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1 Introduction

The first decade of the twenty-first century brought with it a series of publications by Harvey Brown
and Oliver Pooley [2, 3, 4] in which they bestowed upon special relativity (SR) a novel position
regarding its ontology. Distinct from the substantivalism-relationalism debate, whose subject
matter concerned the fundamentality of spacetime points, the ensuing dynamical-geometrical
debate was over the ontological status of the metric field. According to Brown and Pooley’s papers,
the metric tensor of SR plays nothing more than a codificatory role in the dynamics. Additionally,
itis itself a ‘glorious non-entity’.

Their dynamical approach to physical theories zeroes-in on what had been, in their view, an
unexplained correlation between facts about geometry and facts about the behaviour of dynamical
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§1 Introduction

fields (such as those constitutive of rods and clocks). The position asserts, among other things,
that facts about physical geometry are grounded in, or explained by, facts about dynamical fields,
not the other way round. The converse position—that geometry is explanatory of matter field
behaviour—is ubiquitous, and is the orthodox position on physical geometry and spacetime
structure. One of the most persistent critics of the dynamical view, John Norton [10], is taken to
have articulated a robust objection. His claim is that the proponent of the dynamical approach,
the so-called constructivist, to use Norton’s neologism, is illicitly committed to spatiotemporal
presumptions in ‘constructing’ spacetime from facts about dynamical symmetries.

The image of construction brings with it an image of building blocks. The standard way of
representing (at least some of) the building blocks of a theory is in terms of kinematical structure.
Broadly speaking, this is the structure that needs to be presupposed in order to build models
of physical goings-on. In spacetime theories, this structure is represented using kinematically
possible models (KPMs). KPMs of relativistic theories are tuples of the form (M, g,;,, ¢'), where M
is a smooth manifold, g,;, is a Lorentzian metric tensor and ¢’ is a placeholder for matter fields. A
KPM of SR, then, is one in which g,;, = 45, the Minkowski metric.

Models of this kind implicitly (and illicitly) have an extra bit of structure—a link between the
manifold and the fields. Specifically, for any point in M, distinct fields, ¢1, ..., ¢,, can be ‘evaluated’
at that point, and their values can then be taken, as e.g. Field does [5], to represent properties
of the same spacetime point. Call a KPM in which this link does exist a KPM of the first kind.
Constructing KPMs in this way is so intuitive that it is easy to lose sight of the fact that nothing
in the mathematical structure of the model makes the link necessary; elements of the set M do
not necessarily have primitive identity. To be sure, I make no commitment to whether or not it
is mathematically necessary that the points of a set have some primitive distinguishing feature.
All T claim is that one must be aware of whether or not such an assumption is being made at the
mathematical level, and if so, what its justifications might be. In what follows, we will be able to
interpret Norton’s physical requirement justifying his commitment to the primitive identity of
mathematical points in the manifolds in his models; in §3, I demonstrate how the notion of a
point, even mathematically, can be non-fundamental, and therefore devoid of primitive identity.

When we express fields as ‘functions of spacetime’, in the form ‘¢(x)’, they are composite
functions acting on a set of points, M, of the form ¢ o x : M — V, where V is some space in which
the fields take their values.There is a notational ambiguity here. It is sometimes the case that
‘x” is used to represent the coordinate function assigned to a point in M, its value, and also the
preimage of a point in R” under that function. In this paper, I use ‘x’ to represent the function,
and p to represent the preimage of a point in R* under x.

Given the arbitrariness of the coordinate function, there is no a priori need for the coordi-
natisations of two separate composite functions to coincide. In other words, there is no a priori
reason to require that the x in ¢(x) is the same as the x in y(x)—indeed, our use of the same
variable to denote both is indicative of a failure to allow for this mismatch. Call models in which
the preimages of x in ¢(x) and y/(x) can represent different points, KPMs of the second kind. As
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we will see in §4, Norton’s criticism is based on assuming the KPMs at play can only be of the
first kind. The central aim of this paper is to demonstrate that KPMs of the second kind can be
constructed for SR. And insofar as this is the first approach to spacetime theories that allows for
such a construction, I contend that the dynamical approach, pace Norton, is a genuinely novel
approach to spacetime.

2 The dynamical approach

The dynamical approach to SR takes seriously the fact that measuring devices like rods and clocks
are themselves entities whose constituent matter fields are governed by the same dynamical
laws as the systems they measure. Consequently, any explanation of their behaviour must make
reference to facts about the dynamical equations that govern them. Falling back on a geometrical
explanation of the form ‘rods and clocks contract because they are embedded in Minkowski
spacetime’ is, in the eyes of the proponent of the dynamical approach, unsatisfactory, unless the
geometry itself is taken to be a convenient shorthand for the symmetry structure of the dynamical
field equations.

A specially relativistic field theory is standardly presented in terms of dynamically allowed
maps from a manifold into some mathematical space. The metric structure on the Minkowski
manifold encodes certain facts about dynamical symmetries—these are transformations on the
fields that leave the form of the dynamical equations unchanged. According to the dynamical
approach, the metric structure attributed to this manifold is nothing more than a reflection of
this dynamical structure of matter fields. In particular, there is no sense to be made of the claim
that the Minkwoski manifold constrains or explains the symmetry structure of the dynamical
laws. Further, the position engenders an ontological claim—the Minkowski metric is thought
of as a ‘glorious non-entity’ [4], in the sense that it is not ontologically independent of matter
fields (this is not to say that proponents of the dynamical approach are anti-realists about it; just
anti-fundamentalist).

This raises an immediate question: even if one accepts that the metric is a non-fundamental
entity, what is the status of the smooth manifold? After all, the smooth manifold is the space of
independent variables in terms of which the field theory is expressed. If that too is a non-entity,
then how can one speak coherently of a field theory? How can one even define a field? Pooley’s
response [11, §6.3.2] is that theirs was never intended to be a reductive story about all putatively
‘spatiotemporal’ structure. They still presuppose the existence of a smooth manifold, with its
attendant topological properties. The dynamical symmetries of the fields then ground the further
metric structure of the manifold. Some readers might find themselves unmoved by this response.
My response in this paper, therefore, is to extend the dynamical approach to account for the
existence of topological and smooth structure on the manifold.



§3 Algebraic fields

3 Algebraic fields

If we think of the ontology of a generic field theory as being represented by mathematical objects,
then we have a nontrivial task in accounting for what the relationship between mathematical
objects and the putative physical objects they represent actually is. The task is nontrivial because
of certain artefacts of the language which we use to formulate our theories, the symmetry transfor-
mations, which disrupt a straightforwardly bijective mapping between mathematical objects and
worldly entities. Consider a collection of models of the form (M, 1,5, ¢'), where M is a smooth,
compact, Hausdorff manifold, n,; is the Minkowski metric tensor and ¢’ is a placeholder for all
the fields in the theory, ¢(x), ¥(x), x(x)..., etc., which satisfy a prescribed set of Lorentz-invariant
dynamical equations.! On this setup, the matter fields are represented as functions, ¢(x), from
the manifold, M (recall that this is shorthand for ¢ o x), to some mathematical space. Following
Huggett, [8], call this sort of representation of matter a material field.

There is a different, but entirely equivalent way of setting up a Klein-Gordon theory. Consider
the set of all smooth real-valued functions defined on some compact, Hausdorff manifold M. This
set is usually denoted as C*(M). Being real-valued, these functions assign, to each point, some
real number. As a result, there is a natural way to talk about the addition of two functions, ¢(x)
and y(x)—simply add their values at every point. The notation ‘¥(x)’ is, unfortunately, ambiguous
between the value assigned to some point under the mapping, ¥, and the abstract object that
defines the mapping rule. I will use (x) to represent the function as a material field, and y to
represent the abstract function.

It can easily be shown that the set of smooth functions, C*(M), under the operations of addition
and multiplication so defined, is an algebra over the field of real numbers. This can be given a
wholly algebraic characterisation as an automorphism on this algebra (which satisfies the Leibniz
rule). Of course none of this is intended to argue for a shift in the metholodogy associated with
finding these derivative operators. All that changes is our understanding of what the sort of
mathematical object our experimental data gives us reason to believe in. Whereas earlier we
might have thought of the Klein-Gordon operator as a differential operator on a manifold and
stopped there, now it should be thought of as representing some preferred set of automorphisms
on C*(M).

The abstract algebra of smooth functions, C*(M), together with this derivative operator con-
tains enough structure to allow us to completely characterise the dynamical scalar field system.
In particular, the fields ¢ and ¢ no longer need to be defined as functions on a manifold—they

11 should, at the outset, highlight a theoretical (though not practical) limitation of the analysis provided in this
chapter—attention here is restricted to compact manifolds. The compactness condition is non-standard; indeed,
Minkowski spacetime is non-compact. The algebraic analysis of spacetime points presented in this and the following
section, depends on the validity of the Gel'fand-Naimark theorem, which applies only to continuous functions on a
compact, Hausdorff manifold. The construction, therefore, reproduces a proper subset of SR models. This is a feature,
not a bug, of this account. Assumptions about the asymptotic behaviour of fields are never justified within the theory
itself. Thus, for any particular collection of fields of interest, we can consider the associated manifold to be a compact
submanifold of M, and then run the argument provided in this paper unproblematically.
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can be thought of merely as elements of an abstract algebra which may, but need not, be realised
as smooth functions on a manifold. Call this non-manifold-based representation of matter an
algebraic field, and the set of algebraic fields picked out by the derivative operator the space of
dynamically possible fields. It is important to point out that there is no sense to be made of the
‘value of the field at a point’ on the algebraic field approach. Here, the primary object is the entire
field, conceived of as a single element in an algebra.

Let us pause here to ensure that we haven't lost sight of the physical facts that we are trying to
capture. The material field picture of the world is relatively close to the manifest image, at least on
our simple scalar field theory (imagine that ¢ is a temperature field). It captures our intuitions
about a pre-existing set of spacetime points which ‘contain’ the scalar field. I contend that this
intuition is misleading—nothing in our physics warrants taking M rather than C*(M), or structure
defined in terms of it, as primitive. On the algebraic field view, all we are doing is taking the field
to be primitive.

If the abstract algebra out of which the dynamically possible algebraic fields are constructed
admits a realisation as a set of material scalar fields, then all of the information about the underly-
ing manifold—its topological and smooth structure—is already contained in the abstract algebra.
This fact is important—if we merely consider the vector space, C;7 (M) that consists of the smooth
functions from a manifold, then there is not enough information there to uniquely determine the
topology of the base manifold. This remarkable result, establishing the complete equivalence of
Hausdorff topological spaces and commutative C* algebras, was demonstrated by Gel’fand and
Naimark [6], and is referred to as the Gel'fand-Naimark theorem.

This characterisation of the theory is no more abstract than the model-theoretic characteri-
sation. We therefore see that the manifold is no more required to be part of that description, for
the algebraic formalism to make sense, than four concrete objects are required in order to make
sense of 2+2=4. In other words, the abstract algebraic picture should not be thought of as less able
to capture the important structural dynamical features of a theory like SR. It is merely the case
that it does not lend itself to a (relatively) simple visualisation of the ontology in the way that the
manifold picture does. Our physical theories, however, consist of much more structured mathe-
matical objects than just scalars—they include vectors, tensors, connections, and so on. Geroch’s
classic paper on Einstein algebras [7] demonstrates that all of these objects can be characterised
algebraically as well.

4 Norton’s criticism

Norton claims that the dynamical approach to relativity (or, to switch to his term, constructive
relativity) fails. He advances the following criticism of the constructive relativist project: that
it ‘only succeeds if constructivists antecedently presume the essential components of a realist
conception of spacetime’ [10, p. 821]. Norton is explicit about what, for him, constitutes a realist
conception of Minkowski spacetime:
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(1) There exists a four-dimensional spacetime that can be coordinatized by a set of
standard coordinates (x, y, z, t) related by the Lorentz transformation.

(2) The spatiotemporal interval s between events (x, y, z, t) and (X, Y, Z, T) along a
straight [footnote suppressed] line connecting them is a property of the spacetime,
independent of the matter it contains, and is given by

SP=(t-TY - (x-XP-(y-Y)P-(z-2)°

(3) Material clocks and rods measure these times and distances because the laws of
the matter theories that govern them are adapted to the independent geometry of this
spacetime. [10, p. 823]

Before dealing with the specific challenges Norton levels against the constructive project, it
is worth addressing two ways in which this conception of spacetime realism misrepresents the
constructive project’s aims (insofar as it asserts that the constructive project must deny them).
First, that the constructivist must deny the existence of a ‘four-dimensional spacetime that can be
coordinatized by a set of standard coordinates.” Nothing in the setup of the dynamical approach
commits its adherents to the denial of the existence of spacetime—all that is required is that
spacetime structure (to the extent that it can be identified) be reducible to facts about the dynamics
of fields. In other words, the constructivist need only be committed to the non-fundamentality of
spacetime, in the sense that it is ontologically dependent on matter fields.

Second, that the spatiotemporal interval is a ‘property of the spacetime independent of the
matter it contains.” This notion of independence is ambiguous. It could either mean (i) that the
interval is a property of spacetime that does not require matter fields in order to be intelligible
(call this the ontological reading) or (ii) that the interval still requires matter fields in order to be
intelligible, but is neutral with respect to idiosyncratic details of which of several distinct matter
fields is being considered (call this the epistemological reading). The constructivist denies the
ontological reading, but accepts the epistemological reading. Thus the spacetime realist position
that the constructive denies is more accurately characterised as follows:

(1) There exists a fundamental four-dimensional spacetime that can be coordinatized
by a set of standard coordinates (x, y, z, t) related by the Lorentz transformation.

(2) The spatiotemporal interval s between events (x, y, z, ) and (X, Y, Z, T) along a
straight [footnote suppressed] line connecting them is a property of the spacetime,
ontologically independent of the matter it contains, and is given by

SP=(t-T - (x-XP-(y-Y)P-(z-2)°

(3) Material clocks and rods measure these times and distances because the laws of
the matter theories that govern them are adapted to the ontologically independent
geometry of this spacetime.
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4.1 Claim one

The construction project must tacitly assume an already existing spacetime endowed
with topological properties, so that it can introduce spatiotemporal coincidences, and
a unique set of standard coordinates (x, y, z, t). [10, p. 824]

Norton, here, assumes that no sense can be made, in purely constructive terms, of a spatiotem-
poral coincidence, as a result of which, it needs to be presupposed. This is not true. As we will see
in what follows, Norton conflates a difficulty in having epistemic access to spacetime points with
an inability to define them; the constructivist can perfectly easily make sense of an appropriate
definition of a spacetime point, regardless of whether its interpretation as a point of coincident
field values is dynamically accessible.

On the algebraic view, the notion of a spacetime point is derivative—it is specified by some
linear functional, say X on C*(M), which maps ¢ to an element in the space of maximal ideals of
C™(M). ? Let M represent the space of maximal ideals—for a compact manifold, each element is
the set of functions which vanish at p. We thus see that each spacetime point is uniquely associated
with an element of Mt. More generally, any closed subset of the manifold is associated with a closed
ideal.

If we had a more complicated theory, say, some interacting theory of a vector field and a
connection (like electromagnetism in the vector potential formalism), the equivalent of spacetime
points can still be built out of the algebra C*(M)—this always remains a constituent of the KPMs.
Then separately, using the algebra C*°(M) one can construct derivatives and tensors in the standard
way—these are then represented as elements ¢ of some solution space.

Thus, X(¢) just gives us the quadruple (x#), the image of the function x, that we would have
expressed ¢ in terms of, had we chosen to realise it as a scalar field on a manifold. In order to see
if it coincides with, say, X (¥), where ¢ € 8 is a different dynamical field coupled to ¢, it suffices to
check the space of dynamically possible models of the interacting theory. If X(¢) = X(¢), then we
have defined the spatiotemporal point of coincidence of the two fields. Whether this definition is
useful, of course, depends on details of the dynamics.

Consider, now, a coordinate system on which we have good reason to believe that, say, a
Gaussian wave packet of the ¢(x) field bounced off a Gaussian wave packet of the y(x) field in the
neighbourhood of some point. There will be a class of coordinatisations which assign field values
in such a way that the dynamics of each field determines that a collision took place in the vicinity
of some point, and another class of coordinatisations on which the kinks in the trajectories (or,
more generally, some fact about the dynamical interaction) of each particle do not take place
at the same coordinate value. On pragmatic grounds, the former class of coordinate systems
will be preferable. For free fields, there simply is no operational sense of spatiotemporal point
coincidence, although such points can still be defined. In such a case, though, these would amount
to arbitrary stipulations.

2 Recall that, for simplicity, we are dealing with linear dynamics of scalar fields, so the space of DPMs has the structure
of a vector space. X is only a linear functional in cases like this. More generally, X is just a smooth mapping.
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This observation points to an arbitrariness in our definitions of ‘free’ and ‘interacting’ particles.
The trajectory of a particle of the ¢ field might be such that it contains a change in direction that,
on an interacting field picture, we attribute to it having collided with another field, ¢ at some
point. That is to say, there is a choice of functional X such that X(¢) = X(¥) at the appropriate
point (actually infinitely many). Of course, there are also infinitely many choices of X on which
#(x) suddenly has a kink in its trajectory at some point, and (x) does too, at a different point. We
can always absorb these kinks into a complicated dynamical picture of free fields, and we lose no
descriptive power. But on this picture, each field, in a sense ‘inhabits its own spacetime’.

When thinking about field theories in this algebraic sense, several standardly intuitive concepts,
such as energy or time evolution, are no longer necessary or even applicable. Let the space of
dynamically possible fields be represented by 2. Each element, ¢ € ¥, is the equivalent of a
complete history of a material field, and the notion of, for example, a Hamiltonian generating
time evolution of data only becomes meaningful in the context of a specific solution in a specific
realisation—a Cauchy problem on the material field realisation. If we consider elements of the
algebra to be the fundamental entities, then spacetime points become derivative, independently
of the form that the dynamics might take.

In such a theory, the means of having epistemic access to a particular point (or arbitrarily
small region of spacetime) is through the interaction dynamics—but this is not how we need to
define a point. And Norton’s criticism of the constructivist is based on their purported inability to
define a point derivatively.

Of course, this is only part of the story for the constructivist—in order to recover the fact that
spatiotemporal coincidences are preserved under homeomorphisms, it must be the case that
the dynamical symmetries, encoded in the relevant derivative operator, preserve spatiotemporal
coincidences. In other words, it must be the case that the dynamically possible models are such
that under the automorphisms, S : A —» A, S : B — B, it is the case that if X(¢) = X(¥), then
XS(¢) = XSW).

The fact that the dynamical symmetry group of SR, the Poincaré group, is a Lie group (which
acts freely and transitively) ensures that this is the case. The dynamical symmetry group acts on
states—elements of A which, to the extent that they can represent approximately particle-like
behaviour, are trajectories in M. All Lie groups are smooth manifolds—which means that their
topology is the standard topology. This is the topology that the space of solutions inherits.

According to the Gel’'fand-Naimark theorem, the space, M, of closed maximal ideals of the
algebra C*(M) is homeomorphic to M. The set ¥, of linear functionals X, determines 9, when
its elements act on any element of C*(M). Thus the set X of linear functionals determines the
manifold of ‘spacetime’ points. Any automorphism on A and B(c C*(M)) that is itself an element
of a Lie group will preserve the coincidence X(¢) = X(y)—this is just another way of saying a Lie
group element generates a diffeomorphism on the underlying manifold of the space on which
it acts. Note that this does not require that 2 be a subalgebra of C*(M), or even a vector space
(although, for dialectical simplicity, I have taken this to be the case in this example). The algebraic
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properties of 2 are determined by the form of the derivative operator, D, while the (independent)
topological and differential properties of 2 are determined by its dynamical symmetry group.

This is not the same as using the energy of interactions from, say, the spin-coupling term of
the Hamiltonian to designate the same spacetime event, a point Norton himself raises. There is
no reference to energy in the proposal here. Rather, what is accounting for the coincidence of X(¢)
and X (y) is that the values of these functionals are preserved by a certain class of automorphisms
on U and B.

In short, the kinematical structure is provided by the algebra C*(M), and mathematical objects
defined therefrom. The kinematical structure can be used to define a set of linear functionals
(on C*(M)) that maps any element to a set, M, of maximal ideals. Because the topological and
differential structure of M is encoded in C*(M)—call this the kinematical smooth structure—this
is equivalent to choosing a smooth manifold, M. The tensorial objects constructed out of C*(M)
will always form a vector space, but the subset of ‘dynamically allowed’ objects, picked out by
some derivative operator need not. At the level of kinematics, this suffices to define KPMs of the
second kind.

The constructivist can, thus, talk about non-fundamental spacetime point coincidences
(whose utility is determined by dynamical considerations) that are preserved under homeo-
morphisms. All of this can be done without having to presuppose fundamental, ontologically
independent spatiotemporal facts. Norton assumes that there is no way of writing down a geomet-
rical theory without points. If this had been true, then his challenge to the constructivist would
have been devastating. But using Gel'fand and Naimark’s result to refine our notion of kinematical
structure, Norton’s first claim, that ‘attempts to extend [...] constructivism to spacetime points
will fail’ [10, p. 829] can be easily shown to be false.

4.2 C(Claim two

The Lorentz covariance of all matter theories asserts an adaptation between matter
and this spacetime akin to the realist’s [(3)], although without [(3)]’s presumption of
the direction of the adaptation of matter to spacetime. [10, p. 824]

This second criticism loses all of its bite once it has been shown that spacetime points do not
have to be presupposed by the constructivist. Once one has constructed a smooth manifold in
the manner described in §3, one can then use Brown and Pooley’s truncated Lorentzian pedagogy,
realised either in Humean terms, as Pooley [11] and Stevens [12] do, or in Kleinian geometric terms
as Wallace [13] does, in order to account for the appearance of Minkowski metric structure. This
structure is then merely a reflection of the symmetry properties of dynamical fields. In that sense,
the (metric) structure of spacetime is, indeed, adapted to the matter fields in virtue of having been
derived from them, and it could not have been any other way. There is no ‘direction of adaptation’
between spacetime and matter any more than there is a direction of adaptation between ‘bachelor’
and ‘unmarried man’.
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4.3 Claim three

Constructivists must accept that spatial distances and times elapsed are properties of
spacetime as asserted in [(2)], on pain of failing to reconstruct traditional spacetime
geometry and also having to accept an extreme form of operationalism in which
quantities have values only if they are actually measured. [10, p. 824]

To bolster his claim that the constructivist is committed to ‘an extreme form of operationalism,
Norton presents an example of a region of spacetime that is either (A) devoid of matter or (B)
hosts a static matter distribution. On this, Norton offers the following:

In this part of spacetime, we can select two noncoincident timelike-separated events
A and B such that nothing changes as we pass along the straight segment of spacetime
connecting them. In the ordinary realist’s conception, we would say that some time
elapses between them. What can a constructivist say? There are no material clocks
actually present measuring the time elapsed, for there is either no matter present or
no change in the matter present as we pass from A to B. So the constructivist has no
material basis for the recovery of a time change. If times elapsed are to supervene on
matter, or more vaguely to be a result of the properties of matter, then the absence of
any change in the matter entails that there is no change in times elapsed. [10, pp. 831-
832]

There is a subtle but important difference between the case of ‘no matter’ and ‘static matter’. In
the former case, as Pooley points out, ‘for the constructivist there is literally nothing in an empty
region and so nothing whose geometrical properties might be indeterminate. The constructivist
does not believe in the existence of an independently existing spacetime!’ [11, §6]. There are no
matter fields, a fortiori no dynamics, a fortiori no structure to preserve in the algebra C*(M).
Further, there is no reason to believe that the space of KPMs should refer to C*(M) rather than,
say, C*(M’), where M 2 M’. So even the point-structure to be specified is totally arbitrary—every
choice of kinematical structure is as good as every other.

In the latter case, we find ourselves in a position alluded to at the end of §4.1. On the algebraic
picture, the fundamental object is the entire field—to the extent that we are interested in ‘regions,
we must talk about closed ideals of the algebra C*(M). These ideals will still specify topological
information about ‘regions’, but will be silent on metric structure—the Gel'fand-Naimark theorem
only recovers topological and smooth-structure. Since there is no interacting field, there is no
choice of linear functionals that is dynamically privileged, so all sets of such functionals are equally
useful in realising the algebraic field as a material field. On the material field realisation, therefore,
in static regions, there will simply be no fact about how much proper time has elapsed between
any two points. Indeed, this functions as reductio against Norton’s assumption that there is a
determinate fact about the (proper) time that has elapsed between A and B.

10
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5 Conclusion

In this paper, I presented an extended version of the dynamical approach, based on the observation
that the kinematically possible models can be characterised without requiring primitive spacetime
point-coincidence of fields. Once we are aware of the implicit link in our KPMs between spacetime
points and ‘points of independent variable coincidence of field values’, it is important to determine
whether or not this structure is epistemically warranted and dynamically necessary. I argued that
itis neither.

Using an algebraic reformulation of classical field theories, which did away with the kinematical
requirement that fields be defined as maps from manifolds, I demonstrated how ‘KPMs of the
second kind’ could be constructued. These KPMs (and their associated Poincaré-invariant DPMs)
were then be used to counter Norton’s criticism of the dynamical approach.
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