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Abstract: 

We evaluate a common reasoning strategy used in community ecology and comparative 

psychology for selecting between competing hypotheses. This strategy labels one hypothesis as a 

“null” on the grounds of its simplicity and epistemically privileges it as accepted until rejected. 

We argue that this strategy is unjustified. The asymmetrical treatment of statistical null 

hypotheses is justified through the experimental and mathematical contexts in which they are 

used, but these contexts are missing in the case of the “pseudo-null hypotheses” found in our 

case studies. Moreover, statistical nulls are often not epistemically privileged in practice over 

their alternatives because failing to reject the null is usually a negative result about the 

alternative, experimental hypothesis. Scientists should eschew the appeal to pseudo-nulls. It is a 

rhetorical strategy that glosses over a commitment to valuing simplicity over other epistemic 

virtues in the name of good scientific and statistical methodology. 
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1. Introduction 

A central goal in science is identifying and justifying the best explanation for a given 

phenomenon. There are many strategies for doing this, such as evaluating the empirical adequacy 

of the available hypotheses and assessing their relative epistemic virtues. In this paper, we 

examine a strategy for selecting between competing scientific hypotheses. A central feature of 

this strategy is using what we call a “pseudo-null.” This is a hypothesis that practitioners in the 

field label a null hypothesis, but which lacks the features of a true statistical null. A true 

statistical null is used within the context of a well-designed experiment and it is within this 

context that inferences concerning whether to retain or reject the hypotheses under consideration 

are supported. A core condition of the inference strategy in statistical hypothesis testing is that 

one cannot accept the alternative hypothesis until one has rejected the null hypothesis. In the 

cases we consider here, this inference strategy is also employed, but it is done so outside the 

context of statistical hypothesis testing. Instead, proponents of this strategy label one hypothesis 

the “null” on the grounds of its simplicity and argue that any alternative hypothesis cannot be 

accepted until researchers reject this null. Insofar as the null cannot be rejected, the proponents 

argue, it should be accepted as the best explanation of the phenomenon under investigation. In 

this paper, we argue that this pseudo-null strategy is unjustified and should be abandoned. 

We begin in section 2 by showing how the appeal to pseudo-nulls is used in community 

ecology and comparative psychology. In community ecology this strategy is used to defend the 

neutral theory of ecology, while in comparative psychology it is used to defend the behavior-

reading account of social behavior in nonhuman animals. Proponents of both hypotheses 

characterize these hypotheses as “nulls” on the grounds that they are simpler than the available 

alternatives. In section 3, we show that this form of argument is superficially similar to the 
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statistical method of Neyman-Pearson testing, thus giving it rhetorical force, but go on to argue 

that it is disanalogous in precisely those respects required for justification. Whereas the null 

hypotheses used in Neyman-Pearson testing concern the effects of controlled or randomized 

extraneous variables, the pseudo-null hypotheses in our case studies are used outside this 

context. We also extend our argument to counter the objection that model selection theory can 

justify the pseudo-null strategy and consider several additional possible justifications. We 

conclude in section 4 that pseudo-nulls should be treated on a par with the available alternative 

hypotheses and the rhetoric of testing null hypotheses should be dropped. In the end, we hope 

our analysis will stimulate critical discussions on the role that nulls play more broadly in the 

sciences. 

Before we begin, it is important to clarify the target of our critique. First, we do not aim 

to critique the specific hypotheses advanced by the pseudo-null strategy, but rather the strategy 

itself. There may be better arguments or alternative lines of evidence favoring the behavior-

reading hypothesis and neutral theory; we do not deny that this is the case. Second, we do not 

offer here arguments against all possible justifications for the pseudo-null strategy. Instead, we 

argue that its justification does not come from an analogy to statistical inference. We focus on 

statistical inference because we think this is where the pseudo-null strategy gets its rhetorical 

force. Users of this strategy do not give grounds for its use, but rather employ the language of 

“null hypothesis testing” and the associated inferential strategy as if its justification were clear. 

The strategy looks unproblematic and without need for explicit justification, we believe, because 

it superficially resembles statistical inference. Thus, our aim here is to show that the pseudo-null 

strategy does not in fact share justificatory grounds with statistical inference. The onus falls on 

users of the pseudo-null strategy to explain its justification. Also, the language of “null 
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hypothesis testing” should be avoided, as it is misleading. It leads one to think this is a 

straightforward form of statistical inference when it is not. 

 

2. The Pseudo-Null Strategy 

The pseudo-null strategy advances a particular explanatory hypothesis by appealing to it 

as a “null,” where its status as a null is justified on the grounds of simplicity. Rather than 

appealing to simplicity as an epistemic virtue, however, this approach epistemically privileges 

hypotheses in the following way: it holds that (1) one must reject the null before one is warranted 

in accepting any alternative explanations and (2) if the null cannot be rejected, it should be 

accepted as the best explanation for the phenomenon under study. In what follows, we illustrate 

how this approach is used in community ecology and comparative psychology. 

 

2.1. Explaining Relative Species Abundance Distributions in Community Ecology 

A long-standing problem within ecology is to explain patterns of diversity and abundance 

of species within communities. A particular pattern of interest is the number of species found 

within a single trophic level and their population sizes—that is, distributions of relative species 

abundance. The traditional and still dominant approach to explaining this phenomenon holds that 

abundances result from competition between species for resources and tradeoffs between how 

different species utilize those resources (Chase and Leibold 2003). For example, the competitive 

exclusion principle holds that, if species coexist, then there are differences between how the 

species utilize resources. Mechanisms that depend upon species differences, including the 

mechanism of interspecific competition, are called selection mechanisms by analogy to natural 

selection (Vellend 2016).  
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Stephen Hubbell has challenged the selection hypothesis by advancing the neutral theory 

of ecology—a theory that is now both prominent and controversial in the discipline (Hubbell 

2001, 2006). According to neutral theory, communities are structured entirely by three 

mechanisms: ecological drift, random immigration, and random speciation. The theory is neutral 

because it assumes all individuals, regardless of species, have identical chances of giving birth, 

dying, immigrating, and being a member of a new species. Neutral theory predicts that a 

community’s observed relative species abundance distributions will fit a particular statistical 

distribution. The free parameters tuning the distribution are interpreted in terms of community 

size, metacommunity size, immigration rate, and speciation rate. 

The neutral theory is explicitly constructed in order to exclude the influence of 

selection—for this reason it is said to be simpler than the selection hypothesis. Hubbell writes 

that the value of constructing the neutral theory of ecology is that, “we obtain a quantitative null 

hypothesis against which to test when, to what extent, and for which species demographic 

differences among species are necessary to explain observed community patterns” (Hubbell 

2006, 1387). The theory is not neutral in the sense of “nothing going on,” but rather in excluding 

species differences as causally responsible for the species abundance distributions observed in a 

particular community. Because selection depends on species differences, assuming neutrality is 

taken to justify using neutral theory to supply the appropriate “null hypothesis” for testing 

selection hypotheses. 

 

2.2. Explaining Chimpanzee Social Behavior in Comparative Psychology 

Great apes such as chimpanzees engage in sophisticated social behavior. When stealing 

food from a competitor, for example, a chimpanzee will prefer to steal food that a competitor 
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cannot see (Hare, Call, and Tomasello 2006, Melis, Call, and Tomasello 2006). The dominant 

explanation for such behavior is that chimpanzees track the mental states of others: they know 

(consciously or not) when other agents can or cannot see particular objects in their environment. 

Comparative psychologists currently hold that chimpanzees reason about a variety of mental 

states such as goals, intentions, and perceptions (Call and Tomasello 2008). In accordance with 

human psychological research, this ability is referred to as “mindreading.” 

Daniel Povinelli and colleagues have challenged the above consensus by arguing that 

there is a competing explanation for the apparent mindreading abilities of chimpanzees (Penn, 

Holyoak, and Povinelli 2008, Penn and Povinelli 2007, Povinelli and Vonk 2004, Penn and 

Povinelli 2009). Their “behavior-reading” hypothesis holds that chimpanzees employ a set of 

abstract behavioral rules that allow them to anticipate how other agents will behave based on 

prior behavior and environmental circumstances. On this view, the fact that chimpanzees prefer 

to steal food that a competitor cannot see is best explained by the implementation of some rule, 

such as, ‘if there is an unobstructed line of gaze from an agent’s eye to a piece of food, then that 

agent will prevent the food from being stolen’. 

Proponents of behavior-reading refer to this hypothesis as a “null” on the grounds that it 

is simpler than the mindreading hypothesis. On the mindreading account, a chimpanzee predicts 

the behavior of other agents based on their mental states (e.g., they cannot see x), which is 

inferred from their observable behavior (such as the fact that their head is turned away from x). 

The behavior-reading hypothesis, in contrast, holds that chimpanzees do not perform the 

inferential step involving positing a mental state, but rather make their behavioral predictions 

based on the observable behavior alone (Penn and Povinelli 2007, Lurz 2011). 
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2.3. The Asymmetrical Evaluation of Hypotheses 

The neutral theory in community ecology and the behavior-reading hypothesis in 

comparative psychology are presented as null hypotheses by their proponents. The justification 

given for their status as nulls is that they are simpler than the competing alternative hypotheses. 

Crucially, treating these hypotheses as nulls drastically changes how they are evaluated. 

Typically, two competing hypotheses are evaluated by comparing their empirical adequacy and 

theoretical virtues (such as internal consistency, coherence with other theories, generality, etc.). 

In contrast, the neutral theory and behavior-reading hypotheses enjoy a significant epistemic 

advantage. Proponents of these hypotheses hold that insofar as they are empirically adequate, 

they should be accepted as the best explanation of the phenomenon of interest. Unless the null 

can be shown to be empirically inadequate, all empirically adequate alternatives must be rejected 

regardless of their theoretical virtues. Anyone advocating for one of the competing alternative 

hypotheses bears the burden of disproving the null. 

This asymmetrical treatment of hypotheses is exhibited in both of our case studies. In the 

case of community ecology, Hubbell maintains that, “obtaining acceptable fits from neutral 

models shifts the burden of proof to those who would assert that more complex theory is required 

to explain nature and with what level of detail and generality” (Hubbell 2006, 1387). Because the 

neutral theory is simpler than theories including species differences, the burden is on advocates 

of the more complex theory to disprove the neutral theory. Hubbell argues that the best 

explanation for why the neutral theory fits the data well is that “it accurately captures some . . . 

characteristic of the behavior of biodiversity in aggregate and at large spatial and temporal 

scales” (Hubbell 2006, 1388). Until the neutral theory can be rejected, the processes it posits 

should be used to explain the patterns it fits well. And so drift, immigration, and speciation 
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explain species abundance distributions when the fit is good.  

Proponents of the behavior-reading hypothesis also hold that it must be falsified before 

one is justified in accepting the claim that nonhuman animals mindread. As Penn and Povinelli 

write, “in order to produce experimental evidence for an fToM [theory of mind function], one must 

first falsify the null hypothesis that the agents in question are simply using their normal, first-

person cognitive state variables” (Penn and Povinelli 2007, 734). According to Povinelli and 

colleagues, until the behavior-reading hypothesis is rejected, we have “no evidence for theory of 

mind in animals” (Penn and Povinelli 2007, 732). Moreover, if the behavior-reading hypothesis 

cannot be rejected, we should accept it as the best explanation of nonhuman animal social 

behavior. Thus, Penn and Povinelli conclude, “the available evidence suggests that chimpanzees, 

corvids and all other non-human animals only form representations and reason about observable 

features, relations and states of affairs from their own cognitive perspective” (Penn and Povinelli 

2007, 737). 

The pseudo-null strategy is similar to one that Elisabeth Lloyd discusses in the context of 

adaptationism in evolution (Lloyd 2015). Lloyd identifies cases where proponents of one 

scientific hypothesis will cast a competing hypothesis as a mere statistical “null hypothesis” to 

undermine their competition. This casts the 'null' as a false hypothesis that should be rejected if 

the science is going well. The effect is to illegitimately privilege the non-“null” hypothesis. In 

the pseudo-null strategy however, it is the “null” hypothesis that is privileged. We think both 

strategies are unjustified for the same reasons and our analysis here complements Lloyd's by 

critically assessing the use of “null” language in other areas of science. 

 

3. Why the Pseudo-Null Strategy Lacks Justification 



 

9 

 

The above asymmetrical treatment of hypotheses has important consequences on 

research. Rather than weighing the theoretical virtues of two empirically adequate hypotheses, 

the pseudo-null strategy prompts one to accept the null hypothesis when you cannot reject it. In 

this section, we consider the justification for this strategy. We show that the approach resembles 

Neyman-Pearson statistical hypothesis testing and consider whether it can be justified on the 

same grounds (3.1). We argue that it cannot be justified in this way because the purported nulls 

in our case studies lack the relevant features of statistical nulls (3.2). We then consider model 

selection theory as an alternative source of justification and argue that it is also insufficient to 

support the strategy in question (3.3). Finally, we explain why several additional ways of 

understanding pseudo-null hypotheses are also unsatisfactory (3.4). 

  

3.1. Why Statistical Null Hypotheses are Treated Asymmetrically 

Statistical hypothesis testing was developed in the 1920s and 30s most influentially by R. 

A. Fisher, Jerzy Neyman, and E. S. Pearson. Modern statistics has merged them and others into a 

toolbox of hybrid methods. A statistical hypothesis test is a procedure for making inferences 

about populations based on sample data taken from those populations. Fisher and Neyman-

Pearson testing differ with respect to both the number of hypotheses being considered in a test 

and the possible outcomes of that test. In Fisher testing, one hypothesis (the null) is tested and 

the possible outcomes of the test are either rejection of this null or failure of rejection. In 

Neyman-Pearson testing, two hypotheses (the null and the alternative) are tested and the possible 

outcomes are either support for the alternative hypothesis (and rejection of the null) or retaining 
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of the null hypothesis (and no support for the alternative).1 

The strategy in our case studies are similar to Neyman-Pearson hypothesis testing in the 

number of hypotheses being tested and the asymmetrical treatment of hypotheses.2 As Peter 

Godfrey-Smith puts it, the null hypothesis in Neyman-Pearson testing “typically gets the benefit 

of the doubt” (Godfrey-Smith 1994, 280). In this test, a type I error occurs when one rejects a 

true null hypothesis, while a type II error occurs when one retains a false null. Typically, fewer 

type I errors are allowed than type II errors: whereas the accepted rate of rejecting the null 

hypothesis when it is true (type I error) is at or below 5%, the accepted rate of retaining the null 

hypothesis when it is false (type II error) is usually 20% and can be up to 30% or 40% (Sani and 

Todman 2008). In this way, the null and alternative hypotheses are treated asymmetrically with 

the null hypothesis being more difficult to reject than the alternative. 

This raises the question of how one determines which hypothesis should be treated as the 

null and what justifies its status. For Neyman and Pearson, the answer to this question was 

determined on pragmatic grounds. In discussing how one should decide which error to avoid, 

they write: 

We are reminded of the old problem considered by Laplace of the number of votes in a 

court of judges that should be needed to convict a prisoner. Is it more serious to convict 

an innocent man or to acquit a guilty? That will depend upon the consequences of the 

error; is the punishment death or fine; what is the danger to the community of released 

criminals; what are the current ethical views on punishment? From the point of view of 

mathematical theory all that we can do is to show how the risk of the errors may be 

                                                           
1 The language of “null hypothesis” comes from Fisher's single hypothesis testing procedure, and Neyman and 

Pearson objected to its use, but it has long been a part of Neyman-Pearson testing. See (Gigerenzer 2004). 
2 John Beatty (Beatty 1987) discusses the case of Kimura's neutral theory of molecular evolution as a null 

hypothesis with respect to Fisher's version of null hypothesis testing and explains why it is inappropriate. 
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controlled and minimised. (Neyman and Pearson 1933, 296) 

Today, a more widely accepted justification for the asymmetrical treatment of error in 

Neyman-Pearson testing is that the null hypothesis is a hypothesis of “no effect” or “nothing 

going on.” Godfrey-Smith refers to this as a semantic justification because it concerns the 

content of the hypothesis, rather than the pragmatic implications of accepting it. Although 

Godfrey-Smith does not go into detail about what he takes the semantic justification to be, he 

holds it is grounded in the value of simplicity. He writes, 

If hypotheses of “no effect” are nulls, then the asymmetry between alpha [the rate of type 

I errors] and beta [the rate of type II errors] operates as the wielder of Occam’s razor. The 

more serious error is multiplying effects beyond necessity, rather than not recognising 

enough effects. The asymmetry establishes a bias in favor of the simpler hypothesis. 

(Godfrey-Smith 1994, 282) 

We think that Godfrey-Smith is right here to point out that the null hypothesis is singled out in 

statistical hypothesis testing because it is taken to be a hypothesis of no effect, where “no effect” 

in an experimental context means that the independent variable being tested did not affect the 

dependent variable being measured. However, as we argue below, it is a mistake to understand 

this favoring as the wielding of Occam’s razor. Understanding the asymmetrical acceptance of 

error in statistical hypothesis testing requires situating it within the practices of experimental 

design and statistical inference.3 

The role of the null hypothesis in statistical hypothesis testing is best understood within 

the context of a well-designed experiment.4 The purpose of an experiment is generally to test 

                                                           
3 For general introductions to statistical hypothesis testing see (Sani and Todman 2008, Dienes 2008). 
4 We describe the statistical reasoning here in terms of experiments, but do not intend to exclude observational 

studies. When experiments are impractical, observational studies are done instead. In an experiment, participants are 
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whether one variable (the independent variable) has some effect on another (the dependent 

variable). Researchers do this by testing whether there is a difference in the dependent variable 

between conditions in which the independent variable is present (the experimental condition) and 

absent (the control condition). A well-designed experiment requires that one control all 

extraneous variables—i.e., those variables (other than the independent variable) that could or are 

known to influence the dependent variable. Researchers control these variables by either holding 

them constant (through repeated measures design, for example) or distributing them randomly 

across conditions (through the random allocation of participants, testing conditions, etc.). For 

example, the age and education level of a participant might affect how he or she performs on a 

memory task. Knowing this, researchers can randomly assign participants to the control and 

experimental conditions in order to randomly distribute these factors. Statistical inference is then 

used to judge whether these variables could have led to the observed experimental results. 

Researchers use inferential statistics to determine the likelihood that randomized 

extraneous variables are responsible for the results of an experiment. A statistical null hypothesis 

is employed for this purpose. The statistical null hypothesis formalizes the situation in which 

there is no significant difference in the mean outcome of the control and experimental 

conditions, where a significant difference is one that can reasonably be attributed to the 

independent variable. If researchers could eliminate all extraneous variables, and the independent 

variable failed to affect the dependent variable, then the results of the control and experimental 

conditions would be identical. In such a case, if the independent variable produced no effect, 

there would be no other variable that could. A world without extraneous variables would be one 

                                                                                                                                                                                           
randomly assigned to the control or experimental group, while in an observational study, participants are selected by 

uncontrolled factors. Our account of statistical hypothesis testing extends to observational studies insofar as they 

employ the standard tools of statistical inference used in Neyman-Pearson testing. On the principles of designing an 

observational study and how to detect, minimize, and measure biases, see (Rosenbaum 2005).  
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in which factors like age or education had no effect on participants’ performance on a memory 

task. In the real world, extraneous variables are always a source of variability. The question then 

is whether this variability is sufficient to account for the differences observed across conditions. 

If it is sufficient, then one accepts the null hypothesis that the observed difference is not 

significant—that is, not large enough to be attributed to the effects of the independent variable. 

How does one determine whether an observed difference can be attributed to the 

independent variable? Roughly, one calculates a test statistic that reflects the variability of the 

data within conditions, where we know the independent variable is not having a differential 

effect. For example, researchers can estimate the effects variables like age and education have on 

participants’ performance on a memory task by looking at how performance varies within the 

control condition and within the experimental condition. The variability within these conditions 

should be attributable to the randomized variables of age and education level and any other 

factors that have been randomized (socio-economic status, health, cultural background, etc.). 

This variability or standard deviation is then used to calculate the probability that the difference 

observed between conditions is due to extraneous variables alone. Again, if this probability is 

small (traditionally, less than 1 in 20), then one concludes that the observed difference is 

significant or the independent variable likely had an effect. If this probability is large, on the 

other hand, then one concludes that the observed results may be the product of the effects of 

randomized variables. In the latter case, the experiment has not produced evidence for a 

relationship between the independent and dependent variables. 

Now we can see more clearly why researchers err on the side of accepting the null 

hypothesis in statistical hypothesis testing. It is not because it is simpler per se to posit no 

relationship between the independent and dependent variables. Instead, the null hypothesis is 
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favored because it represents the effects of extraneous variables that experimenters have 

intentionally tried to control. These effects are “known” in the sense that their quantity was 

determined by measuring the variability of the data within conditions. The purpose of the 

experiment then is to detect an effect on the dependent variable by the independent variable 

amidst the known noise or error created by the extraneous variables (or “nuisance variables” as 

they are also called). In other words, to retain the null hypothesis is to fail to rule out the 

possibility that the observed results were caused by those variables the researchers did their best 

to eliminate. In this way, the null hypothesis in statistical hypothesis testing is generally not the 

explanans of interest. In contrast, the effects of the independent variable are unknown and 

uncovering these effects is the purpose for which the experiment was designed. There may be 

other evidence suggesting that the independent variable should have an effect in this situation, 

but the aim of the study is to provide experimental evidence that this is the case.  

Even in cases in which the statistical null hypothesis represents noise created by a natural 

phenomenon (as opposed to intentionally randomized variables), researchers generally do not 

seek to discover something about the null hypothesis, but rather use it as a tool for learning about 

the alternative hypothesis. When researchers announced the discovery of the Higgs boson, for 

example, they did so on the grounds that there was a tiny chance (1 in 3.5 million) that the 

observed decay patterns were the result of background processes alone (Staley 2017). If, in 

contrast, the observed patterns were such that there was a high probability that they were 

produced by these background processes, this would be interpreted as a lack of evidence for the 

Higgs boson, rather than evidence in support of the existence of background processes. The 

investigative question was not whether background processes could produce decay patterns 

resembling those of the hypothesized Higgs boson—researchers knew this was the case, hence 
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the need to control for it—but rather whether Higgs bosons contributed to the observed effects. 

Statistical nulls are generally not claims about some feature of the world in need of explanation. 

Instead, they are claims about a feature of the world investigators have tried their best to control 

in order to learn something about an alternative, experimental hypothesis. 

Given the above, retaining the null hypothesis is often considered a negative result. The 

contrary view, that the failure to reject the null hypothesis is in itself positive evidence of no 

effect, commits the “fallacy of acceptance” (Mayo and Spanos 2006, 338). Although it could be 

that the independent variable had no effect on the dependent variable and that the observed data 

reflects the actions of extraneous variables alone, it could also be that the independent variable 

had an effect, but the experiment was unable to detect it due to inadequate power, poor 

measurement, experimenter error, poor sampling, or various other factors. One way of 

eliminating some of these alternative explanations is to increase the statistical power of one’s 

test. Statistical power is 1 - β, where β is the probability of a type II error or the error of retaining 

the null hypothesis when it is false. The power of a test then is the probability of correctly 

rejecting a false null. It is recommended that the power of a test be set to 0.80 (β = 0.20), but in 

practice few researchers conduct power analyses and the power of experiments in the behavioral 

sciences is notoriously low (Sedlmeier and Gigerenzer 1989, Cohen 1988). The lower the power 

of a test, the less likely one will detect an effect when one is in fact present. Thus, in practice, 

retaining the null is usually taken to be a negative result. 

Even if one were to conduct a test with very high power (with large sample sizes, for 

example), it remains that statistical nulls are often constructed in such a way that it does not 

make sense to seek evidence in their favor. As mentioned above, typically these hypotheses 

represent factors that are known or uninteresting such as the effects of nuisance variables or 
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other sources of noise. Additionally, many statistical nulls are strictly false. Null hypotheses are 

often point hypotheses, which are useful for constructing a well-defined sampling distribution, 

but researchers do not expect to find such exact relationships and effects in nature (e.g., that the 

difference between the mean scores of two populations is exactly zero). The alternative 

hypothesis, on the other hand, tends to be non-specific (such as the means will differ by some 

unspecified amount). If the alternative hypothesis were tested directly, a sampling distribution 

would be needed for each difference the experimenter wanted to test. It is more practical to test 

the null hypothesis. 

Statistical null hypotheses serve a particular role in experimental practice. By taking into 

account those causes that researchers know are having an effect on a dependent variable, one can 

more accurately determine whether the independent variable under investigation is having an 

effect (the alternative hypothesis) or whether the difference observed across conditions is 

attributable to the effects of extraneous variables alone (the null hypothesis). Although the bar 

for retaining the null hypothesis is lower than the bar for accepting the alternative hypothesis, the 

null hypothesis is generally not epistemically privileged because researchers take retaining the 

null as providing little to no new information about the causes and effects posited by the null 

hypothesis. If the power of an experiment is low, and the null hypothesis is retained, this 

provides no new information, as the chances of detecting an effect by the independent variable 

were small to begin with, so failing to detect such an effect is uninformative. If the power of an 

experiment is high, and other sources of error are unlikely, then one might be able to conclude 

that the observed effects are due to those causes posited by the null hypothesis; however, this 

provides more information about the alternative hypothesis (the independent variable had no 

effect in this situation) than the null hypothesis because the effects of the null hypothesis were 
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already known (as measured by within-condition variability) and the causes of those effects were 

assumed to begin with. 

The pseudo-null strategy is analogous to Neyman-Pearson hypothesis testing in several 

respects. It relies on two hypotheses, a null and an alternative; it couples rejection of one 

hypothesis with the retainment of the other; and it treats the hypotheses asymmetrically. Given 

these similarities, perhaps this strategy is justified as an extension of statistical null hypothesis 

testing. In the next section, we argue that this is not the case.  

 

3.2. Why Pseudo-Nulls are Not Statistical Nulls 

The role statistical nulls play in hypothesis testing depends on the context of 

experimental design and statistical inference in which they are used. The fact that researchers 

require that one reject the null before accepting the alternative hypothesis makes sense within 

this context. Accepting the null means the noise created by randomized extraneous variables was 

too large for the potential effects of the independent variable to be detected. In practice, 

accepting the null is a negative finding about the alternative, experimental hypothesis. 

Proponents of neutral theory and behavior-reading refer to these hypotheses as “nulls” 

and employ the same inferential strategy as found in statistical hypothesis testing: they hold that 

a necessary condition for having evidence for the alternative hypothesis is rejecting the null and 

that if one fails to reject the null, it should be accepted as the best explanation for the 

phenomenon under investigation. In this section, we show that this strategy lacks the relevant 

features of statistical null hypothesis testing and thus cannot be justified on the same grounds. 

Our point is not that the behavior-reading hypothesis and neutral theory cannot be used to supply 

appropriate null hypotheses in any line of reasoning, but that they do not supply appropriate null 
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hypotheses in the reasoning strategies actually being employed.  

 There are several important disanalogies between the neutral theory and behavior-reading 

hypothesis, on the one hand, and statistical null hypotheses, on the other. Perhaps most critically, 

the former are not used in statistical inference. In comparative psychology, many experiments 

have been conducted to test for mindreading in animals (Call and Tomasello 2008). The 

statistical null hypothesis in these cases is that the observed effect is due to randomized 

extraneous variables. The behavior-reading hypothesis does not feature as a statistical null in 

these experiments, but rather as a competing hypothesis concerning the cognitive mechanism 

responsible for the observed behaviors. Indeed, the behavior-reading hypothesis does not make 

predictions about the distribution of data in a given experiment. When it does speak to the 

outcome of an experiment, it does so in an ad hoc manner, “predicting” after the fact the very 

outcome expected by the alternative hypothesis (Fletcher and Carruthers 2013; Halina 2015). In 

other words, the behavior-reading hypothesis typically takes the positive results of mindreading 

experiments (long after statistical analysis has taken place) and provides alternative causal 

explanations for these results.  

Community ecologists have sampled communities from all over the world and used the 

observed distributions to test whether ecological selection is operating. The appropriate statistical 

null hypothesis for such tests are that the observed species distributions will not differ 

significantly from what we would expect if individuals of different species were distributed at 

random in space and time (Bell 2000, 614), where what is meant by “random” can be filled in 

with different statistical measures. Such statistical nulls are silent about what might cause a 

particular distribution; instead, they specify the statistical distribution against which the data 

should be compared. In contrast, neutral theory makes a claim about the causes of species 
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distributions (that they are the result of drift, immigration, and speciation), without holding that 

those distributions themselves will be random in any quantitative or statistical sense (Bell 2000). 

Hubbell implicitly has this kind of distinction in mind when he first introduces “neutrality”,  

Before proceeding, I need to be more precise about the meaning of neutrality as used in 

this book. Despite its moniker, the concept of neutrality actually has many meanings in 

the literature. To most people, the word neutral congers [sic] up the qualitative notion of 

“nothing going on.” But exactly what people mean by this phrase often turns out to differ 

from one person to the next. I use neutral to describe the assumption of per capita 

ecological equivalence of all individuals in a trophically defined community. This is a 

very unrestrictive and permissive definition of neutrality because it does not preclude 

interesting biology from happening or complex ecological interactions from taking place 

among individuals. (Hubbell 2001, 6-7) 

Neutral and selection theories include interesting biology with complex interactions and offer 

competing explanations for the observed abundance distribution once the statistical null 

hypothesis has been rejected. 

Neither the behavior-reading hypothesis nor neutral theory play the role of statistical 

nulls in experiments in comparative psychology and community ecology. The experimental and 

statistical machinery which grounds the logic of rejecting the null hypothesis as a condition for 

finding support for the alternative is missing in the case of these pseudo-nulls. 

Proponents of neutral theory and behavior-reading might object that, although these 

hypotheses do not feature in statistical inference, the causal variables that they posit are either (i) 

presupposed by the alternative hypotheses--selection mechanisms and mindreading--or (ii) 
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“known” in the sense of already thought to be operating in the situations under investigation. 

However, neither of these are the case.  

Let us begin with the comparative psychology case. Concerning (i), the ability to 

mindread does not presuppose the behavior-reading hypothesis. The behavior-reading hypothesis 

is taken by both sides of the debate to be an independent and competing causal explanation for 

the success of subjects on mindreading tasks. It holds that animals possess precisely those 

behavioral-rules required to succeed on a given mindreading task. According to proponents of 

the behavior-reading hypothesis, the mindreading hypothesis makes a different causal claim. 

Penn and Povinelli characterize the difference between nonhuman behavior-reading and human 

mindreading as follows: 

we believe that human and nonhuman animals possess a variety of mechanisms for  

recognizing those relations that are causally relevant to predicting the goal-directed 

behavior of other intentional agents. These heuristics enable both human and nonhuman 

animals to pick out the causally relevant relations between ‘what’ an agent is ‘looking’ at 

and how that agent is likely to behave in the near future… However, only humans 

cognize the higher-order analogical similarities between perceptually disparate behaviors 

and thus only humans possess the ability to reinterpret other agent’s goal-directed 

relations in terms of abstract mental state relations disembodied from any particular task 

context. (Penn and Povinelli 2013, 20) 

The hypothesis that nonhuman animals behavior-read is not merely the claim that they lack the 

ability to represent the mental states of others, but also that they possess a set of heuristics that 

allows them to make the correct behavioral predictions without these abilities. If the human 

ability to reinterpret behavior in terms of mental states had no causal effects, then this ability 
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would be superfluous and impossible to test empirically. Povinelli and colleagues, however, do 

not think this is the case (Penn and Povinelli 2007). 

Concerning (ii), although researchers might hold that behavior-reading is used by some 

animals in some contexts, whether it is this process that leads to the observed behavior under 

investigation in a given experiment, as opposed to mindreading, is precisely the question in 

dispute. Researchers might hold that, for instance, great apes are capable of behavior-reading 

where behavior-reading is understood as the general ability to learn associations between 

environmental cues and behaviors. But it is a different question whether apes possess precisely 

those set of behavioral rules required to succeed on this or that false belief task, for example. 

Currently, not only is there no consensus that apes have such rules (with respect to most 

mindreading experiments), but many researchers find this hypothesis implausible (Call and 

Tomasello 2008, Halina 2015; Krupenye et al. 2016). This does not mean that evidence for this 

hypothesis will never be forthcoming, but rather that no convincing evidence has been presented 

to date. Indeed, proponents of the behavior-reading hypothesis have generally not attempted to 

present such evidence precisely because they take their hypothesis to be the null. This, however, 

begs the question. Contrast the behavior-reading hypothesis with the statistical null hypotheses 

actually used in mindreading experiments. These concern variables such as trial order, subject 

allocation, food allocation, the location of occluders, and so forth--variables that are randomised 

or held constant across experimental and control conditions and are uncontested regarding their 

presence and effects in the context under investigation. 

In community ecology, regarding (i), drift, immigration, and speciation operate 

independently of selection and are not formally presupposed by selection. In virtue of assuming 

neutrality, neutral theory excludes selection. But neutrality leaves open which processes are 
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responsible for the patterns of diversity and abundance of species seen within communities. In 

population level and individual-based models, those that include selection and operate within a 

finite population do necessarily include drift. However, drift is arguably due to finite population 

size. In such models with infinite population size, selection occurs without drift.5 In other kinds 

of models, many of them include a specific form of selection without drift (Vellend 2016, 63-

66). Further, neither selection nor drift requires immigration or speciation to operate and many 

models of selection include neither immigration nor speciation.  

 

Regarding (ii), drift, immigration, and speciation are widely accepted as being causally 

relevant to abundance patterns across ecological communities. However, this does not imply that 

all three processes are influencing a particular community at a given time or that selection is not 

occurring. In fact, ecologists sometimes begin by assuming selection as the main cause of 

patterns of diversity and abundance within a community. For example, David Tilman has spent 

almost 40 years developing and applying Resource-Ratio or R* Theory, a selection theory of 

communities based on only the competition of species for limited resources (Tilman 1982). 

Tilman holds that this theory is useful to "see what features of a system can and cannot be 

explained using those processes" (Tilman 1987, 135). The many other available selection-based 

theories and models of communities can be used in the same way. Drift, immigration, and 

speciation are neither more nor less known to be general causes of abundance patterns than 

selection (Vellend 2016). The question facing ecologists is which subset of these four processes 

needs to invoked, and to what relative degree, to explain a given pattern (Beatty 1997). 

 

                                                           
5 This is controversial and depends in part on how selection and drift are conceptualized. See (Millstein 2017, §2) 

for an overview of the fault lines.  
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3.3. What about Model Selection Theory? 

We have argued that pseudo-null hypotheses like the neutral theory and behavioral-

reading hypothesis are relevantly disanalogous from statistical null hypotheses. Given this, they 

should not receive the epistemic privileges they currently enjoy. One might object to this by 

arguing that this epistemic privilege comes not from statistical null hypothesis testing, but from 

model selection theory.6 In this section, we argue that this is not the case. 

A statistical model differs from a statistical hypothesis in having free parameters. The 

linear equation y=2x+3 is a statistical hypothesis. Determining the probability of some data 

given this hypothesis is straightforward because you can measure the fit of the line to the data via 

their difference. The linear equation y=mx+b, where m and b are parameters free to vary, is a 

statistical model. The difference between this equation and some data is not well-defined. But 

sometimes one wants to determine if the data are more linear or quadratic. Model selection 

criteria can help to answer this. 

The Akaike information criteria gives a uniquely best way of balancing the respective 

virtues of the fit between a model and data set and the number of free parameters in that model 

(Forster and Sober 1994).7 A model’s number of free parameters is considered the measure of its 

simplicity in the Akaike framework. Hirotugu Akaike proved a mathematical theorem that 

determines whether the additional cost of added complexity in terms of the number of free 

parameters is worth the benefit of increased fit. Given a set of statistical models and a sampled 

data set, the Akaike criterion selects the best model, defined as the model which could have 

generated the data set and is most likely to be predictively accurate with respect to future data 

                                                           
6 We thank Elliott Sober for raising this point. 
7 Other model selection criteria exist, such as the Bayesian information criteria. While there are important 

differences between these selection criteria, our arguments here extend to them as well. 
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drawn from that data set. The Akaike criterion rewards models for their goodness-of-fit to the 

given data set and penalizes them for their number of free parameters. With too much goodness-

of-fit or too few free parameters, the model is over-fit and more sampled data will probably 

make the fit worse. Akaike’s theorem gives a unique way of weighing a model’s goodness-of-fit 

against its number of free parameters. The model with the smallest value is selected. In this way 

models are rewarded for their simplicity.  

Simplicity is traditionally considered to be a theoretical virtue, distinct from empirical 

virtues concerned with evidence. But Elliott Sober argues that the choice of a best model using 

the Akaike criterion is an empirical decision in the same way a test using only goodness-of-fit is 

empirical. He writes that, “although it is clear that simplicity is a separate consideration in model 

selection from fit to data, the justification provided by Akaike’s theorem for using simplicity 

depends on empirical assumptions. Simplicity is therefore an empirical consideration” (Sober 

2002, S117). Given this, perhaps the pseudo-nulls in our case studies should be privileged 

because their simplicity makes them more empirically successful than the alternatives. Although 

it may seem that the two hypotheses fit the data equally well, the pseudo-nulls are superior 

because they have fewer free parameters. Simplicity trumps the theoretical virtues held by the 

alternative hypothesis, such as coherence with other theories or generality, in the same way 

goodness-of-fit trumps these theoretical virtues, or so the story goes.  

We have three objections to this strategy. First, the Akaike framework selects the best 

statistical model from a limited set. But because the set of models is not exhaustive, the best 

model may just be the best of a bad lot. There is no further assessment of how good the best 

model is at fitting the data. This is a general weakness of applying the Akaike framework to 

scientific models.  
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Second, the pseudo-nulls in our case studies are viewed as simpler because they purport 

to exclude a cause included in the alternative hypotheses. Neutral theory is simpler than selection 

theory because it does not posit selection acting in a community; behavior-reading is simpler 

than mindreading because it does not posit that individuals represent mental states. However, 

simplicity qua free parameters is not the same as simplicity qua excluding a cause (Sober 2009, 

247). Free parameters are a feature of mathematical models and causes are features of theories, 

hypotheses, and interpretations of mathematical models. Two models might be interpreted in 

terms of the same causes and differ in their number of adjustable parameters—treating two 

causes as interactive rather than additive, for example, adds a free parameter. One model might 

also be interpreted as including fewer causes than another while having more free parameters. 

For example, the broken-stick model is a selection model with two free parameters: number of 

species and number of individuals (MacArthur 1957). However, the neutral model has three free 

parameters: local community size, immigration rate, and a function of metacommunity size and 

speciation rate. The neutral model is simpler than the broken-stick model in the sense of 

excluding selection as a cause of species abundance distributions, but not in the sense required 

by the Akaike framework. The reasoning strategy that casts the hypotheses in our case studies as 

nulls cannot be defended using model selection theory without first showing that they have fewer 

adjustable parameters than their competitors. 

Third, even if proponents of pseudo-nulls address the previous two objections, the 

reasoning strategy itself is not suited to justification from a formal model selection framework. 

The Akaike criterion is a tool for comparing mathematical models on two dimensions: fit with a 

data set and number of free parameters. For identifying and evaluating the mechanisms 

responsible for a given distribution of data, the Akaike criterion is silent.  
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The mismatch between the Akaike criterion and the criteria needed to evaluate 

mechanisms becomes clear in Purves and Pacala’s critique of the neutral theory. They 

constructed a selection model that was mathematically equivalent to a formalization of the 

neutral theory and therefore equally well supported (Purves and Pacala 2005). They argued 

neutral patterns do not imply neutral processes by showing that a community under strong 

selection can look just the same as under pure neutral theory. They imagine a metacommunity 

made up of two local communities so different from each other that the members of either 

community cannot live in the other. Let these subcommunities operate according to neutral 

theory independently of each other. Purves and Pacala prove that, because the patterns of the 

subcommunities are described accurately by neutral theory, those of the metacommunity will be 

as well. Their proof is an instance of a larger issue. Within certain limits, neutral theory 

accurately describes communities in which both (a) every individual is functionally equivalent 

and so described by the same parameter value, and (b) every individual is functionally unique but 

the average value of the individuals’ parameter values is used. Hubbell acknowledged the point 

that neutral patterns underdetermine neutral processes, yet he argued that the two explanations 

were not on a par. This is the context of his conclusion, quoted above, that “obtaining acceptable 

fits from neutral models shifts the burden of proof to those who would assert that more complex 

theory is required to explain nature” (Hubbell 2006, 1387). Hubbell could not be referring to the 

number of free parameters in the two models here because the two models are identical. Only 

their causal interpretations are distinct. Hubbell means that the neutral theory should be favored 

on the grounds of its relative simplicity qua excluding selection. If proponents of pseudo-nulls 

move in the direction required to apply model selection theory, they may well lose their simpler 

status because such models do not in general have fewer free parameters.  
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3.4 Other Potential Sources of Justification 

 The pseudo-null strategy may have other sources of justification besides statistical 

hypothesis testing and model selection theory. However, we think these readings are the most 

natural and believe most readers will interpret “null” language in this way. The term “null 

hypothesis” cannot easily be distanced from these contexts. These justifications are also the 

strongest rhetorically because proponents of the strategy need only use the term “null 

hypothesis” to suggest a solid methodology for their reasoning. If proponents of pseudo-nulls 

intend a different reading of their inference strategy, then they must make this clear. Our point in 

this paper is that the obvious readings are unjustified and any others are left implicit. However, 

because a reader may suspect there are additional plausible sources of justification, we briefly 

explain why we find several unsatisfactory.  

 First, “null hypothesis” could mean the simpler hypothesis, where simpler hypotheses 

have Occam's Razor on their side. If this is the case, then there are good reasons to think that the 

reasoning will remain unjustified. Many philosophers have critiqued the use of simplicity both in 

the case of comparative psychology and general scientific reasoning (Dacey 2016, Fitzpatrick 

2008, 2017, Meketa 2014, Sober 2005). 

Second, “null hypothesis” could mean null model as used by ecologists (Gotelli and 

Graves 1996). Null modeling tests a hypothesis that a set of processes is causally responsible for 

a set of patterns by comparing the data with a model which excludes those processes (Bausman 

2018). If this is the case, then the reasoning strategy is still unjustified because in null modeling 

only the alternative model being tested by the null model is able to gain evidence. 

Third, “null hypothesis” could mean baseline model as used by ecologists. Baseline 
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modeling measures the relative significance of various processes responsible for a token instance 

of a pattern by comparing the data with a model that includes only the baseline processes. Any 

deviations from the baseline expectation are taken to be caused by additional processes 

(Bausman 2018). If this is the case, however, proponents of the behavior-reading and neutrality 

hypotheses need to justify taking their processes as the baseline. 

Fourth, “null hypothesis” could mean default hypothesis, where the defaults are given the 

benefit of the doubt for some special quality they possess. If this is the case, then we ask that the 

details of this strategy be specified and distanced from formal methods.  

Finally, perhaps “null hypothesis” marks the hypothesis as having some higher empirical 

evidence or Bayesian prior probability. If this is the case, then this is an evidence-based 

argument and not based on prima facie reasons. The association to formal methodologies, 

theoretical virtues, and indeed falsificationism needs to be dropped.  

We want the reasoning strategy to be made plain and explicit both so that it can be 

critiqued and so that it can be understood. When scientists cloak their arguments in misleading 

language, it gives the impression both that outdated methodological ideas such as Occam's Razor 

and falsificationism are alive and well in science and that overpowered and not-well-understood 

formal methodologies are necessary.  

 

4. Parity Please 

We have argued that the epistemic privileging of pseudo-nulls is not justified as a form of 

statistical null hypothesis testing. Like selection theory and mindreading, neutral theory and the 

behavior-reading hypothesis are not statistical hypotheses and are not being used as such. The 

appeal to these latter hypotheses as “nulls” is a rhetorical strategy without any clear source of 
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justification. In our view, this strategy presumes that the virtue of simplicity trumps all others 

without providing good reasons for it doing so. Using the term “null hypothesis” serves to gloss 

over this in the name of good scientific, statistical methodology. 

Richard Levins made the tradeoffs between scientific virtues among different models and 

modeling practices well known (Levins 1966). He argued that simplicity is one virtue among 

many that all exist in complex tradeoff relationships. Which virtues should be valued over others 

depends on the problems, goals, and circumstances of the particular situation. We find such 

tradeoffs in our case studies. For example, species similarities and differences are used to explain 

a wide variety of empirical results, such as why a particular type of tree is found in the same 

temperature belt across continents. This result is not in the neutral theory’s explanatory scope. 

Appealing to the neutral theory on the grounds of relative simplicity in order to explain some 

patterns of biodiversity and biogeography means researchers are choosing to value simplicity 

over generality. Instead of relative species abundance distributions and continental species 

patterns being explained in the same way, they would be explained with different theories. This 

may be a tradeoff researchers endorse, but it is a choice. Conceiving neutral theory as a null 

takes this choice away from researchers. It makes the favoring of simplicity uncontroversial and 

inevitable. Tradeoffs between virtues require choices, which in turn require reasons and 

justification that can be discussed, critiqued, and evaluated.8 

In addition to being weighed against other virtues, the value of simplicity must be 

assessed against the particular context in which it is employed. Sober (2002), John Norton 

(2003), and Helen Longino (2008) have argued that simplicity is not a general virtue, but is, 

whenever justified, shorthand for some set of facts which make the simpler hypothesis more 

                                                           
8 Such a discussion between simplicity and other scientific virtues may be locally (Levins 1966) or generally 

(Douglas 2009) justified.  
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likely. As Sober writes,  

When a scientist uses the idea [of parsimony], it has meaning only because it is 

embedded in a very specific context of inquiry. Only because of a set of background 

assumptions does parsimony connect with plausibility in a particular research problem. 

What makes parsimony reasonable in one context therefore may have nothing in common 

with why it matters in another. (Sober 1994, 140) 

If these authors are right, then an appeal to simplicity must be evaluated on a case-by-case basis. 

It may be that simplicity should trump other virtues, in the way that empirical adequacy 

and goodness-of-fit sometimes does.9 However, until a good argument is provided for this, the 

value of simplicity should be treated on a par with other virtues. The pseudo-null strategy is an 

attempt to move hypotheses away from parity by shifting the burden of disproving the null to the 

alternative hypotheses on the authority of statistics. As we have argued, there is no clear 

justification for this strategy, however, so the hypotheses should be treated on a par. 

 

5. Conclusion 

The pseudo-null strategy is employed on behalf of the neutral theory of ecology and 

behavior-reading hypothesis in comparative psychology. Because the strategy presents a 

rhetorically powerful solution to a common problem, we expect these are not isolated cases. 

However, we have argued that this strategy is not justified as an extension of statistical inference. 

Hypotheses should not be privileged as “nulls” unless a valid justification has been given for 

                                                           
9 We have focused on simplicity because it is directly appealed to by the proponents of the behavior-reading and 

neutrality hypotheses to justify privileging them. But we can imagine another virtue being privileged at the cost of 

all others, generality for example, and we would be against its use as a way of treating two hypotheses 

asymmetrically and calling the more general one the ‘null’ just the same.  
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such privileging. 
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