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Abstract

Some naturalistic philosophers of mind subscribing to the predictive processing theory
of mind have adopted a realist attitude towards the results of Bayesian cognitive science.
In this paper, we argue that this realist attitude is unwarranted. The Bayesian research
program in cognitive science does not possess special epistemic virtues over alternative
approaches for explaining mental phenomena involving uncertainty. In particular, the
Bayesian approach is not simpler, more unifying, or more rational than alternatives.
It is also contentious that the Bayesian approach is overall better supported by the
empirical evidence. So, to develop philosophical theories of mind on the basis of a realist
interpretation of results from Bayesian cognitive science is unwarranted. Naturalistic
philosophers of mind should instead adopt an anti-realist attitude towards these results
and remain agnostic as to whether Bayesian models are true. For continuing on with an
exclusive focus and praise of Bayes within debates about the predictive processing theory
will impede progress in philosophical understanding of scientific practice in computational
cognitive science as well as of the architecture of the mind.
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1 Introduction
Most contemporary philosophers of mind are methodological naturalists. They tend to believe
that philosophical theories of mind should be evaluated by the same criteria that are employed
in evaluating scientific theories in the cognitive and brain sciences. Philosophers of mind
subscribing to methodological naturalism are committed to the ideas that the cognitive and
brain sciences are the ultimate source of knowledge about minds, and that the construction of
philosophical theories of mind should be empirically constrained.

A consequence of these commitments is that if there is reason to suspend belief on what a
scientific theory in the cognitive sciences alleges regarding mental entities and processes, then
methodological naturalists should not construct philosophical accounts of mind that assume the
scientific theory is true. On the other hand, if the evidence is sufficiently strong to warrant belief
in the truth of the theory, then methodological naturalists would have good reason to construct
philosophical accounts that take the scientific theory at face value. In any case, naturalistic
theories in the philosophy of mind should be coherent with the epistemically warranted views
about the results of relevant scientific investigations.

It turns out that several philosophers of mind subscribing to methodological naturalism and
who have formulated philosophical theories on the basis of results from Bayesian cognitive
science tend to be scientific realists. Before we articulate this point in detail, let us clarify
how we understand the terms ‘scientific realism’ and ‘Bayesian’ in what is to follow. We
understand ‘scientific realism’ as a philosophical position concerning the epistemic status of
scientific theories and models. In particular, a realist attitude towards Bayesian cognitive
science amounts to believing that predictively successful Bayesian models deliver knowledge
about both observable and unobservable aspects of the mind and/or brain. If the current
evidence justifies this realist view, there is sufficient reason to believe that all entities and
processes posited by predictively successful Bayesian models exist. Anti-realism, contrastively,
amounts to an agnostic or sceptical attitude towards the existence of any unobservable entity
or process posited by predictively successful Bayesian models. According to the anti-realism
we have in mind, successful scientific models and theories should be understood as conceptual
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tools or instruments for achieving practical goals and engaging with the world; they should not
be understood as descriptions of how things stand in the world.

Regarding the term ‘Bayesian’, we follow the common construal in philosophy and
cognitive science where ‘Bayesian’ is meant to be a placeholder for a set of interrelated
principles, methods, and problem-solving procedures, which are unified by three tenets. First:
uncertainty should be captured by a real-valued function that measures degrees of belief.
Second: degrees of belief, at any given time, ought to satisfy the axioms of probability theory.
Third: degrees of belief, represented by determinate probabilities, ought to be updated in the
light of new information, typically by the canonical rule of conditionalisation. However,
the third tenet may be construed more broadly since other learning and inference rules
have proved successful including Jeffrey conditionalisation (Zhao and Osherson [2010]), the
minimisation of a statistical distance such as the Kullback-Leibler divergence (Diaconis and
Zabell [1982]; Eva and Hartmann [forthcoming]), and formal procedures for approximating
posterior probability distributions like variational free-energy minimisation (Hinton and van
Camp [1993]) and Monte Carlo methods (Sanborn, Griffiths, and Navarro [2010]).

Terminology aside, we now clarify the target of the paper guilty of unwarranted Bayesian
realism, namely the so-called predictive processing theory of mind and brain (Clark [2013],
[2016]; Hohwy [2013]). In short, the theory views the mind as being fundamentally engaged in
prediction error minimisation – that is, minimising the mismatch between internally generated
predictions of sensory inputs and actual sensory inputs generated externally. In the development
of the theory, the predictive processing theory of mind has posited various theoretical entities
and processes including neurally encoded “hierarchical probabilistic generative models”,
“predictions” and “prediction errors”, and “precision weighting” of prediction errors. Insofar
as predictive processing theorists adopt a positive epistemic stance towards these posits based
on results in Bayesian cognitive science, the general argument we articulate below against such
stance applies to these posits, which we argue are not yet worthy of the epistemic commitment.

It is also worth clarifying early on why our contribution in this paper is important for both
philosophers and cognitive scientists. Bayesianism has become ever more prominent in the
cognitive and brain sciences, as well as in naturalistic philosophy of mind that is concerned with
predictive processing. Driven by mathematical advances in statistics and computer science,
along with engineering successes in fields such as machine learning, Bayesian modelling
has become incredibly useful for studying brain function and mental phenomena including
perception, motor control, learning, decision-making, and reasoning (Knill and Richards
[1996]; Rao, Lewicki, and Olhausen [2002]; Chater, Tenenbaum and Yuille [2006]; Körding
[2007]; Oaksford and Chater [2007]; Tenenbaum et al. [2011]). Given Bayes’ success, it is
thus important to examine the current epistemic status of Bayes, and how this status would
re-configure our understanding of the nature of predictive processing.

With these clarifications in place, we now point to textual evidence supporting the allegation
that several philosophers of mind relying on results from Bayesian cognitive science tend
to be scientific realists. In a seminal article developing the predictive processing theory, for
instance, Clark ([2013]) claims that “[T]he computational framework of hierarchical predictive
processing realises [. . . ] a robustly Bayesian inferential strategy, and there is mounting neural
and behavioural evidence that such a mechanism is somehow implemented in the brain” (Clark
[2013], p. 189). Hohwy ([2013]), even more explicit, says:

[T]here is converging evidence that the brain is a Bayesian mechanism. This
evidence comes from our conception of perception, from empirical studies of
perception and cognition, from computational theory, from epistemology, and
increasingly from neuroanatomy and neuroimaging. The best explanation of the
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occurrence of this evidence is that the brain is a Bayesian mechanism that is, in
fact, engaged in inference, belief, and decision. (Hohwy [2013], p. 25).

In introducing a special journal issue, Kirchoff ([2017]) echoes Hohwy and Clark
on“Bayesian prediction processing” being committed to the sweeping, causal claim that “all
psychological phenomena come about through the same process: minimisation of prediction
error and precision estimation.” This commitment would presumably be justified by evidence
from Bayesian modelling in the cognitive sciences. Madary ([2016], 95ff) confirms this
suspicion by taking evidence from the “Bayesian predictive processing approach” as providing
empirical support to the thesis that visual perception is an ongoing process of anticipation
and fulfillment. While not a predictive processing theorist, Rescorla ([2015], [2016]) too
holds a realist stance towards the results of Bayesian sensorimotor psychology in arguing for
intentional realism concerning mental representation.1

Despite the many predictive processers who are apparently committed to realism, we find
it is currently unwarranted as the appropriate epistemic attitude towards the results of Bayesian
cognitive science. If philosophers of mind like Clark, Hohwy, Rescorla, and others are
committed to methodological naturalism, then they should not believe predictively successful
Bayesian models have actual counterparts in mental architectures or brains. Instead, their
arguments about the architecture of the mind, mental representation, and the nature of mental
phenomena, should reflect agnosticism or scepticism in the existence of the theoretical entities
and processes posited by Bayesian models.

We suspect that most cognitive scientists employing Bayesian models are less concerned
with the truth of any particular Bayesian model than with its degree of fit with measurement
outcomes. Philosophers of mind working on predictive processing, however, have
unfortunately put relatively little effort towards making the nature, aims, and scope of Bayesian
modelling in cognitive science transparent. Philosophical work on predictive processing has
typically taken Bayesian results at face value, and has tried to draw conclusions for traditional
debates in the philosophy of mind such as the nature of conscious experience, the relationship
between perception and action, and representationalism by assuming that“Bayesian predictive
processing” is true.2

This lack of attention to actual scientific practice has bolstered Bayes’ reputation in the
philosophy of mind while covering up the controversies over the empirical and theoretical
adequacy of Bayesianism (see Chater et al. [2011]; Jones and Love [2011]; Bowers and Davis
[2012a], [2012b]; Griffiths et al. [2012]; Marcus and Davis [2013]. For recent philosophical
treatments, see Eberhardt and Danks [2011]; Colombo and Seriès [2012]; Zednik and Jäkel
[2016]; Colombo and Hartmann [2017]; Icard [2018]). This lack of attention is consequential.
If Bayesian models are not to be understood realistically, philosophical controversies about the
status of representations in Bayesian models, or their bearing on externalist (or internalist)
arguments about mental states, are pointless. If our argument succeeds in undermining
Bayesian realism, the nature and epistemic status of arguments concerning the predictive
processing theory should be reappraised.

1Another example is Danks ([2014]) who argues for a version of “representation realism”, according to
which many cognitive representations in the human mind are graphical models. As Danks ([2014], p. 5)
explains, graphical models consist “of two components: (i) a graph encoding qualitative information about the
structure (causal, informational, or other) among various factors; and (ii) a quantitative representation of the
relation strengths”. As graphical models may or may not involve Bayesian updating, they need not be Bayesian.
Because Danks is careful not to equate graphical models with Bayesianism (see in particular Chapter 8.2.2), his
representation realism is beyond the scope of our paper.

2For a sample of this expanding literature, see the papers in Metzinger and Wiese ([2017]).
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In looking ahead, our argument will not appeal to an implausible version of
underdetermination, wherein there are logically possible modelling approaches that are equally
well-supported by available empirical evidence or rationally defensible as Bayesianism. Rather,
our argument will start by reconstructing what we call the argument from uncertainty for
Bayesian cognitive science. This argument provides cognitive scientists with a common reason
for choosing Bayesianism, and begins from the observation that uncertainty is an in-eliminable
feature of cognitive systems’ interactions with the world. In order to survive and behave
adaptively, biological cognitive systems must rely on knowledge derived from sparse, noisy,
or ambiguous sensory data produced by a constantly changing environment. Because sensory
data are often sparse, ambiguous, or corrupted by noise, cognitive systems would constantly
face problems of inference and decision making under uncertainty. Unless these problems
are effectively solved, reliable action, accurate perception, and adaptive learning would not be
achievable.

Since uncertainty is an in-eliminable feature of cognitive systems’ interactions with the
world – so continues this argument – the explanatory framework cognitive scientists use to seek
explanations of mental capacities and phenomena should account for how cognitive systems
effectively deal with uncertainty. That is, the framework ought to include sound inferential and
decision-making procedures that biological cognitive systems would deploy when interacting
with an uncertain environment. Given the success of Bayesianism in other fields dealing with
inference and decision-making under uncertainty, one may conclude that Bayes should also
serve as a successful explanatory approach in the cognitive sciences. Upon reconstructing the
argument from uncertainty for Bayesian cognitive science, we will clarify the kinds of reasons
that are commonly cited to justify the choice to adopt Bayesianism as a favourite approach for
cognitive and neural modelling.

After putting these reasons into focus, we will explicate under which conditions the choice
to adopt a Bayesian framework is justified. Over time, the issue will be resolved empirically;
and in fact, some debates in cognitive science are currently focused on the question of whether
there is some non-Bayesian model that is equally good at fitting behavioural or neural data. But
in the meantime, the reasons for supporting the choice to adopt Bayesianism fails to include its
non-empirical (or superempirical) virtues. Our contribution fills this gap in the literature, and
continues on by examining whether the argument from uncertainty provides enough support for
choosing Bayes as the favourite approach to understanding mind and brain. If not, and if the
empirical evidence fails to clearly favour Bayesianism over alternatives, then, based on both
empirical considerations and a comparison of the non-empirical virtues enjoyed by Bayes and
its alternatives, a realist attitude towards the results of Bayesian modelling is unwarranted.

In developing this argument, we first clarify what the argument from uncertainty is supposed
to establish (Section 2) and what role it plays in scientific practice (Section 3). Then,
we consider whether there is any serious, actually conceived, alternative to Bayesianism
for representing uncertainty and explaining how biological cognitive systems can effectively
manage it. We then go on to argue that if plausible alternatives are available but systematically
neglected, then the strength of the argument from uncertainty is significantly weakened (Section
4). A key feature of our argument at that point is that there is no convincing reason to believe
that Bayes enjoys special epistemic virtues in comparison to its alternatives.

In the conclusion of the paper, we discuss a practical reason for choosing a Bayesian
approach. We realise that many of the Bayesian cognitive scientists we cite are in principle
open to non-Bayesian methods for modelling certain problems. Yet, these scientists hardly
ever discuss the virtues and problems of the alternatives. One reason why alternatives might
get neglected is that the Bayesian approach, in comparison to these alternatives, currently
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affords cognitive scientists with a richer body of conceptual and empirical results as well as
computational tools that have been well-developed and employed in neighbouring fields of
machine learning and statistics. So, the popularity of Bayesianism in cognitive science, similar
to other scientific fields, is not necessarily grounded by the pursuit of truth, empirical evidence,
or by super-empirical virtues like simplicity and unifying power. Cognitive scientists may
choose Bayes because, pragmatically, there are a lot of tools and methods from neighbouring
fields to draw from (Gigerenzer [1991]). Upon recognising this sociological point, the claims
put forward by naturalistic philosophers of mind like “the brain is literally Bayesian” (Hohwy
[2015], p. 17) or that current sensorimotor psychology strongly supports a realist attitude
towards the theoretical posits of Bayesian models (Rescorla [2015], [2016]) are not well-
supported scientifically. We briefly discuss how this conclusion is consequential for framing
current disputes about the predictive processing theory of mind; we’ll suggest that predictive
processing may be best understood “aesthetically”, as a beautiful theory offering an invitation to
see humans and the place of mind in the world from a new viewpoint (cf, Prinz [forthcoming]).

2 From Uncertainty to Bayesian Brains
The argument from uncertainty aims to provide a good reason for thinking that Bayesianism is
the best way to explain mental phenomena involving uncertainty. The argument includes two
steps. The first step substantiates the claim that biological cognitive systems must effectively
deal with uncertainty in order to survive and thrive (i.e., in order to interact adaptively with
their environment). The second step tries to establish that Bayesianism is the best approach for
explaining how cognitive systems effectively deal with uncertainty.

2.1 Uncertainty, underdetermination, and noise
Bayesian cognitive scientists typically introduce their studies by pointing out that the mind
must constantly grapple with uncertainty. For example, Knill and Pouget ([2004]) introduce
their discussion of the Bayesian brain hypothesis by claiming that “humans and other animals
operate in a world of sensory uncertainty” (Knill and Pouget [2004], p. 712). Ma et al. ([2006])
motivate their study on how populations of neurons might perform Bayesian computations
by saying that “virtually all computations performed by the nervous system are subject to
uncertainty” (Ma et al. [2006], p. 1432). Oaksford and Chater ([2007]) advocate a Bayesian
approach to human cognition suggesting that “human reasoning is well-adapted to the uncertain
character of everyday reasoning to integrating and applying vast amounts of world knowledge
concerning a partially known and fast-changing environment” (Oaksford and Chater [2007], p.
67).

Orbán and Wolpert ([2011]) focus on Bayesian approaches to sensorimotor control and
motivate their focus by saying that “uncertainty is ubiquitous in our sensorimotor interactions,
arising from factors such as sensory and motor noise and ambiguity about the environment”
(Orbán and Wolpert [2011], p. 1). Tenenbaum et al. ([2011]) point out that “we build rich
causal models, make strong generalisations, and construct powerful abstractions, whereas the
input data are sparse, noisy, and ambiguous – in every way far too limited” (Tenenbaum et al.
[2011], p. 1279). Vilares and Körding ([2011]) review several lines of research in Bayesian
cognitive neuroscience emphasising that “uncertainty is relevant in most situations in which
humans need to make decisions and will thus affect the problems to be solved by the brain”
(Vilares and Körding [2011], p. 22). Pouget et al. ([2013], p. 1170) write that “uncertainty
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is an intrinsic part of neural computation, whether for sensory processing, motor control or
cognitive reasoning.”

Provided the apparently broad consensus that cognitive systems inevitability face
uncertainty, there are two ways to interpret these cognitive scientists’ claims. According to
one reading, the point is merely expository. Claims like the ones just quoted get readers to
see why the Bayesian approach is worth considering when one is interested in understanding
how cognitive systems can deal with uncertainty. According to another reading, the point is
justificatory. The claims merely function as a way to convince readers that the choice to pursue
the Bayesian approach is justified.3

Granted, cognitive systems must grapple with uncertainty, but an inference from ‘biological
agents are faced with states of uncertainty’ to ‘Bayes is the best’ is invalid on either reading. If
the point is merely expository, then it is puzzling that no alternatives to the Bayesian approach
are ever mentioned in the literature. Bayesianism is one possible approach for representing and
handling inference under uncertainty, but it is by no means the only one. On the other hand,
if the point is justificatory, then there is an implicit assumption that Bayesianism is somehow
more empirically adequate, or enjoys greater (or more) non-empirical virtues over alternative
frameworks. However, such an assumption can be easily undermined, as it is far from obvious
that Bayesianism is simpler, more unifying, or more rational than alternative approaches. We
will have much more to say on this issue later on in Section 4.

2.2 The explanatory power of Bayes
Biological cognitive systems access the world through their senses, which are viewed as
sources of uncertain information about the state obtaining in the world at any given time. In
statistical terminology, we may refer to the states of the world as ‘environmental parameters’
or ‘hidden states’, and the sensory information as ‘sensory data’ or ‘evidence’. The problem
biological cognitive systems face at any given time is inferring which hidden state in their
environment generated their sensory data. Unless biological cognitive systems can effectively
solve this problem, such systems become incapable of adaptive action and perception, and
reliable learning.

However, the values of environmental parameters are underdetermined by the available
sensory data – that is, there are multiple, different states in the world that fit the sensory
data received by a biological cognitive system at any given time. Because many different
environmental states may be consistent with the same piece of sensory data received, processing
sensory data alone is not sufficient to determine which state in the world caused it. Hence,
sensory data underdetermine their environmental causes, which manifests a state of uncertainty
within the system. In Bayesian cognitive science, the term ‘uncertainty’ is used broadly
to characterise this problem of underdetermination that biological cognitive systems must
constantly solve.

As an example, the sensory data generated by a convex object under normal lighting

3We should note that this justificatory interpretation has few if any explicit proponents in the cognitive
sciences. We suspect pretty much every cognitive scientist agrees that more direct empirical confirmation than
any current argument could possibly provide is needed for us to be justified in believing that mental processes are
Bayesian. Some philosophers, on the other hand, have come close to suggesting this justificatory interpretation.
Hohwy ([2013]), for example, presents Bayesian priors and likelihoods as furnishing minds with “required
additional constraints” (p. 49) with normative import for dealing with uncertainty. Gładziejewski ([2016])
motivates predictive processing by claiming that “the brain deals with uncertainty by implementing or realising
(approximate) Bayesian reasoning.” (p. 561) Williams ([2018]) advertises Bayesianism as offering “attractive
explanations of [. . . ] how brains overcome the noise and ambiguity in their sensory evidence.” (pp. 4–5)
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circumstances underdetermines its external cause. In such environment, there are at least two
possible states that can fit the available sensory data: the object in the world that caused the data
is convex and the light illuminating the object comes from overhead; or the object is concave
and the illuminating light comes from below. In order to perceive the world as being in one
specific state, as opposed to being in a superposition of two or more different states, cognitive
systems must find some method to solve this problem.

Furthermore, uncertainty may also arise from noise, where the source is internal or external
to biological cognitive systems. As noisy signals contain meaningless information, noise
modifies the original meaning of a signal and extends the cognitive system’s freedom of
choice in decoding that meaning. This is an undesirable freedom, to the extent that the
adaptive behaviour the system can produce requires an appropriate degree of fidelity between
original and decoded signals. While noise poses a challenge for biological systems estimating
environmental parameters, “noise permeates every level of the nervous system, from the
perception of sensory signals to the generation of motor responses” (Faisal et al. [2008], p.
292).

Within a biological cognitive systems’ signal processing, there are three sources of
noise. The first source of noise lies in the thermodynamic or quantal transduction of the
energy comprised by sensory signals into electrical signals. “For example, all forms of
chemical sensing (including smell and gustation) are affected by thermodynamic noise because
molecules arrive at the receptor at random rates owing to diffusion and because receptor
proteins are limited in their ability to accurately count the number of signalling molecules”
(Knill and Richards [1996], p. 4). The second source of noise lies in biophysical features
of ion channels, of synaptic transmission, of network interactions and random processes
governing neural activations. These biophysical features introduce noise at the level of cellular
signalling. A third source of noise lies in the transduction of signals carried by motor neurons
into mechanical forces in muscle fibers. This transduction introduces noise in the signals
supporting motor control, and can make motor behaviour highly variable even in the same
types of circumstances when the same motor goal is pursued. To perform motor commands
reliably and behave optimally, biological systems must find some strategy to handle the noise
introduced at different levels of neural processing.

We have described how uncertainty tends to manifest within a biological cognitive system
either from noise (i.e., random disturbances corrupting the sensory signals and processes of the
system) or underdetermination of percepts, along with other cognitive states, by sensory data.
Whether caused by noise or surfacing from ambiguity, uncertainty arises from environment
and behaviour. The environment (including the body) constantly changes; and even if the
environment stays fixed, a cognitive system’s behaviour shows an in-eliminable degree of
variability. For example, if you reach for an object in darkness, your visual and motor systems
will lack relevant information about the location of the object. Your uncertainty about its
location will be reflected by a lack of accuracy in any one reaching trial. If you try to reach
for that object over and over again, you’ll observe a large variability in your movement over
reaching trials. Likewise, when a visual stimulus is held constant, your visual perceptions
of the stimulus will still manage to vary over time. In order for biological systems to have
accurate perceptions and to display reliable motor behaviour, they must find some way to tame
this variability.

Biological cognitive systems would effectively deal with sensory and motor uncertainty if
they maintain, “at each stage of local computation, a representation of all possible values of the
parameters being computed [in accordance to Bayes’ rule] along with associated probabilities”
(Knill and Pouget [2004], p. 713). This idea is borne out by recent advancements in machine
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learning, where Bayesian methods are often used to solve problems of underdetermination and
to mitigate detrimental effects of noise (Ghahramani [2015]). As beneficiaries of the computer
scientists’ and machine learners’ labor, cognitive scientists may employ the same methods to
seek explanations of central aspects of cognition, brain and behaviour.

2.3 Bayes and uncertainty: A natural marriage?
The second step in the argument from uncertainty tries to establish that Bayesianism is the best
for seeking explanations of how biological cognitive agents grapple with uncertainty, focusing
specifically on non-empirical (or super-empirical) virtues. That is, the argument tries to show
that Bayes is able to explain most simply, most generally, and most rationally how biological
cognitive agents solve the problem of underdetermination and handle the effects of noise. If this
step is successful, then we would be justified to claim that the Bayesian approach is the best
for discovering and assessing explanations of cognitive, neural and behavioural phenomena.
The thought that Bayes is in some sense “the best” for explaining how a system grapples
with uncertainty is widely assumed by both philosophers of mind and cognitive scientists.
Unfortunately, the thought is hardly clarified and thus left ambiguous.

On one dimension, the Bayesian approach provides a better language for representing
uncertainty than alternatives. If true, Bayes should be the preferred way of modelling
uncertainty and inference in cognitive science. On another dimension, systems that implement
Bayesian algorithms deal with uncertainty in the most rational way. Bayesianism, then, should
be the preferred way if we seek to provide a “rational analysis”, guiding explanations of
behaviour in terms of an adaptive response to specific problems posed by the environment.
While the “optimal language” feature concerns the representational virtues of Bayesianism,
the “rationality” feature concerns its normative character. Both virtues pertain to non-empirical
properties of Bayes. We will discuss the relevant evidence and literature for both of these
virtues in Section 3 and evaluate Bayes against alternatives in terms of relative non-empirical
virtues in Section 4.6. For now, we specify how Bayesian cognitive scientists represent
uncertainty in their models, and how they understand the rational character of their models.

Bayesian cognitive scientists represent uncertainty through probability.4 Cognitive systems
are assumed to entertain degrees of “belief” over a hypothesis space A. Degrees of belief
concern what in the world could have caused the sensory data E currently available to the
system. Each belief is associated with a prior probability P (H), which represents the weight
borne by the belief that H on the processes carried out by the system on its sensory data.
Probabilities are also assigned to (E, H) pairs in the form of a generative model that specifies
a joint probability distribution over sensory data and hypotheses about states in the world
generating those data. Generative models define likelihood functions specifying how probable
it is that the system would receive the current data E, given a hypothesised state H about the
world, viz. P (E|H). With a generative model, a likelihood P (E|H), the current data E, and prior
knowledge P (H), the system computes the posterior conditional probability P (H|E), thereby
reallocating probabilities across the hypothesis space in accordance with some learning rule,
for instance with straight conditionalisation, Jeffrey conditionalisation, distance minimisation,
or free-energy minimisation.5

4For simplicity, we will assume that the mathematical object is a finitely additive probability mass function.
5Learning rules govern belief update, but they do not specify how the beliefs entertained by the system are

used to produce a decision, action, or some other behavioural phenomenon. How the posterior is used to produce
a decision requires defining a loss function, which specifies the relative cost of making a certain decision based
on a certain belief. To determine the most rational decision available at a given time, the system needs to compute
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Bayesian cognitive scientists generally see themselves as providing rational analyses of
cognitive functions, where they make a specific hypothesis about the types of problems the
mind would face, try to find optimal solutions to these problems, and use these solutions
to guide research on how the mind actually solves those problems (see Griffiths, Vul, and
Sanborn [2012]; Rahnev and Denison [2018]; for recent philosophical treatments, see Icard
[2018]; Zednik and Jäkel [2016]). Bayesian rational analyses are typically understood within
David Marr’s levels of analysis framework (Marr and Poggio [1977]). These levels include
the computational, the algorithmic, and the implementation level. The computational level
specifies the problem to be solved in terms of an input-output mapping. In the case of Bayesian
modelling in cognitive science, this is typically a problem of inference under uncertainty.
If the task is one of extracting some property of a noisy sensory stimulus, the input-output
mapping that defines the computational problem is a function mapping the noisy sensory data
to an estimate of the stimulus that caused that data. The class of rules for generating the
output and their associated representational posits are defined at the algorithmic level. At
the level of implementation, the focus is on how probabilistic representations and Bayesian
algorithms can be realised in neural circuits and activities (Pouget et al. [2013]; Ma and
Jazayeri [2014]). In fact, many Bayesian cognitive scientists are interested in all of Marr’s
levels of analysis (Griffiths, Vul, and Sanborn [2012]), and for many naturalistic philosophers
of mind working on predictive processing, “the real interest [of Bayesian models] comes from
the stronger notion that human beings might actually use the apparatus of probability theory
to make their decisions, explicitly (if not consciously) representing prior probabilities, and
updating their beliefs in an optimal, normatively sound fashion based on the mathematics of
probability theory” (Marcus and Davis [2013], p. 2358).

3 Representing Uncertainty and Explaining Rationally
In the previous section, we distinguished between two ways one might understand the claim
that Bayesianism is the best approach for explaining how cognitive systems grapple with
uncertainty. One way is in terms of its representational virtues, while the other is in terms of its
normative virtues. Both of these virtues rely on non-empirical (or superempirical) features of
Bayesianism. Hohwy, Roepstorff, and Friston’s ([2008]) explanation of binocular rivalry offers
a good illustration of how predictive processers may appeal to these virtues.

Binocular rivalry is the alternating percept that often results when incompatible images
are presented dichoptically. Hohwy et al. ([2008]) have proposed a Bayesian, predictive
processing mechanism as the “best” for explaining binocular rivalry (p. 688). They assume
that the brain is a hierarchically organised probabilistic machine, which would model and infer
the environmental causes of its perceptual inputs. Hohwy and colleagues’ explanation specifies
two conditions under which we should expect binocular rivalry. The first condition is that the
visual system assigns both high prior probability and high likelihood to no single model of the
environmental causes of current visual input. During binocular rivalry, the visual system selects
the percept associated with the model that is assigned the highest prior probability. The second
condition is that, when one of the two images is selected by the visual system, the sensory input
produced by the other image results in an “unexplained but explainable prediction error signal
[which] induces instability in perceptual dynamics that can give rise to perceptual alternations”
(p. 687). While to the best of our knowledge no specific hypothesis based on this explanation
has been experimentally tested, Hohwy and colleagues suggest the explanation they offer is

the estimated loss for any given decision and belief.
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“unifying” (p. 688), “parsimonious” (p. 690), but also “more principled than alternative non-
epistemological accounts” (p. 694). In short, Hohwy et al. ([2008]) demonstrate how an appeal
to the representational and normative virtues of Bayes can be used to conclude that a Bayesian
approach to explaining certain mental phenomena is the best.

Unfortunately, these virtues alone do not provide philosophers of mind and cognitive
scientists with a compelling reason to prefer the Bayesian approach over alternatives as one’s
basis for discovering and assessing explanations of mental phenomena. In the light of Hohwy
et al.’s ([2008]) case and with the discussion in the previous section in hand, let’s address
the following questions: what are exactly the properties of Bayesianism that contribute to its
representational power? And what are the properties of Bayesianism that contribute to its
capacity to define computational problems and to provide “rational” (or “principled”) solutions
to such problems?

3.1 Representing uncertainty
Explanatory frameworks possess certain non-empirical, epistemic properties that increase
representational power. Two such properties are simplicity and unificatory power. If a
framework F possesses all the properties or each of the properties to greater extent in
comparison to an alternative framework F∗, then there is reason, based on non-empirical
virtues, to prefer F to F∗ as one’s working framework for scientific explanation.

In the proceeding discussion, simplicity may roughly be understood as some measure of the
number and conciseness of the framework’s basic principles and representational posits, and
unification may roughly be understood as some measure of the number of different kinds of
phenomena or systems that the framework can be applied to. Taken together, the simplicity of
a framework brings with it pragmatic advantages like being more perspicuous and easier to use
and to manipulate, and unification brings with it epistemic advantages related to explanation
and confirmation (Sober [2003]).

In thinking about the Bayesian approach in cognitive science along these lines, the approach
achieves some degree of simplicity. The set of principles guiding the approach is fairly
minimal: (i) an agent’s beliefs that differ in strength are modelled by real numbers; (ii) at
any given time, an agent’s beliefs obey the axioms of probability; (iii) over time, an agent
updates their beliefs according to a rule of conditionalisation.6 These principles allow cognitive
scientists to formulate research questions compactly and precisely (Chater et al. [2006], p.
287). The language also has much unifying power (Tenenbaum et al. [2011], p. 1285). In fact,
it offers a common, encompassing, and flexible mathematical language for studying a wide
variety of phenomena and systems.

However, even though the Bayesian language appears to be simple, many Bayesian models
of real-world, high-dimensional tasks are hard to formulate and manipulate. One challenge
concerns computing the posterior distribution, which is intractable (or “computationally
complex”) for most real-world problems and calls for approximations and heuristics that might
themselves be intractable (Kwisthout, Wareham, and van Rooij [2011]). Another challenge is
choosing a suitable model and prior. A suitable model should not limit the form of probability
distributions (for example, always normal) or functions (for example, always linear), which
are part of the solution to a cognitive task. Priors should not rule out plausible candidate

6Note that there are several schemes for representing precise probabilities such as a full probability distribution,
or a scheme requiring the representation of at least two moments (for example, variance and skewness) of the
sensory distribution. While most Bayesian models assume a full probability distribution, this assumption is not
supported by empirical evidence (Rahnev [2017]).
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hypotheses by assigning them zero probability, nor should they spread uniform mass over all
possible hypotheses. Upon resolving these modelling challenges, one ends up with Bayesian
models that are significantly complicated and hard to manipulate.7

As for unification, although Bayesianism has been used to fit an impressive range of data
from a diverse variety of cognitive and behavioural tasks, this kind of unificatory power does not
obviously have explanatory or confirmatory import (Colombo and Hartmann [2017]; Eberhardt
and Danks [2011]). Similar to Bayesianism, the language of Lagrangian field theory can be
used for studying many kinds of systems. For example, it can be applied both to the behaviour
of a system of gravitational masses and that of an electric circuit. This fact, however, does not
warrant the conclusion that we have a common explanation of the behaviour of both systems.
More generally, while the representational flexibility of Bayesian models contributes to its
unifying power, it might prompt cognitive scientists to select priors and likelihood functions
post-hoc to merely accommodate but not explain behavioural and neural data (for this kind of
criticism, see Bowers and Davis [2012a]).

3.2 Explaining rationally
Bayesianism has undoubtedly much appeal to cognitive scientists because it provides them with
a clear normative standard on how adaptive agents should combine and weigh different degrees
of belief, how they should update their degrees of belief upon receiving novel information, and
how they should make decisions and inferences under uncertainty.

The normative appeal of Bayesianism initially arose from synchronic and diachronic Dutch
book arguments justifying its tenets: degrees of belief are (i) probabilistic and (ii) updated
via conditionalisation. Dutch book arguments aim to establish that it is practically irrational
for an agent to have degrees of belief that violate the probability calculus and/or rule of
conditionalisation. After all, either of these violations would expose an agent to accepting
a set of bets that guarantees a net loss.

While Dutch book arguments are purely pragmatic, the rationality of Bayesianism has more
recently been grounded in accuracy considerations, where accuracy is construed as “closeness
to truth” (Joyce [1998]). The argument relies on a proper scoring rule for measuring the
inaccuracy of a belief function at a possible world w that gradually penalises the function as it
becomes more distant from the ideal belief function at w. Leitgeb and Pettigrew ([2010a],
[2010b]) have shown that for some proper scoring rule, S, an agent that has probabilistic
degrees of belief and who updates by conditionalisation will have less inaccurate degrees of
beliefs compared to an agent with non-probabilistic degrees of belief and who updates in some
other way. On the assumption that accuracy is a fundamental feature of epistemic rationality,
then Bayesianism is epistemically rational.

Each of these justifications is not uncontroversial, however. Dutch book arguments imply
that the utility for a bundle of bets is the summed utilities associated with the individual bets,
but this is not true if utility is nonlinear in money. Of course, one might counter by arguing
that utility should be linear in money. However, there is little empirical basis for mandating this
requirement since nonlinear utilities are common in ordinary decision making as a result of risk
aversion or diminishing marginal utility.8 As for the accuracy-based justification, there is much

7The notion of “simplicity” regarding these modelling challenges is understood, respectively, as a property of
a model itself and as a property of the activity of modelling. More precisely, the “simplicity” (“tractability” or
“computational complexity”) of a model itself concerns the time a Turing machine requires to return an output for
each input. The “simplicity” of the activity of modelling may be explicated as the degree of ease with which a
model can be built and manipulated to obtain a desired result (see Colombo [2015], Section 3).

8Besides the linear vs. nonlinear utility contention with Dutch book arguments, we refer the reader to
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controversy surrounding the central assumption – that is, accuracy is a fundamental feature
of being epistemically rational. Littlejohn ([2015]) points out that some accurate beliefs are
worthless, yet the accuracy argument seems to neglect the fact. Besides worthless accuracy,
some have argued that proponents have not established feasible epistemic interpretations for
the objects of the mathematical framework (Carr [2017]). Without a compelling story, the
accuracy argument is driven purely by fancy mathematics.9

So, even though Bayesianism appears to be – as Hohwy and collaborators (2008) put it –
“more principled than alternative non-epistemological accounts”, its normative force is in fact
controversial.

4 Tracking Uncertainty: A Plurality of Theories
Early on, we alluded to a problem for proponents of the predictive processing theory and
philosophers of mind who take results from Bayesian cognitive science at face value. The
problem is a neglect of different yet promising approaches that represent several of the mental
phenomena captured by current Bayesian models.

Ignorance is bliss, of course, since naturalistic philosophers may avoid addressing the
controversies ignited by sceptics and non-Bayesians. The neglect has also contributed to
motivating an unwarranted scientific realism regarding Bayesian models. Bringing the problem
into focus, we contend that it should not be taken for granted that states of uncertainty
realised by cognitive systems are best (or most naturally) represented and explained within
a Bayesian framework. This is because a systematic comparison remains to be seen of the
relative epistemic virtues (both empirical and non-empirical) of Bayesianism and alternative
approaches to representing and handling uncertainty. Thus, we find the view that ‘Bayes is best’
has unjustifiably gained the endorsement of many philosophers of mind through systematic
neglect of other plausible alternatives.

In this section, we address this deficiency in the philosophical literature by discussing five
formal approaches for representing uncertainty including Dempster-Shafer theory, imprecise
probability, possibility theory, ranking theory, and quantum probability theory. Along the way,
we highlight their logical relationships with Bayes and one another.10 Of course, what follows
is not intended to be an exhaustive literature review (see Halpern [2003] and Huber [2016] for
thorough surveys). Nevertheless, the highlighted merits of each theory considered suffice to
undermine the assumption that Bayesianism is the simplest, most unifying, or most rational
approach to explaining uncertainty-involving cognitive phenomena.

Later in this section, we identify some important perceptual and cognitive phenomena
that Bayesianism fails to adequately predict but are predicted by some of the alternative
approaches we review. These observations count as strikes against Bayes, further undermining
the assumption that Bayesianism is the best way to represent and explain how cognitive systems

objections found in Hájek ([2008]), which also presents a “Czech Book Argument” with the conclusion that
agents ought to violate the probability calculus.

9Gelman ([2008]) offers a concise overview of arguments against Bayesian statistics. He focuses on two
classes of objections: first, Bayes is overly-flexible, since Bayesianism does not constrain which of many possible
models should apply in any given task; second, hierarchical and empirical Bayes is implausibly over-sold as an
all-purpose, automatic statistical engine.

10Although each framework we consider provides a representation of uncertainty within the scope of probability
theory broadly construed, there are also implicit, non-probabilistic approaches to uncertainty in cognitive science,
and particularly in computational cognitive neuroscience (Drugowitsch and Pouget [2012]). We do not discuss
such theories here, but making the reader aware of them at least expands the set of alternatives to consider. By
expanding the space of possibilities, the case against the argument from uncertainty becomes more convincing.
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{} {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

Mass 0 0.1 0.2 0.1 0.1 0.1 0.3 0.1
Belief 0 0.1 0.2 0.1 0.4 0.3 0.6 1
Plausibility 0 0.4 0.7 0.6 0.9 0.8 0.9 1

Table 1: Dempster-Shafer Example

manage uncertainty. We also think that predictive processers should take note of the different
theoretical entities posited by these alternative theories, which, from a scientific realism
perspective, would have significant consequences on debates in philosophy of mind currently
relying on results from Bayesian cognitive science such as the nature of mental representation
and internalism vs. externalism. We conclude the section with a recommendation that
naturalistic philosophers of mind should not be Bayesian realists given the empirical successes
of these other models that posit different theoretical entities.

4.1 The Dempster-Shafer framework
Rather than modelling a state of uncertainty with a probability function, the Dempster-Shafer
(D-S) theory of evidence represents “degrees of belief” through a pair of non-additive functions
and accommodates learning through Dempster’s rule for aggregating evidence instead of simple
conditionalisation (Shafer [1976]). As a matter of logic, Bayes implies D-S, but D-S does not
imply Bayes, thus yielding more expressive power.

In the Dempster-Shafer theory of evidence, there are three functions used in modelling a
state of uncertainty: a mass function, a belief function, and a plausibility function. Let W
be a finite set of states. A mass function m is a mapping of subsets from the power set or
frame of discernment ℘(W ) (the set of all subsets including �) to the unit interval [0, 1] where
m(�) = 0, and the sum of masses for all X ⊆ W is 1. The D-S belief function, Bel, and the
plausibility function, Pl, define a lower and upper bound, respectively, representing the support
and plausibility of each element X ∈ ℘(W ). The lower bound, Bel(X), is defined as the sum
of masses for all Y ⊆ X . The upper bound, Pl(X), is defined as the sum of masses for all
subsets that intersect X . A concrete example of these functions put to use can be seen in Table
1 with W = {ω1, ω2, ω3}.

In the example, observe that
∑

X⊆W m(X) = Bel(W ) = Pl(W ) = 1, thus indicating
complete certainty in the sure event W . For each proper subset of W , however, the same
cannot be said. Levels of uncertainty associated with each proper subset are realised by Bel(·)
and Pl(·). Take the subset {ω1, ω3}, for example, which we will label X. The sum of masses
assigned to {}, {ω1}, {ω3}, and {ω1, ω3} is the lower level, Bel(X) = 0.3. The sum of masses
for subsets that intersect the set of interest is the upper level, Pl(X) = 0.8. Together, the
pair generates a “belief interval”, [0.3, 0.8], which, in addition to uncertainty, captures partial
ignorance that is illustrated by the difference between Pl and Bel where Bel(X) ≤ Pl(X)
always.

Another distinctive property of the D-S theory is that the union of disjoint events is believed
at least as strongly as the sum of the beliefs for each individual event in contrast to the strict
equality between the probability of the union of disjoint events and the sum of the probabilities
for each individual event. This implies that Bel is superadditive – that is, Bel(X ∪ Y) ≥
Bel(X) +Bel(Y) for all disjoint elements X, Y ∈ ℘(W ). The conjugate Pl, on the other hand,
is subadditive – that is, Pl(X ∪ Y) ≤ Pl(X) + Pl(Y) for all disjoint elements X, Y ∈ ℘(W ).
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Notice, then, that the mathematical objects representing “degrees of belief” in the D-S theory
are non-additive, thus distinguishing itself from the classical Bayesian theory.

As for inference, the D-S theory includes Dempster’s rule of combination for aggregating
mass functions associated with information from multiple, independent sources as follows:

(m1 ⊗m2)(X) =
1

1−K
∑

{X1,X2:X1∩X2=X}

m1(X1)m2(X2),

where K =
∑
{X1,X2:X1∩X2=�}m1(X1)m2(X2), X 6= �, and (m1 ⊗ m2)(�) = 0. This rule

corresponds to a normalised joint operation in which information is combined by favouring the
agreement between the sources and ignoring all conflicting evidence (Dempster [1968]).

4.2 The imprecise probability framework
Another way of modelling uncertainty is with a non-empty set of probability functions, P , or
an imprecise probability, whose members are defined on an algebra A over a set of states W
(Levi [1974]; Walley [1991]; Augustin et al. [2014]). Similar to the D-S theory of evidence,
Bayes implies imprecise probability, but imprecise probability does not imply Bayes. So once
again, we obtain more expressive power and yet preserve a connection to Bayes.

In the imprecise probability framework, there are some unique features worth noting. For
one, the belief model, P , is usually accompanied by a lower probability P(X) = inf{P (X) :
P ∈ P} and an upper probability P(X) = sup{P (X) : P ∈ P} for all X ∈ A. Comparatively,
a lower probability plays a similar role as Bel and an upper probability plays a similar role as
Pl. Likewise, lower and upper probabilities are non-additive. Instead, P is superadditive and P
is subadditive – that is, P(X ∪ Y) ≥ P(X) + P(Y) and P(X ∪ Y) ≤ P(X) + P(Y) for all X, Y
∈ A.

Furthermore, ifP is convex – that is, for any λ ∈ [0, 1] and P1, P2 ∈ P , λP1+(1−λ)P2 ∈ P
– then uncertainty is represented by interval-valued probabilities, P(X) = [a, b], for all X ∈ A
and a, b ∈ [0, 1]. On the surface, imprecise probability and the D-S theory look very much alike.
In contrast, though, imprecise probability is even more general than Dempster-Shafer given that
every D-S belief interval is an imprecise probability, but not every imprecise probability is a
D-S belief interval (Huber [2016]).

Another difference is that imprecise probability can reduce to Bayesianism with less
restriction. To see this, suppose that P is a singleton set relative to some algebra. Then,
the lower and upper probabilities are realised by a single probability function P – that is,
P = P = P. What we learn from this fact is that P can in principle always be Bayesian by
restricting P to a singleton set, but whether Bel is Bayesian or not ultimately depends on the
masses assigned to subsets.

In addition, imprecise probability more closely resembles Bayes in its inference procedure.
Inference proceeds by way of conditioning each individually precise P ∈ P on new
information E, assuming P(E) > 0. The result is a set of conditional probabilities P(·|E)
and lower and upper conditional probabilities, P(·|E) and P(·|E). In the instance that P(·) and
P(E) are singleton sets, P(·|E) is also a singleton set, i.e. P(·|E) = {P (·|E)}. Once again,
imprecise probability reduces to Bayesianism with less restriction than D-S.

We conclude that imprecise probability retains many of the benefits of Bayesianism while
also enjoying increased expressive power.
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4.3 The possibility framework
Possibility theory was inspired by ideas in fuzzy logic aiming at accommodating vagueness
(Zadeh [1975]). Using possibility theory for the purpose of measuring degrees of uncertainty
rather than degrees of truth, a possibility measure, Π, models “the knowledge of an agent
(about the actual state of affairs) distinguishing what is plausible from what is less plausible,
what is the normal course of things from what is not, what is surprising from what is expected”
(Dubois and Prade [2007]). Despite a difference in language, representations of uncertainty
closely resemble D-S uncertainty. Thus, we find another generalisation of Bayes, possessing
increased expressive power.

In the possibility framework, we define a possibility distribution π on a set of states W . π
maps states w ∈ W to real numbers in the unit interval [0, 1], and π(w) = 1 for at least one
w ∈ W . From a possibility distribution, we can construct a possibility measure Π : A → R,
where A is an algebra over W , that assigns 0 to � and 1 to W . A possibility measure is
defined as Π(X) = supw∈X π(w) for all X ∈ A. Π provides a degree to which an event is
possible where 1 is maximum possibility and 0 is minimum possibility. Like the D-S theory
and imprecise probability, a possibility measure induces a conjugate measure N : A → R
called necessity. The necessity measure is defined as N (X) = infw∈X π(w) for all X ∈ A. A
necessity measure N provides a degree to which an event is necessary.

Distinct from additive probability functions, a possibility measure, Π, has a unique property
of “maxitivity”. The maxitivity property says that if X and Y are disjoint sets, then Π(X ∪
Y) = max(Π(X),Π(Y)). This means that the union of disjoint sets is at least as possible as
the maximally possible disjoint set, yet the union is no more possible than such set – hence,
subadditivity. While Π(X) is an upper bound with respect to uncertainty toward X, N (X)
is the lower bound where N (X) = 1 − Π(Xc). Consequently, we obtain a dual property,
N (X ∩ Y ) = min(N (X),N (Y)).

As for inference in possibility theory, if Π(Y) > 0 and the set X is non-empty, then one
way to account for new information is as follows:

Π(X|Y) =

{
1 if Π(X ∩ Y) = Π(Y);

Π(X ∩ Y) if Π(X ∩ Y) < Π(Y).

The difference between conditional possibility and conditional probability is that Π(X ∩ Y)
cannot be the product Π(X|Y ) Π(Y) in an ordinal setting, so × is replaced by min.

With the bigger picture in mind here, Π and N are similar to Pl and Bel, respectively. In
fact, if a mass function m on a finite frame of discernment is consonant by assigning positive
mass only to an increasing sequence of sets, then a plausibility function Pl, relative to m, is a
possibility measure (see Theorem 2.5.4 in Halpern [2003]). With Belm being the conjugate of
Plm, it follows that Belm is a necessity measure. Thus, possibility theory is closely linked to
the D-S theory.

4.4 The ranking framework
Ranking functions can be viewed as measures of how surprising it would be if an event were to
occur (or if some hypothesis is true). Formally, a ranking function K : A → N ∪ {∞}, where
A is an algebra over a set of states W , models the degree of disbelief or surprise assigned to
events (Spohn [2012]). We say that an event X is surprising or disbelieved just in case its rank
is positive – that is, K(X) > 0. Events that are disbelieved are ranked gradually by the natural
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numbers to a maximum of∞. The higher rank, the higher degree of surprise. Intuitively, the
empty set should be disbelieved to the highest degree.

On the other hand, if an event X is not at all surprising, then that event is assigned a rank
of 0. As it is obvious, W should never be disbelieved, for it is not surprising that one of the
states in W obtains. However, unsurprisingness does not necessarily imply that if X is assigned
a rank of 0, then X is believed. An event X is said to be believed just in case its complement
is disbelieved, i.e. K(Xc) > 0. Otherwise, a rank of 0 assigned to X and Xc would seem to
suggest suspension of judgment since one has yet to come to disbelieve either X or Xc.

As for inference in the ranking theory, a conditional model of uncertainty may be defined
like so: K(X|Y) = K(X∩Y)−K(Y). By using conditional ranks, a common rule for updating
on new information corresponds to Bayesian conditionalisation through an analogue to Bayes’
rule: K(X|Y) = K(Y|X) +K(X)−K(Y).

Fitting ranking theory into the larger picture, ranking functions are closely related to
possibility measures and can be transformed in the following way: ΠK(X) = 1/(1 + K(X))
and ΠK(X) = 0 if K(X) = ∞. Given the latter transformation, the degree of surprise is over
[0, 1] instead of N ∪ {∞}. In either case, though, we obtain a generalisation of Bayes, and its
increased expressive power affords the modeller more flexibility.

4.5 The quantum probability framework
Quantum probability theory is a geometric model of uncertainty. It uses fragments of the
language of mathematical probability, but outcomes are distinctively represented as subspaces
of varying dimensionality in a multidimensional Hilbert space, which is a vector space used to
represent all possible outcomes for questions asked about a system. Unit vectors correspond
to possible states of the system and embody knowledge about the states of the system under
consideration.

Probabilities of outcomes are determined by projecting the state vector onto different sub-
spaces and computing the squared length of the projection. The determination of probabilities
is context and order-dependent since individual states can be superposition states and composite
systems can be entangled. Thus, while in the Bayesian framework P (X ∩ Y) = P (Y ∩ X),
the commutative property in quantum probability does not always hold. More generally, unlike
in Bayesianism, quantum probability does not obey the law of total probability (see Rédei and
Summers [2007] for a nice introduction).

Incompatibility in quantum probability theory entails that it is impossible to concurrently
assign a truth-value to two hypotheses. Psychologically, two incompatible hypotheses in this
sense can be processed only serially because the processing of one hypothesis interferes with
the other. Given hypotheses A and B, for example, if A is true at a certain time, then B can
be neither true nor false at that time. Conjunctions between incompatible hypotheses are then
defined in a sequential way as “A and then B.”

One advantage of quantum probability is that it permits explanations of cognitive systems in
a superposition of different states. Superposition can give rise to a specific kind of uncertainty
that is dependent on the fuzziness and ambiguity of information and that characterises
the ambivalence of many of our normal judgments. Additionally, entanglement tracks the
interdependencies between different parts of complex cognitive systems. In entangled systems,
it is not possible to define a joint probability distribution from the probability distributions of
variables corresponding to different constituent parts – changes in one constituent part entails
instantaneous changes in another part.

Courtesy of interference, superposition, and entanglement, we are able to explain the
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conjunction fallacy, non-compositional conceptual semantics, order effects in perception, and
violations of the sure thing principle (Busemeyer and Bruza [2012]).

4.6 Heir to the throne?
Each of the theories of uncertainty we have briefly reviewed has some epistemic advantage
over Bayesianism as well as limitations too. The Dempster-Shafer theory, for instance, has
an advantage of representing states of complete ignorance without precise degrees of belief: 0
mass everywhere except for the sure event. Alongside, evidence and beliefs are both formalised
as belief functions. Furthermore, combining evidence with Dempster’s rule has the desirability
of relaxing strong independence assumptions. Upon gathering new evidence, beliefs should be
determined by combining the vacuous belief function with the total evidence. Thus, when used
to model problems of sensory integration, the D-S approach can generate a measure of conflict
between belief functions, which can be used to determine the degree of coherence between
distinct sources of sensory information, and to reject unreliable sources. All of this suggests
that Bayes might not be the most unifying or explanatory theory after all.

A problem for the D-S theory, however, is that inference is even more computationally
inefficient than Bayesian inference. The inefficiency stems from evidence being represented
by a belief function that is induced by a mass function on the frame of discernment instead of
a probability distribution over a partition. Combining evidence by Dempster’s rule increases
computational complexity as the number of possible states increases. In an attempt alleviate
the complexity issue, though, Shafer and Tversky ([1985]) emphasised that “[t]he usefulness of
one of these formal languages [i.e., the Bayesian and the D-S language] for a specific problem
may depend both on the problem and on the skill of the user. . . A person may find one language
better for one problem and another language better for another” (Shafer and Tversky [1985],
p. 311). Despite their theoretical differences, virtues, and drawbacks, D-S and Bayes are
not incompatible theories. Precise probability distributions are limiting cases of D-S belief
functions and conditional probability distributions are limiting cases of applying Dempster’s
rule. As mentioned earlier, the D-S theory is a generalisation of Bayesianism. Thus, any
evidence confirming Bayes confirms the D-S theory also.

The imprecise probability approach clearly has more expressive power than Bayesianism
and therefore can capture more uncertainty-involving phenomena. For one, ignorance is better
represented in terms of intervals rather than sharp probabilities. Another advantage is that
imprecise probability opens the door to a whole host of decision rules, which have normative
implications as well as an ability to explain certain behaviour like ambiguity aversion. Since
Bayes fails on both counts, Bayesianism is neither the most unifying nor rational framework.
Of course, imprecise probability is not without flaws. For one, it has a computational
inefficiency problem involving greater complexity when updating convex sets of probabilities.
The theory also encounters trouble when it comes to updating “trivial states of uncertainty” or
the non-informative prior, [0, 1], which has prompted some to rule out vacuous priors since they
give rise to vacuous posteriors (Walley [1991]). But in doing so, the theory becomes restricted
to representing partial ignorance and loses the capability of representing complete ignorance.
In order to recover such representation, imprecise probability would need to be extended by
a non-Bayesian updating rule. Despite these theoretical differences, virtues, and drawbacks,
however, imprecise probability and Bayes are not incompatible. Any evidence that confirms
Bayes also confirms the imprecise probability theory.

The possibility approach has a computational advantage over probability as “maxitivity”
makes possibility measures compositional – that is, Π(X ∪ Y) is determined by the maximum
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of Π(X) and Π(Y). Less computation indicates that possibility theory is at least simpler
than Bayesianism. Within the larger picture, there are similarities between possibility theory
and Dempster-Shafer theory in which a Pl function can be a possibility measure. However,
possibility need not be restricted to a D-S interpretation. In general, possibility theory “can
be seen either as a coarse, non-numerical version of probability theory, or as a framework for
reasoning with extreme probabilities, or yet as a simple approach to reasoning with imprecise
probabilities” (Dubois and Prade [2007]). In cognitive science, possibility theory has been used
for modelling default and non-monotonic reasoning (see Benferhat, Bonnefon, and da Silva
Neves [2005]). Another advantage of the possibility approach is its usefulness in assessing
vague statements like ‘Bob is tall’ or ‘the shirt is blueish’. Given its application to vagueness,
possibility theory offers cognitive scientists a more unified modelling framework for explaining
reasoning under uncertainty with fuzzy concepts (Smithson and Verkuilen [2006]). But since
fuzzy approaches to uncertainty such as possibility theory are not isomorphic to probability
theory, it could be suggested that Cox’s theorem ([1946]) rules out possibility theory as a
rational means of quantifying uncertainty (but see Colyvan’s [2008] questioning of whether
probabilism is the only ‘coherent’ approach to uncertainty).

Ranking theory has an intimate connection to possibility theory. But, distinct from
Bayesianism and the other approaches we have considered, proponents point out that ranking
theory accommodates the everyday, categorical notion of belief (and disbelief), not just
quantitative degrees of belief. On these grounds, they claim that the ranking theoretic approach
has advantages over probabilistic approaches because it allows for everything that we can do
with quantitative measures and also tackling traditional problems in epistemology that center
around the traditional tripartite concept of belief (Spohn [2012]). Ranking theory can then
be thought of as more unifying than Bayesianism. While ranking functions seem intractable
because of the computational expense involved, similar to D-S and imprecise probability,
Goldszmidt and Pearl ([1992]) have formulated a Spohn-like framework that makes learning
actually tractable. More recently, Häming and Peters ([2011]) show that a ranking function
can be used “as a filter on possible actions a reinforcement learning [. . . ] agent may take”
(p. 226). However, although ranking theory has received some attention, especially in the AI
community (Kern-Isberner and Eichorn [2014]), its applications in experimental psychology
are currently limited in comparison to Bayesian approaches, but efforts are increasing in fields
such as conditional and non-monotonic reasoning (Skovgaard-Olsen [2016]).

Quantum probability theory is uniquely based on axioms that give the theory the advantage
of accounting for fuzzy and ambiguous information, but a serious drawback is that quantum
probability allows for an agent to be “Dutch-booked”. As we noted, Dutch book arguments
do not provide a decisive reason for the superiority of Bayesianism, but they do bear on
the rationality of theories of uncertainty. But even though quantum probability theory “is
perhaps a framework for bounded rationality and not as rational as in principle possible”
(Pothos and Busemeyer [2014], p. 2), courtesy of its unique properties, including superposition,
entanglement, incompatibility, and interference, it accommodates empirical results related to
order and context effects that are not plausibly explained within a Bayesian framework (Pothos
and Busemeyer [2013]). Such capability indicates that quantum probability is more unifying.
An example of this will be detailed in the following subsection.

With the exception of quantum probability, the other approaches are compatible with
Bayesianism. However, all the approaches considered posit different theoretical constructs.
Because they posit different theoretical constructs, one’s epistemic attitude towards the results
from any of these modelling approaches will be consequential with respect to our understanding
of the nature of mental states and processes. After all, the different theoretical constructs aim at
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picking out different structures and processes within a cognitive architecture. So, if predictive
processers suppose a realist attitude towards Bayesian posits, then they must show that belief
in these posits is better supported in terms of non-empirical virtues and empirical adequacy.
But we have shown that Bayesianism does not possess special non-empirical virtues over the
alternatives. In the next subsection, we will focus on the issue of empirical adequacy.

4.7 Empirical doubts
Observations made thus far undermine the assumption that Bayesianism is the best, relative
to non-empirical considerations, for representing and explaining uncertainty, and that it is the
most rational approach. However, virtually all Bayesian cognitive scientists and naturalistic
philosophers of mind interested in Bayes omit the competitors in their work and proceed
by taking for granted the superiority of Bayesianism. This behaviour is methodologically
problematic, however, and will vitiate debates in philosophy of mind concerning, for instance,
representationalism and externalism. In fact, several findings in perception, judgment, and
decision making have been shown to be better explained by some of the theories outlined above.

Starting with perceptual effects, the experimental results of Conte et al. ([2009]) on
quantum-like interference effects in the perceptual domain clearly demonstrate the failure of a
Bayesian explanation. In their experiment, participants were presented with ambiguous images,
which could be perceived in two mutually exclusive ways. One group of participants was
presented with a single image A and asked to make a binary choice between A = a or A
= q on the basis of the way in which they perceived the image at the instance of observation.
Another group of participants was presented with two ambiguous images, B and A. After each
presentation, participations had to make a binary choice between B = b and B = r, and between
A = a and A = q.

By the law of total probability, a Bayesian theory predicts that the probability a participant
chooses A = a in any of the trials is: P (A = a) = P (B = b)P (A = a|B = b) +
P (B = r)P (A = a|B = r). The findings of Conte and colleagues were inconsistent
with this prediction.11 However, the results were consistent with a quantum probability
prediction that participants’ choices would be affected by quantum like interference where
the context generated by making the first perceptual choice interfered with the second so
that the participants’ choices showed order effects, implying non-commutativity. Since such
interference effects are ubiquitous in psychology (see Kvam, Pleskac, Yu, and Busemeyer
[2015]), but incompatible with Bayesian predictions, the quantum probability theory better
accounts for some psychological phenomena. Although the evidence does not fully vindicate
quantum probability, it does undermine the view that Bayesianism is the most empirically
adequate explanatory framework for perceptual phenomena.

In the domain of sensorimotor psychology, on which Rescorla ([2016]) builds his case for
intentional realism, some phenomena do not seem to be obviously explained by Bayesianism.
Anderson, O’Vari, and Barth ([2011]), for example, reported forms of visual interpolation
generating strong illusory percepts. Because these percepts are highly improbable according to
Bayesian models for contour synthesis, the authors describe their findings as “non-Bayesian”.
Another sensorimotor phenomenon that is not obviously explained by Bayesian models of
sensory cue integration is the size-weight illusion. In this illusion, smaller objects are perceived

11Bayesians will be quick to point out that context effects can straightforwardly be handled in Bayesian models
by adjusting the likelihoods so that they no longer assume independent and identically distributed samples. While
this move underwrites the flexibility of Bayes, it also highlights the risk of ad-hocery that may come with this
flexibility
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as heavier than larger objects of the same weight, even though the prior expectation is that
smaller objects are lighter. As the perception of heaviness discounts this prior expectation,
the phenomenon has been characterised as “anti-Bayesian”(Brayanov and Smith [2010]).
We find that while Bayesian approaches to sensorimotor and perceptual performance have
been successful in fitting a variety of phenomena, scarce attention has been paid in both
the cognitive sciences and philosophy of mind to the extensive literature documenting non-
Bayesian performance in perceptual and sensorimotor tasks (Rahnev and Denison [2018]).

Beyond perceptual effects, Bayesianism is not an accurate predictor of human judgment.
Anyone who has come across the literature on cognitive biases has likely encountered the
“Linda the Bank Teller” study by Tversky & Kahneman ([1983]). In it, experimental
participants were given a short description of “Linda” and asked which is more probable:
‘Linda is a bank teller’ (B) or ‘Linda is a bank teller and is active in the feminist movement’ (B
∩ F). Bayesianism seems to predict that respondents will say that B is more probable because
P (B ∩ F) ≤ P (B). But those familiar with the study will report that Bayesianism is not a
very good predictor. For most respondents answered, (B ∩ F). The observed effect has become
known as the infamous “conjunction fallacy”. For a discussion, see Bovens and Hartmann
([2003]) and Hartmann and Meijs ([2012]).

Further empirical evidence against Bayes lies with the assumption that agents are coherent.
Since Bayesianism conforms to classical probability, the sum of probabilities over a set of
disjoint events is one, and the justifications for why the additivity axiom should be held as a
normative standard have been explored above. But as Offerman et al. ([2009]) demonstrate,
ordinary agents sometimes form incoherent distributions leading to what they call additivity
bias. While this fact was known beforehand, they sought to explain the bias as a result of risk
attitudes affecting judgment. After constructing a correction measure for risk attitudes, they
found additivity bias to persist. So, additivity bias exists independently of risk attitudes. In
their paper, they claim that non-additive models, like imprecise probability, are better able to
explain the subjects’ judgments.

Decision-making is another area where Bayes is not generally an adequate framework for
modelling and explaining preferences. Ellsberg’s ([1961]) paradox is an exemplary case where
Bayesianism reveals its shortcomings. When presented with two urns, one containing fifty
red balls and fifty black balls and the other containing one-hundred red and black balls in
unknown proportions, subjects were indifferent to choosing a bet on drawing a red ball to
a bet on drawing a black ball from either urn. When presented with bets across urns, e.g.
red from the known proportioned urn or red from the unknown proportioned urn, the results
were interesting. Bayesianism predicts that an agent would be indifferent, but the results were
inconsistent with the prediction. Most prefer red from the known proportioned urn to red from
the unknown proportioned urn. The explanation is that ordinary individuals tend to be averse
to ambiguity, and their preferences can be better accommodated by imprecise probability and
MaxiMin Expected Utility (Gilboa and Schmeidler [1989]).

The psychological findings we have just reviewed, along with several other behavioural
and psychological studies (see Rahnev and Denison ([2018]) on perceptual decision-making;
Tversky and Koehler ([1994]) on judgment under uncertainty), limit the degree of empirical
adequacy of classical Bayesian models. While these anomalies may be explained within
a Bayesian approach by models with alternative priors, likelihood functions, cost functions
or decision rules, Bayesian cognitive scientists often lack knowledge of their experimental
participants’ actual likelihood functions, priors, and cost functions. Presuming to have such
knowledge is done at the researcher’s own peril.

Despite the discussed anomalies and uncertainties, however, one might be quick to point
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Figure 1: The Bayesian Network with the variables H and E.

out that Bayesian cognitive scientists, and predictive processers alike, make suggestions about
the possible neural implementation of Bayesian posits (Friston [2009]; Pouget et al. [2013]; Ma
and Jazayeri [2014]) whereas advocates of the alternative approaches outlined have not made
an effort in this matter. One might conclude that, unlike its alternatives, Bayesianism is more
empirically fruitful, as it spans all Marr’s levels by including possible implementation.

This conclusion is too quick, however. In fact, concrete suggestions have also been made
about how algorithms based on D-S theory of evidence might be implemented in neurorobotic
architectures for integrating different sources of sensory information (Murphy [1996]). For
quantum probability, some have gone so far as to propose not only that the brain directly
implements quantum computations, but also that quantum computation might illuminate how
the brain produces consciousness (Hameroff [2007]). While we are not aware of any application
at the neural level of algorithms based on imprecise probability, possibility theory or ranking
functions, we do not see any reason why these approaches cannot be brought to bear on
questions about how brains handle uncertainty. It is also important to point out that, though
Bayesian cognitive scientists are considering various hypotheses about how brains might realise
the entities and processes Bayesian models posit, the evidence in favour of any particular
implementation of Bayesian inference is currently inconclusive.

In the face of the evidential uncertainties and of the empirical anomalies we have
highlighted, it is surprising that a number of naturalistic philosophers of mind are willing
to make blanket assertions such as the mind or brain is Bayesian. For these assertions to
be convincing, a better job needs to be done in addressing Bayes’ failures and the empirical
successes of alternative models.

4.8 A Bayesian argument
In closing this section, we would like to give a Bayesian argument to the effect that the
cognitive science, and especially the philosophical communities should not adopt a realistic
attitude towards Bayes too quickly. To do so, we consider a theory H which accounts for
the evidence E. Introducing binary propositional variables H and E with the values H (“The
hypothesis is true”) and ¬H (“The hypothesis is false’) and E (“The evidence obtains”) and
¬E (“The evidence does not obtain”), the Bayesian Network depicted in Figure 1 describes the
probabilistic relation between H and E.12

We assume that H entails E, i.e. that the evidence is a deductive consequence of the theory.
Hence, we set

P (H) = h , P (E|H) = 1 , P (E|¬H) = α (1)

with 0 < α < 1. It is then easy to show that the posterior probability of H, i.e. the probability
of H after learning that E is true, is given by13

P (H|E) =
h

h+ α h̄
> h (2)

12See Bovens and Hartmann ([2003]) for an introduction to the application of Bayesian Network methods in
epistemology and philosophy of science.

13Here and throughout we use the abbreviation x̄ := 1− x.
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Figure 2: The Bayesian Network with the variables H,E and A.

Hence, E confirms H. But how much? As one sees from eq. (2), P (H|E) is a decreasing
function of α. For α → 0, i.e. if we consider it to be impossible that an alternative theory
(which is contained in the “catch-all” ¬H) accounts for the evidence, then P (H|E) → 1. For
α → 1, i.e. if we are convinced that an alternative theory accounts for the evidence, then
P (H|E) → h. Hence, if we consider it quite likely that an alternative theory accounts for the
evidence, i.e. if we set α ≈ 1, then P (H|E) ≈ h and we won’t get much confirmation for H
after observing E.

This situation changes is we consider several independent pieces of evidence E1, . . . , En.
Assuming Ei ⊥⊥ Ej|H for i 6= j = 1, . . . , n and setting P (H) = h, P (Ei|H) = 1 and
P (Ei|¬H) = α for i = 1, . . . , n, we obtain

P (H|E1, . . . ,En) =
h

h+ αeff h̄
. (3)

For large n, αeff := αn ≈ 0 and hence P (H|E) ≈ 1. Given that Bayesian cognitive science
accounts for many different phenomena, this seems to justify taking it very seriously. Note,
however, that we made two important assumptions. First, we assumed that the different pieces
of evidence E1, . . . ,En are independent (given H). This is controversial and needs to be justified
on a case by case basis. Second, we assumed that all pieces of evidence are a deductive
consequence of H, i.e. we assumed that P (Ei|H) = 1 for all i = 1, . . . , n. This is controversial
as H may make Ei only highly likely, and so we should set P (Ei|H) to a value smaller than
1. Assigning a value smaller than 1 to P (Ei|H) is also supported by the observation that Ei

typically does not follow from H alone, but from H and some additional auxiliary assumptions.
(This is the famous Duhem Quine Problem.) Hence, P (Ei|H) < 1 (for all i = 1, . . . , n) which
effectively lowers the posterior probability P (H|E1, . . . ,En).

To accept H, we would also like to make sure that the posterior probability of H is fairly
high. As eq. (2) shows, the value of P (H|E) also depends on the prior probability of H (i.e. on
h) and neglecting it would mean to commit the base-rate fallacy.

So let us now explore what we can say about the prior probability of H. We will argue that it
depends on our beliefs about the existence of alternative theories that explain the evidence. To
proceed with our analysis, we additionally introduce the binary propositional variable A with
the values A := “There is an alternative explanation for E” and ¬A accordingly and study the
Bayesian Network depicted in Figure 2. We set

P (A) = a , P (H|A) = β (4)

with 0 < a, β < 1. β will be large if we believe that H is part of a better explanation (provided
there is one) or if we believe that there can be multiple equally acceptable explanations for E. β
will be small if we believe that an alternative explanation will be better and eventually replace
H. β will also be small if one beliefs that either H or some alternative is right and that there
can be only one explanation for E. Hence, if there is an alternative, this alternative might well
be the true theory and hence one assigns a small value to β. Given that there are several more

23



or less unexplored alternative theoretical frameworks in cognitive science (as argued above), it
seems rational to assign a rather low value to the parameter β.

We also set
P (H|¬A) = 1 (5)

as there must be (or so we assume) an explanation for E. If A is false and there is no alternative
explanation for E, then H has to be true.

With this, we calculate
P (H) = h = aβ + ā. (6)

Hence, if one has good reasons to believe that a is fairly large (i.e. if, as in the case of Bayesian
cognitive science, alternatives to H are known and we can assume that they provide alternative
explanations of E) and if β is fairly small (as we argued), then the “prior” h is relatively small
and hence the posterior probability P (H|E) is relatively small.

To sum up, we have given a Bayesian argument to the effect that we must be very careful
and not accept too quickly claims that brains are Bayesian mechanisms or that we should adopt
a realist stance towards Bayesian models in general.

5 Conclusion: Against Bayesian Realism
If there is good reason to doubt that, currently, the Bayesian approach provides us with the best
explanations of many cognitive phenomena, then there is good reason to remain agnostic about
the truth of Bayesian models of cognitive phenomena and behaviour, contrary to what has been
claimed in the philosophical literature (see Hohwy [2013]; Clark [2016]; Rescorla [2016]), as
well as in fragments of the cognitive science literature (see Knill and Pouget [2004]; Ma et al.
[2006]; Friston [2009]).

Facts about the institutional organisation of contemporary scientific inquiry bolster this
agnosticism, providing us with some explanation of why alternatives to Bayesianism have been
neglected. As pointed out by Stanford ([2015]), the institutional apparatus of contemporary
scientific inquiry has “served to reduce not only the incentives but also the freedom scientists
have to pursue research that challenges existing theoretical orthodoxy or seeks to develop
fundamental theoretical innovation.” While this conservatism has fostered specialisation in the
sciences, it has also shielded reputable theories and frameworks from comparison with relevant,
under-considered alternatives. Jettisoning conservatism by reversing the neglect of available
alternatives, their relative non-empirical virtues, and their relative empirical advantages over
Bayes would pose a serious challenge for a realist stance towards the results of Bayesian
cognitive science.

But as things currently stand, Bayesianism remains the most popular approach for
representing and managing uncertainty. The tools which a Bayesian cognitive scientist is
currently afforded to address problems of uncertain inference are more abundant in comparison
to alternatives, and continue to be refined in neighbouring fields. By comparison, Bayesian
approaches prevail over the Dempster-Shafer theory, imprecise probability, possibility theory,
ranking theory, and quantum probability theory in disciplines ranging from statistics to machine
learning, AI, and economics (Poirier [2006]). And the popularity of Bayesian modelling
continues to grow in the cognitive sciences, too, as evidenced by an increase in the number
of articles, conference papers, and workshops dedicated to Bayesian modelling of cognition
and its foundations (Kwisthout et al. [2011], note 1).

Despite the fact that Bayesianism does not enjoy special epistemic virtues in comparison to
alternatives, the choice to employ Bayesian method by cognitive scientists may be explained
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in terms sociological factors connected with the reward structure of scientific institutions,
which is biased towards conservatism (Stanford [2015]). These sociological factors may
have led researchers to approach their research questions with a Bayesian eye that created a
neglect of alternatives. Seeing that more and more researchers have addressed their questions
within the Bayesian framework, a division of cognitive labour has been fostered in the fields
of cognitive science, epistemology, and philosophy of mind. Sophisticated tools have been
developed and exploited to approach problems at a higher level of specialisation in both
machine learning and human cognition (Gershman, Horvitz, and Tenenbaum [2015]). But
if this higher degree of specialisation continues within research communities with an incentive
structure that strongly favours conservatism, then exploring and developing novel or alternative
theoretical frameworks will ultimately face a much more difficult path. As this will impact the
trajectory of cognitive science, we believe – like Gigerenzer ([1991]) – that it is important to
take a step back and evaluate whether the net result is the best way to advance our understanding
of how minds work.

Upon conceding to the point that the choice of the Bayesian approach in cognitive
science is currently based on pragmatic and sociological considerations instead of epistemic
considerations, and if there are plausible, actually conceived alternatives to Bayes that are
systematically neglected, then naturalistic philosophers of mind ought to acknowledge that
scientific realism is not the appropriate epistemic attitude towards the outputs of Bayesian
cognitive science. If this is correct, then naturalistic theories of mind such as Hohwy’s ([2013])
or Clark’s ([2015]) predictive processing theory, which build on results from Bayesian cognitive
science, cannot make the substantial empirical claims that brains are Bayesian mechanisms,
that mental states are fundamentally ”predictions” or that mental activity is fundamentally
prediction-error minimisation. These theories, and the debates they generated in the philosophy
of mind should instead reflect an instrumental agnosticism about whether or not minds are
“really” Bayesian.

An endorsement of anti-realism towards Bayes should re-configure our understanding
of debates about predictive processing in a number of ways. In particular, controversies
concerning the nature of mental representations within predictive processing should all be re-
interpreted in a fictionalist way (Sprevak [2013]). According to the kind of fictionalism we
have in mind, we should be agnostic concerning claims about representations within predictive
processing debates; these claims do not aim at truth, but pretending they aim at truth is
worthwhile for various purposes. One obvious purpose of fiction is aesthetic appeal. Perhaps,
like Prinz ([forthcoming]) suggests, the predictive processing theory is in fact best understood
not as making substantial empirical claims about mind, but as providing us with a grand
unifying picture of mind and its place in the world. Because this picture invites us to see mind
as a pro-active predictive engine instead of a passive feed-forward, input-dominated machine,
we may well find it aesthetically rewarding. From this viewpoint, a grand unifying theory like
predictive processing is a useful tool for synthesising recent research findings from various
research programs in computational cognitive science – including Bayesian cognitive science,
reinforcement learning and deep learning – where the notion of “prediction” is centerpiece
in one way or another. Predictive processing is also a useful tool for highlighting how such
notions as “uncertainty”, “prediction” and “prediction error minimisation” elegantly fit together
to ground one possible image of humanity. Thus, the reason why the predictive processing
theory has been so attractive for philosophers of mind may really have more to do with its
aesthetic appeal than epistemic virtues.
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