, 34]. Of course, that also means they cannot be true,

although the literature often describes their status as ‘veridical’. Truth and falsity do not

apply to natural signs because they do not bear correctness conditions. They do not have

correctness conditions because they do not have functions. Like all orthodoxy this view

has been disputed [44]. However, it is strongly theoretically supported [28, 32, 34, 33]

and recent formal work seeks to justify it in light of Skyrms’s treatment [5, 47]. To repeat,

the traditional view that natural signs do not have correctness conditions is supported by
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the teleosemantic approach to intentionality, on which having a function is necessary for

having a correctness condition.

If we think game theory is the right way to interpret both kinds of information – not just

to study or come to know or understand one or both of them, but to interpret both of them

in terms of mathematical games – then we might well treat natural information as a rather

anaemic sort of communicated information, one whose sender’s heart isn’t in it. On the

other hand if we see communication as a leveraging of a natural resource – as an attempt

to imitate nature who produces information effortlessly and to no end – the situation is

flipped on its head. From this perspective all information is at bottom “natural”, whether it

is communicated intentionally or retrieved from an uncaring environment. Lean [23] offers

such an approach. Along with Millikan I promote neither view. Intentional information is

not a special case of natural information (though true intentional signs are or contain "root

signs"; see Millikan’s diagram [29, p. 145]). Nor is natural information simply a limiting

case of intentional information. As argued in section 4, there are issues with failing to

respect the intentional character of communicated information. The reason truth and

falsity are appropriate for intentional signs is part of the reason why they are studied by

game theory and communication theory, as opposed to decision theory and statistics.

In sum, the natural/intentional distinction has real import for the application of in-

formation theory in natural science. The question of what is optimised depends on

what has a function. Communicated signals bear functions, natural signs do not. The

causal/semantic distinction looks implausible once the framework of MCT is appropri-

ately generalised. Residual intuitions are shifted to the natural/intentional distinction,

their original home. The next section introduces two case studies and examines their

informational results.
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6 Third result: rate distortion theory and applications in natural

science

Now the payoff. What turns on our adoption of a functional perspective? Two case studies

bring out a wider lesson recommending function as a foundation for the application of

information-theoretic concepts in cognitive science and biology.

6.1 Microbiology

Many single-celled organisms can sense chemical changes in their surroundings. By navi-

gating along gradients of changing density they can find food or avoid toxins. One species,

Dictyostelium discoideum, uses this process of chemotaxis to coordinate mass response to

a lack of nutrients. When food is scarce it is beneficial to pool resources by aggregating.

D. discoideum cells seek each other out by alternately releasing waves of chemicals and

moving in the direction of greatest concentration. When enough cells aggregate, a fruit-

ing body forms, which helps propagate spores into a more favourable environment. These

become the next generation of cells, once again adopting an individual lifestyle.

During the aggregation phase, individual cells face an informational problem. They

need to know the best direction in which to travel, and they need to be sensitive to

external changes in order to do this. The metabolic cost of sensitivity to fine changes in

gradient impedes perfect behaviour. Like many other living things, D. discoideum must

strike a balance. It must optimise its behaviour relative to informational constraints and

the requirements of behavioural accuracy. Fortunately, rate distortion theory is designed

to analyse such trade-offs. At the heart of the theory is a cost function describing the

penalty for misinterpreting a signal. Depending on the cost an agent is willing to incur,

it is permitted to obtain smaller amounts of information. Because each situation – across

engineering, computer science, cognitive science and biology – is likely to involve different

trade-offs between information and cost, the function describing optimal behaviour must

be calculated anew each time.
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In recognition of the problem facing D. discoideum, Iglesias [17] describes how rate

distortion theory could be applied to explain and predict optimal behaviour. He uses

a nonstandard application of the central model to describe the cell’s predicament. The

signal is not the external chemical gradient. Instead, it is the hypothetical decision lo-

cated between the cell’s receptors (whose state corresponds more or less exactly to the

immediate gradient) and the cell’s behaviour. The central model is applied entirely within

a single cell. Mathematically the approach is acceptable, since a channel need be nothing

more than a probabilistic connection between two pieces of behaviour. Given this way of

modelling the situation, an appropriate optimisation function would describe the amount

of information required by a migrating cell to successfully reach its target, which is equiv-

alent to how well-correlated the cell’s decision should be with its external receptors. How

can we estimate information rate and cost schedule in order to derive such a function?

Iglesias takes a function that measures angular deviation from the direction the cell is

supposed to be moving towards. Cost increases as the angle between the cell’s movement

and the true direction of aggregation increases.

Iglesias provides a plausible starting point for the application of information theory to

optimisation problems of this kind. However, some of the details are as yet unjustified. It

is not clear how sharply cost should grow as angular deviation increases. Nor is it clear

how this function might change as the cell approaches its target. Presumably the cell needs

to be more sensitive to information the further it is from the goal. As it gets closer, its

internal bias could override transient changes of chemical gradient that would otherwise

send it in the wrong direction. Iglesias considers the possibility of internal bias, but

only to demonstrate how it affects the mathematics in an idealised case. Empirical work

is required to determine how much and what type of bias develops during chemotaxis.

This entails a methodological problem: both bias and cost function must be derived from

behaviour, but both of them are unknown or only broadly guessable at the outset. Perhaps

parametric models describing both functions at once can be employed to generate testable

hypotheses. These are typical methodological issues faced when fitting a model to reality.
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The application of information theory in microbiology is in its early days, but signs are

positive it can provide a real contribution.

The next subsection describes the application of rate distortion theory in a rather

different domain, namely human perception.

6.2 Perception

We just saw an application of rate distortion theory for which the output of information

transmission was a piece of behaviour, namely directional orientation and movement

towards a goal. Sims [48] applies rate distortion theory in a domain closer to its original

home, in which the output of information transmission is another piece of information.

Sims discusses two experiments. The first examines how accurately human subjects

can categorise straight lines by length (“absolute identification”). The second determines

how accurately subjects can choose the longest of two lines seen one after the other (“per-

ceptual working memory”). Accuracy in each of these tasks is impeded by the information

capacity of perceptual processing. Sims applies rate distortion theory to estimate the op-

timum rate given the cost of inaccuracy. He places emphasis on the lack of a known

cost function, and the methods by which we can estimate one. As a result of applying

the theory to both experimental procedures, Sims purportedly derives new insights into

human perceptual performance [48, p. 185 col. 2 and p. 190 col. 2].

Consider the absolute identification task (taken from Rouder et al. [41]). A set of lines of

N different lengths were presented randomly. Subjects were asked to choose the category,

from 1 to N, in which the line belonged. After each choice the subject was informed

whether or not they were correct. The mapping of the central model onto perception is

more intuitive than the microbiological case. The source is the perceptual stimuli – lines

of differing lengths – and the output is the subject’s response. Encoding and decoding take

place within the subject’s perceptual system, and the channel capacity is inferred from the

probabilities of correct responses as the number of possible lines increases. Subjects seem
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to reach a point at which their performance cannot improve indefinitely [48, pp. 185–6],

implying capacity is limited and rate distortion theory can be fruitfully applied.

What are the cost functions constraining human perceptual performance? Sims admits

they are largely unknown. But he offers resources for estimating them by attending to

performance data. His figure 5 [48, p. 186] depicts three different models of increasing

fit with the data, corresponding to three different cost functions of increasing complexity.

The final and most accurate cost function accords with existing ideas about perceptual

“anchors” used by subjects to generate best guesses. By presenting a sequence of poten-

tial models, Sims advocates something like the following methodology. We can use rate

distortion theory to derive increasingly accurate estimations of the cost function guiding

perceptual tasks, while at the same time providing hypotheses as to why those cost func-

tions should be at work rather than some other. One of the problems with this approach

is that the cost function is not the only unknown. In the second study, performance

varies with the subject’s implicit estimation of source statistics [48, p. 191 col. 2]. The

experimenter must use performance data to infer both the subjective cost function and

the subjective statistics. The situation is similar to that for microbiology: we have two

unknown parameters of our model, and only one set of data for inferring their values. As

above, the situation is not insurmountable. Sims details methods for inferring appropriate

models by using empirical data together with reasonable hypotheses.

Overall, Sims sees rate-distortion theory as a tool to investigate the information-

processing capabilities of biological systems [48, p. 193 col. 1]. Though he deals with

what are essentially informational outputs – the responses of test subjects – he empha-

sises the generality of goals subserved by information processes [48, p. 193 col. 1]: “The

objective for biological information processing is not (merely) the communication of in-

formation, but rather the minimization of relevant costs. Information is simply a means

to an end.” This approach accords with the interpretation of Iglesias presented above.
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6.3 A functional account of information provides a clear interpretation of cost

We have seen two applications of rate distortion theory in two rather different domains.

Iglesias and Sims analyse biological signals with unavoidable reference to their meaning.

This practice is more easily explicable on the functional view than the causal approach.

One way to interpret cost is in terms of biological function. The notion that some be-

haviours bear a cost while others are rewarded is part of what distinguishes function and

disposition. While the causal interpretation has been criticised as too broad and failing to

prioritise useful information over idle correlations, the functional interpretation explicitly

considers the cost of inaccuracy that is a consequence of reduced information rate. Here,

information rate gets its significance from the magnitude of benefit it induces. Functional

information is useful ex hypothesi, but there are principled bounds on its utility, as with

any other resource.

In communications engineering, rate-distortion curves can be interpreted one of two

ways. Suppose you know the maximum cost of inaccuracy you are willing to incur. Then

the curve tells you the minimum information rate you need to transmit at in order not to

exceed that cost. Alternatively, suppose you know the maximum information rate you are

able to transmit at. Then the curve tells you the minimum cost you can hope to incur. In

biology, however, it seems cost will always come first. Obtaining information is a strategy

for reaching a goal. The metabolic resources invested in gathering information depend on

how much you need, which is determined by a cost schedule covering the many ways of

failing to achieve the goal. The cost of failure is then traded off against metabolic cost.

Increasing information rate in a communication system plausibly imposes metabolic

costs. The situation is a special case of behavioural optimisation. Here a rate-distortion

curve is the correct model to describe the relationship between improvement and metabolic

cost, because the means of improvement is information transmission. Mathematical tools

used to describe this kind of optimisation are taken from information theory as devel-

oped by Shannon and others. One significant change is that instead of state space being
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a message in a lexicon it is a biologically relevant state of affairs. The signal contains

information about that state of affairs, and quantifying that information is a crucial aspect

of explaining optimal behaviour. The application of information theory in biology and

cognitive science concerns optimisation with respect to the statistical properties of both

source and target, which need not be (and in the biological case hardly ever are) messages

in well-defined lexicons.

One final point about biological cost is in order. Ultimately, the costs that shape the

functions whose performance is studied in the manner described above are provided by

natural selection. Environmental pressures determine optimal behaviour. Functions like

microbe motility and perceptual categorisation are not performed for their own sake.

They contribute to the survival and reproduction of whichever entity or entities are under

selection. We should therefore expect the cost function of an individual piece of behaviour

to derive from cost functions that govern selective pressures. Donaldson-Matasci et al. [8]

describe evolutionary fitness in informational terms. In an analysis deriving ultimately

from Kelly’s interpretation of information rate [19], the fitness penalty of failing to heed

information is bounded by the quantity of that information. Frank [12] offers an informa-

tional interpretation of evolutionary fitness that seems to accord with this view. For simple

models at least, our concepts of information and fitness cost are deeply entangled. When

fitness is interpreted as growth rate, it can be measured with a unit that is commensurable

with information units [8, p. 228 col. 2] (of which the bit is the most familiar example).

And when cost functions are interpreted as fitness penalties, their proper unit of measure

is the same as that of information. Rate-distortion curves can then be interpreted directly

as the contribution to fitness afforded by information transmission. To apply these ideas

more concretely, such as to the work of Iglesias, would require an understanding of how

individual behaviours contribute quantitatively to the fitness of organisms.

In sum, a functional interpretation of information accords well with a growing trend

in natural science to consider the optimisation of informational processes. In contrast

to the causal interpretation, biological information cannot be pulled apart from the costs
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incurred to handle it and the benefits attained by using it. Information allows a princi-

pled redistribution of physical resources, entailing optimised behaviour that contributes

to downstream functions and, eventually, evolutionary fitness.

7 Conclusion

The philosophy of information is heavily indebted to Dretske. It has tended to retain

his mistakes along with his triumphs. Though information can be generalised in a philo-

sophically interesting way, we should not jump straight from communication theory to

epistemology. The concept of function is a natural bridge that retains the mathemati-

cal structure of information theory, and supports its use in domains such as behavioural

ecology, microbiology, and cognitive science.
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