
The modal logic of Bayesian belief revision

William Brown, Zalán Gyenis, Miklós Rédei

August 6, 2018

Abstract

In Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the

prior on some evidence using Bayes’ rule. We define a hierarchy of modal logics that capture

the logical features of Bayesian belief revision. Elements in the hierarchy are distinguished

by the cardinality of the set of elementary propositions on which the agent’s prior is defined.

Inclusions among the modal logics in the hierarchy are determined. By linking the modal logics

in the hierarchy to the strongest modal companion of Medvedev’s logic of finite problems it

is shown that the modal logic of belief revision determined by probabilities on a finite set of

elementary propositions is not finitely axiomatizable.
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1 Introduction and overview

Let (X,B, p) be a classical probability measure space with B a Boolean algebra of subsets of set

X and p a probability measure on B. In Bayesian belief revision elements in B stand for the

propositions that an agent regards as possible statements about the world, and the probability

measure p represents an agent’s prior degree of belief in the truth of these propositions. Learning

proposition A in B to be true, the agent revises his prior p on the basis of this evidence and

replaces p with q(·) = p(· | A), where p(· | A) is the conditional probability given by Bayes’ rule:

p(B | A)
.
=
p(B ∩A)

p(A)
∀B ∈ B (1)

This new probability measure q can be regarded as the probability measure that the agent infers

from p on the basis of the information (evidence) that A is true. The aim of this paper is to study

the logical aspects of this type of inference from the perspective of modal logic.

Why modal logic? We will see in section 2 that it is very natural to regard the move from

p to q in terms of modal logic: The core idea is to view A in the Bayes’ rule (1) as a variable

and say that a probability measure q can be inferred from p if there exits an A in B such that

q(·) = p(· | A). Equivalently, we will say in this situation that “q can be (Bayes) learned from

p”. That “it is possible to obtain/learn q from p” is clearly a modal talk and calls for a logical

modeling in terms of concepts of modal logic.

Bayesian belief revision is just a particular type of belief revision: Various rules replacing the

Bayes’s rule have been considered in the context of belief change (e.g. Jeffrey conditionalization,



maxent principle; see [19] and [6]), and there is a huge literature on other types of belief revision as

well. Without completeness we mention: the AGM postulates in the seminal work of Alchourrón–

Gärdenfors–Makinson [1]; the dynamic epistemic logic [18]; van Benthem’s dynamic logic for

belief revision [17]; probabilistic logics, e.g. Nilsson [15]; and probabilistic belief logics [2]. For

an overview we also refer to Gärdenfors [7]. Typically, in this literature beliefs are modeled by

sets of formulas defined by the syntax of a given logic and axioms about modalities are intended

to prescribe how a belief represented by a formula should be modified when new information and

evidence are provided.

Viewed from the perspective of such theories of belief revision our intention in this paper is very

different: Rather than trying to give a plausible set of axioms intended to capture desired features

of statistical inference we take the standard Bayes model and we aim at an in-depth study of this

model from a purely logical perspective. Our investigation is motivated by two observations. First,

the logical properties of this type of belief change do not seem to have been studied in terms of the

modal logic that we see emerging naturally in connection with Bayesian belief revision. Second,

Bayesian probabilistic inference is relevant not only for belief change: Bayesian conditionalization

is the typical and widely applied inference rule also in situations where probability is interpreted

not as subjective degree of belief but as representing objective matters of fact. Finding out the

logical properties of this type of probabilistic inference has thus a wide interest going way beyond

the confines of belief revision.

The structure of the paper is the following. After some motivation, in section 2 the modal

logic of Bayesian probabilistic inference (we call it “Bayes logic”) is defined in terms of possible

world semantics. The set of possible worlds will be the set of all probability measures on a

measurable space (X,B). The accessibility relation among probability measures will be the “Bayes

accessibility” relation, which expresses that the probability measure q is accessible from p if q(·) =

p(· | A) for some A (Definition 2.1). We will see that probability measures on (X,B) with X

having different cardinalities determine different Bayes logics. The inclusion relation of these

Bayes logics is clarified by Theorem 4.1 in section 4: the different Bayes logics are all comparable,

and the larger the cardinality of X, the smaller the logic. The standard modal logical features

of the Bayes logics are determined in section 3 (see Proposition 3.1). In section 5 we establish a

connection between Bayes logics and the modal counterpart of Medvedev’s logic of finite problems

[13, 14]. We will prove (Theorem 5.2) that the Bayes logic determined by the set of probability

measures over (X,B) with a finite or countable X coincides with the strongest modal companion

of Medvedev’s logic. This entails that the Bayes logic determined by a probability space on a

finite X (hence with finite Boolean algebra B) is not finitely axiomatizable (Proposition 5.9).

This result is clearly significant because it indicates that axiomatic approaches to belief revision

might be severely limited. It remains an open question whether general Bayes logics are finitely

axiomatizable (Problem 5.10). Section 6 indicates future directions of research.
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2 Motivation and basic definitions

Let 〈X,B〉 be a measurable space with a probability measure p on B, and consider statements

such as

φ
.
= “the probability of A is at least 1/4 and at most 1/2” (2)

ψ
.
= “the probability of B is 1/7” (3)

where A and B are in B. Truth-values of propositions φ and ψ can be meaningfully defined with

respect to the probability measure p:

p 
 φ if and only if 1/4 ≤ p(A) ≤ 1/2 (4)

p 
 ψ if and only if p(B) = 1/7 (5)

Consider now a statement χ such as

χ
.
= “it can be learned that the probability of A is at least 1/4 and at most 1/2” (6)

= “it can be learned that φ” (7)

In view of the interpretation of Bayes’ rule formulated in the Introduction, it is very natural to

define χ to be true at probability p if there is a B in B such that the conditional probability

q(·) .
= p(· | B) makes true the proposition

φ = “the probability of A is at least 1/4 and at most 1/2” (8)

where true is understood in the sense of (4); i.e. if for some B ∈ B we have

1/4 ≤ q(A) = p(A | B) ≤ 1/2 (9)

Propositions such as χ in (6)-(7) are obviously of modal character and it is thus very natural to

express this modality formally using the modal operator ♦ by writing the sentence χ as ♦φ. In

view of (7) the reading of ♦φ is “φ can be learned in a Bayesian manner”.

Thus we model Bayesian learning by specifying a standard unimodal language given by the

grammar

a | ⊥ | ¬ϕ | (ϕ ∧ ψ) | ♦ϕ (10)

defining formulas ϕ, where a belongs to a nonempty countable set V ar of propositional letters. As

usual � abbreviates ¬♦¬. (We refer to the books [3, 5] concerning basic notions in modal logic).

Models of such a language are tuples M = 〈W,R, [| · |]〉 based on frames F = 〈W,R〉, where W is

a non-empty set, R a binary relation on W and [| · |] : V ar → ℘(W ) is an evaluation of propositional

letters. Truth of a formula ϕ at world w is defined in the usual way

• M, w 
 a ⇐⇒ w ∈ [|a|] for propositional letters a ∈ V ar.

• M, w 
 ϕ ∧ ψ ⇐⇒ M, w 
 ϕ and M, w 
 ψ.

• M, w 
 ¬ϕ ⇐⇒ M, w 6
 ϕ.

• M, w 
 ♦ϕ ⇐⇒ there is v such that wRv and M, v 
 ϕ.
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By definition formula ϕ is valid over a frame F , F 
 ϕ in symbols, if and only if it is true at every

point in every model based on the frame. For a class C of frames the modal logic of C is the set

of all modal formulas that are valid on every frame in C:

Λ(C) =
{
φ : (∀F ∈ C) F 
 φ

}
(11)

We denote by M(X,B) the set of all probability measures over 〈X,B〉. M(X,B) is non-empty

as the Dirac measures δx for x ∈ X always belong to M(X,B). We assume, without loss of

generality, that elementary events {x} for x ∈ X always belong to the algebra B. It follows that

for a finite or countably infinite X, B must be the powerset algebra ℘(X). In case B = ℘(X), we

write MX instead of M(X,B). If X is countable then the support of v ∈MX is defined to be the

set supp(v) = {x ∈ X : v({x}) 6= 0}. A measure v ∈ MX is called faithful if it has full support

supp(v) = X, or equivalently v(H) = 0 iff H = ∅, or v(H) = 1 iff H = X. In case of a countable

X for every probability measure v ∈MX there exists x ∈ X such that v({x}) > 0.

For a fixed 〈X,B〉 the set of possible worlds W is defined to be the set of probability measures

M(X,B). Consider again the sentences

φ
.
= “the probability of A is at least 1/4 and at most 1/2” (12)

ψ
.
= “the probability of B is 1/7” (13)

The core idea of the semantic of the introduced modal language describing Bayesian statistical

inference is the following:

• The intended interpretation of φ and ψ are the sets

[|φ|] =
{
p ∈M(X,B) : 1/4 ≤ p(A) ≤ 1/2

}
(14)

[|ψ|] =
{
p ∈M(X,B) : p(B) = 1/7} (15)

• The intended interpretation of ♦φ is that “φ can be learned in a Bayesian manner”:

[|♦φ|] =
{
p ∈M(X,B) : there is A ∈ B such that p(· | A) 
 φ

}
(16)

This intended interpretation suggests the following definition of the accessibility relation R on

W = M(X,B):

Definition 2.1. For v, w ∈M(X,B) we say that w is Bayes accessible from v if there is an A ∈ B
such that w(·) = v( · | A). In this context, A is called an evidence. Bayes accessibility relation is

denoted by R(X,B), or in case B = ℘(X), simply by RX .

We are now in a position to give the definition of one of the central concepts of this paper.

Definition 2.2 (Bayes frames). Let 〈X,B〉 be a measurable space. The structure

F(X,B) = 〈M(X,B), R(X,B)〉 (17)

is called a Bayes frame. In case B = ℘(X), we use the notation

FX = 〈MX , RX〉 (18)

�
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A Bayes model is a model M = 〈M(X,B), R(X,B), [| · |]〉 based on a Bayes frame F(X,B).

The modal logic Λ(F(X,B)) corresponds then to the set of laws of Bayesian learning based on the

frame F(X,B). The general laws of Bayesian learning independent of the particular representation

〈X,B〉 of the events is then the modal logic

BL = {φ : (∀ Bayes frames F) F 
 φ} (19)

From the point of view of applications the most important classes of Bayes frames F(X,B)

are Bayes frames determined by measurable spaces 〈X,B〉 having a finite or a countable X. We

will see that finiteness of X serves as a dividing line when defining the logic of Bayes frames. To

indicate these frames we make use of the following notation

Fn = 〈Mn, Rn〉, Fω = 〈Mω, Rω〉 (20)

Definition 2.3 (Bayes logics). We define a family of normal modal logics based on finite or

countable or countably infinite or all Bayes frames as follows.

BLn = {φ : Fn 
 φ} (21)

BL<ω = {φ : (∀n ∈ N) Fn 
 φ} (22)

BLω = {φ : Fω 
 φ} (23)

BL≤ω = BL<ω ∩BLω (24)

BL = {φ : (∀ Bayes frames F) F 
 φ} (25)

We call BL<ω (resp. BL≤ω) the logic of finite (resp. countable) Bayes frames; however, observe

that the set of possible worlds M(X,B) of a Bayes frame F(X,B) is finite if and only if X is a

one-element set, otherwise it is at least of cardinality continuum. �

One can easily check the inclusions

BL ⊆ BL≤ω ⊆ BLω and BL ⊆ BL<ω ⊆ BLn (26)

using the very definition of Bayes logics.

3 Modal principles of Bayes learning

In this section we discuss the connections of Bayes logic to a list of modal axioms that are often

considered in the literature. Such axioms are

K �(φ→ ψ)→ (�φ→ �ψ)

T �φ→ φ

4 �φ→ ��φ

M �♦φ→ ♦�φ

Grz �(�(φ→ �φ)→ φ)→ φ
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Let us recall some of the standard frame properties corresponding to these axioms (cf. [3] and

[5]).

Logic Axioms Adequate frames

K K All frames

T K+T Reflexive frames

4 K+4 Transitive frames

S4 K+T+4 Preorders

S4.1 K+T+4+M Preorders in which every point sees an endpoint

S4.Grz K+T+4+Grz Preorders without infinite chains

Let F = 〈W,R〉 be a frame. That every world in F sees and endpoint (or simply: R has

endpoints) means F |= ∀w∃u(wRu ∧ ∀v(uRv → u = v)). That there are no infinite chains in F
means F |= ¬∃P ((∀w ∈ P ) ∃v(wRv ∧ v 6= w ∧ v ∈ P )). We call a sequence x0, x1, . . ., xk a path

if xiRxi+1 for i < k and xi 6= xj for i 6= j. The length of a path is the number of the xi’s in the

sequence.

As Bayes logics were defined to be the modal logics of certain frames, these logics are normal

modal logics (that is, they extend K). The next proposition establishes the connection between

the Bayes logics and the usual frame properties.

Proposition 3.1. The following statements hold:

(1) BL ⊇ S4 but BL 6⊇ S4.1

(2) BL≤ω ⊇ S4.1

(3) BL<ω ⊇ S4.Grz while BLω 6⊇ S4.Grz

Proof. (1) Let F = 〈M(X,B), R(X,B)〉 be an arbitrary Bayes frame. To check BL ⊇ S4 we need

to show that R(X,B) is a preorder (reflexive and transitive). To simplify notation, we frequently

write R instead of the longer R(X,B).

• Reflexivity: for all measures w ∈M(X,B) we have w(·) = w( · | X).

• Transitivity: suppose u, v, w ∈ M(X,B) with uRv and vRw, i.e. there are A,B ∈ B with

u(A) 6= 0, v(B) 6= 0 and we have v(·) = u( · | A) and w(·) = v( · | B). Since v(B) 6= 0 and

v(B) = u(B | A) we get u(B) 6= 0 and thus u(A ∩ B) 6= 0, therefore w(·) = u( · | A ∩ B),

which means uRw.

We note that the accessibility relation is also antisymmetric:

• Antisymmetry: If v(·) = w( · | A) and w(·) = v( · | B), then v(·) = v( · | A ∩ B). This

ensures v(A ∩B) = 1, whence v(B) = 1 and thus v = w.

To see that BL 6⊇ S4.1 it is enough to give an example for a Bayes frame that does not validate

the axiom M, that is, in which there are paths without endpoints. Consider the frame F =
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〈M([0, 1],B), R([0, 1],B)〉 where [0, 1] is the unit interval and B is the Borel σ-algebra. Let w be

the Lebesgue measure. We claim that

F 6|= ∃u(wRu ∧ ∀v(uRv → u = v)) (27)

For, suppose for some probability u we have wRu. Then u(·) = w( · | A) for some Borel set A with

w(A) 6= 0. Each Borel set A with non-zero Lebesgue measure contains a Borel subset B ( A with

a strictly smaller but non-zero Lebesgue measure: 0 < w(B) < w(A). It is easy to see that from

u = w( · | A) we can R-access w( · | B) and since w(B) < w(A) we also have w( · | A) 6= w( · | B).

(2) In order to show BL≤ω ⊇ S4.1 it is enough to verify that for a countable measurable space

〈X,B〉, the frame F(X,B) has end-points in the following sense.

• Endpoints: That R has endpoints means ∀w∃u(wRu ∧ ∀v(uRv → u = v)). Pick an

arbitrary w and let x ∈ X be such that w({x}) 6= 0. Such an x must exist because X is

countable. We claim that u = w( · | {x}) will be suitable. For H ∈ ℘(X) we have

w(H | {x}) =

{
1 if x ∈ H
0 otherwise

Thus w( · | {x}) is the Dirac measure δx. If a measure is Bayes accessible from δx, then

it must be absolutely continuous with respect to δx and it is clear that δx is the only such

probability measure.

(3) Next, let us verify BL<ω ⊇ S4.Grz. To this end it is enough to show that no Bayes frame

F(X,B) with a finite X can contain an infinite R(X,B)-path. But this follows from the fact that

finiteness of X implies finiteness of B = ℘(X), whence there are only finitely many elements in B
that can serve as possible evidence for conditionalizing a probability.

Finally, we prove Fω 6
 Grz (thus BLω 6⊇ S4.Grz). Let w ∈ M(N, ℘(N)) be a measure such

that for all x ∈ N we have w({x}) 6= 0. Fix a sequence Ai = N− {0, . . . , i} for i ∈ N. Then

w(·) R w(· | A0) R w(· | A1) R w(· | A2) · · · (28)

shows the failure of the Grzegorczyk axiom Grz in Fω.

4 Inclusions between Bayes logics

Recall the inclusions that follow directly from the definition of Bayes logics:

BL ⊆ BL≤ω ⊆ BLω and BL ⊆ BL<ω ⊆ BLn (29)

In this section we prove the following theorem:

Theorem 4.1. BL ( BLω = BL≤ω ( BL<ω ( BLn+k ( BLn
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Some of the inclusions in the above theorem follow from Proposition 3.1. For instance BL ( BL≤ω

is witnessed by S4.1 ⊆ BL≤ω but S4.1 6⊆ BL. To prove the other inclusions, we establish several

lemmas first.

For two frames F = 〈W,R〉 and G = 〈W ′, R′〉 we write F E G if F is (isomorphic as a frame

to) a generated subframe of G. We recall that if F E G, then G 
 φ implies F 
 φ, whence

Λ(G) ⊆ Λ(F) (see Theorem 3.14 in [3] where the symbol � was used instead of E).

Lemma 4.2. Fn E Fn+k E Fω, consequently BLω ⊆ BLn+k ⊆ BLn.

Proof. Fix the frames Fn = 〈Mn, Rn〉, Fn+k = 〈Mn+k, Rn+k〉. To each w ∈ Mn assign α(w) ∈
Mn+k defined by

α(w)(x) =

{
w(x) if x = 1, . . . , n

0 if x = n+ 1, . . . , n+ k

It can be checked that α establishes Fn E Fn+k. The case Fn E Fω is similar.

To see why the proper inclusion BLn+k ( BLn holds we need some preparation. Recall that in

a frame F = 〈W,R〉 a sequence x0, x1, . . ., xk is called a path if xiRxi+1 for i < k and xi 6= xj

for i 6= j. The length of a path is the number of the xi’s in the sequence. Define by recursion the

following formulas

π1 = p1 (30)

π2 = p2 ∧ ¬p1 ∧ ♦π1 (31)

πn+1 = pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ ♦πn (32)

Lemma 4.3. Let F = 〈W,R〉 be a frame, M = 〈F , [| · |]〉 be a model, and x ∈W .

• M, x 
 πn only if there is in F a path of length n starting from x.

• If there is in F a path of length n starting from x, then there is an evaluation [| · |], such that

in the corresponding model M we have M, x 
 πn.

• If F 
 ¬πn, then there is no path of length n in F .

Proof. The proof is not hard and is left to the reader, we only visualize the idea of the proof

using Figure 1.

It is clear that if FX is a Bayes frame with a finite X, then there are only finitely many elements

in B that can serve as a possible evidence for conditionalizing a probability. From this it follows,

that in these finite cases the maximal length of a path in FX is smaller then the cardinality of the

power set ℘(X). Therefore, for every n < m there exists k such that

BLn ` ¬πk while BLm 6` ¬πk (33)

This proves BLm 6= BLn.
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¬p1
¬p2
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♦π2

so:

π3

tx3

¬p1
p2

♦π1

so:

π2

tx2
p1

so:

π1

tx1

Figure 1: x3 
 π3 and its consequences.

Lemma 4.4. BL≤ω = BLω ( BL<ω

Proof. By Lemma 4.2 for each n we have BLω ⊆ BLn; so we also obtain BLω ⊆
⋂
n BLn =

BL<ω. Therefore, by the definition of BL≤ω, we achieve BLω = BLω ∩ BL<ω = BL≤ω. Now,

straightforward by Proposition 3.1(3), we get the proper inclusion BLω ( BL<ω.

5 Connection to the modal logic of Medvedev frames

We start by recalling first the notion of Medvedev frames. Such frames originate in intuitionistic

logic, for an overview about the history we refer to the book [5] and to Shehtman [16]. The main

purpose of this section is to establish a correspondence between Bayes logics and the modal logics

of Medvedev frames.

Definition 5.1 (Medvedev frames). A Medvedev frame is a frame that is isomorphic (as a directed

graph) to 〈℘(X) r {∅},⊇〉 for a non-empty finite set X. �

For convenience, as a slight abuse of notation, we will call every frame of the form 〈℘(X)r{∅},⊇〉
(X being finite or infinite) a Medvedev frame and we will use the notation

P0
X = 〈℘(X) r {∅},⊇〉 (34)

A hierarchy or normal modal logics that correspond to the frames P0
X can be given:

MLn =
{
φ : P0

n 
 φ
}

(35)

ML<ω =
{
φ : (∀n ∈ N) P0

n 
 φ
}

(36)

MLω =
{
φ : P0

ω 
 φ
}

(37)

ML≤ω = ML<ω ∩MLω (38)

ML =
⋂
α

MLα (39)

Observe that for α < β we have P0
α E P0

β , consequently MLβ ⊆MLα. Since there are count-

ably many modal formulas and proper class many cardinals, there must exists a cardinal α0 such
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that the sequence MLα stabilizes, i.e. ML = MLα0 or equivalently for all β ≥ α0 we have

MLβ = MLα0
.

The main result of this section is the following theorem:

Theorem 5.2. Countable Bayes logics and the modal logics of countable Medvedev frames coin-

cide.
ML ⊆ MLω = ML≤ω ( ML<ω ( MLn

( = = = =

BL ( BLω = BL≤ω ( BL<ω ( BLn

(40)

We prove Theorem 5.2 through a series of lemmas.

Lemma 5.3. P0
X E FX for all finite or countably infinite set X.

Proof. Take any w ∈MX with full support supp(w) = X, and consider the subframe Fw = 〈W,R〉
of FX generated by w. Elements of W are of the form w( · | H) for some non-empty H ⊆ supp(w).

Now, if H,H ′ ⊆ supp(w) are different subsets, then 1 = w(H | H) 6= w(H ′ | H) < 1. Therefore

each element v ∈ W can be identified with a non-empty subset H ⊆ supp(w). It is fairly easy to

check that the mapping H 7→ w(· | H) establishes an isomorphism between Fw and P0
X , which

completes the proof.

Lemma 5.3 implies BLω ⊆MLω and BLn ⊆MLn for all n > 0 and therefore BL<ω ⊆ML<ω.

Next, we want to establish the converse inclusions.

Let F � G denote a surjective, bounded morphism between frames F and G. Recall that if

F � G, then F 
 φ implies G 
 φ, whence Λ(F) ⊆ Λ(G) (see Theorem 3.14 in [3]). We also

recall that (∀i) Fi 
 φ implies
⊎
Fi 
 φ (for the definition of the disjoint union

⊎
of frames see

Definition 3.13 in [3]). In the special case when Fi = F it follows that Λ(F) ⊆ Λ(
⊎
F) (Theorem

3.14 in [3]).

Note that neither FX E P0
X nor P0

X � FX can hold if X is finite because the underlying set

MX of FX has the cardinality of continuum (for n > 1) while ℘(X) is finite.

Lemma 5.4. MLω ⊆ BLω and MLn ⊆ BLn for all n > 0.

Proof. Let X be a finite or countably infinite set. We prove⊎
v∈F
P0
X � FX (41)

for a suitable set F . This is enough since
⊎
v P0

X � FX implies

Λ
(
P0
X

)
⊆ Λ

(⊎
v

P0
X

)
⊆ Λ

(
FX
)

(42)

For |X| = n this means MLn ⊆ BLn and for X countably infinite it is MLω ⊆ BLω.

Consider the Bayes frame FX = 〈MX , RX〉.
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Claim A. Faithful measures cannot be Bayes accessed. More precisely, if v is faithful, then

∀u(uRXv → u = v). Indeed, suppose v(·) = u( · | A) for some A ⊆ X, u(A) 6= 0. Then

v(A) = u(A | A) = 1 thus faithfulness of v ensures A = X. But then v = u.

Claim B. If u is not faithful, then there is a faithful v such that vRXu. Suppose u is not faithful.

Take any faithful measure r over X r supp(u) and pick a real number 0 < c < 1. Define

v(H) = c · u(H ∩ supp(u)) + (1− c) · r(H ∩ (X r supp(u))) (43)

Then v is a faithful measure over X and v(H | supp(u)) = u(H).

Let F ⊆ MX be the set of all faithful measures. Let us denote the copy of P0
X corresponding

to v ∈ F in the disjoint union by P0
v = 〈Pv,⊇〉, where Pv = ℘(X)r {∅}. Define the mapping f as

follows

f :
⊎
v∈F
P0
v → FX , Pv ⊇ A 7→ v( · | A) (44)

Let us verify that f is a surjective, bounded morphism
⊎
v∈F P0

X � FX .

Surjectivity. Pick a probability u ∈ MX . By Claim B there is a faithful v from which u is

accessible by an A ⊆ X. Then f(A) = v( · | A) = u(·).
Homomorphism. We have to show that Pv ⊇ A ⊇ B implies f(B) is Bayes accessible from

f(A). Indeed, f(A) = v( · | A) and f(B) = v( · | B) and v( · | A ∩B) = v( · | B).

Zig–zag property. We have to verify that if f(A)RXw, then there is a C such that w = f(C)

and A ⊇ C. Denote f(A) by u. Let v be the faithful measure such that A ⊆ Pv. Then

u = v( · | A), and by the assumption uRXw there is B ⊆ X such that w(·) = u( · | B). Then

w(·) = v( · | A ∩B) = f(A ∩B), therefore setting C = A ∩B completes the proof.

So far we have proved BLω = MLω, BL<ω = ML<ω and BLn = MLn for all n > 0. To

complete the proof of Theorem 5.2 it remains to show BL ( ML.

Lemma 5.5. BL ( ML

Proof.

Every world in every Medvedev frame P0 sees an endpoint, implying S4.1 ⊆ML. By Propo-

sition 3.1(1) we have S4.1 6⊆ BL, therefore BL 6= ML holds.

As for the inclusion BL ⊆ML recall that there is a cardinal α0 such that ML = MLα0
. It is

enough to find a Bayes frame F such that P0
α0
E F because in such a case we obtain

BL ⊆ Λ(F) ⊆ Λ(P0
α0

) = MLα0
= ML (45)

The construction of such a frame is interesting on its own and for this reason is postponed to

Proposition 5.6.

Putting together all the previous lemmas we arrive at Theorem 5.2:

ML ⊆ MLω = ML≤ω ( ML<ω ( MLn

( = = = =

BL ( BLω = BL≤ω ( BL<ω ( BLn

(46)
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Though we established BL 6= ML, the two logics are “close” to each other in the sense of the

following proposition.

Proposition 5.6. The logic of each Bayes frame can be dominated by the logic of a Medvedev

frame, and vice versa.

Proof.

#1: Proving that for all F = F(X,B) there exists P0 = P0
Y such that Λ(F) ⊆ Λ(P0):

Take any F(X,B) and let Y ⊆ X be a finite, non-empty subset. Let v ∈ M(X,B) be a

probability measure such that supp(v) = Y . Then the subframe Fv generated by v is isomorphic

(as a directed graph) to P0
Y (cf. the proof of Lemma 5.3), whence P0

Y E F(X,B). This implies

Λ(F(X,B)) ⊆ Λ(P0
Y ), as desired.

#2: Proving that for all P0 = P0
Y there exists F = F(X,B) such that Λ(P0) ⊆ Λ(F):

The proof is similar to that of Lemma 5.4. Take any P0
Y and let X ⊆ Y be a finite, non-empty

subset. We need the following Lemma:

Lemma 5.7. If X ⊇ Y , then P0
X � P0

Y .

Proof.[of Lemma 5.7] Any surjection f : X → Y can be lifted up to a surjection f+ : ℘(X)→ ℘(Y )

via f+(H) = {f(h) : h ∈ H}. It can be checked that f+ is a bounded morphism P0
X � P0

Y .

Lemma 5.7 applies and we get P0
Y � P0

X . With FX = 〈MX , RX〉, X being finite, following the

proof of Lemma 5.4 one obtains
⊎
P0
X � FX . Consequently⊎
P0
Y �

⊎
P0
X � FX (47)

which implies

Λ(P0
Y ) ⊆ Λ(

⊎
P0
Y ) ⊆ Λ(FX) (48)

Consequences. Recall that if 〈X,B〉 is a finite probability space (with |X| > 1), then the set of

probability measures M(X,B) has cardinality continuum. Therefore Bayes frames F(X,B) over

finite probability spaces are uncountable. Thus it is surprising that despite the uncountability of

Bayes frames the corresponding logic has the finite frame property:

Proposition 5.8. The modal logic BL<ω of Bayes frames over a finite probability space has the

finite frame property.

Proof. ML<ω is complete with respect to the set of (finite) Medvedev frames by definition, and

BL<ω = ML<ω by Theorem 5.2.

12



An immediate consequence is that BL<ω is complete with respect to a recursive set of finite

frames. Therefore, non-validities can be witnessed by finite counterexamples.

The most remarkable consequence of the identification of Bayes logics with the modal logics

of Medvedev frames concerns the (non-)axiomatizability properties of Bayes logics:

Proposition 5.9. The modal logics BL<ω and BLω of Bayes frames over respectively finite or

countably infinite probability spaces are not finitely axiomatizable.

Proof.

That ML<ω is not finitely axiomatizable is essentially contained in [11] (cf. Corollary 8 in

[16]). Shehtman [16] proves that MLα is not finitely axiomatizable for any infinite α. Applying

Theorem 5.2 completes the proof.

The previous proposition is philosophically significant: it tells us that there is no finite set

of formulas from which all general laws of Bayesian belief revision and Bayesian learning based

on probability spaces with a finite set of propositions can be deduced. Bayesian learning and

belief revision based on such simple probability spaces are among the most important instances

of probabilistic updatings because they are widely used in applications. Proposition 5.9 says

that the logic of such very basic belief revisions cannot be captured by a finite set of axioms. If

the axiomatic approach to belief revision is not capable to characterize the logic of the simplest,

paradigm form of belief revision, then this casts doubt on the general enterprise that aims at

axiomatizations of belief revision systems.

It is a longstanding open question whether ML<ω (and thus BL<ω) is recursively axiomatizable

(see [5], Chapter 2). Since the class of (finite) Medvedev frames is a recursive class of finite frames,

BL<ω is co-recursively enumerable. It follows that if ML<ω is recursively axiomatizable, then

BL<ω is decidable.

Countable Bayes logics can be characterized not only by the modal logic of Medvedev frames

but also by that of Kubiński frames:  Lazarz [12] proved that Medvedev’s and Kubiński’s logic

coincide. Taking into account Theorem 5.2,  Lazarz’s result provides a lattice characterization of

countable Bayes logics. For the necessary definitions we refer to [12].

As mentioned above ML is not finitely axiomatizable. The inequality BL ( ML in Theorem

5.2 raises the following problem which remains open.

Problem 5.10. Is BL finitely axiomatizable?

It is a longstanding hard open problem whether there are recursive axiomatizations for any of

the logics MLα (α infinite). New logical systems did not shed light to this problem. In the light

of Theorem 5.2 we raise the following problems.

Problem 5.11. Are BL<ω or BL recursively axiomatizable?

13



We noted at the beginning of Section 5 that there exists a least cardinal α0 such that ML =

MLα0
. The exact value of α0 is not known.

Problem 5.12. What is the exact value of α0?

6 Closing words and open problems

Apart from the standard Bayes conditionalization there are other Bayesian methods, extensions

of the standard one, of updating a probability measure: Jeffrey’s conditionalization and condi-

tionalization based on the concept of conditional expectations (cf. [9, 6, 8]).

Let us first recall Jeffrey’s conditionalization. Suppose p ∈ M(X,B) is a prior probability,

{Ei}i<n is a finite partition of X with p(Ei) 6= 0 for all i, and we are given a probability measure

r : A → [0, 1], called the uncertain evidence, on the subalgebra A of B generated by this partition.

The Bayesian Agent updates his prior probability p using the evidence r to get the posterior

probability defined by the “Jeffrey rule”:

q(H) =
∑
i<n

p(H | Ei)r(Ei) (49)

Given two measures p, q ∈ M(X,B) one can define Jeffrey accessibility in a manner similar to

Bayes accessibility: q is Jeffrey accessible from p if there is a partition {Ei}i<n and uncertain

evidence r such that eq. (49) holds.

Jeffrey’s conditionalization is just a special case of the general conditionalization based on

the concept of conditional expectation introduced by Kolmogorov [10] already (see [8] as well):

Let S be the Borel σ-algebra of R. Recall that for p ∈ M(X,B) and A ≤ B the conditional

expectation Ep(f | A) : X → R is any (A,S)-measurable function that satisfies eq. (50) below for

all (B,S)-measurable f : X → R∫
Z

Ep(f | A) dp =

∫
Z

f dp for each Z ∈ A (50)

Such a function exists and is unique p-almost everywhere. Let dq
dp : X → R denote the Radon–

Nikodym derivative of q with respect to p. We say that q can be inferred from p using general

conditionalization if q is absolutely continuous with respect to p and there is a σ-subalgebra A of

B such that

q(H) =

∫
H

Ep

(
dq

dp

∣∣∣∣A) dp (51)

for all H ∈ B. If q can be inferred from p in this way, we say that q is generally Bayes accessible

from p.

One can now define the modal logics based on Bayes frames F(X,B), where the accessibility

relation is replaced with either Jeffrey accessibility or with the more general accessibility using

conditional expectations. The basic logic properties of Jeffrey accessibility have been studied

in the manuscript [4] and frame properties of accessibility using conditional expectations have

been investigated in [8]. It has been proven in [4] that Jeffrey accessibility is also not finitely

axiomatizable in the finite case; however, we do not yet have results about the infinite case or

about decidability questions.
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[8] Z. Gyenis and M. Rédei. General properties of Bayesian learning as statistical inference

determined by conditional expectations. The Review of Symbolic Logic, 2017. forthcoming,

published online: 27 February 2017; preprint: http://philsci-archive.pitt.edu/11632/.

[9] R.C. Jeffrey. The Logic of Decision. The University of Chicago Press, Chicago, first edition,

1965.

[10] A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933.

English translation: Foundations of the Theory of Probability, (Chelsea, New York, 1956).

[11] D. Skvortsov L. Maksimova, V. Shehtman. The impossibility of a finite axiomatization of

medvedev’s logic of finitary problems. Soviet Math. Dokl., 20(2):394–398, 1979.

[12] M.  Lazarz. Characterization of Medvedev’s logic by means of Kubiński’s frames. Bulletin of
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