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Abstract 

The question of the division of cognitive labor (DCL) has given rise to various models 

characterizing the way scientists should distribute their efforts. These models often consider 

the scientific community as a self-governed sphere constituted by rational agents making 

choices on the basis of fixed rules. Such models have recently been criticized for not taking 

into account the real mechanisms of science funding. Hence, the question of the utility of the 

DCL models in guiding science policy remains an open one. In this paper, we show that two 

unconsidered dimensions would have to be taken into account. First, DCL studies miss the 

existence of distinct levels of epistemic objectives organizing the research process. Indeed, 

the scientific field is structured as a system of hierarchical, interconnected practices which are 

defined both by their inherent purposes and by various superposed external functions. Second, 

I criticize the absence of ontological considerations, since the epistemological significance of 

pluralism is highly dependent on the nature of the object under study. Because of these 

missing dimensions, current DCL models might have a limited usefulness to identify good 

practices of research governance.  

 

 

1-Introduction 

How should we allocate resources to scientific research? This question, although old
1
, is of 

growing interest among scientists and policy makers. A current set of concerns revolves 

around the mechanisms of project selection by funding agencies, the role that peer-reviewing 

should play in grant allocation, and the institutional conditions promoting the development of 
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See, for instance, Wilholt and Glimell (2011) for a synthetic historical panorama.  



innovative ideas (e.g Graves et al. 2011; Haufe 2013; Boudreau 2016; Fang and Casadevall 

2016; Vaesen and Katzav 2017
2
). The recent proliferation of proposals to rethink the concrete 

conditions of science funding is strongly motivated by natural scientists themselves, and by 

the literature on the economics of science. But how may philosophy of science and 

epistemology enter these debates? Our paper considers this question by proposing a critical 

assessment of the benefits and limits of the social epistemology models of “division of 

cognitive labor”, when trying to deliver policy advice.  

 

One of the main epistemological questions at stake about the mechanisms of science funding 

concerns the consequences of the institutional arrangements which regulate the allocation of 

resources to scientific research on the growth of knowledge. Formulated as such, our first 

interrogation exhibits its link with what Goldman and Blanchard (2016) defines as the “third 

branch” of social epistemology
3
. As noted by the authors, this “third branch” largely focuses, 

since Kitcher’s (1990) early work,  on the question of the division of cognitive labor (DCL), 

seeking to describe what might be an optimal division of tasks between competitive 

approaches within a given scientific community, and to assess the institutional conditions 

promoting the achievement of this optimum. More precisely, Kitcher’s (1990) initial question 

is the following: “what is the optimal division of cognitive labor within a scientific field, and 

in what ways do personal epistemic and non-epistemic interests lead us toward or away from 

it?” (p.22). This inquiry was recently renewed by Viola (2015) which asks “(1) which is the 

optimal distribution of cognitive efforts among rival methods within a scientific community? 

and (2) whether and how can a community achieve such an optimal distribution?” (p.1). 

These questions ground an active line of research, mostly dedicated to the development of 

mathematical models. Such models propose solutions to Kitcher’s optimization problem by 

focusing on rewards or credit schemes (e.g Strevens 2003; Zollman 2018), on the cognitive 

structure of the scientific community (e.g Weisberg and Muldoon 2009), or on the effect of 

project selection by centralized funding mechanisms (Avin 2018). Since recently, some of 
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Of course, the question of the governance of science is not limited to that of the processes of grant allocation by 

funding agencies.  Our paper exclusively deals with epistemic considerations, but ethics and political philosophy 

also have their say. The so-called “responsibility” of research and innovation (Arip 2016), and the democratic 

involvement of citizens in science policy decisions (Kitcher 2001) constitute central perspectives on this matter.  

3
Devoted to the “assessment of the epistemic consequences of adopting certain institutional arrangements or 

systemic relations as opposed to alternatives”. 

 



these agents-based models manifest an explicit interest in providing concrete policy advice 

(Viola 2018), notably about the modalities of the allocation of resources (Kummerfeld and 

Zollman 2016; Avin 2018) and the cognitive structure of scientific communities (Pöyhönen 

2016). However, this ambition is tempered by the existence of inherent limits to modeling 

activities in social epistemology. As with models designed to describe a domain of the real 

world, it is possible (and welcome) to question the simplifications, idealizations and 

background hypotheses which are susceptible to amend the descriptive and normative value 

of DCL models (Yloski 2014; Pöyhönen 2016). Given the well-recognized difficulties to 

assess the exact benefits and limits of these works, it is then common to note that “there is 

much work left to do” (Muldoon 2013, p. 124) to improve or judge their epistemological and 

political value. The injunctions to prudence in interpreting the results of the DCL models
4
 

raises the question of their exact interest in guiding the institutional regulation of research, 

and notably the mechanisms of grant allocations by funding agencies.  

 

In this paper, we aim at showing that a major threat to the descriptive and normative value of 

current DCL models is a fundamental lack of clarity about the exact object which is divided. 

As we shall see, authors consider without distinctions the allocation of resources to “theories”, 

“approaches”, “methods”, “research programs”, “research projects” etc. By doing so, they 

bypass two important dimensions of the epistemological reflection about the division of 

cognitive labor. First, the epistemic choices made by researchers are determined by a 

hierarchical network of shared objectives, from experimental, technical practices to 

conceptual and representational activities. Second, the significance and the form taken by 

epistemic diversity are highly dependent on the kind of object under study.  Our argument is 

that these elements should be carefully taken into account when building DCL models and 

when interpreting the results obtained. We suggest, based on concrete instances of such social 

epistemology modeling, that the ignorance of these features leads to unsatisfying conclusions 

about the desirable institutional conditions of research. Finally, more than a refinement of the 
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Some instances of this interpretative prudency, among others: “Can our models fix useful concepts and provide 

templates for causal mechanisms that could be at play? Could they be used to help shape the debate around 

emerging policy decisions? The answers will come from future work in the field” (Avin (forth.), p.32); “The 

cautious conclusion to be drawn from these differences is that, in its entirety, the relationship between diversity 

and epistemic performance is likely to be more complex than can be captured by any simple model” (Pöyhönen 

2016, p. 4530); “Of course these models are limited in two critical ways. First, they proceed into idealizations 

about the structure of the scientific community and about individual scientists. Real scientists and scientific 

communities are more complicated than our models, and it is always possible that a critical causal factor has 

been left out” (Zollman 2018, p. 26). 



mathematical models used, what is needed to improve social epistemology insight in research 

policy is a qualitative reflection about the dynamics of scientific progress.  

 

2-DCL models: common architecture 

 

a-A (short) systematic review 

 

Many reviews of the different kinds of works dealing with the DCL problems are available 

(see, for instance, Muldoon 2013; Goldman and Blanchard 2016; Avin (forth.)). Let us 

reiterate here the main directions taken by philosophers interested in this question since 

Kitcher’s (1990) seminal study. The starting point is the idea of a tension, within scientific 

communities, between individual and collective rationality. Kitcher imagines the case of a 

shared objective (for instance, determining the physical structure of a certain molecule), with 

two competitive methods to reach it – method I and method II, method I being known as more 

accurate. For Kitcher, a purely rational epistemic agent will choose method I to solve the 

problem posed. Yet, this behavior does not optimize the division of cognitive labor, which 

would (mathematically) benefit from a more balanced distribution of human resources 

between method I and method II. Kitcher then shows that this idealized community may be 

nearer to the optimum if there exists a reward scheme according a larger reward to scientists 

working on the less popular “research program”. This mechanism will be efficient on the 

condition that scientists do not follow a strictly epistemic rationality, but have other sources of 

motivation (professional credit or rewards). Following this line, Strevens (2003, 2013) 

proposes another reward scheme, based on the “priority rule” according to which the first 

research program that discovers a certain result gets all the reward. Zollman (2018) develops a 

quite distinct mathematical model to assess the effect of the search for professional credit 

(versus the “seek the truth”) on scientific progress.  

Besides rewards and credit, other factors were studied for their ability to optimize the division 

of cognitive labor. Zollman (2010) addresses the formation of consensus on the right theory of 

a given phenomenon. Considering two theories T1 and T2, T1 being favored in the initial 

experiments, he suggests on the basis of historical instances that it may be rational, at the 

scale of a given scientific community, to pursue the poorly justified theory T2 (because T2 

may be, finally, the right one and should not be eliminated too quickly). Using computer 

simulations, he then (not surprisingly) shows that the communication rate between individuals 



influences the collective rationality: structures with less communication may score better in 

choosing the right theory.  

A third kind of factor influencing the division of cognitive labor is mobilized by the epistemic 

landscape models launched by Weisberg and Muldoon (2009). Here, it is the “cognitive 

diversity” which is put to the fore. The authors consider an “epistemic landscape” explored by 

individuals following distinct engagement strategies. This epistemic landscape represents, in a 

three dimensional space, all the “research approaches” possible in a given field of research 

(Pöyhönen 2016), and their respective significance
5
. Epistemic agents may adopt a “control” 

engagement strategy (they move in the landscape without taking into account the behavior of 

the other agents), or be “followers” (they adopt the most significant programs explored by 

their predecessors); they also can behave as “Maverick”, and explore unknown zones. The 

idea is then to determine, depending on the initial conditions (size and shapes of the 

landscape) which population, or mix of populations, optimize the division of cognitive labor 

(the cumulated significance of the research process) (Weisberg and Muldoon 2009;  

McKenzie and Himmelreich 2015; Pöyhönen 2016).  

 

All these works share an identical macro-conception of the dynamics of science as a closed 

system internally regulated by an invisible-hands mechanism (Wray 2000). Individual 

scientists are free to choose the direction of their research, in a context of unlimited resources 

(Viola 2015). In particular, there is “no superintendents” (Strevens 2013, p. 21). Against this 

idealization, Viola (2015) insists on the necessity “to consider the role of external social 

factors such as the political decisions to pursue some or other scientific project’’ (p. 9). In 

particular, the role of funding agencies should be explicitly addressed. Following this line, 

Avin (forth.) renews the epistemic landscape model to study the effect of “centralized 

funding” on the division of cognitive labor. He simulates distinct ways of funding science, 

based on the estimated significance of the project (its position on the epistemic landscape), on 

the time passed by the individuals in the system, or on a lottery (random distribution). 

Depending on the size of the epistemic landscape, he shows that the lottery strategy may be 

the best one in terms of cumulative significance of the projects followed.  He concludes that 

dealing with the classical opposition between “plausibility and originality” (Polanyi 1962) or 
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As noticed  by  Pöyhönen (2016),  significance may be understood according to Kitcher (1993) (Chap. 4) and 

Kitcher (2001), as “the significance of the truths that can be uncovered by using this approach” (Pöyhönen 

(2016),  p.4522). 



“exploration and exploitation”, a random allocation of resources may optimize the division of 

cognitive labor. He links this result to more qualitative arguments defending lottery as a good 

way to select projects (Gillies 2014, Fang and Casadevall 2016).  

Let us add, to close this rapid outlook on the DCL models, the work of Kummerfeld and 

Zollman (2016), which aims to quantify the “conservatism” of a scientific community 

constituted by individuals left to “their own devices” (p. 1057).  As Kitcher did, but by using 

more intricate mathematical machinery, they suggest that individual epistemic rationality 

conflates with the optimum division of cognitive labor when individuals have to choose 

between a “risky” and a “safe” alternative. They conclude that the mechanism of grant 

allocation should voluntarily fund a certain amount of “risky” projects, to compensate the 

endogenous “conservatism” of the scientific community.  

 

All these DCL models have a common architecture, that is to say, they share a common 

general formulation of the question of the division of cognitive labor in science, and a 

common scheme to solve it.  The starting point is to consider a certain pre-defined objective O 

to reach, which is shared by a given community. Typically, this objective may be a 

(theoretical, experimental, utilitarian, technical) problem to solve. It may also be, specifically 

in the case of epistemic landscape models, an ensemble of objectives defining a research area. 

The authors then consider the existence of various means Mi to reach O, each of them having 

a utility function quantifying their ability to fulfill O. The central aim is then to distinguish the 

individual instrumental rationality
6
, which tends to maximize the probability, for each 

researcher, to reach O, and other “non-epistemic
7
” factors, such as the search for rewards or 
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Let us maintain, following Kelly (2003), that instrumental rationality classically designates “the rationality 

which one displays in taking the means to one's ends” (p. 612)”. It is opposed to epistemic rationality, defined as 

“the kind of rationality which ones displays when one believes propositions that are strongly supported by one's 

evidence and refrains from believing propositions that are improbable given one's evidence”. In DCL models, as 

noted by Zollman (2018), epistemic rationality is understood as a form of instrumental rationality: “epistemic 

rationality is a species of instrumental rationality, viz. instrumental rationality in the service of one’s cognitive or 

epistemic goals” (Kelly (2003), p. 613). In other words, epistemic rationality is expected to be mobilized to 

choose the best alternative (the Mi which has the estimated highest probability to reach O) to solve a cognitive or 

epistemic problem. This instrumentalist conception of epistemic rationality corresponds to the multiplicity of the 

(cognitive, practical, utilitarian) kinds of objectives considered in the DCL models.  

 
7
The opposition between “epistemic” and “non-epistemic” factors may be discussed, since the objective of DCL 

models is precisely to show that “non –epistemic” factors positively influence the search for truth. However, the 

rationale behind this distinction lies on a contrast between the motivations guiding the choices made by 

researchers, as well exposed in Zollman (2018).  If these motivations are exclusively those of solving the 

problems posed to the community, they are considered as acting as purely epistemic agents –even if this problem 

is not itself strictly cognitive.  



professional credit, the cognitive features of the individuals or the centralized selection of 

means by funding agencies. The shared general conclusion, since Kitcher’s work, is that 

researchers (or peer-reviewers affiliated to funding bodies) only following individual 

instrumental rationality do not optimize the division of cognitive labor. Indeed, since all 

possible research projects (Mi) have a certain probability to reach O, it is counter-productive 

to concentrate resources only on the most promising approaches. Yet, individual instrumental 

rationality is supposed to generate the phenomenon of herding on secure alternatives. 

Reciprocally, “non-epistemic” factors may positively modify the division of cognitive labor 

by promoting the exploration of more risky alternatives.  

The first step in the elaboration of DCL models is then to define a theoretical optimal 

distribution of resources. This optimal DCL may be mathematically expressed (e.g in Kitcher 

1990; Strevens 2003; Kummerfeld and Zollman 2016), or implicitly fixed by the initial 

conditions chosen. This is the case for the epistemic landscape models, where the pre-

determined form of the landscape determines what would be an optimal distribution of labor 

to explore it given certain initial funding conditions (number of researchers and number of 

projects selected) and respect to a given variable (for instance the cumulative epistemic 

significance reached). 

 

b-What exactly is divided? 

 

Let us specify this general scheme, by addressing a crucial point: what, exactly, is thought to 

be divided? In other words, what are exactly Mi and O? The question is relevant, since the 

authors apply the same schemes to distinct objects. As noted by De Langhe (2014), “Kitcher’s 

basic unit of analysis is “methods,” Strevens uses “research programs,” and Brock and 

Durlauf use “theories.””. He adds: “because as far as their dynamics of adoption are 

concerned the literature uses these concepts interchangeably, I will use only the concept of 

“theories” understood as standards for the division of cognitive labor to which individual 

scientists make contributions” (p. 445, our italics). Kummerfeld and Zollman (2016) 

explicitly recognize this indeterminacy, when they clarify their notion of “general research 

project” by including in it “different theoretical commitments, paradigms, research 

methodologies, treatments strategies in medicine, and so on” (p. 1059). This vagueness of the 

object which is divided is particularly significant in the epistemic landscape models. 

Pöyhönen (2016) explicitly addresses the question of “what does an epistemic landscape 

represent”, and deduces that they are not “a search space for a single problem” (p. 4525). An 



epistemic landscape would stand for a “scientific research topic (e.g synthetic biology, 

astrophysics, endocrinology)”, divided into “different but complementary research 

approaches”. For instance, the authors argues, “attempting to synthesize novel DNA 

nucleotides and studying the stability of these molecules by computational methods are 

independent but both necessary research approaches in synthetic biology” (p. 4523). 

Interestingly, he adds that the “discrete patches” composing the epistemic landscape 

“represent a combination of (i) a research question being investigated, (ii) instruments and 

methods for gathering and analyzing data, and (iii) background theories used to interpret the 

data”. Consequently, as the author confesses himself, “epistemic landscapes underlying real 

scientific research involve a greater number of interdependencies between the elements of 

approaches (question, instrument, methods, theories)” (p. 6).  These precisions are the most 

complete we may find within the literature of epistemic landscape models. The works of 

Weisberg and Muldoon (2009) or Avin (forth.) simply consider epistemic landscapes as an 

ensemble of “research approaches” or “projects”.  

 

This diversity of Mi’s nature also reflects in the multiplicity of kinds of objectives O which 

are mobilized as examples illustrating the DCL models. Kitcher (1990) takes the case of the 

elucidation of the physical structure of a given molecule (of medical importance); Zollman 

(2010) that of the explanation of a disease (the peptic ulcers), or more generally that of all 

“truth seeking” objectives (Zollman 2018); Goldman and Blanchard (2016) cites the 

elucidation of the structure of the DNA; Pöyhönen (2016) considers “the study of opioid 

receptors in chemical biology, or critical phenomena in statistical physics” (p. 4530) etc.  

 

What we want to show in the next section is that because of the interchangeable use of distinct 

kinds of ends and means, two important dimensions of the dynamics of scientific progress are 

absent from the DCL models. Then, in the third section, I will suggest that these absent 

dimensions are missing dimensions, in the sense that they should be explicitly taken into 

account when interpreting the results of DCL models –which is never done in the 

corresponding papers. We conclude that to be politically relevant, works on DCL do not need  

to improve the sophistication and/or the mathematical complexity of their models, but should 

consider seriously some qualitative epistemological issues about the logic of scientific 

research.   

 

3-Two absent dimensions of the debate 



 

The argument we will defend here is that the current DCL models may not give an accurate 

description of what could be a theoretical optimal division of cognitive labor (first step of the 

DCL models). In particular, two dimensions are absent. First, it has to be noticed that the 

scientific field is structured as a system of hierarchical, interconnected practices motivated by 

a superposition of different kinds of objectives. Second, the epistemic significance of 

pluralism is highly dependent on the nature of the object under study, and as a consequence, 

depends on the discipline or field of research considered.  

 

a-Research objectives are embedded within various systems of practices 

 

Let us imagine a given objective O that could be taken as an example in a possible DCL 

model: the search for a treatment against a new, unknown bacterial disease D.  Let us also 

suppose that there exist two general ways to solve this problem: for instance, the search for a 

vaccine (Mv), or for a new antibiotic molecule (Ma). Each mean Mi has an estimated utility 

function, and epistemic agents are supposed to distribute their effort following different rules 

(instrumental rationality, credit, rewards, random selection etc.). These utility functions may 

be estimated, for instance, on the basis of past successes in dealing with bacteria belonging to 

the same biological class. However, this is not the end of the story. We can imagine that each 

Mi constitutes itself an objective which can be fulfilled by following distinct possible ways. 

For instance, there may exist various different methods to prepare a vaccine (by targeting 

distinct proteins from the bacterial membrane), and various techniques to find antibiotics 

(molecular screening, or rational-drug design (Adam 2005). And each of these methods 

defines a new objective, with potentially various means to achieve it. This recursive logic may 

be even more complex if we consider higher-level alternatives. For instance, the modern 

techniques and concepts used in medicine, anchored in cell and molecular biology, may be 

questioned by more holistic conceptual frames –found in some “traditional” medical 

practices. The initial objective O may then be fulfilled within two general approaches, 

anchored in opposite representations of diseases, organisms, or life itself (C1 and C2). 

Besides, it is worth noting that the competition between C1 and C2 may have an importance 

for many other objectives O –in medicine or fundamental biology. To consider this 

interlocking of objectives, we propose to invest, as a conceptual toolbox, the general 

“grammar of scientific practices” recently formulated by Chang (2014). 

 



The contemporary attention to science “in practice” (Soler et al. 2014) gives a representation 

of science, as a process, made of interconnected networks of more or less independent types 

of practices. The so-called “new-experimentalism”, notably launched by Hacking (1983), 

aims at describing in detail the heterogeneous elements entering experimental practices 

(Chang 2014). These experimental practices are considered as “hav[ing] a life of their own…" 

(Hacking 1983, p. x), independently of their hypothesis-testing role. Later, the need appeared 

to integrate representational (conceptual, theoretical) activities in the frame of scientific 

practices (Woody 2014). Following this line, the activities of epistemic agents are 

multidimensional, since this notion of practice includes “physical, mental, and “paper-and-

pencil operations””, as argued by Chang (2014) (p. 68). Chang then proposes the notion of 

“system of practices” to describe the hierarchical interlocking of “epistemic activities” 

motivated by distinct “aims”. First, in this scheme, “all scientific work, including pure 

theorizing, consists of actions” (our italics, p. 67). An action (or an activity, in Chang’s 

“grammar of scientific practices”) performed by an epistemic agent, is characterized by the 

“presence of an identifiable aim” (p. 72). To reach this aim, the agent develops “a coherent set 

of mental or physical operations (…) in accordance with some discernible rules” (Idem). This 

activity, led by “inherent purposes”, is also motivated by “external functions”. For instance, 

the act of lighting a match mobilizes a set of operations, and may be part of a more global 

plan (for instance, to light a Bunsen burner), itself constituting an activity within a larger 

system of practices (aiming to answer a theoretical question, or to find a new therapy etc.). 

The notions of “activities” and “systems of practices” are then relative, and depend on the 

scale of analyses. The important point is that each action performed by an epistemic agent is 

integrated in a hierarchical network of purposes, and is characterized by its internal 

coherence
8
. In Chang’s scheme, coherence is ensured by the success in achieving one’s end. 

More generally, we may consider that the coherence is linked to the relevance of the means 

used to reach the objective motivating the activity (or system of practices) in question. In 

other words, coherence is ensured by the deployment of instrumental rationality, leading to 

determinations of the means most adapted to the ends considered (Kelly 2003; Zollman 2018). 

Let us recall here that these activities or systems of practices may gather distinct kinds of 

(mental, physical) objectives, and then distinct kinds of means Mi: technical operations, 

setting-up of experimental protocols, formulation of new concepts or new theories, etc.  
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For a graphical representation of this hierarchical imbrication of activities, see the “commentary” on Chang’s 

work by L. Soler and R. Catinaud in Soler et al. (2014). 



 

How can we apply this scheme to the question of the division of cognitive labor? As DCL 

models do, let us first consider, in a God’s eye perspective, the possibility to define a 

theoretical optimal division of cognitive labor given a certain problem to be solved (objective 

O). This resolution may be achieved by developing distinct activities. These activities are 

integrated in a system of practices, and are then defined both by their inherent purposes and 

by their various hierarchical external functions. Given this situation, two remarks should be 

made. First, inherent purposes may be divided into a variable number of underlying 

objectives. For instance, if we refer to the instance proposed at the beginning of this section, 

the search for a treatment to disease D may be considered as the general end of a system of 

practices including a first level of sub-objectives o and o’ (the search for a vaccine or for an 

antibiotic treatment). These constitute the inherent purpose of sub-systems of practices 

(including technical, experimental, or theoretical operations). We can expect that depending 

on the nature of O (technical, experimental, theoretical etc.), the thickness (the number of 

imbricated systems of practices) of the corresponding network may be highly variable. 

Finally, each DCL optimization problem is best described as a superposition of optimization 

problems.  

 

Second, a given activity may have various external functions. For instance, the development 

of an experimental technique T (e.g a method of protein extraction from bacteria) may be 

important for various possible alternatives Mv1 and Mv2 in preparing a vaccine against D. 

Besides, this experimental technique may be relevant for other systems of practices –in 

immunology, biochemistry, clinical medicine, or molecular biology. Let us imagine now that 

Mv1 and Mv2 (the “vaccine” solutions to cure D) have a lower utility function than Ma 

precisely because the protein extraction activity is not efficient. If we consider only Mv1, Mv2 

and Ma, the optimization problem will have a certain theoretical solution. This solution would 

be very different if we posed the optimization problem between Ma and T: we can expect that 

T would have a higher utility function that both Mv1 and Mv2. This is true because T is 

supposed to be important for Mv1, Mv2, and for other systems of practices. This last 

formulation would be more accurate with respect to the real state of the system of scientific 

practices. Finally, the solution of a given optimization problem varies depending on the scale 

of the analysis. “Theories”, “methods”, “approaches”, “programs” are not interchangeable 

units. Ideally, a well-posed DCL problem should consider altogether these distinct 



dimensions, reflecting the hierarchical interlocking of objectives characterizing the systems of 

scientific practices. 

 

b-The management of plurality may not be always considered as an optimization problem  

   

In the multiplicity of kinds of objectives and means taken interchangeably as basic units in 

DCL models, distinct disciplines are cited: physics (the study of critical phenomena in 

Pöyhönen 2016), chemistry (the elucidation of the structure of a given molecule or the 

opposition between phlogiston theory and modern chemistry in Kitcher, 1990), fundamental 

biology (the structure of DNA in Goldman and Blanchard, 2016), medicine (the explication of 

peptic ulcers in Zollman, 2010). These instances designate different kinds of objectives 

(theoretical, technical, experimental), but they also concern various kinds of objects. Yet, we 

argue that this generalization is biased since many scientific objects generate questions whose 

resolution cannot be considered as a common DCL problem. To make this point, we propose 

to consider the notion of complexity, classically defined as the co-existence of multiple causal 

pathways, belonging to distinct levels of organizations (Mitchell 2009). For instance, mental 

pathologies, or human behavior more generally, constitute typical complex phenomena, with 

genetic, biological and environmental causes possibility non reducible to the molecular level. 

In these cases, the question of the multiplicity of radically distinct approaches might not be 

formulated into an optimization problem: the different directions of research are better 

described as distinct heuristics than as alternative means characterized by their estimated 

utility functions.  

Let us take, for instance, as an objective O, the seek for an explanatory theory of a particular 

behavioral (normal or pathological) trait. Following Longino (2013), we can consider the co-

existence of distinct kinds of disciplines that she identifies as “quantitative behavioral 

genetics”, “socio-environmental approaches”, “molecular behavioral genetics”, and 

“neurobiological approaches” (p. vii). At the metaphysical level, this co-existence may either 

be considered as a (temporary or permanent) consequence of our cognitive limitations, or as a 

result of the existing diversity of levels of organization in nature (Ruphy 2005). In all cases, it 

is arguable that this plurality has an inherent value which exceeds the estimated efficiency of 

each approach to provide a good explanation to the behavioral trait we consider. This is due to 

the fact that, at least temporarily, all the available explanations may capture something of the 

phenomenon under study (for instance, a partial causal mechanism). In this frame, even a 

quite marginal alternative (for instance, psychoanalysis), may deserve to be pursued, because 



it may constitute a possible heuristic allowing the identification of particular causal pathways. 

This idea was defended in the case of theories of cancer. The classical, gene-centered theory, 

is currently challenged by an “organicist” one (the Tissue Organization Field Theory, Soto 

2011), and these competitive approaches may be considered as two distinct heuristics to 

exhibit the causes of cancer (Malaterre 2007). Finally, we argue that for complex objects, the 

co-existence of distinct approaches cannot be thought in the frame proposed by current DCL 

models. The alternatives may not be compared in their efficiency to reach a pre-defined 

objective. Indeed, if we accept that pluralism reflects, to some extent, the variety of causes 

determining the phenomenon at stake, then these alternatives are mutually dependent (each 

approach delivering a part of the explanation). The situation is distinct in most of the 

instances provided in the DCL literature, where each approach is supposed to have a singular, 

independent utility function.  

In the next section, we aim to show that these two absent dimensions (the hierarchical 

interlocking of objectives and the ontological limits to the DCL formalism) are missing 

dimensions. They would need to be explicitly addressed in order to interpret in a correct way 

the results provided by the DCL models.  

 

4-Why these absent dimensions are missing dimensions 

 

As most of the authors writing on DCL models, we are conscious that the very modeling 

activity inevitably presupposes the use of idealizations or simplifications which do not 

preclude in themselves their heuristic value –their ability to capture certain features of a given 

phenomenon (Muldoon and Weisberg 2011; Ylikoski and Aydinonat 2014; Pöyhönen 2016). 

However, this heuristic value tightly depends on a careful work of interpretation of the results 

they provide. Here, we argue that the negligence of the elements of the dynamics of scientific 

research we considered in the previous section may generate important misinterpretations 

when DCL models try to provide advice for science policy. We think the best way to defend 

this thesis is to consider some concrete examples of DCL models whose conclusions aim to 

formulate political insights. By doing so, our objective is to show why these absent 

dimensions may constitute, very concretely, missing dimensions.  

 

a-Example 1: funding science by lottery? 

 



The first instance we will consider is that of Avin’s (forth., 2018) case in favor of the 

introduction of some random elements in the mechanism of grant allocation to scientists. 

Apart from its synthesis of qualitative arguments defending random allocation as a possible 

way to overcome the “conservatism” of peer-review (Gillies 2014), Avin proposes a 

contribution through a DCL model. Based on this model, he suggests that, given a certain 

landscape progressively explored by epistemic agents, a peer-review only based on 

instrumental rationality (selecting projects on the basis of their estimated significance) might 

be, in some cases, sub-optimal. On the contrary, a system of lottery which randomly allocates 

resources may out-perform the classical peer-review process. Intuitively, this result is directly 

linked to the fact that the epistemic landscape is not known in advance: all estimation of the 

future significance of a project may then be mistaken. On the basis of this result, he proposes 

a mechanism where a certain proportion of projects (those which do not belong to the x% best 

or worst proposals as evaluated by a first round of selecting peer-review) enter a process of 

random funding. We argue that this proposal is biased, or insufficient, since it is grounded on 

a misrepresentation of the very structure of the systems of scientific practices. The interest of 

random allocation is assessed, in Avin’s model, for the cases of poorly known epistemic 

landscape, with a great number of projects whose potential significance is difficult to 

estimate. In these (hypothetical) situations, it is quite intuitive indeed that a random 

distribution may be the most efficient way to explore the space. Avin (2018) links these 

situations to “basic research” (p. 33). In parallel, he lists some situations where “lottery should 

not be used” (p. 31). Among them, he evokes the case of projects with “bounded 

uncertainties” (where the need to obtain a quick answer, for instance under the pressure of 

“external constraints”, prevents “any significant exploration of uncertainties or open-ended 

avenues”) and of “fully explored” epistemic landscapes (where the knowledge of a given 

“area” is sufficient in yielding a good estimation of the utility functions of the project to be 

pursued). It seems to us that these two cases express the same general (qualitative) idea: when 

the problems to be solved are sufficiently clearly defined, and the significance of the possible 

research project to address them are sufficiently known (to sum up: when the epistemic 

landscape is sufficiently known), then random allocation might not be the optimal solution to 

divide cognitive labor. Following this criterion, we argue that it is not at all obvious that there 

do really exist “epistemic landscapes” adapted to such a funding by lottery. Indeed, the 

rationale behind Avin’s research policy advice lies on the assimilation of “basic research” to 

large epistemic landscapes with many “peaks” whose significance is strongly indeterminate. 

In Chang’s terms, these peaks represent possible activities, with both inherent purpose and 



external functions. As we noticed in the previous sections, these activities are embedded in 

systems of hierarchical, interconnected practices. The global significance of a given activity is 

then dependent on the partial significance of all the practices constitutive of its inherent 

purpose, and of the others systems of practices which would benefit from its development. Let 

us imagine a project P with a poorly estimated significance in a given “epistemic landscape” 

E. P, and the sub-activities it entails (e.g. the development of new techniques or experimental 

procedures), may have a clear significance for other systems of practices, corresponding to 

other “epistemic landscapes”. Its sub-activities may also have known significance within E 

itself, independently of P (for instance, if they constitute sub-objectives of other projects 

whose significance is better known). It is worth noting that P or its sub-activities may also be 

important to face some pressing external constraints – situation where, following Avin 

himself, lottery is not welcome. Finally, we argue that lottery’s argument is based on the 

hypothetical existence of many isolated projects (activities or systems of practices), whose 

significance would be strongly indeterminate. We think that the qualitative assessment of the 

structure of the systems of scientific practices suggests that the very existence of such 

“epistemic landscapes” needing a funding by lottery is not at all self-evident.  Consequently, 

we argue that the recognition of the network structure of scientific activities leads one to 

formulate research policy advice opposed to Avin’s. Random allocation is presented as a 

solution to the lack of information about the significance of proposed research projects. Our 

alternative view suggests that
 
a more exhaustive examination of the relevance of each 

research project with respect to the existing systems of practice would show that there are 

fewer cases than Avin anticipates in which the epistemic landscape is insufficiently known. 

This examination would also show that when the epistemic landscape is insufficiently known, 

the degree to which it is unknown is overestimated by Avin. Thus, the need for randomized 

funding allocation is mitigated, and perhaps evaporates entirely
9
.  

The important point is that even if Avin’s model is instructive and well-suited to describe the 

way science is funded, its normative aim (guiding the way science should be funded) might be 

impaired by the conception of the essential properties of the research process it is based on. 

Our argument may open another direction of investigation into the optimization of grant 

allocation through peer-review processes. As we suggested, one of the main epistemic 

challenges of science policy is the evaluation of the comparative interest of the proposed 

                                                           

9
This exhaustive examination may be completed, in the spirit of Kitcher  (2001), by a democratic assessment of 

the various desires expressed by ordinary citizens.  



projects. The relevance of this evaluation depends, indeed, on the knowledge we have of the 

insertion of these projects into the existing hierarchical network of interconnected practices. 

Yet, as rightly pointed out by DCL models, and notably by Avin’s model, the peer-review 

process may not be well-suited to adequately capture the current relationships between these 

systems of practice. The empirically measured lack of robustness of peer-review confirms this 

point (Graves, 2011). However, rather than through a random distribution of resources, we 

argue that a better evaluation of the interest of the proposed projects could be reached through 

a more decentralized mechanism of evaluation. As a limited panel of reviewers does not 

represent well the current state of scientific practices, an active participation of all the 

scientists actively practicing research in choosing the projects to be funded could provide a 

better knowledge of the objective interest of these projects. For instance, we propose that each 

scientist could have a right (and a duty) to choose a limited number of projects among the 

ensemble of all the propositions made by their colleagues; the projects presenting the best 

average mark would then be funded
10

. We argue that with this kind of global scheme, the 

convergence of interests (and so the estimated value of a given project) would be better 

evaluated. Obviously, this decentralization of evaluation is susceptible to be fully efficient 

only if there exist classificatory systems enabling each researcher to easily identify the 

projects which are interesting to him. Without giving a complete practical solution, we 

suggest that the use of key-words or key-expressions, similar to that developed to classify 

scientific literature in numerical bases of data, may be a fruitful direction to follow.  

 

This proposal may open interesting modeling possibilities. In all cases, DCL models, if they 

want to improve their utility in designing science policy strategies, should represent the real 

multidimensional structure of the systems of scientific practices in a more suitable way. 

 

b-Example 2: promoting “risky” strategies? 

 

A second instance of DCL models proposing explicit political insights may be found in 

Kummerfeld and Zollman (2016). The core of their model lies on a distinction between “safe” 

and “risky” alternatives, which may be “different theoretical commitments, paradigms, 

research methodologies, treatment strategies in medicine, and so on” (p. 1059). These 

                                                           

10 We may also imagine here that publics which are exterior to the scientific field (citizens, economic sphere or 

political actors) could also have their say in this process of proposing and voting for projects. 



alternatives have utility functions with respect to given, pre-determined, objectives
11

. In 

Kummerfled and Zollman’s model, a “safe” alternative is known to be the “best line of 

research”¸ that is to say the one “that has given the highest average payoff so far” (p. 1062). 

The risky one is considered as such because its (Gaussian) utility function, even if it has a 

higher mean value, is poorly known. The simulation machinery shows that when the utility 

function of the “risky” alternative has a higher mean value that the utility function of the safe 

one, the individual instrumental rationality is sub-optimal. By neglecting the risky alternative, 

individuals do not maximize the global utility of the community when distributing their 

cognitive effort.  

The authors deduce from this result that funding agencies should actively “encourag[e], in 

some situations, unpopular, risky science” (p. 1057, our italics). The central challenge to 

make this conclusion politically relevant is to delineate more precisely these “situations” in 

which uncertain projects should be voluntarily funded. We argue that this task needs to take 

into account the hierarchical interlocking of objectives structuring the systems of scientific 

practices.  

Let us note that the authors consider cases where a given choice is made to fulfill one, and 

only one, well-defined objective. Yet, as we have discussed previously, each “research 

project” at stake may have multiple external functions (Chang 2014). This is equally true for 

the sub-objectives implied by each alternative. To revisit our previous example, the 

development of a new vaccine to cure the disease D (a typical “research project” in 

Kummerfeld and Zollman sense) may be useful in other areas. For instance, it may lead to the 

chemical and physical characterization of a given protein P of the bacterial membrane, which 

is important in immunology, cell biology etc. It may also lead to the improvement of a given 

technique T to extract proteins from bacterial cells. We can suppose in this case that 

depending on the objective we consider, the “research projects” will have distinct utility 

functions. Even if the development of a vaccine is a “safe” alternative with a relatively low 

utility function (in comparison to, say, the search for antibiotics) to cure D, the knowledge of 

protein P and the improvement of T may have high utility functions relatively to other 

systems of practices (motivated by distinct general objectives). In this case, the herding of 

scientists in the “safe” alternative may be counter-productive for the problem at stake (the 

                                                           

11
If we follow the examples provided by the authors, these objectives may be to cure peptic ulcer, to make 

astronomical predictions of the “locations of heavenly bodies” in 1550 (by choosing between Ptolemaic or 

Copernican paradigms, p. 1063) etc.  
 



search for a treatment against D), but positive at a larger scale (relatively to other systems of 

practices). Kummerfeld and Zollman’s argument, if valuable in local contexts (that is to say, 

to solve a precise problem, or to explore a given, well-defined epistemic landscape), is harder 

to justify in more global ones (when considering the existing interconnections between the 

systems of practices). Finally, the apprehension of the situations where “unpopular” science 

should be actively promoted is certainly far for being an easy task.  

 

It could be noticed against our argument that Kummerfeld and Zollman’s model, such as the 

majority of DCL models, aims to study the optimal distribution of cognitive effort precisely in 

such local contexts, where each scientific objective is thought in isolation from the others. 

However, from the point of view of research policy, the optimization of the division of 

cognitive labor is a global problem, where all disciplines, specializations, research questions 

are to be thought together. Consequently, in their ambition to provide political insights, DCL 

models should mobilize a more realistic account of the structure of the systems of scientific 

practices.   

 

5-Conclusion 

 

The question of the relevance of social epistemology to guide research policy is a pressing 

one, as showed by the recent publishing of a volume of the Roar Transactions on this subject 

(Viola 2018). In this paper, we address it in the specific case of DCL models, which have 

flourished since the publication of Kitcher’s (1990) seminal work. These works try to assess 

what exactly is an optimal distribution of cognitive labor among researchers, and how the 

institutional conditions regulating science may contribute to its achievement. We show that 

when faced with the first question, DCL models ignore two central dimensions of the 

dynamics of science (the hierarchical interlocking of objectives and the variable epistemic 

significations of pluralism). We argue that this ignorance is problematic, since it may lead to 

misinterpretation of the results of the DCL models, and to biased policy advice. In this sense, 

they really constitute missing dimensions in the debate. This conclusion does not lead to a 

rejection of DCL models per se as epistemologically and politically irrelevant, but aims at 

figuring out some important properties of the dynamics of science that should be taken into 

account in this modeling activity.      

 



As Muldoon (2013) confesses, “there is much work left to do” (p. 124) to understand the 

“benefits and burdens of diversity” and the optimal division of cognitive labor. What form 

should this work take? We argue that the search for more refined quantitative DCL models 

should be supplemented by qualitative studies of the epistemic or psychological principles 

guiding the social organization of science, the consequences of the pressure exerted on 

individual scientists by centralized piloting, the balance between targeted and free research 

are crucial issues to inform science policy, and qualitative history and philosophy of science 

certainly have a central role to play on this matter.  
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