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A.1. Affine spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.2. Affine automorphisms and affine groups . . . . . . . . . . . . . . . . . . . . . 31
A.3. Affine bases and affine charts . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.4. Passive versus active transformations . . . . . . . . . . . . . . . . . . . . . . . 32
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Introduction

This paper deals with a well known problem in classical relativistic field-theory concerning the
question of precisely how a local distribution of energy and momentum can be used to construct
global quantities that, with some justification, can be said to represent these quantities globally.

The main body of the paper is organised into two Sections of approximately the same length
and six subsections each. In addition there are three fairly detailed appendices providing some
standard background material that we thought should not clutter the main text but the content of
which is nevertheless important in order to follow the conceptual and technical arguments of the
two main sections.

In Section 1 we will review and critically discuss the necessary and sufficient conditions under
which meaningful global quantities may be constructed for Poincaré invariant field theories,
that is, in the context of Special Relativity (henceforth abbreviated SR). We will put particular
emphasis on the requirement that the global quantities in question must change according to a
particular representation of the Poincaré group (inhomogeneous Lorentz group) under the action
of that group on all those fields whose energy-momentum distribution is considered. This is a
non-trivial requirement, which is conceptually essential for the proper physical interpretation of
the quantities to be constructed. We will find that it takes the simple mathematical form of a
condition of equivariance, provided a careful distinction is made between the dynamical fields
(carrying energy and momentum) and auxiliary ones. This will then naturally lead us to a classic
theorem dating back to 1911 due to Max von Laue (still without the nobiliary particle “von” in
his name at the time he wrote the relevant paper, hence it is usually referred to simply as “Laue’s
theorem”), the proof and physical relevance of which we will also discuss.

The mathematical language of Section 1 deliberately sticks to the traditional component rep-
resentation of geometric objects over Minkowski space. It is this component language that is
most familiar to working physicists and that is often the most direct way to import the physical
intuition and intentions behind various constructions. Most of what is presented in Section 1
is well known, in one form or another, though I believe that some of the subtle points are here
spelled out more clearly and comprehensibly than in other sources.

In Section 2 we will then transform the preceding, coordinate-based discussion into a proper
differential-geometric language. As is widely appreciated, coordinate-based language not only
tends to hide the geometric assumptions that are necessary in order to render the whole construc-
tion meaningful, but it also bears the danger to mislead to geometrically meaningless construc-
tions, like, e.g., taking integrals over tensor components – a construction often encountered in
physics. This is precisely what is done in the formulation and proof of Laue’s theorem, of which
no proof in component-free form has hitherto been given, nor have its geometric hypotheses
been spelled out correctly. We will fill that gap in Section 2 in which we give a proper statement
and proof of a generalisation of Laue’s theorem that remains valid outside SR and wich contains
the classical statement as a special case.

Throughout, and in particular in Section 2, we shall make free use of standard differential
geometric concepts, like manifolds, tensor bundles and their sections, natural bundles, various
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forms of derivatives (exterior, Lie, covariant, exterior-covariant), Hodge duality, etc. All these
should be familiar to physicists used to geometric field theory, particularly those familiar with
General Relativity (henceforth abbreviated by GR) on the level of a good modern text-book,
like [25]. Our notation and conventions relating to these concepts are explained in detail in
Appendices B and C. Appendix A contains some background material relating to Minkowski
space and its automorphism group, the Poincaré group. Appendix A is also meant to remind the
reader on the notion of affine spaces and associated structural elements, like affine bases, affine
charts, and affine groups, as well as the distinction between active and passive transformations.
Albeit basic, these notions often tend to be suppressed or even forgotten in the physics literature.
Being aware of them is important in order to fully appreciate the discussion in Section 1, to
which we now turn.

1. The traditional picture

In this section, which contains six subsections, we start with our first half of the program as
just outlined. As already stressed, we deliberately adopt a traditional mathematical language,
usually employed in physics papers and physics textbooks, to keep as close as possible contact
to the intentions and intuitions coming from physics. At the same time we try to carefully avoid
some of the misconceptions which are often imported by either assuming some unwarranted
mathematical properties, or by misinterpreting them. A typical example of the latter sort results
from an insufficient distinction between the two meanings of Poincaré transformations (com-
pare Appendix A.4): First, as mere transformations between affine charts on Minkowski space
M (passive interpretation), which necessarily affect the component representation of all geo-
metric structures defined over M, and, second, automorphism of Minkowski space (i.e. special
affine maps), which we can use to act selectively on only some geometric structures which are
physically distinguished in a contextual fashion. For example, we may wish to act with a boost
transformation on that subset of fields in Minkowski space whose energy-momentum distribu-
tion we consider, while leaving all other fields in their original state. That is, we may wish to
boost some of the matter fields relative to all the others providing the reference. This will be the
situation we actually encounter below.

1.1. Energy-momentum tensors

The energy-momentum distribution of a physical system is characterised by its energy-momentum
tensor T, which is a section in the bundle TM⊗ TM. Following standard conventions we write
T ∈ Γ(TM ⊗ TM)(compare Appendix B). So far (M,g) may represent any spacetime. Here
we are restricting attention to four-dimensional M (this will be relaxed in the second section).
Following standard conventions in physics we denote space-time indices by greek letters if they
refer to four dimensions (otherwiswe latin) and let α,β, ..,∈ {0, 1, 2, 3}, where the index 0 refers
to a timelike basis element or coordinate.

Consider a point p ∈ M and a timelike future-pointing vector u ∈ TpM normalised to c
(velocity of light), so that g(u, u) = c2 . That vector defines an instantaneous state of motion of
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an observer at p whose four-velocity is just u. We take e0 := u/c as a first (timelike) vector of
a orthonormal basis {e0, e1, e2, e3} of TpM, such that g(eα, eβ) = gαβ = diag(1,−1,−1,−1).
We call u⊥ := {v ∈ TpM : gp(u, v) = 0} = span{e1, e2, e3} the instantaneous rest-space of the
observer u.

If M is Minkowski space (an affine space; see Appendix A) we may identify each TpM with
the underlying vector space V . Then the subset p+u⊥ ofM is a spacelike affine hyperplane con-
sisting of all events in M which are Einstein synchronous with p for an inertial (i.e. force free)
observer moving along the timelike line tangent to u through p. All this is standard terminology
in physics and mathematical relativity; see, e.g., [23] for a good account.

Let {θ0, θ1, θ2, θ3} be the dual basis to {e0, e1, e2, e3}, i.e. θα(eβ) = δαβ. Then Tαβ =

T(θα, θβ) are the so-called contravariant components of T, whose physical interpretation is
as follows: T 00 is the energy density, ~S := (cT 01, cT 02, cT 03) are the three components of the
energy current-density, ~G := (T 10/c, T 20/c, T 30/c) are the three components of the momentum
density, and finally the symmetric 3 × 3 matrix {Tab} comprises the 9 components of the mo-
mentum current-density. Here the word “components” always refers to vectors and tensors in
the instantaneous 3-dimensional rest frame u⊥ with respect to the basis span{e1, e2, e3}. As such
T comprises 1+ 3+ 3+ 9 = 16 independent components characterising the energy-momentum
distribution of matter at each spacetime point.

Often, though not always, T is assumed to be symmetric,

Tαβ = Tβα . (1)

In the notation above this means that the energy current-density ~S and the momentum density ~G
are related by ~G = ~S/c2 and that the n-th component of the m-th momentum current-density
equals the m-th component of the n-th momentum current-density, i.e. Σmn = Σnm. Hence a
symmetry (1) reduces the 16 to 1 + 3 + 6 = 10 independent components. Energy momentum
tensors representing all the sources of gravitational fields in Einstein’s field equations of GR are
necessarily symmetric, though this does not necessarily imply that they cannot be meaningfully
decomposed into a sum of non symmetric ones attributed to various sub-components of matter.
In any case, we shall assume T to be symmetric throughout this paper.

There is another condition that T may satisfy and which we wish to mention here, although
we shall not need it right now (it becomes of central importance later on). It is the covariant
divergencelessness of T, which we write as∇ · T = 0, or in components

∇βTαβ = 0 . (2)

Here ∇ denotes the Levi-Civita covariant derivative for g, that is, the unique torsion-free and
metric (i.e∇g = 0) connection (we use “covariant derivative” and “connection” synonymously).
Equation (2) implies the local conservation of energy-momentum encoded by T, provided g
admits certain symmetries generated by Killing vector fields. Without such symmetries energy
and momentum of the matter alone will not be conserved. In that case the interpretation of (2)
in GR is that locally energy and momentum can be exchanged between the matter (described by
T) and the gravitational field (described by g); see, e.g., [25].
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1.2. Global energy momentum in SR

Let us now restrict (M,g) to Minkowski space. In manifold terms this means that M is diffeo-
morphic to R4 and that g = η, where here and in the sequel η denotes a Lorentz metric whose
Levi-Civita connection is flat. We also recall the affine structure of Minkowski space and refer to
Appendix A for details. Important here is that the affine structure endows the manifold M with
a preferred set of global charts, called affine charts. With respect to affine charts all connection
coefficients vanish and (2) assumes the form

∂βT
αβ = 0 , (3)

which can indeed be interpreted as local energy-momentum conservation.

Let us digress for a moment in order to make a few comment concerning the physical signif-
icance of the affine structure of Minkowski space. As is well known, the timelike lines within
the set of all lines (one-dimensional affine subspaces) already fix the entire affine structure of
Minkowski space. In this fashion the affine structure of Minkowski space becomes a faithful
mathematical representation of the physical law of inertia, according to which a particular sub-
set of motions is characterised as “force-free” or, as already said, “inertial”. In this way affine
maps, too, acquire the physical significance as the symmetry group of the law of inertia: they
map force-free motions to force-free motions. In that sense the law of inertia should be regarded
as a special case of a “path structure” in the sense of [5], without the specification of which the
very notion of “force” makes no sense. By definition, “forces” are the causes for deviations from
inertial motions, which must be defined first. For more on this, see [10] and [19]. The take-home
message for us at this point is that in using affine structures we are, in fact, already in the process
of modelling physical dynamical principles.

After this small digression we return to our main discussion. We note that Hypersurfaces
of constant value for a single affine-chart coordinates are affine hyperplanes. In such charts a
moment in time is represented by a spacelike affine hyperplane Σ ⊂ M in Minkowski space;
e.g., the hyperplane of constant time zero: Σ := {p ∈ M : x0(p) = 0}. The global quantity
we wish to construct is either associated with the whole hyperplane (i.e. involves all of space
at this time) or a bounded subset thereof, which we shall also denote by Σ. For its construction
we do not wish to impose (3) in order to be able to speak of the system’s overall energy and
momentum in situations where it is not conserved. Hence, in what follows next, we shall only
assume symmetry (1). Later we will have plenty of opportunity to discuss the impact of (3)

We wish to speak of the total energy and momentum contained in Σ (i.e. “at the moment
in time” represented by Σ). The most naive thing to do is to just integrate the energy density
T 00 and momentum density1 Ta0 (a = 1, 2, 3) over Σ. Hence we consider the four numbers,
{Pα : α = 0, 1, 2, 3} defined by

Pα :=

∫
Σ

Tαβnβ dµΣ . (4)

1 Actually, as explained above, the momentum density is 1/c times the components Ta0 (a = 1, 2, 3), which means
that our Pα will actually equal c times the components of ordinary four-momentum. In order not to carry along all
the factors of cwe shall ignore this difference, which is completely irrelevant for our purpose and which disappears
in units where c = 1.
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Here nβ are the covariant components of the normal to Σ in M and dµΣ is the measure 3-form
on Σ induced from the measure 4-form ε on (M,g), which in affine coordinates xα is just the
Lebesgue measure: ε = dx0 ∧ dx1 ∧ dx2 ∧ dx3. Writing in for the insertion map that inserts
n into the first slot of a general form, we have

dµΣ = ?n[ = inε =
1
3!n

µεµαβγdx
α ∧ dxβ ∧ dxγ . (5)

Here and in the following the superscript [ on a vector denotes its corresponding dual vector
under the isomorphism given by the metric, which we define in (90). Also ? denotes the Hodge
duality map defined in (98).

The intended result of the somewhat bold method to just integrate all the densities is, of course,
that these four numbers somehow represent the total energy and total translatory momentum of
the system in the rest-frame represented by the hyperplane Σ and with respect to the affine
coordinates xa used within in. We further expect these four numbers to define an element in a
vector space that carries a specific representation of the Lorentz group, namely the defining one.
Physicists often express this expectation by saying that total energy-momentum should form a
“four vector”, meaning that the four numbers transform according to the defining representation
of SO(1, 3). But is that really true? And if so, how would we characterise the vector space this
“energy-momentum vector” is an element of? In fact, as is well known, and as we will see in a
moment, the fulfilment of all these expectations is not at all guaranteed and depends on further
global conditions on T that we will now investigate.

1.3. Local energy-momentum transformation

The four numbers (4) we now calculate for two different dynamical systems whose energy-
momentum distributions are represented by two different energy-momentum tensors, T and T̄.
The two systems are chosen such that they are related by an active Lorentz transformation Λ,
which means that

(Λ,T) 7→ Λ · T := Λ⊗Λ(T ◦Λ−1) =: T̄ , (6)

where in the last step we simply introduced the notational abbreviation of writing an overbar
for the Λ-transformed quantity. Note that (6) just denotes the push-forward transformation law
of a contravariant tensor field under the action of the Lorentz transformation Λ. It is a special
example for the natural lift of the diffeomorphic action of the Lorentz group onM to any bundle
associated to the principal bundle of linear frames, here to the bundle TM ⊗ TM (compare
Appendix B.3). In terms of component functions with respect to our affine coordinates, this
reads

T̄αβ
(
x
)
= ΛαγΛ

β
δ T

γδ
(
Λ−1x

)
, (7)

where the x and Λ−1x in the argument stands for all four xµ and (Λ−1)µνx
ν, µ ∈ {0, 1, 2, 3},

respectively.

The following is important to note: For both dynamical systems the components of their
respective dynamical quantities refer to the same affine coordinates {xα : α = 0, 1, 2, 3}. Our
Poincaré transformation acts on the dynamical fields, not on the observer or a reference-system,
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and produces via its action another system with different observable features relative to the very
same reference system that we exclusively use.

To end this subsection we wish to alert the reader to another non-trivial aspect hidden in (6),
also connection with the active interpretation of transformations employed here, which is the
following: Usually we think of T not as just simply given, but as functionally specified in terms
of elementary fields, which we separate into two sets, F and F ′, whose distinction is important.
Hence we write T(F, F ′). F collectively denotes all fields of which T represents the energy-
momentum distribution, and F ′ collectively denotes all possibly existent further background
fields that we may use to define T. For example, in Maxwellian electrodynamics in its traditional
“metric” formulation2, F would be the Faraday tensor, comprising electric and magnetic fields,
and F ′ would be the background Minkowskian metric. The value-space of the dynamical fields
F is assumed to carry some representation D of the Lorentz group, so that the field F itself
(as element of a mapping space; later to be identified with a section in an appropriate bundle)
transforms as

(Λ, F) 7→ Λ · F := D(Λ) ◦ F ◦Λ−1 . (8)

The non-trivial requirement behind (6) then is:

T(Λ · F , F ′) = Λ · T(F, F ′) . (9)

Note that the corresponding statement

T(Λ · F , Λ · F ′) = Λ · T(F, F ′) , (10)

in which Λ is also allowed to act on F ′ as (Λ, F ′) 7→ Λ · F ′ := D ′(Λ) ◦ F ′ ◦ Λ−1 via some
representation D ′ on the value-space of F ′, would be much weaker and, in fact, almost trivial.
It would merely require T to be a covariant construct of F and F ′. In contrast, equation (9) is
far more demanding. It requires that the energy-momentum distribution of the Λ-shifted fields
F is the Λ-shift of the original energy-momentum distribution of F, given the same background
F ′ throughout. For example, coming back to ordinary (metric) electromagnetism in Minkowski
space, let now Λ be any diffeomorphism, F again the Farady tensor, and F ′ the background
Minkowski metric. Then (10) will always hold true, but (9) only ifΛ stabilizes F ′, i.e. Λ·F ′ = F ′,
which just says that Λ must be an isometry and hence a Poincaré transformation.

It seems remarkable that the non-trivial requirement behind (9) is hardly ever spelled out, or
even recognised, in standard text-books. A notable exception is found in § 31 and § 31∗ of Fock’s
classic text [8], where Fock discusses the requirement (which he calls a “physical principle”)
that “the mass tensor must be a function of the state of the system” ([8], p. 95). Here “mass
tensor” refers to the energy-momentum tensor rescaled by c−1. This sound as if Fock had (9) in
mind, which is also supported by his discussion that stresses the non-triviality of his “physical
principle”. However, semantically an ambiguity remains as to whether Fock’s “system” refers
to, in our notation, the system represented by F, or the wider system represented by (F, F ′). Fock
unfortunately does not explicitly address this distinction which becomes particularly important
in the more general cases discussed below in 2.3.
2 The metric formulation of electrodynamics assumes a background metric of spacetime, the Minkowski metric.

There are also metric-free formulations, as discussed in detail in [13].
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1.4. Global energy-momentum transformation

We now wish to see how the four numbers (4) are affected by a particular set of Lorentz trans-
formations, namely pure boosts.3 We restrict to boosts because no non-trivial statement of the
kind developed here follows from translations and rotations.

So let us specifically take a boost in x1-direction:

Λαβ =


γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

 . (11)

Here, as usual, β := v/c and γ := 1/
√
1− β2. Then

T̄ 00(x) = γ2
[
T 00(x) + β2T 11(x) + 2βT 01(x)

]
(12a)

T̄ 11(x) = γ2
[
T 11(x) + β2T 00(x) + 2βT 01(x)

]
(12b)

T̄ 01(x) = γ2
[(
1+ β2)T 01(x

)
+ β

(
T 00(x) + T 11(x)

)]
(12c)

T̄ 0n(x) = γ
[
T 0n(x) + βT 1n(x)

]
(12d)

T̄ 1n(x) = γ
[
T 1n(x) + βT 0n(x)

]
(12e)

T̄nm(x) = Tnm(x) . (12f)

Here we set for abbreviation,

x := Λ−1x =
(
γ(x0 − βx1) , γ(x1 − βx0) , x2 , x3

)
, (12g)

and the indices n andm may take on independently any of the two values 2 and 3.

In the integral (4) we have nµ = 1 for µ = 0 and nµ = 0 otherwise, for Σ is the zero-level set
of x0. This implies that the induced measure (5) is simply the Lebesgue measure in the spatial
affine coordinates

dµΣ = dx1 ∧ dx2 ∧ dx3 =: d3x . (13)

For P̄α the integrals (4) now involve the four components T̄ 00, T̄ 01 and T̄ 0n (n = 2, 3), evaluated
on Σ. For x0 = 0 we have x =

(
−βγx1 , γx1 , x2 , x3

)
. Therefore the integrands (4) will

involve the components T̄ 00, T̄ 01 and T̄ 0n at all times −βγx1, where x1 takes all values from
within the intersection of Σ with the support of T. As a result, no simple statement relating the
integrals of the original and the boosted systems can be made for generally time dependent Tαβ.
On the other hand, if we assume the components Tαβ to be independent of time x0, i.e.,

∂0T
αβ = 0 , (14)

3 Pure boosts can be characterised within the Lorentz group only with reference to a timelike direction, which here
is taken to be ∂/∂x0. A ‘pure boost’ is then any linear Lorentz transformation that moves points in a timelike
2-plane containing ∂/∂x0 and leaves the g-orthogonal spacelike 2-plane poinwise fixed.Pure boosts do not form a
subgroup of the Lorentz group.
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all dependencies of the barred components T̄αβ on the spatial coordinates derive from the spatial
dependence of Tαβ in the simple fashion given by (12g) for x0 = 0: x1 is multliplied with γ
whereas the dependence on x2 and x3 is unchanged. By a simple change of variables in the
integration over Σ this results in a common factor 1/γ and we obtain

P̄0 = γ

(
P0 + 2βP1 +

∫
Σ

T 11d3x

)
, (15a)

P̄1 = γ

(
(1+ β2)P1 + βP0 + β

∫
Σ

T 11d3x

)
, (15b)

P̄n = Pn + β

∫
Σ

T 1nd3x . (15c)

This we compare to the defining representation of the Lorentz group on R4:

X̄0 = γ
(
X0 + βX1

)
, (16a)

X̄1 = γ
(
X1 + βX0

)
, (16b)

X̄n = Xn . (16c)

It follows that the Pα → P̄α transformation follows the pattern (16) for all β, if and only if
P1 = 0 and all three integrals

∫
Σ T

1ad3x vanish for a = 1, 2, 3.

Now, as the direction of our boost was arbitrary, repeating the argument with boosts in the
2− and 3− direction shows that Pα → P̄α transforms like the components of four vector under
boosts, if and only if the integrals over Σ of all components Tµν vanish, except that of T 00.
Hence ∫

Σ

Tµm d3x = 0 (17)

for all µ ∈ {0, 1, 2, 3} and allm ∈ {1, 2, 3}.

A priori there seems to be no obvious reason why any stationary physical system should have
an energy-momentum tensor satisfying (17), In fact, (17) will fail in the general stationary case.
But recall that so far we did not assume energy-momentum conservation (3). It is Laue’s theorem
that precisely connects energy-momentum conservation and (17).

1.5. Laue’s theorem: classical statement

Laue’s theorem was first proven (under slightly stronger hypotheses, some of which turn out to
be unnecessary) in his classic paper [17], in which he for the first time explained in a general
fashion the impact of Special Relativity onto the dynamical description of systems in static
equilibrium. The theorem is based on the obvious identity,

∂n(T
µnϕ) = (∂nT

µn)ϕ+ Tµn ∂nϕ , (18)

where ϕ : Σ → R is any smooth function. If we assume energy-momentum conservation (3)
and stationarity (14), the first term on the right-hand side vanishes. Applying Gauß’ theorem
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(Stokes’ theorem in 3-dimensions), we get∫
Σ

Tµn∂nϕd
3x =

∫
∂Σ

Tµnϕνn do , (19)

where νn are covariant components of the outward-pointing normal of the boundary ∂Σ of Σ
and do is the induced measure on the 2-dimensional boundary. Now, if (Tµnϕ)|∂Σ = 0, e.g., for
all ϕ with compact support in the interior of Σ, we have∫

Σ

Tµn∂nϕd
3x = 0 . (20)

If we forget about the index µ for a moment, this is just the well-known statement that a
divergence-free vector field is L2(R3, d3x)-orthogonal to all gradient fields (given sufficient fall-
off conditions in the case of non-compact support).

Now, for the special case ϕ = xm this reduces to (17), provided that the boundary integral
in (19) still vanishes. This poses further conditions on T regarding its behaviour near ∂Σ. An
obvious sufficient condition would be that the intersection of T’s support

supp(T) :=
{
p ∈M : T(p) 6= 0

}
(21)

with Σ is compact. On the other hand, if supp(T) ∩ Σ is not compact, it would be sufficient that
T has a 1/r3+ε fall-off (i.e. faster than 1/r3; ε > 0) at each end4 of Σ, where r denotes spatial
geodesic distance. Note that for radiating systems Σ needs to be a Cauchy surface in order for
the requirement of compact support to make sense. The reason for this is explained in Fig. 1.

The foregoing discussion shows the following

Theorem 1 (Laue’s theorem, classical version). Let T be a symmetric second-rank contravariant
tensor in Minkowski space (M,η) – from now on called the energy-momentum tensor –, which
is such that there exists a global affine chart {x0, x1, x2, x3} such that ∂Tαβ/∂x0 = 0. Let Σ ⊂M
be the spacelike hyperplane x0 = 0, or a bounded subdomain thereof, which we fix once and
for all. Consider now the four intgrals (4), which we write Pα[Σ,T], and the corresponding four
integrals for the Lorentz-boosted energy-momentum tensor Λ · T := Λ⊗Λ(T ◦Λ−1). Then

Pα[Σ , Λ · T] = Λαβ Pβ[Σ , T] (22)

for all pure boost transformations, if and only if the nine space integrals (17) vanish. A sufficient
condition for this to happen is that T is conserved in the sense of (3) and either T

∣∣
∂Σ
≡ 0 (in

case ∂Σ 6= ∅) or T falls off like 1/r3+ε at each end of Σ, where r is the geodesic distance with
respect to any reference point inside Σ.

The classic literature on special relativity is full of more or less convincing derivations of this
result. Laues original derivation [17] and all (as far as I am aware) of its followers, even the most

4 “Ends” of manifolds are connected subsets not contained in any compact connected subset. This notion was coined
in [9]. They are sometimes called “asymptotic regions” in the physics literature.
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Figure 1: The figure shows the conformal compactification of Minkowski space, the bound-
ary of which decomposes into future/past timelike infinity I+/I−, future/past lightlike
infinity I+/I−, and spacelike infinity I0. The vertical dark-shaded region extending
from I− to I+ corresponds to the “world tube” of the physical system whose energy-
momentum tensor is denoted by T in the text. The lighter shaded region within that
denotes the events during which the system radiates. The dotted straight lines at 45
degrees connecting that lighter shaded region to I+ indicate the lightlike rays of ra-
diation. We have drawn two spacelike hypersurfaces: One denoted by S, which is
asymptotically flat and extends all the way to I0, and another one, L, which is asyp-
totically hyperboloidal (of constant negative sectional curvature) and which extends
to I+. The former is a Cauchy hypersurface, i.e. its domain of dependence is all of
Minkowski space, the other is not. For the latter it is clear that the radiation that the
system released during the finite time interval (light shaded region) in the finite past
intersects an open neighbourhood in L of L ∩ I+. This is not true for S unless the
system had been radiating all the way down to the infinite past I−. This is to show that
for systems capable of radiating off energy and momentum it is generally inconsistent
to require supp(T) ∩ Σ to be compact for spacelike Σ, unless Σ is a Cauchy surface.
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recent [28], replace our hypothesis of stationarity, i.e., ∂Tαβ/∂x0 = 0, by the stronger hypothesis
of staticity, which in addition to stationarity also contains the three conditions T 0m = 0. Systems
satisfying this condition of staticity, as well as local energy-momentum conservation (3), are
called complete static systems by Laue. For them Laue derives the result that the integrals
(4) form the components of a “four-vector”. We shall clarify the mathematical content of this
statement below.

Many text-book derivations suffer from inaccuracies, taking sufficient conditions also as nec-
essary, or unduly neglecting the role of the boundary integrals. Quite recently, a pedagogically
guided attempt has been made to bring some logical order into the various classic textbook
statements of what Laue’s theorem actually says, as well as the corresponding derivations [28].
Unfortnunately the derivation given in [28] is itself logically incomplete5 and entirely phrased
in a non-geometric component language, so that it remains entirely unclear what becomes of
Laue’s theorem in curved spacetimes.

Finally we stress once more that the requirement (22) should not be confused with that in
which Σ is also acted on by Λ:

Pα[Λ · Σ , Λ · T] = Λαβ Pβ[Σ , T] , (23)

where Λ · Σ denotes the image of the hyperplane Σ under the (active!) Lorentz transformation
Λ. This equation is trivially satisfied for all T, as one easily sees by a simple change-or-variable
transformation of the integral and the fact that now not only the components Tαβ but also the nβ
transforms so that Tαβnβ already transforms as a four vector. Hence no further conditions on
T result. Equation (23) is a trivial requirement that merely states that Pα has been constructed
from geometric objects. But this is not the point! Rather, the point is whether the quantities Pα

behave like a four vector under boosts which exclusively act on the matter fields so as to change
their state relative to a fixed background structure. The difference between (22) and (23) is easily
overlooked if one adopts a passive interpretation of Lorentz transformations, in which case one
is tempted to let Λ act on any geometric structure that appears in one’s formulae (“anything
that has indices on it is transformed”). This confusion has led to several fake-resolutions of the
transformation problem in the classic literature, like e.g. in [21] and [22].

1.6. The many uses of Laue’s theorem

Before we outline the geometric theory, let us say a few words on the many uses of Laue’s theo-
rem. Laue himself applied it to many of the at first sight paradoxical results in special-relativistic
kinematics, most importantly to the null results of the classic 1903 experiment by Trouton and
Noble [18]. All these apparent paradoxa result from applications of (15) to energy-momentum
tensors violating the hypotheses of Laue’s theorem, so that the space integrals in these equations
do not vanish. As an easy first example consider the case when the space integrals in (15c) (i.e.

5 The incompleteness occurs in the third line of the string of equations (6) on p. 1471 of [28], where the integration
domain is changed from a hyperplane t ′ = const to a tilted hyperplane t = const. This step in [28] does not
follow from the initial hypothesis of t-independence, unless some form of local energy-momentum conservation
is imposed in addition, which at this point would amount to a petitio principii.
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over the longitudinal-transversal spatial components of T) do not vanish. This implies that as
a result of a pure boost the systems picks up momentum perpendicular to the boost direction.
Momentum and velocity of such a boosted system will no longer be aligned. This also means
that putting such a system into the boosted state will necessitate the transmission of angular
momentum, i.e. the action of torque. Another, historically earlier apparent paradox concerns
the Coulomb field of charge distributions. Assuming spatial isotropy, the tracelessness of the
electromagnetic energy-momentum tensor (T 00 = T 11+ T 22+ T 33) gives

∫
Σ T

11 = 1
3P
0. Hence,

even if P1 = 0, we have P̄0 = 4
3γP

0 and P̄1 = 4
3βγP

0, which looks all right except for the
factor 4/3. Systems to which this applies are, e.g., the Coulomb field outside a spherically-
symmetric surface charge distribution (like in “classical models of the electron”; see, e.g., [22]),
or the black-body radiation inside a container. The reason why all these examples violate the
hypotheses of Laue’s theorem is, in Laue’s terminology, that they are not “complete” in the
following sense: They either do not satisfy (3) or, if the points of Σ where (3) is violated are
removed from Σ, T

∣∣
∂Σ
6= 0, i.e. the boundary conditions are not met. For example, including the

stresses that are needed to prevent the charge distribution of the “classical electron” (so-called
Poincaré stresses, because in [20] Poincaré already pointed out the necessity of such - possibly
non-electromagnetic - stresses) from exploding, or the black-body radiation from escaping the
cavity, removes all these paradoxa in a general and model-independent fashion. Therein, as well
as in its universal applicability, lies the strength of Laue’s theorem.

We end this section by a more modern application of Laue’s theorem. Let us consider the
question of whether an electromagnetically bound system, like a large molecule, obeys a simple
version of Einstein’s equivalence principle, according to which the system’s (centre of mass)
acceleration in a given static and weak gravitational field is independent of internal energies. As
we restrict to weak and static fields, we write for the components of the space-time metric

gαβ = ηαβ + hαβ , (24)

where {ηαβ} = diag(1,−1,−1,−1) represents the flat Minkowski background and hαβ devi-
ations from it, which are considered small, which means higher powers than the first of hαβ,
as well as of its first two derivatives, are neglected. The linearized Einstein equations for static
Newtonian sources (where only the 00 component of the energy-momentum tensor is assumed
non-zero) then give, as is well known,

hαβ(~x) = δαβ
2Φ(~x)

c2
. (25)

Here Φ is the standard Newtonian potential and δαβ the Kronecker delta (not the Minkowski
metric!). The coupling of a the weak gravitational field hαβ to the energy momentum tensor of
our system (molecule) is given by the interaction Lagrangian

Lint =
1

2

∫
Σ

d3x Tαβ hαβ =
1

c2

∫
Σ

d3x Φ
(
T 00 + T 11 + T 22 + T 33

)
. (26)

If, in addition, we assume that the external gravitational potential Φ is approximately constant
over the spatial support of Tαβ, and that the spatial support at time t = 0 is centred about the
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spatial position ~z (e.g. some Newtonian centre of mass), we get

Lint(~z) = Φ(~z)

∫
Σ

d3x
(
T 00 + T 11 + T 22 + T 33

)
/c2 . (27)

It is clear now that if T satisfies the hypotheses of Laues theorem only the first integral survives
and Lint(~z) equals the inertial mass of the system times the Newtonian potential. This implies
the weak equivalence principle since it explicitly demonstrates the equality of the inertial and
passive gravitational mass (i.e. that mass to which the interaction with an external gravitational
field is proportional to). Here we note in passing that the combination T 00 + T 11 + T 22 + T 33

equals 2(Tαβ − 1
2η
αβηµνT

µν)nαnβ and corresponds to the integrand of the so-called Tolman
mass [26]. We refer to section 9 of the arXiv version of [11] for a discussion of how the Tolman
mass relates to other mass concepts, like the Komar mass.

Let us for the moment forget about Laue’s theorem and proceed further in analyzing (27).
Our material system that is subject to the weak gravitational field consists of charged particles
interacting via their Coulomb interactions (we shall neglect radiation). Hence T = T1+T2, with
subscript 1 referring to the particles and subscript 2 to the electromagnetic field. For a particle
at rest the space integral of T 001 equals m0c

2 and all other components of vanish. From (12) we
then infer that a single slowly moving particle (in x1 direction) has to leading order in v/c a T 001
space integral of m0c

2 + Ekin, a T 111 space integral of 2Ekin, and all other diagonal components
vanishing (to leading order). The sum over all particles then gives, to leading order in v/c,∫

Σ

d3x T 001 =M0c
2 + Ekin ,

∫
Σ

d3x δabT
ab
1 = 2 Ekin , (28)

whereM0 is the sum of all rest-masses over all particles and Ekin is the sum of all kinetic energies
over all particles.

On the other hand, the electromagnetic field has a trace-free energy momentum tensor and
hence ∫

Σ

d3x T 002 = U ,

∫
Σ

d3x δabT
ab
2 = U , (29)

where U is the total energy stored in the electromagnetic field, which we here identify with the
total Coulombian binding energy, after having subtracted the diverging Coulombian self-energy
of each particle (compare footnote 6 below).

Hence we get as passive gravitational mass for our molecular matterM0 + (3 Ekin + 2U)/c
2.

But we would have expectedM0 + (Ekin +U)/c
2 and now wonder what the excess of (2Ekin +

U)/c2 might mean. Well, from our derivation we know that this combination corresponds to the
space integral of δab(Tab1 +Tab2 ), which has to vanish if T = T1+T2 satisfies the hypotheses of
Laue’s theorem (as we assume). But suppose we had never heard of Laue’s theorem, what could
have rescued us from concluding that there is something seriously wrong with the equivalence
principle? Precisely this situation came up in an investigation of Carlip’s [4], who concluded
that it is the virial theorem that rescues us. Recall that in the low-velocity (“non-relativistic”)
approximation with homogeneous potentials of degree −1, that is, any combination of attractive
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and repulsive 1/r potentials, the virial theorem just implies that 2Ekin + U = 0 for the time-
averages of kinetic and potential energies.6 Indeed, that is how we could have concluded without
invoking Laue’s theorem. But I think the foregoing discussion has made it clear how elegant
and forceful Laue’s theorem really is. In fact, there is a relation between the derivation of
Laue’s theorem given above and the relativistic virial theorem given in [16], in the sense that
the virial theorem is a proper implication of Laue’s theorem, in that it only states the vanishing
of the spatial integral of the spatial trace of T, not the vanishing of the spatial integrals of each
component of T separately (except T 00).

2. Geometric theory

With this second section, which also contains six subsections, we turn to the second half of our
programme as outlined in the introduction. Having discussed Laue’s theorem and its physical
relevance in the first section, we now wish to know how to formulate it in a modern differential-
geometric language. Such a formulation should in particular make clear the geometric hypothe-
ses underlying it. These hypotheses are not at all obvious from the component-based “deriva-
tion” given above, which uses integrals over tensor components and identities like (18), none
of which make any proper geometric sense a priori, and only receive their restricted meaning in
the context of SR through the affine and metric structure of Minkowski space. In this section
we shall give a proper geometric statement and proof of a generalisation of Laue’s theorem that
is valid outside SR and reduced to the classical statement given above if suitably specialised.
Nothing of what we are now going to say depends crucially on the number n of dimensions of
M, so that we shall leave it open. g is then a Lorentzian metric onM of signature (1 , n−1), i.e.
“mostly minus” (compare Appendix B.4). Indices are now written in the latin alphabet ranging
from 0 to n− 1.

6 It is important here to note the following point: In electrostatics, where (in SI-units) ε0∆φ = −ρ, φ being the
scalar potential satisfying ~E = −~∇φ and ρ being the charge distribution, the electric interaction energy for any
charge distribution ρ of compact support can be written in the following equivalent forms:

Eint =
ε0

2

∫
d3x‖~E(~x)‖2 = 1

8πε0

∫∫
d3x d3x ′

ρ(~x)ρ(~x ′)

‖~x − ~x ′‖ . (30)

The first expression shows that Eint is always positive and cannot possibly be identified withU in the virial theorem,
where due to 2Ekin + U = 0 and 2Ekin ≥ 0 we clearly must have U ≤ 0. On the other hand, if we tried to apply
(30) to a number n of point-particles, where ρ(~x) =

∑n
a=1 qaδ

(3)(~x − ~xa), Eint would clearly diverge due to the
self-interaction of each individual particle. The second expression in (30) then shows that after subtraction of each
diverging part the remaining finite part is

E
(finite)
int =

1

4πε0

∑
a<b

qaqb

‖~xa − ~xb‖
, (31)

where the sum runs over all 1
2
n(n − 1) possible combinations for a, b ∈ {1, · · · , n} for which a < b. That

regularised expression E(finite)
int may well assume negative values for a mixture of positively and negatively charged

particles and it is that expression that we may identify with U in the virial theorem for such mixed collections of
charged particles; compare § 34 of [16].
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2.1. Alternative representation of energy-momentum distributions

Instead of T ∈ Γ(TM ∨ TM) we define a new object by pulling down the first index on T and
Hodge-dualising on the second:

T := Tabθ
a ⊗ ?θb ∈ Γ

(
T∗M⊗

∧n−1T∗M) . (32)

T can be considered as a T∗M-valued (n− 1)-form, or equivalently, as an (n− 1)-form-valued
linear map on TM.

We assume T to be “complete” in the sense of Laue’s, by which we mean (2), i.e. the vanishing
of the vector field∇ ·T := ∇bTab ∂/∂xa (in n dimensions latin indices range from 0 to n− 1).
Using the exterior covariant derivative D, the following identity holds:

DT = (∇ · T)[ ⊗ ε . (33)

Here ε is the volume n-form associated to g and [ denotes again the “index-lowering isomor-
phism” defined by g (compare (90)).

Let us give a proof of (33) in component language. For that we recall that the exterior covariant
derivativeD of an r-form Fwith values in a vector bundle V overM, i.e. of F ∈ Γ

(
V⊗

∧rT∗M),
is obtained from an ordinary torsion-free covariant derivative ∇ : Γ

(
V ⊗

∧rT∗M) → Γ
(
V ⊗

T∗M⊗
∧rT∗M) (which in our case is the Levi-Civita connection) by total antisymmetrisation

in T∗M ⊗
∧rT∗M, so as to obtain a map D : Γ

(
V ⊗

∧rT∗M) → Γ
(
V ⊗

∧r+1T∗M). More
precisely, just writing the form-components (and keeping the V-valuedness implicit), we have
(DF)a0···ar = (r + 1)∇[a0Fa1···ar]. Here the antisymmetrisation bracket [· · · ] is as in (89). The
reason for the factor (r + 1) is the very same as for the corresponding formula for the ordinary
exterior derivative d, which in turn is just (88) applied to p = 1 and q = r. Hence, using
(99) and (107) with n− = (n− 1) (recall our “mostly-minus” convention for the signature in n
dimensions), we indeed derive (33) in component form through the following lines:

(DT )ab1···bn = ngac∇[b1T
c
b2···bn]

= ngac∇[b1T
cbε|b|b2···bn]

= −(n/n!)gacεb1···bnε
c1c2···cn∇c1T

cbεbc2···cn

= gacεb1···bn∇bT
cb .

(34)

We conclude from (33) that (2) is equivalent to T having vanishing exterior covariant deriva-
tive: DT = 0. However, this does not yet define a conservation law. For that we need an
ordinary d-closed (n − 1)-form. The recipe to get this from a D-closed T∗M-valued (n − 1)-
form is to contract the value of the latter with a vector field K ∈ Γ(TM); for that contraction we
write

TK := iKT . (35)

Using that D and d coincide on ordinary forms, a straightforward calculation, very similar in-
deed to that in (34), then shows

dTK = D(iKT ) = iK(DT ) + T(∇K[) ε . (36)
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Here the function T(∇K[) is the contraction of T ∈ Γ(TM∨TM) with∇K[ ∈ Γ(T∗M⊗T∗M),
i.e. in components Tab∇aKb. Hence, given symmetry (1) and DT = 0 (i.e. (3)), TK is closed
for general T, if and only if the symmetric part of ∇K[ vanishes. Now, as ∇ is the Levi-Civita
covariant derivative with respect to g, we have the well known formula that twice the symmetric
part of∇K[ equals LKg, the Lie derivative of g with respect to K; in components7

∇aKb +∇bKa = (Lkg)ab . (37)

In other words, given (1) and (3), the (n − 1)-form TK is closed if and only if K is a Killing
vector field, i.e. a vector field whose flow is by isometries of (M,g). It is at this point that both
conditions (1) and (3) enter our discussion and further consequences in an essential fashion.

2.2. On the notions of “charges” and “conservation”

In physics the closedness of the (n − 1)-form TK is often expressed synonymously by “conser-
vation” (i.e. divergencelessness) of the “current” (i.e. vector field)

JK := (?TK)] = KaTab∂/∂xb . (38)

Then
dTK = 0⇔ ∇ · JK = 0 . (39)

Note that ] is the inverse of [ (compare (90)) and also that ? ◦ ? is the identity on one- and
(n− 1)-forms according to (102) and (107) for mostly-minus Lorentz signatures.

The physical concepts of charges and their conservation directly derive from formulae like
(39) as follows: Integrate 0 = dTK over a n-dimensional submanifold Ω ⊂ M with piecewise
smooth boundary ∂Ω = Σ1 ∪ Σ2 ∪ B, where B is such that TK restricted to B vanishes; then, by
Stokes’ theorem, ∫

Σ1

TK = −

∫
Σ2

TK =

∫
−Σ2

TK . (40)

Here (−Σ2) denotes Σ2 endowed with opposite orientation. If, as in the usual argument, Σ1
and Σ2 are two spacelike submanifolds whose intersection with supp(T) is compact and B is a
timelike cylinder connecting the boundaries of Σ1 and Σ2 such that B ∩ supp(T) = ∅, then in
physics we say that the “charge” associated with the conserved current JK, which is defined to
be the flux of JK through the hypersurface, is conserved in the sense of being independent of the
spacelike hypersurface it is integrated over. Note that the flux of JK is obtained by integrating
?(J[K).

We summarise all this in the following definition, in which we drop the subscript K on J
since it applies to all J ∈ Γ(TM), independently of whether or not they derive from T by the
construction above.

7 This formula has additional terms involving the non-metricity tensorQ := ∇g and the torsion for general connec-
tions.
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Definition 1. Let Ω ⊂ M be a n-dimensional submanifold with piecewise smooth boundary
∂Ω = Σ1 ∪ Σ2 ∪ B such that B ∩ supp(J) = ∅, then we call Σ1 and Σ2 homologous modulo
supp(J).

Definition 2. Let J ∈ Γ(TM) be any vector field and Σ ⊂ M an (n − 1)-dimensional oriented
submanifold. Then we call

Q(Σ, J) :=

∫
Σ

?J[ (41)

the flux of J through Σ or, equivalently, the charge of J at Σ.

Corollary 1. If J ∈ Γ(TM) is divergenceless (is a “conserved current”) and Σ1 and Σ2 are
homologous modulo supp(J), that is, if there is an n-dimensional submanifold Ω ⊂ M with
piecewise smooth boundary ∂Ω = Σ1 ∪ Σ2 ∪ B where supp(J) ∩ B = ∅, then

Q(Σ1, J) = −Q(Σ2, J) = Q(−Σ2, J) , (42)

where −Σ2 stands for Σ2 endowed with opposite orientation.

Proof. This is an immediate consequence of Stokes’ theorem.

The charges Q(Σ, J) are just numbers associated to vector fields J and hypersurfaces Σ. In
physics, these numbers receive their interpretation through the interpretation of J and their sig-
nificance through additional special properties of J, most importantly its vanishing divergence
and certain constraints on its support. Corollary 1 states to what extent these numbers are inde-
pendent of Σ. This leads to the concept of “conservation” in the sense that the charges measured
at different boundaries are the same. If one of these boundaries is regarded as time evolution of
the other, then we obtain the ordinary notion of charge conservation “in time”.

2.3. Group actions and the habitat of charges

To a large degree independent of the issue of conservation is the issue of interpretation. As
already stated, the interpretation of the charges must follow from the interpretation of J. In
our case, the vector fields J we consider derive from energy-momentum tensors T and some
preferred vector field V . Hence the interpretation of charge is essentially connected with V:
Which vector field V are we using in order to turn T into a “current” J = JV := iVT, the charge
of which we consider? That is the question we address in this subsection. We know that if
V = K is Killing then JK is covariant divergenceless and the charges are conserved. But for the
time being we wish to be independent of that assumption and hence shall not assume V to be
Killing.

Vector fields V ∈ Γ(TM) generate diffeomorphisms ofM, which we may physically interpret
as “motions” if acting on geometric objects on M representing physical systems. Of “motions”
we usually think as being composable and forming a group. It is the group structure of a set
of motions that we usually employ in order to interpret it elements. For example, in Newtonian
mechanics we characterise an overall motion of a system of point particles as being either a
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“translation” or “rotation”, depending on how this particular motion sits inside the group E3
of euclidean motions that we think of as having been implemented as acting on space (in this
case by isometries). In E3 translations are invariantly characterised as elements of the maximal
abelian normal subgroup. That is, translations form a unique 3-dimensional subgroup in the
6-dimensional group E3. In contrast, there is no unique rotation subgroup in E3. Rather, E3
contains a 3-parameter family of different copies of rotation subgroups corresponding to the
different choices of origin in space about which one rotates (that is kept fixed unter all rotations).
These different copies are all related by conjugation with translations (shifting the origin). Hence
we may not speak of “the” but only of “a” rotation subgroup in E3, each one corresponding to
its own origin in space.

Similar remarks apply to the Poincaré group in special-relativitsic physics. (Compare Ap-
pendix A.5 and [12] for a more detailed discussion of the semi-direct product structure of the
Poincaré group in terms of a unique subgroup of translations and a non-unique complementary
subgroup of Lorentz transformations.) Here again “translations” in space and time are invari-
antly characterised as forming the maximal abelian normal subgroup of the Poincaré group. If
the translation is timelike we call the corresponding charge “energy” and “linear momentum”
if it is spacelike. Charges corresponding to any of the Lorentz subgroups, of which there is an
n-parameter family, are then associated to, e.g., angular momentum or centre-of-mass motion.
Again picking one of the Lorentz subgroups is equivalent to picking a point in spacetime, the
“origin” left fixed by all Lorentz transformations.

Let us now turn to the general case and capture the situation by supposing that a finite-
dimensional Lie group G acts on the left on the manifold M. The words “left action” mean
that we have a homomorphism of groups (e ∈ G is the group identity):

Φ : G→ Diff(M) , g 7→ Φg , Φe = idM , Φg ◦Φh = Φgh . (43a)

For a “right action” the last equation would be replaced by Φg ◦Φh = Φhg , but we shall stick
to the “left” convention.

Later we will consider special actionsΦ of G onM which act by isometries with respect to a
given metric g onM. This means that

Φ∗hg = g (43b)

for each h ∈ G. But for the time being we shall keep the discussion independent of that assump-
tions as long as possible. Hence we stress that all statements below do not assume the action to
be isometric unless explicitly stated so.

Any group-homomorphism between Lie-groups induces a homomorphism between the corre-
sponding Lie-algebas, which is just given by the differential of the former at the group identity.
The Lie-algebra of Diff(M) is given by the infinite-dimensional vector space Γ(TM) of vector
fields onM whose Lie bracket is minus the vector-field commutator. Hence we have

V : Lie(G)→ Γ(TM) , Vξ(p) :=
d

ds

∣∣∣
s=0
Φexp(sξ)(p) , (44a)
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which satisfies

−
[
Vξ , Vζ

]
= V[ξ,ζ] , (44b)

(Φg)∗Vξ = VAdg(ξ) . (44c)

We refer to the Appendix of [12] or the appendix of the arXiv version of [11] for a detailed
proof. Before we continue, we give Vξ a proper name:

Definition 3. Given an actionΦ of G onM, then Vξ ∈ Γ(TM) is called the fundamental vector
field for that action onM corresponding to ξ ∈ Lie(G).

Note that the bracket [·, ·] on the left-hand side of (44b) is the vector-field commutator, which
is minus the Lie-bracket in the Lie-algebra of Diff(M), whereas the [·, ·] on the right-hand side
of (44b) is the Lie-bracket in Lie(G). This is the reason why there is an additional minus sign
on the left-hand side of (44b) that makes this relation a Lie homomorphism.8

Given T we can for each fundamental vector field Vξ ∈ Γ(TM) and each oriented (n −
1)-dimensional submanifold Σ calculate the charge Q(Σ, J) according to (41). The result is a
number that depends linearly on ξ since it is obtained by composing three linear maps:

Lie(G) 3 ξ 7→ Vξ 7→ TVξ 7→ ∫
Σ

TVξ ∈ R . (45)

In other words, it defines an element in Lie∗(G), the vector space dual to Lie(G). This as-
signment of an element in Lie∗(G) obviously depends on Σ and T, but as T depends on the
underlying physical fields, we shall regard the dependence to be on Σ and some physical fields.
Which physical fields? Here we shall make the same distinction as in our previous discussion
in Section 1.3. In the more general geometric setting that we consider now, we assume T and
hence T to be build locally9 from a set of fields F ∈ Γ(B) whose energy-momentum distribution
is represented by T (or T ), and possibly a set of complementary background fields F ′ ∈ Γ(B ′).
Here, B and B ′ denote some natural bundles overM. Following standard terminology (compare
Appendix B.3) the word “natural” is added here in order to indicate our requirement that any
diffeomorphism Φ of M shall have a natural action on sections in B and B ′, which we denote
by D and D ′ respectively . We then assume the generalisation of (10), which now reads

T (DΦF , D ′ΦF ′) = (Φ−1)∗T (F, F ′) . (46)

It says that T evaluated on the Φ transformed fields DΦF and D ′ΦF
′ is the Φ-transform of

T (F, F ′). Here we already took into account that the Φ-transform of a section in T∗M ⊗∧(n−1)T∗M is the pull-back with the inverse Φ−1. Condition (46) may be seen as a complete-
ness condition, in the sense that we did in fact consider all fields (F, F ′) on which T truly de-
pends. This is the generalisation of (10) referred to at the end of Section 1.3. As already stressed
8 Sometimes this minus sign is said to express a Lie-anti-homomorphism, namely whenever Lie

(
Diff(M)

)
is en-

dowed with the opposite Lie structure, in which the Lie-bracket is the commutator of vector fields. The minus sign
in (44b) would also disappear if we considered a right rather than left action of G on M, though then other minus
signs would pop up elsewhere. See the appendix in [12] for a detailed discussion and more information.

9 Meaning that the value of T at a point p ∈ M depends on the values of F and F ′ and at most finitely many
derivatives at p.
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there, in the context of general groups G acting on M it becomes particularly important to dis-
tinguish between the systems whose states are represented by F and whose energy-momentum
distribution is fully captured by T , and the wider system whose states are represented by (F, F ′)
on which T may actually also depend.

Definition 4. The map, that according to (45) assigns an element in Lie∗(G) to each triple
(Σ, F, F ′) is called momentum map10 and denoted by M . We shall put the arguments in square
brackets and write M[Σ, F, F ′] ∈ Lie∗(G) since it may take another argument from Lie(G) to
turn that element into a real number. For ξ ∈ Lie(G) we then write M[Σ, F, F ′](ξ) ∈ R and
note that this number is just the flux of JVξ = iVξT through Σ:

M[Σ, F, F ′](ξ) := Q
(
Σ, iVξT(F, F ′)

)
=

∫
Σ

TVξ(F, F
′) . (47)

We wish to know how the value in Lie∗(G) of the momentum map M behaves under the
action of the group G. That is answered by

Theorem 2. Let (G,Φ,M) be a left action of the finite dimensional Lie group G on M and
T ∈ Γ(T∗M⊗

∧(n−1)T∗M) a section depending locally on (F, F ′) ∈ Γ(B)× Γ(B ′) so that (46)
is valid for allΦ = Φg, g ∈ G; then

M
[
ΦgΣ,DΦgF,D

′
ΦgF

′] = Ad∗g
(
M[Σ, F, F ′]

)
, (48)

where ΦgΣ is the Image of Σ under Φg and Ad∗ denotes the co-adjoint representation of G on
Lie∗(G), i.e. the inverse-transposed of the adjoint representation.

Proof. The proof follows from a string of elementary steps:

M
[
ΦgΣ,DΦgF,D

′
ΦgF

′](ξ) 1
=

∫
ΦgΣ

TVξ
(
DΦgF,D

′
ΦgF

′)
2
=

∫
ΦgΣ

iVξT
(
DΦgF,D

′
ΦgF

′)
3
=

∫
ΦgΣ

iVξ

(
Φ∗g−1T (F, F

′)
)

4
=

∫
ΦgΣ

Φ∗g−1
(
TΦ

g−1∗Vξ
(F, F ′)

)
5
=

∫
Σ

TVAd
g−1

(ξ)(F, F
′)

6
= M[Σ, F, F ′](Adg−1(ξ))
7
= Ad∗g

(
M[Σ, F, F ′]

)
(ξ) .

(49)

10 The momentum map is a standard tool in symplectic geometry and Hamiltonian Mechanics; see, e.g., Chapter 4.2
of [1] and references given therein. The difference between our and the standard definition is that we start from
the energy-momentum tensor, which we assume to be given, without explicitly using the symplectic geometry of
phase space.
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Steps 1 and 2 just follow the definitions, step 3 uses (46), step 4 uses the general relation iX ◦
Φ∗ = Φ∗ ◦ iΦ∗X for the pull-back and the insertion map applied to forms, which is obvious from
the fact that the pull-back and push-forward are relatively transposed maps, step 5 uses (44c) and
the general relation (“change-of-variable formula”)

∫
Σφ
∗α =

∫
φ(Σ) α for the integration of a

k form over a k-dimensional submanifold, step 6 (like step 1) invokes the definition of M , and,
finally, step 7 just uses the definition of the co-adjoint representation.

We stress the generality of (48), which in particular does not put any further constraint on
the action of G on M other than the validity of (46), in particular we did so far not require the
action to be isometric. Such further conditions now come into play if we want to strengthen (48)
similarly to the way (9) strengthens (10) and (22) strengthens (23). That is, we wish to state (48)
with G just acting on the dynamical fields F and not on Σ and the background fields F ′. Hence
we wish to have

M
[
Σ,DΦgF, F

′] = Ad∗g
(
M[Σ, F, F ′]

)
. (50)

This is the generalisation and, in fact, proper phrasing of the requirement that that global “mo-
menta” calculated from a local distribution of dynamical fields F transform as “vectors” under
the action of a group G onM (a statement to be qualified below).

So we ask: under what conditions is it true that (48) implies (50)? We start with the de-
pendence on F ′ and observe that D ′ΦgF

′ may be replaced by F ′ if D ′Φg acts trivially on the
background fields F ′, i.e., if G is a symmetry group for all configurations F ′. This is trivially
always the case if the set of background fields F ′ is empty, i.e. if the energy-momentum tensor
exclusively only depends on the fields the energy momentum distribution of which it represents.
This will be hard to achieve in general. More common is the case in which it depends at least on
the background metric g, like , e.g., in the traditional (metric) formulation of Maxwell’s elec-
trodynamics. Without external sources no other F ′ exist, so F ′ = g and D ′ΦhF

′ = (Φ−1
h )∗g,

which equals g for all h ∈ G if and only if G acts on M isometrically with respect to g. With
external sources the background fields F ′ also include charge densities and currents, which then,
too, must remain invariant under the action of G.

Next we turn to the dependence on Σ. We note that the integral (47) would be the same for
two hypersurfaces Σ1 and Σ2 if they were homologous modulo supp(T) and if TVξ were closed
for all ξ ∈ Lie(G). In view of (36) a necessary and sufficient condition for the latter to hold is
that Vξ is Killing, i.e. that G acts as isometries on (M,g). From that we infer

Corollary 2. The momentum map M satisfies the restricted condition of equivariance in the
form (50) if G acts on (M,g) by isometries, if G is a symmetry of all other background fields F ′

(other than the metric), and ifΦhΣ is homologous to Σ modulo supp(T) for all h ∈ G.

Note that the hypotheses of this corollary turn the values of the momentum map and hence
the charges (contractions of M with elements of Lie(G)) into “conserved” charges, in the sense
that the charges at all ΦhΣ are the same. If the group G of motions contain time translations,
the general notion of “conserved” used here reduces to the usual “constant in time”.

At the end of this section we wish to stress that the hypotheses on mentioned in corollary 2 are
sufficient conditions, which need not be necessary in special situations. We made some effort to
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first derive the general condition of equivariance (48) under comparatively weak hypotheses, and
then showed how the standard conditions (like that G acts isometrically) lead to the restricted
condition of equivariance (50), known as Ad∗-equivariance.

2.4. Poincaré covariant momenta

The equivariance condition (50) gives the precise expression to the statement usually employed
in physics, that conserved momenta, i.e. the values of M , behave “covariantly” under a certain
group of motions. At the same time we learn how to characterise the vector space of which the
conserved momenta are members of. They are elements in Lie∗(G) and they transform under
the co-adjoint representation of G .

The physical interpretation of these momenta must be obtained fromG. If, e.g.,G is the group
of space-time translations, which is invariantly contained in the Poincaré group as the maximal
abelian normal subgroup, then the corresponding “momenta” correspond to energy and linear
momentum. Together they transform like “four vectors” under Poincaré transformations, that
is, trivially under translations and by the defining representation of the Lorentz group. But that
last statement is deceptive, because our momenta are really elements of Lie∗(G), not the four-
dimensional real vector space V underlying affine Minkowski space. In this subsection we show
how this is properly phrased for the Poincaré group and how it relates to our previous discussion
in Sections 1.4 and 1.5.

To start the discussion, let G = Poin be the Poincaré group of spacetime, which is isomorphic
to V o Lor, where Lor is the Lorentz group, so that for (a,A) and (b, B) ∈ V o Lor, we have

(a,A)(b, B) = (a+Ab , AB) (51a)

and
(a,A)−1 =

(
−A−1a , A−1

)
, (51b)

where juxtapositions like Ab denote the action of A ∈ Lor on b ∈ V under the defining
representation. We refer to Appendix A for a discussion of the (non natural!) isomorphism
Poin ∼= V o Lor. From (51) we can easily calculate the adjoint and co-adjoint representation
on Lie(Poin) and Lie∗(Poin) respectively. These take a convenient form if we identify both
of these linear spaces with V ⊕ (V ∧ V), which also allows for an easy comparison between
the adjoint and co-adjoint representations (which are now realised on the same vector space).
Recall that usually one identifies Poin ∼= V o Lor and Lor with isometries of (V, η). This in-
duces the usual identification Lie(Poin) ∼= V o Lie(Lor) where Lie(Lor) ∼= {X ∈ End(V) :
η(Xv,w) = −η(v, Xw) ∀v,w ∈ V}. To that we add the identification of the latter (the η-
antisymmetric endomorphisms) with V ∧ V , in that we agree that x ∧ y ∈ V ∧ V corresponds
to the following element of End(V): x∧ y(v) := x η(y, v) − yη(x, v), which one easily checks
is η-antisymmetric. The extension of that correspondence to all elements in V ∧ V (not just
pure exterior products) then follows from linearity. Hence the Lie brackets between to elements
(x, X) and (y, Y) in V ⊕ (V ∧ V) ∼= Lie(Poin) is[

(x, X), (y, Y)
]
=
(
X · y− Y · x , [X, Y]

)
, (52)
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where the action of X, Y ∈ V ∧ V on V (denoted by a dot in (52)) is as explained above, and
[X, Y] := X ◦ Y − Y ◦ X is just the commutator of these maps. Finally, we identify Lie∗(G) with
V ⊕ (V ∧ V) by identifying the dual space of V ⊕ (V ∧ V) with itself through the following
inner product (non-degenerate symmetric bilinear form) on V ⊕ (V ∧ V):〈

(x, X), (y, Y)
〉
= η(x, y) + 1

2η⊗ η(X, Y) . (53)

Here the second term just corresponds to what we called the renormalised inner product on forms
in equation (95) of the Appendix. Hence if X = u ∧ v = u ⊗ v − v ⊗ u and Y = w ∧ z =
w⊗ z− z⊗w we have 1

2η⊗ η(X, Y) = η(u, v)η(v, z) − η(u, z)η(v,w).
The adjoint and co-adjoint representation on V ⊕ (V ∧ V) are now easily obtained as fol-

lows. Let s 7→ (
b(s), B(a)

)
be a curve in Poin through the identity at s = 0. We set with

d/ds|s=0
(
b(s), B(s)

)
= (P,M) ∈ V ⊕ (V ∧ V) and have

Ad(a,A)(P,M) :=
d

ds

∣∣∣∣
s=0

(
a,A

)(
b(s), B(s)

)(
a,A

)−1
=
(
AP − [(A⊗A)M]a , (A⊗A)M

)
.

(54)

The co-adjoint representation is the inverse-transposed of that, transposition now being under-
stood in terms of the inner product (53):〈

(P ′,M ′) , Ad(a,A)(P,M)
〉
=
〈

Ad>(a,A)(P
′,M ′) , (P,M)

〉
. (55)

Writing this out using (53) we read off (dropping the primes)

Ad>(a,A)(P,M) =
(
A−1P ,

(
A−1 ⊗A−1

)
M+

(
A−1a

)
∧
(
A−1P

))
, (56)

and therefore

Ad∗(a,A)(P,M) :=
(
Ad(−A−1a,A−1)

)>
(P,M)

=
(
AP , (A⊗A)M− a∧AP

)
.

(57)

The first entry on the right-hand side of (57) shows what previously was meant when we said
that P = Pαeα transformed as a “four vector”. But note from the second slot that M does
not just transform as an “antisymmetric 2nd-rank tensor”, there is an additional piece a ∧ AP

expressing the base-point dependence of angular momentum and centre-of-mass motion, which
group-theoretically exists as a result of the fact that Lor ⊂ Poin is not a normal subgroup and
hence Lie(Lor) ⊂ Lie(Poin) not an ideal.
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2.5. Laue’s theorem: geometric formulation

We are now in a position to phrase Laue’s theorem in geometric language and show what its
underlying assumptions are. We start with the remark that this theorem is, in fact, a statement
about conserved currents which is then specialised to the case that the current is constructed
from an energy-momentum tensor through contraction with a Killing field. So let us start by
assuming that we have a conserved current J ∈ Γ(TM), i.e. in components J = Jα ∂/∂xα with
∇αJα = 0. Its corresponding (n − 1)-form, ?J[ ∈ Γ

(∧(n−1)T∗M
)

will be called J . Hence J
is closed (compare Appendix B.2),

dJ = 0 . (58)

We assume J to admit a symmetry, that is, we assume there exists a vector field U ∈ Γ(TM)
such that the Lie derivative of J with respect to U vanishes:

LUJ = 0 . (59)

This is equivalent to saying that the motions generated by U (its flow) leave J invariant.

Next we recall Cartan’s formula, according to which the Lie derivative of forms is given by
the symmetrised combination of the exterior derivative d and the map iU which inserts U in the
first tensor slot:

LU = d ◦ iU + iU ◦ d . (60)

Hence (58) and (59) imply that JU := iUJ ∈ Γ
(∧(n−2)T∗M

)
is closed

dJU = 0 . (61)

Clearly that implies by Stokes’ theorem that if σ1, σ2 ⊂ M are (n − 2)-dimensional subman-
ifolds which are homologous modulo supp(J) then the integrals of JU over σ1 equals that of
−σ2. But is not quite yet the result we are after. Suppose ϕ ∈ C∞(M) is a smooth function,
then dϕ∧ JU ∈ Γ

(∧(n−1)T∗M
)

is not only closed but exact (compare Appendix B.2):

J(ϕ,U) := dϕ∧ JU = d(ϕJU) . (62)

Now, this leads us to the sought-for generalised Laue-type theorem for conserved currents:

Theorem 3 (Laue’s theorem, geometric version for currents). Let (M,g) be a n-dimensional
Semi-Riemannian manifold, J ∈ Γ(TM) a divergenceless (with respect to the Levi-Civity con-
nection) vector field, and J ∈ Γ

(∧(n−1)T∗M
)

its corresponding closed (n − 1)-form. Let
Further U ∈ Γ(TM) be a vector field generating symmetries of J , i.e. LUJ = 0. Then, for any
ϕ ∈ C∞(M) and any (n−1)-dimensional submanifoldΣ ⊂M such that ∂Σ∩supp

(
J(ϕ,U)

)
= ∅

or sufficiently rapid fall-off of ϕJ at each end of Σ, we have

0 =

∫
Σ

J(ϕ,U) (63a)

=

∫
Σ

(
U(ϕ) ? J[ − J(ϕ) ?U[

)
(63b)

=

∫
Σ

(
U(ϕ)g(J, n) − J(ϕ)g(U,n)

)
dµΣ (Σ non lightlike) . (63c)
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Here JU := iUJ and J(ϕ,U) as in (62). Moreover, n denotes the non-null normal to Σ and the
volume form dµΣ ∈ Γ

(∧(n−1)T∗Σ
)

on Σ is defined by dµΣ = ±inε with positive/negative sign
for timelike/spacelike n.

Proof. The first equality (63a) follows immediately from the exactness of J(ϕ,U), Stokes’ the-
orem and the hypothesis that J(ϕ,U) vanishes on the boundary of Σ or falls-off sufficiently fast
at each end. The second expression (63b) follows from iU(dϕ ∧ J ) = U(ϕ)J − J(ϕ,U) and
the definition of ?, given in (98b) of the Appendix, applied to the left-hand side: iU(dϕ∧J ) =
iU(dϕ ∧ ?J[) = (iUε)

〈
dϕ, J[

〉
norm = J(ϕ) ? U[. Finally, the third expression (63c) is valid

only in the case the normal n to Σ is nowhere lightlike, for then (109) gives ?J[ = iJε and
hence ?J[

∣∣
TΣ

=
(
g(J, n)/g(n,n)

)
inε
∣∣
TΣ

= g(J, n)dµΣ with dµΣ := g(n,n) inε
∣∣
TΣ

. Note that
g(n,n) = ±1, depending on whether n is timelike/spacelike (Σ spacelike/timelike).

2.6. Recovery of the classical statement of Laue’s theorem

The theorem above is very general, in that for given J and U it holds for all Σ and ϕ. In order
to see that the classical version of Laue’s theorem emerging as a special case, we now explicitly
list all the particular choices leading to it:

1. (M,g) is 4-dimensional Minkowski space, i.e. there exist global affine coordinates {x0, x1, x2, x3}
so that

g = η = ηαβdx
α ⊗ dxβ with ηαβ = diag(1,−1,−1,−1) . (64a)

2. The symmetry-generating vector field U for J is that generating time translations, so that

LUJ = 0 where U =
∂

∂x0
. (64b)

Note that since ∂
∂x0

is also a symmetry of g = η the condition LUJ = 0 is equivalent
to LUJ = 0 (because LU commutes with index lowering/raising and also with the Hodge
duality map).

3. We take Σ := {p ∈M : x0(p) = 0} so that

n =
∂

∂x0
and dµΣ = dx1 ∧ dx2 ∧ dx3 =: d3x . (64c)

Given (1–3) the integrand in (63c) becomes (we write ∂ϕ/∂xα =: ϕ,α; latin indices range
from 1 to 3; note that J0 = J0 since η00 = 1):

U(ϕ)g(J, n) − J(ϕ)g(U,n) = ϕ,0J0 − J
αϕ,α = −Jaϕ,a . (65)

Hence, in this special case, Theorem 3 just reduces to a more or less obvious result. Indeed,
if Jα,0 = 0 then Jα,α = Ja,a so that the spatial components define a 3-dimensional divergenceless
vector field in space which vanishes if integrated against any gradient vector field, provided that
the surface terms one encounters in partial integration vanish.
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So far we have not restricted to any special choice of ϕ, except that the product ϕJ must
vanish on ∂Σ or fall-off sufficiently rapidly at Σ’s ends. These conditions can of course always
be met by appropriate choices of ϕ, given any J. But if J already has support bounded away
from ∂Σ and/or falls off sufficiently fast at each end of Σ, then we may even multiply it with
unbounded functions ϕ, like any of the spatial coordinate functions xm, and obtain∫

Σ

d3x Ja(xm),a =

∫
Σ

d3x Jm = 0 (66)

for all m ∈ {1, 2, 3}. Not that in this formula the components of J must refer to affine (inertial)
coordinates.

Now, the last step in order to arrive at our previous classic formulation of Laue’s theorem in
Section 1.5 is to apply this to the conserved current

J = JK := iK[T = KαTαβ
∂

∂xβ
, (67a)

where K is Killing. Since we are in Minkowski space we have 10 Killing fields at our disposal,
but in order to reproduce equation (17) we just need to consider the space-time translations

K =
∂

∂xµ
. (67b)

Indeed, inserting (67a) and (67b) into (66) immediately leads to (17).

This derivation of the original result (17) might look like cracking a walnut with a sledge-
hammer. However, looking at the 3+2 equations (64) and (67) make it clear that this is a very
special case indeed and that the general result it derived from, i.e. (63), is far more general.
Also, the derivation of (17) from (63) makes it clear what geometric structures are necessary in
order to make sense of the original form. The physical interpretation and significance of other
consequences of (63) remain to be developed. One could, e.g., think of stationary axisymmetric
spacetimes in which U is taken to be the timelike and K the rotational Killing field (which com-
mute, [U,K] = 0). A stationary T, i.e. LUT = 0, then implies LUJ = 0 with J = ?(iK[T)[,
as required. I do not know of attempts to evaluate the consequences of (63) in such situations.
At the same time is is likely that such consequences are implicit in some of the works on the
dynamics of matter in stationary axisymmetric spacetimes, like Kerr.
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3. Conclusions and Outlook

The underlying theme of this investigation consists in the problem of how local distributions
of energy and momentum meaningfully combine (“add”) to global quantities. In Section 2.3
we gave an answer that required a global group action on the state space of the physical sys-
tem under consideration. The group and its action links the local geometric objects with the
global quantities whose habitat and interpretation are closely related to group-theoretic con-
cepts. If the action of the group on state space derives from an action on space-time, the global
quantities receive their interpretation from the type of motions generated by the group. This is
encoded in the momentum map of Definition 4, together with its property (50) of restricted Ad∗-
equivariance under motions of the dynamical fields alone. Only in combination with restricted
Ad∗-equivariance can we properly associate the local dynamical fields Fwith globally conserved
quantities and identify their mathematical habitat. For that it is essential that the representatives
of physical states, i.e. the local fields F, are geometric objects in the sense that they are naturally
acted upon by diffeomorphisms.11 Without such a group-theoretic link no obvious meaning can
generally be given to integrals over local energy-momentum distributions.

Even though we only considered matter fields in fixed background space-times (which may
or may not satisfy Einstein’s equations), our considerations can be extended to GR where the
metric field itself is dynamical and contributes to the global quantities that are usually identified
with energy and momentum. In that context presumably the first person to seriously wonder
about the habitat and transformation properties of formally constructed global quantities was
Felix Klein in [14], who coined the term “free affine vector” to characterise the four numbers
that resulted from integrations of components of local geometric objects (involving the metric
and the connection). The word “free” and “affine” were meant to say that these four numbers are
the component of a vector, but that vector is not attached to any point in spacetime. The word
“vector” was meant to indicate that these four numbers transform properly under a restricted
class of diffeomorphisms. The latter were defined as those preserving the metric structure at
large spatial distances, which was assumed to be Minkowskian. Hence, modulo those diffeo-
morphisms that tend to the identity at spacelike infinity and which are considered mere gauge
transformations (redundancies in the description), the Poincaré group should result with all its
associated conserved charges. Hence the idea is to construct a momentum map for the Poincaré
group in GR as well, given that the field configurations satisfy suitable asymptotic conditions.
This idea is to a certain extend realised by the so-called ADM constructions, as explained in
more detail in [7] and very lucidly in [2] (see also [11] for a general review of the ADM con-
struction, its relation to momentum maps, and all the relevant references). Again, and now for
the last time, we stress that such expressions loose their physical interpretation if formally tran-
scribed to situations without a proper group-theoretic context. This, it seems to me, is often not
sufficiently appreciated.

11 A pragmatic definition of a local geometric object on a manifold is that for any chart it may be fully represented
in the chart domain by arrays of numbers, with well defined transformation rules under changes of charts; see,
e.g., § 4.13 of Trautmann’s lecture [27]. This comprises all sections in bundles associated to the bundle of linear
frames, including tensors and their densities, which all transform linearly, and also connections, which change by
affine transformations. For a more systematic approach to define geometric structures, see, e.g., [24].
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Appendices
The following three appendices combine general information on our notation and conventions
in differential geometry, as well as some basic but conceptually important structural properties
of Minkowski space and its automorphism group, the Poincaré group.

A. Minkowski space and Poincaré group

Within the realm of Special Relativity, spacetime is modelled by Minkowski space. In this
appendix we wish to briefly recall some of the mathematical structures underlying Minkowski
space and its automorphism group, called the Poincaré group. A proper awareness of these
structures is important for the discussion in the main text.

For the sake of generality we shall give our discussion for spacetimes of general dimension
n. This will not induce any additional complications. Now, n-dimensional Minkowski space is
defined to be a real affine space of dimension n ≥ 2 whose associated vector space is endowed
with a non-degenerate symmetric bilinear form of signature (1, n − 1) [i.e. one positive, n − 1
negative dimensions], also called a Lorentzian inner product. Minkowski space is also a real n-
dimensional Manifold homeomorphic to Rn with a Lorentzian metric and associated Levi-Civita
connection which is flat.

A.1. Affine spaces

Here we wish to concentrate on the first definition, which immediately connects to the basic
physical idea of “inertial motion”, i.e. the motion of force-free extensionless test particles,
which is represented by the straight-lines in affine space. We recall that an n-dimensional affine
space is a triple (M,V,+), where M is a set, V is an n-dimensional real vector space and the
familiar symbol + denotes an action of V – considered as abelian group – on the set M which
is simply transitive. The word “action” means that there is a map M × V → M denoted by
(m, v) 7→ m + v such that m + 0 = m for all m ∈ M and m + (v + v ′) = (m + v) + v ′ .
Note that in this last equation the first (+)-sign on the left-hand side denotes V’s action on M
whereas the second denotes vector addition. On the right-hand side both (+)-signs denote V’s
action on M. The word “transitive” means that for each pair (m,m ′) ∈ M ×M there exists
a v ∈ V such that m ′ = m + v. The word “simply” then further requires that this v ∈ V be
unique. Given that, we may extend our suggestive notation and write v = m ′ − m for that
unique element v ∈ V which, when acting on m, gives m ′. Hence we may write equations like
(m ′−p)+ (p−m) = m ′−m orm+(m ′−p) = m ′+(m−p), valid for allm ′,m, p inM.

To sum up, we may “add” vectors to points in affine space to get new point in affine space,
and also “subtract” two points in affine space to get a vector. These two operations behave in a
natural “associative” way as exemplified by the equations above. But note that points in affine
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space cannot be added. It is true that every point o ∈M defines a bijection

φo :M→ V , m 7→ φo(m) := m− o . (68)

One might useφo to pull back the linear structure from V toM, so that “addition” inM could be
defined bym+m ′ := φ−1

o

(
φo(m)+φo(m

′)
)
= o+(m−o)+ (m ′−o). However, the result

of “adding” m to m ′ in this fashionthen then depends on the choice of o. In fact, any p ∈ M
could be made the result of addingm tom ′: Just choose o = m+ (m ′ − p) = m ′ + (m− p).

A.2. Affine automorphisms and affine groups

An affine automorphisms of an affine space is a bijection F : M → M of the following form:
There exists a point m ∈M and a map f ∈ GL(V) (here and below GL(V) denotes the general
linear group of V , i.e. the group of all linear invertible self-maps of V)), such that F has the form

F(m+ v) = F(m) + f(v) (69)

It immediately follows that once (69) is true for some m and some f then it also holds for all
m ∈M with the same f. Hence f is uniquely determined by F. Therefore, ifm ′ + v ′ = m+ v,
we may either write F(m ′) + f(v ′) or F(m) + f(v) for the image point.

Affine maps form a group under composition which we denote by Aff(M,V,+). Given two
affine maps F and F ′ with associated linear maps f and f ′, the composition F ′ ◦ F has associated
linear map f ′ ◦ f as is easily checked. Moreover, if F = idM then f = idV . Hence the map

π : Aff(M,V,+)→ GL(V)

F 7→ π(F) = f ,
(70)

which assigns to any affine map F its associated linear map f, is a surjective homomorphism of
groups. The kernel of π is given by an abelian normal subgroup Trans(M,V,+) ⊂ Aff(M,V,+)
which one calls the translations of M and which is naturally isomorphic with V . The quotient
Aff(M,V,+)/Trans(M,V,+) is isomorphic to GL(V). In fact, Aff(M,V,+) is isomorphic to
the semi-direct product V o GL(V) in which GL(V) acts as automorphism of the group V by
its defining representation. This means that for (a,A) and (b, B) in the set V × GL(V), their
multiplication and inversion in V o GL(V) is

(a,A)(b, B) = (a+Ab,A ◦ B) , (71a)

(a,A)−1 = (−A−1a,A−1) . (71b)

It is important to understand how this isomorphism between Aff(M,V,+) and V o GL(V)
comes about, because it is not natural due to the fact that it depends on the choice of an auxiliary
point o ∈M. Given such a point o, a bijectionΦo between the sets Aff(M,V,+) andV×GL(V)
can be obtained by a combination of the maps (68) and (70) as follows:

Φo : Aff(M,V,+)→ V × GL(V)

F 7→ Φo(F) :=
(
φo
(
F(o)

)
, π(F)

)
.

(72)
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Given two elements F, F ′ in Aff(M,V,+), we write Φo(F) = (v, f) and Φo(F ′) = (v ′, f ′) and
have Φo(F ′ ◦ F) =

(
v ′ + f ′(v) , f ′ ◦ f

)
, as a short computation shows. This means that the

bijection (72) becomes an isomorphism of groups if V×GL(V) is endowed with the semi-direct
product structure (71). Note that both, V as well as GL(V), are subgroups of V × GL(V). V is
the invariant subgroup kernel(π) and GL(V) is the (non-invariant) subgroup of those elements
fixing the point o ∈ M. Hence, in contrast to the translations, the linear part GL(V) has no
natural place in Aff(M,V,+).

A.3. Affine bases and affine charts

An affine basis B of an affine space consists of a tuple B = (o, b), where o ∈ M and b =
{e1, · · · en} is a basis of V . It defines a bijection of sets φB : M → Rn through φB(m) :=(
x1(m), · · · , xn(m)

)
, where xa(m) := θa(m − o). The inverse map φ−1

B : Rn → M is given
by φ−1

B (x1, · · · , xn) = o + xaea. The bijection φB becomes a topological homeomorphism if
the topology given to M is the initial one, i.e. the weakest (coarsest) to make φB continuous
(the continuity of φ−1

B follows from the invariance-of-domain theorem). Moreover, φB defines a
global chart (i.e. an atlas with a single chart) which can be used to endow M with the structure
of a differentiable manifold. We call such a chart an affine chart. Given two different affine
bases, B = (o, b) and B ′ = (o ′, b ′), the transition function between the corresponding affine
charts is

φBB ′ := φB ◦ φ−1
B ′ : R

n → Rn , (73a)

whose a-th component is
φaBB ′(x

1, · · · , xn) = Aabxb + aa , (73b)

where aa := θa(o ′ − o) and Aab = θa(e ′b), i.e. eb = Aabeb.

A.4. Passive versus active transformations

In the physics literature these transition function between different affine charts are sometimes
referred to as “passive transformations”. In contrast, an “active transformation” then refers to an
affine map of M represented in terms of coordinates with respect to one and the same chart. So
given an affine map F and a single affine chart φB, we have

FB := φB ◦ F ◦ φ−1
B : Rn → Rn , (74a)

whose a-th component is
FaB(x

1, · · · , xn) = Aabxb + aa , (74b)

where aa := θa
(
F(o) − o

)
and Aab := θa

(
f(eb)

)
, i.e. f(eb) = Aabea. The analytic similarity

of the right-hand sides of (73b) and (74b) should not deceive us about their different meanings.
Whereas (73b) relates coordinate representatives of the same point in different affine charts,
(74b) relates coordinate representatives of source and image point under an affine map in one
and the same affine chart. This remark extends to general tensor fields, where one can either
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relate coordinate representatives of the same field in different affine charts, or coordinate repre-
sentatives of different fields in the same affine chart. Here the “different fields” are related by
the action of the affine group (or subgroup thereof) on the particular bundle in which the field
is a section; compare Appendix B.3. Note that changing the chart will result in a change of the
coordinate representatives of all fields, whereas we may choose to let affine transformation just
act on any proper subset of fields. Also, on general manifolds, passive transformations will not
form a group unless all charts have the same domain.

A.5. Poincaré group as metric preserving affine group

Finally we mention the definition of the Poincaré group, which we embed into a more general
setting. Assume V to be endowed with a “metric” g ∈ V∗ ⊗ V∗, that is, a non-degenerate
symmetric bilinear form of any signature. This defines the generalised orthogonal subgroup,

O(V, g) := {A ∈ GL(V) : g(Av,Aw) = g(v,w) ∀v,w ∈ V} . (75)

The inhomogeneous generalised orthogonal group, which we denote by IO(M,V,+, g), is then
defined as the preimage in Aff(M,V,+) of O(V, g) ⊂ GL(V) under the homomorphism (70):

IO(M,V,+, g) := π−1
(
O(V, g)

)
⊂ Aff(M,V,+) . (76)

IO(M,V,+, g) is the automorphism group of the structure (M,V,+, g) that comprises the
affine structure (M,V,+) with the metric structure g on V . IO(M,V,+, g) is (not naturally)
isomorphic to V o O(V, g), as is immediately seen by restricting any of the isomorphisms
Φo in (72) to IO(M,V,+, g) ⊂ Aff(M,V,+). Now, if g is of signature (1, (n − 1)) [or
((n − 1), 1)], in which case we write η instead of g, then O(V, g = η) is called the Lorentz
group Lor, and IO(M,V,+, g = η) is called the Poincaré group, Poin, in n dimensions. Hence
Poin := π−1

(
O(V, g)

)
.

B. Spacetime: General conventions and notation

B.1. The notion of spacetime

In physics the notion of “spacetime” is usually taken to imply a tuple (M,g) in which the first
entry, M, is a n ≥ 3-dimensional (usually n = 4) differentiable manifold which is connected,
Hausdorff, paracompact, and orientable. The second entry, g, represents a Lorentzian metric
with respect to which M is time orientable and usually (but not always) assumed to be globally
hyperbolic. These latter two properties refer to the pair (M,g) and are discussed in a little more
detail below. Let us begin by discussing aspects ofM alone.

B.2. Some obvious bundles over manifolds

As usual, the tangent and cotangent spaces at a point m ∈ M are denoted by TmM and T∗mM,
respectively and the tangent and cotangent bundles by TM :=

⋃
m∈M TmM and T∗M :=

33



⋃
m∈M T

∗
mM, respectively. The tensor product of the p-fold tensor product of TmM with the

q-fold tensor product of T∗mM is called T p
mqM. It is said to consist of p-fold contravaraint

and q-fold covariant tensors at m ∈ M. The bundle of such tensors is denoted by TpqM :=⋃
m∈M T

p
mqM. The symbols ⊗, ∨, and ∧ denote the tensor product, the symmetrised, and

antisymmetrised tensor product, respectively. We shall mainly use the antisymmetrised tensor
product which is explicitly defined in (83). The symmetrised product is defined analogously just
without the sign-function sign(σ) in (79). We shall also make use of the inner-product structure
that the antisymmetric tensor product inherits from that of its factors. Since here various conven-
tions concerning combinatorial factors as well as signs enter, which will be important to keep in
mind in order to compare formulae from different sources, we have collected all our conventions
and constructions in a self-contained exposition in Appendix C. This includes in particular the
Hodge duality map, that we shall denote as usual by ?. The p-fold antisymmetric tensor product
of T∗mM is denoted by

∧pT∗mM and the bundle of such forms accordingly by
∧pT∗M. A section

Λ ∈ Γ
(∧pT∗M) is called closed if its exterior differential vanishes: dΛ = 0. It is called exact

if Λ = dλ for some λ ∈ Γ
(∧p−1T∗M)

B.3. Natural bundles

If B denotes any bundle over M, including all the ones mentioned so far, we denote by Γ(B)
the linear space of all its smooth (say C∞) sections. Dynamical laws in physics are differential
equations that elements of Γ(B) have to satisfy. In this paper we are interested in symmetries of
such equations, that is, operations on Γ(B) under which the subset of solutions stays invariant
(as set). Of particular interest for us are symmetries that derive from symmetries of spacetime
(M,g), e.g., an action Φ of a finite-dimensional Lie group G on M in the sense of (43). In
order to meaningfully ask whether this action defines a symmetry of a differential equation on
Γ(B) we must first know how the action Φ lifts to an action Φ̂ on Γ(B), i.e. a homomorphism
Φ̂ : G → Diff(B) such that for all g ∈ G we have π ◦ Φ̂g = Φg ◦ π, where π : B → M

denotes the bundle projection. Now, a bundle B is called natural if such a lift exists naturally
for all Φ ∈ Diff(M) [15]. This is, e.g., the case for all bundles discussed above: Just take the
push-forward of Φ on vector fields, the pull-back of Φ−1 on form fields, and extend naturally
to tensor products of those. Generally it is true that Φ naturally lifts from M to the principal
bundle B = FL(M) of linear frames (by push-forward of each frame) and hence to all bundles
associated to FL(M). In particular this implies that the Lie derivative is defined for all sections
in natural bundles. On the other hand, there exist physically relevant bundles which are not
natural in that sense, like, e.g., the principal bundle of orthogonal (with respect to some metric g)
frames FO(M,g) and its associated bundles, and also the double cover FO(M,g), an important
associated bundle of which is the bundles of spinors. In these cases natural lifts exist only for
the subgroup of isometries (M,g) within Diff(M). This implies that the ordinary Lie derivative
of spinor fields exists only with respect to vector fields generating isometries (Killing fields).
For our purpose, in particular in connection with the discussion of Section 2.3, this is sufficient.
But we mention that there exist generalisations of the ordinary notion of a Lie derivative that do
apply to spinor fields such that derivatives with respect to all vector fields make sense. Compare,
e.g., the construction in [3] and the more systematic treatment in [6] within the framework of
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gauge theories.

B.4. Lorentzian manifolds

As already anticipated above, we shall endow M with a Lorentzian metric g ∈ Γ(T∗M ∨

T∗M). That means that g(m) ∈ T∗mM⊗ T∗mM is a non-degenerate symmetric bilinear form of
signature (1,−1, · · · ,−1) at each piontm. There is a slight conventional ambiguity here in that
sometimes the opposite signature (−1, 1, · · · , 1) is taken, which for obvious reasons is referred
to as the “mostly plus” convention. In this paper we stick to the “mostly minus” convention.
We assume (M,g) to be globally hyperbolic, which implies that M is diffeomorphic to R× Σ,
where Σ is a connected (n − 1)-dimensional Riemannian manifold with Riemannian structure
h = −g|TΣ. We also assume (M,g) to be time-orientable, which means that there exists a vector
field X ∈ Γ(TM) which is timelike (i.e. g(X,X) > 0; hence, in particular, nowhere vanishing).
At each m ∈ M the vector Xm ∈ TmM selects one of the two components of the so-called
“chronological cone” Cm := {X ∈ TmM : g(X,X) > 0} ⊂ TmM, which one may call the future
component.

An orientation for M is picked by specifying a volume form ε ∈ Γ (
∧nT∗M). Relative to

that choice, a basis {e0(m), · · · , , en−1(m)} of TmM is then defined to be positively oriented, if
and only if εm

(
e0(m), · · · , en−1(m)

)
> 0. Let {eα ∈ Γ(TM) : α = 0, · · · , n− 1} be a basis at

each point (such global bases exist, due toM = R×Σ, if Σ is parallelizable, which is automatic
in n = 4 dimensions, i.e. if Σ is 3-dimensional) and

{
θα ∈ Γ(TM) : α = 0, · · · , n − 1

}
be its dual basis, i.e. θα(eβ) = δαβ. Then we call this dual pair of bases adapted if they are
orthonormal in the sense of g(eα, eβ) = ηα,β = diag(1,−1, · · · ,−1, ), positively oriented in
the sense of ε(e0, · · · , en−1) > 0, and time oriented in the sense of g(X, e0) > 0. The volume
form ε may then be identified with the unique element in Γ (

∧nT∗M) which assigns the value 1
(unit volume) to any adapted basis: ε(e0, · · · , en−1) = 1; hence

ε = θ0 ∧ · · ·∧ θn−1 . (77)

C. Definitions and convention in multilinear algebra

In this appendix we collect our definitions and conventions in a self-contained way, so as to ease
comparison with the main text and also provide some explanatory material.

C.1. Vector spaces and the exterior algebra of its dual space

Let V be a real n-dimensional vector space, V∗ its dual space and TpV∗ = V∗ ⊗ · · · ⊗ V∗ its p-
fold tensor product.12 TpV∗ carries a representation πp of Sp, the symmetric group (permutation

12 We follow standard tradition to define forms, i.e. the antisymmetric tensor product on the dual vector space V∗

rather than on V . Clearly, all constructions that are to follow could likewise be made in terms if Vrather than V∗.
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group) of p objects, given by

πP : Sp → End(TpV∗), πp(σ)
(
α1 ⊗ · · · ⊗ αp

)
:= ασ(1) ⊗ · · · ⊗ ασ(p) (78)

and linear extension to sums of tensor products. On TpV∗ we define the linear operator of
antisymmetrisation by

Altp :=
1

p!

∑
σ∈Sp

sign(σ)πp , (79)

where sign : Sp → {1,−1} ∼= Z2 is the sign-homomorphism. This linear operator is idem-
potent (i.e. a projection operator) and its image of TpV∗ under Altp is the subspace of totally
antisymmetric tensor-products. We write

πp
(
TpV∗

)
=:
∧pV∗ . (80)

Clearly

dim (
∧pV∗) = {(np) for p ≤ n ,

0 for p > n .
(81)

We set ∧
V∗ :=

n⊕
p=0

∧pV∗ . (82)

Let α ∈
∧pV∗ and β ∈

∧qV∗, then we define their antisymmetric tensor product

α∧ β := (p+q)!
p!q! Altp+q(α⊗ β) ∈

∧p+qV∗ . (83)

One easily sees that
α∧ β = (−1)pq β∧ α . (84)

Bilinear extension of ∧ to all of
∧
V∗ endows it with the structure of a real 2n-dimensional

associative algebra, the so-called exterior algebra over V∗. If α1, · · · , αp are in V∗, we have

α1 ∧ · · ·∧ αp =
∑
σ∈Sp

sign(σ)ασ(1) ⊗ · · · ⊗ ασ(p) , (85)

as one easily shows from (83) and (84) using induction.

If {θ1, · · · , θn} is a basis of V∗, a basis of
∧pV∗ is given by the following

(
n
p

)
vectors

{θa1 ∧ · · ·∧ θap | 1 ≤ a1 < a2 < · · · < ap ≤ n} . (86)

An expansion of α ∈
∧pV∗ in this basis is written as follows

α =: 1p! αa1···ap θ
a1 ∧ · · ·∧ θap , (87)

using standard summation convention and where the coefficients αa1···ap are totally antisym-
metric in all indices. On the level of coefficients, (83) reads

(α∧ β)a1···ap+q = (p+q)!
p!q! α[a1···apβap+1···ap+q] , (88)

where square brackets denote total antisymmetrisation in all indices enclosed:

α[a1···ap] :=
1

p!

∑
σ∈Sp

sign(σ) αaσ(1)···aσ(p) . (89)
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C.2. Inner products on vector spaces and their extension to the dual
space and its exterior algebra

Suppose there is an inner product (non-degenerate symmetric bilinear form) g on V , i.e., g :
V × V → R; (v,w) 7→ g(v,w). We do not need to restrict to any specific signature of g which
we therefore leave open. If the signature is Lorentzian we shall use the letter η instead of g,
as sometimes done in the main text. A non generate G defines an isomorphism g↓ : V → V∗

though g↓(v) := g(v, ·). The inverse map is called g↑, i.e., g↑ := (g↓)−1 : V∗ → V . Hence
the inner product g on V defines in a natural fashion an inner product on the dual space V∗,
which we call g−1 : V∗ × V∗ → R; (α,β) 7→ g−1(α,β). It is defined in the obvious way
by first mapping α and β into V using g↑, and then taking the inner product using g. Hence
g−1 := g ◦ (g↑ × g↑), that is, g−1(α,β) = g

(
g↑(α), g↑(β)). From that it immediately follows

that g↑(β) = g−1(·, β), if we identify V∗∗ ∼= V by the natural isomorphism i : V → V∗∗;
i(v)(α) := α(v). The maps g↑ and g↓ are often called the “index-raising” and “index lowering”
map, respectively, or simply the “musical isomorphisms”. The reason for these names is as
follows: Let {e1, · · · , en} {θ1, · · · , θn} be dual pairs of bases for V and V∗ respectively, and
g(ea, eb) =: gab, g−1(θa, θb) =: gab. Then g↓(vbeb) = vaθ

a and g↑(αbθb) = αaea with
va := vbgba and αa := gabαb; also gacgbc = gcagcb = δab, which justifies the notation g−1,
since for symmetric g the matrix {gab} is the inverse of the matrix {gab} (for non-symmetric g
it is the transposed inverse). Even though not relevant here, we remark that all relations in this
paragraph are deliberately written in a way that remains valid for non-symmetric g. To end this
paragraph we also remark that if the metric with respect to which index lowering and raising is
clear from the context, one often writes (so-calles “musical isomorphisms”)

v[ := g↓(v) = g(v, ·) , (90a)

α] := g↑(α) = g−1(·, α) . (90b)

We make use of the notation (90a) throughout the main text.

The inner product g−1 on V∗ extends to an inner product on each TpV∗ by

〈
α1 ⊗ · · · ⊗ αp, β1 ⊗ · · · ⊗ βp

〉
:=

p∏
a=1

g−1(αa, βa) (91)

and bilinear extension:〈
αa1···ap θ

a1 ⊗ · · · ⊗ θap , βb1···bp θ
b1 ⊗ · · · ⊗ θbp

〉
= αa1···apβ

a1···ap . (92)

In particular, it extends to each subspace
∧pV∗ ⊂ TpV∗. We have

〈
α1 ∧ · · ·∧ αp , β1 ∧ · · ·∧ βp

〉
:= p!

∑
σ∈Sp

sign(σ)
p∏
a=1

g−1(αa, βσ(a)) (93)

and hence〈
1
p!αa1···apθ

a1 ∧ · · ·∧ θap , 1p!βb1···bpθ
b1 ∧ · · ·∧ θbp

〉
= αa1···apβ

a1···ap . (94)
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In the totally antisymmetric case it is more convenient to renormalise this product in a p-
dependent fashion. One sets 〈

· , ·
〉

norm

∣∣∧p
V∗

:= 1
p!

〈
· , ·
〉∣∣∧p

V∗
(95)

so that〈
1
p!αa1···apθ

a1 ∧ · · ·∧ θap , 1p!βb1···bpθ
b1 ∧ · · ·∧ θbp

〉
norm

= 1
p!αa1···apβ

a1···ap . (96)

C.3. Hodge duality

Given a choice o of an orientation of V∗ (e.g. induced by an orientation of V), there is a unique
top-form ε ∈

∧nV∗ (i.e. a volume form for V), associated with the triple (V∗, g−1, o), given by

ε := θ1 ∧ · · ·∧ θn , (97)

where {θ1, · · · , θn} is any g−1-orthonormal Basis of V∗ in the orientation class o. The Hodge
duality map at level 0 ≤ p ≤ n is a linear isomorphism

?p :
∧pV∗ → ∧n−pV∗ , (98a)

defined implicitly by
α∧ ?pβ = ε 〈α , β〉norm . (98b)

This means that the image of β ∈
∧pV∗ under ?p in

∧n−pV∗ is defined by the requirement that
(98b) holds true for all α ∈

∧pV∗. Linearity is immediate and uniqueness of ?p follows from
the fact that if λ ∈

∧n−pV∗ and α∧ λ = 0 for all α ∈
∧pV∗, then λ = 0. To show existence it

is sufficient to define ?p on basis vectors. Since (98b) is also linear in α it is sufficient to verify
(98b) if α runs through all basis vectors.

From now on we shall follow standard practice and drop the subscript p on ?, supposing that
this will not cause confusion.

Let {e1, · · · en} be a basis of V and {θ1, · · · , θn} its dual basis of V∗; i.e. θa(eb) = δab.
Let further {θ1, · · · , θn} be the basis of V∗ given by the image of {e1, · · · en} under g↓, i.e.
θa = gabθ

b. Then, on the basis {θa1 ∧ · · ·∧ θap | 1 ≤ a1 < a2 < · · · < ap ≤ n} of
∧pV∗ the

map ? has the simple form

?(θb1 ∧ · · ·∧ θbp) = 1
(n−p)!εb1···bp ap+1···an θ

ap+1 ∧ · · ·∧ θan . (99)

This is proven by merely checking (98b) for α = θa1 ∧ · · · ∧ θap and β = θb1 ∧ · · · ∧ θbp .
Instead of (99) we can write

?(θa1 ∧ · · ·∧ θap) = 1
(n−p)! g

a1b1 · · ·gapbp εb1···bpbp+1···bn θ
bp+1 ∧ · · ·∧ θbn

= 1
(n−p)! ε

a1···ap
ap+1···an θ

ap+1 ∧ · · ·∧ θan , (100)

which makes explicit the dependence on ε and g.
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If α = 1
p!αa1···apθ

a1 ∧ · · ·∧ θap , then ?α = 1
(n−p)!(?α)b1···bn−pθ

b1 ∧ · · ·∧ θbn−p , where

(?α)b1···bn−p = 1
p! αa1···apε

a1···ap
b1···bn−p . (101)

This gives the familiar expression of Hodge duality in component language. Note that on com-
ponent level the first (rather than last) p indices are contracted.

Applying ? twice (i.e. actually ?(n−p) ◦ ?p) leads to the following self-map of
∧pV∗:

?
(
? (θa1 ∧ · · ·∧ θap)

)
= 1

p!(n−p)!ε
a1···ap

ap+1···anε
ap+1···an

b1···bp θ
b1 ∧ · · ·∧ θbp

= (−1)p(n−p)

p!(n−p)! ε
a1···apap+1···anεb1···bpap+1···an θ

b1 ∧ · · ·∧ θbp

= (−1)p(n−p) 〈ε, ε〉norm θ
a1 ∧ · · ·∧ θap .

(102)

Note that

〈ε, ε〉norm = 1
n!g

a1b1 · · ·ganbnεa1···anεb1···bn = (ε12···n)
2/ det{g(ea, eb)} . (103)

This formula holds for any volume form ε in the definition (98b), independent of whether or not
it is related to g.

Since the right-hand side of (98b) is symmetric under the exchange α ↔ β, so must be the
left-hand side. Using (102) we get

〈α,β〉norm ε = α∧ ?β = β∧ ?α = (−1)p(n−p) ? α∧ β

= 〈ε, ε〉−1norm ? α∧ ? ? β = 〈ε, ε〉−1norm 〈?α , ?β〉norm ε ,
(104)

hence
〈?α , ?β〉norm = 〈ε, ε〉norm〈α,β〉norm . (105)

From this and (102) it follows for α ∈
∧pV∗ and β ∈

∧n−pV∗, that

〈α, ?β〉norm = 〈ε, ε〉−1norm〈?α , ? ? β〉norm = (−1)p(n−p) 〈?α,β〉norm . (106)

This shows that the adjoint map of ? relative to 〈· , ·〉norm is (−1)p(n−p) ?.

Formulae (102), (104)(105), and (106) are valid for general ε in the definition (98b). If we
choose ε as the unique volume form that assigns unit volume to an oriented orthonormal frame,
as does (97), then we have

〈ε, ε〉norm = (−1)n− (107)

where n− is the maximal dimension of subspaces in V restricted to which g is negative definite;
i.e. g is of signature (n+, n−). Equation (105) then shows that ? is an isometry for even n−

and an anti-isometry for odd n−. If g is a Lorentzian inner product in n dimensions then either
n+ = (n− 1) and n− = 1, which is called the “mostly-plus convention”, or n+ = 1 and n− =
(n − 1), which accordingly is called the “mostly-minus convention”. If n is even n− is odd in
both conventions, and no differences in signs occur. In contrast, for odd space-time dimensions
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all signs involving (−1)n− differ in these two conventions. In the mostly-minus convention that
we followed in the main text, we have then ?n−p ◦ ?p = (−1)(n+1)(p+1)id

∣∣∧p
V∗

, where we used

the following identity for integers mod(2): p(n−p)+(n−1) = np+p+n+1 = (n+1)(p+1).
This means that in even space-time dimensions (like the n = 4 we are mostly interested in) ?
squares to the identity on odd forms and to minus the identity on even forms, whereas in odd
space-time dimensions it always squares to the identity. As explained above, this remains true for
even n in the mostly-plus convention, but turns to the opposite signs for odd n if the conventions
are changed.

Finally we note the following useful formula: If v ∈ V let iv : TpV∗ → Tp−1V∗ the map
which inserts v into the first tensor factor. It restricts to a map iv :

∧pV∗ → ∧p−1V∗. Then, for
any α ∈

∧pV∗, we have
iv ? α = ?(α∧ v[) . (108)

using the notation (90a). It suffices to prove this for basis elements v = ea of V and α =
θa1 ∧ · · ·∧ θap of

∧pV∗, which is almost immediate using (100).

An immediate consequence of (108) is that for any v ∈ V we have the identity iv ? v[ =
?(v[∧v[) = 0 and hence that iv(v[∧?v[) = g(v, v) ?v[. On the other hand, from (98b) the left
hand side of the last equation also equals to 〈v[, v[〉ivε. Since g(v, v) = 〈v[, v[〉norm we have

?v[ = ivε . (109)
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