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In a recent paper, Werndl and Frigg discuss the relationship between the
Boltzmannian and Gibbsian framework of statistical mechanics, addressing
in particular the question when equilibrium values calculated in both frame-
works coincide. In this comment, I point out serious flaws in their work
and try to put their results into proper context. I also clarify the concept
of Boltzmann equilibrium, the status of the “Khinchin condition” and their
connection to the law of large numbers.

1 Boltzmann vs. Gibbs

In a recent paper1, Charlotte Werndl and Roman Frigg discuss the relationship between
the Boltzmannian and Gibbsian framework of statistical mechanics, addressing in par-
ticular the question, if and when the two formulations yield equivalent predictions for
equilibrium values of macroscopic observables.

In the Boltzmannian framework, the relevant set of macro-variables takes (approxi-
mately) constant values on the equilibrium region of phase space which are thus revealed
by an appropriate measurement on a system in equilibrium (a system, that is, whose
actual micro-state is in the equilibrium region). The role of the stationary phase space
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1C. Werndl and R. Frigg, “Mind the Gap: Boltzmannian versus Gibbsian Equilibrium”. Forthcoming
in Philosophy of Science, doi: 10.1086/694088.
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measure is to establish that it is very likely to find the system in an equilibrium state.
In the Gibbsian framework, equilibrium is a property of an ensemble, represented by a
stationary distribution ρ on phase space, and it is often (though maybe somewhat care-
lessly) said that the prediction for a measurement of a macro-variable f on an individual
ensemble system is given by the phase average

〈f〉 =
∫
f(x)ρ(x) dx , (1)

where x is the phase space variable. This quantity is also called the ensemble average
or expectation value of f .
There are many situation in which the Gibbsian phase average agrees – within relevant

error bounds – with the Boltzmannian equilibrium value. Werndl and Frigg mention a
criterion which they call the “Khinchin condition” and which they characterize, very
briefly, as the phase function having “small dispersion”. In less technical terms, this is
to say that the macro-variable f is approximately constant, except on a possible set of
small measure. Yet another and most pertinent way to formulate the relevant condition
– now from a Boltzmannian perspective – is to say that there exists a unique Boltzmann
equilibrium whose corresponding macro-region exhausts almost the entire phase space
volume. For then, the macro-variable f takes an (approximately) constant value – the
Boltzmannian equilibrium value – on a set of measure close to 1 – the Boltzmannian
equilibrium region. Hence, the phase integral (1) will be dominated by the Boltzmannian
equilibrium value.
It is important to emphasize that, unless one considers a thermodynamic limit, “the

Boltzmannian equilibrium value” refers in general to a small range of values of f (hence
“approximately constant”). This kind of coarse-graining, often left implicit in physical
discussions and routinely ignored byWerndl and Frigg, is crucial and of course legitimate,
since the relevant measurements have limited accuracy. We will return to this point in
section 3.
The existence of a dominant Boltzmann equilibrium is in fact the generic case in sta-

tistical mechanics, giving rise to the claim that Boltzmann and Gibbs make (in general)
equivalent predictions for systems in the respective equilibria. If one agrees that the
Boltzmannian formulation is the more fundamental one, this also explains why Gibbsian
phase averaging yields (in general) accurate predictions for individual measurements.
On the other hand, there are special cases in which this “Khinchin condition” doesn’t

hold. For instance, in the two-dimensional Ising model without external field, it makes
sense to speak of two Boltzmann equilibria below the critical temperature, corresponding
to a positive or negative magnetization, respectively. The partition function and thus
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the Gibbsian distribution are however symmetric under a flip of all spins, hence yielding
an average magnetization of zero. There is nothing inconsistent or mysterious about this
fact, as long as one keeps in mind that the Gibbsian value refers, in the first place, to an
ensemble average. In particular, it is well understood in the physical literature that the
interesting conclusions about the Ising model cannot be drawn from such phase averages.
Instead, one can for instance study phase transitions at the critical temperature by fixing
either +1 or −1 boundary conditions (referring to the polarization of spins at the edge
of the lattice) thus implicitly picking one of the two magnetization states.
In their paper, Werndl and Frigg mention the magnetization in the Ising model only

briefly but present instead other (alleged) examples for a disagreement between Boltz-
mann and Gibbs, which are either based on inappropriate and physically irrelevant
choices of macro-variables or a misidentification of the relevant macro-states. We will
discuss one of their examples in the final section. Still, the basic point that the Khinchin
condition, respectively the coincidence of Boltzmann and Gibbs equilibrium values, can-
not be assumed a priori is a valid one.

On these grounds, Werndl and Frigg declare that is “[a]n important task of the foun-
dations of SM [statistical mechanics] ... to classify under which conditions the two
frameworks lead to the same results and under which conditions they do not” an go on
to present a “new theorem specifying a set of conditions” under which Boltzmannian
and Gibbsian are indeed equivalent. I quote their result in full:

Equilibrium Equivalence Theorem (EET). Suppose that the system
(X,Tt, µX) is composed of N ≥ 1 constituents. That is, the state x ∈ X

is given by the N coordinates x = (x1, ..., xN ); X = X1 × X2 . . . × XN ,
where Xi = Xoc for all 1 ≤ i ≤ N (Xoc is the one-constituent space). Let
µX be the product measure µX1 × µX2 . . . × µXN , where µXi = µXoc is the
measure on Xoc. Suppose that an observable κ is defined on the one-particle
space Xoc and takes the values κ1, . . . , κk with equal probability 1/k, k ≤
N . Suppose that the macro-variable K is the sum of the one-component
observable, i.e. K(x) =

∑N
i=1 κ(xi). Then the value corresponding to the

largest macro-region as well as the value obtained by phase space averaging
is N

k (κ1 + κ2 + . . . κk).

2 The law of large numbers

What the authors don’t seem to realize, and certainly don’t acknowledge, is that the
relevant result, under their assumptions, is a straight-forward application of the law of
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large numbers (LLN) – arguably the most basic theorem in all of probability theory.
Since they assume a family of independent and identically distributed random variables,
the (weak) law of large numbers yields

µ

({
x :
∣∣∣∣∣ 1
N

N∑
i=1

κ(xi)−
1
k

(κ1 + κ2 + . . .+ κk)
∣∣∣∣∣ < ε

})
≥ 1− σ2

ε2N
, (2)

for any ε > 0, where σ2 is the variance of κ. For a proof, I refer to any textbook on
probability theory.
As Werndl and Frigg consider an extensive macro-variable that grows with N , we can

set ε = N−δ for δ ∈ [0, 1
2 ] so that, in terms of K (and writing K := N

k (κ1 +κ2 + . . .+κk)
as a “phase average”), the LLN estimate becomes

µ

({
x :
∣∣∣∣K(x)−

∫
K(x′) dµ(x′)

∣∣∣∣ < N1−δ
})
≥ 1− σ2

N1−2δ . (3)

Here, it is important to note that it’s the relative deviation
∣∣∣K−KK ∣∣∣ . N1−δ

N = N−δ that
becomes vanishingly small for large particle numbers. In particular, for a macroscopic
system, we have N ∼ 1024, and setting δ = 1

3 , we can conclude that K deviates from K

by less than one millionth of a percent on a set of measure (approximately) 0, 999999.2

To emphasize: if the macro-variable K is extensive, i.e. of order N , fluctuations of
order N1−δ (with, let’s say, δ = 1

3 as in the above estimate,) are negligibly small for
most practical purposes. Another way to think about this is that the typical values of
K determine the relevant unites in which the system is described macroscopically. For
instance, if the macro-variable has the dimension of energy, the characteristic scale of
the one-constituent variables κi may be electronvolts (eV), while the total energy K is
measured in joules (J). Thus, fluctuations of a few billion or even trillion electronvolts
barely even amount to a rounding error on the macroscopic scale (1eV ≈ 1.602×10−19J).

Summing up in less technical terms, the weak law of large numbers states precisely
that for large N (which is the relevant case in statistical mechanics), phase space is
dominated by an “equilibrium region”, on which the value of the macro-variable K is
very close to the expectation value (= phase average). But this is nothing else than the
Khinchin condition in the form explicated above, implying the equivalence of Boltzman-
nian and Gibbsian predictions under the present assumptions.

2A tacit assumption, generally made, is that the variance σ2 of the one-constituent variables κi is of
order 1. If σ is already extremely large, or somehow chosen to increase with N , the LLN may fail
to provide relevant estimates. But while some of Werndl’s and Frigg’s arguments seem to hint in
that direction, such examples are either completely artificial and unphysical, or actually indicate a
violation of statistical independence, so that neither the LLN nor the EET are appropriate arguments.
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This leads me to the following assessment of Werndl’s and Frigg’s “Ensemble Equiv-
alance Theorem”:

1. Contrary to what the authors claim in the paper, their sufficient conditions for
the equivalence of Boltzmannian and Gibbsian equilibrium values are not different
from the Khinchin condition. They have merely stated obvious sufficient conditions
under which the Khinchin condition holds.

2. The relevant result can be straightforwardly generalized (maybe to a “Generalized
Equilibrium Equivalence Theorem (GEET)”). In the form of eq. (3) it holds,
in fact, for any sum of uncorrelated and identically distributed random variables
with finite variance. This is to say that neither the uniform distribution, nor the
discreteness of the random variables is required, and they don’t even have to be
defined on a one-constituent space. For a proof, I refer again to any textbook on
probability theory.

3. Even if the conditions stated by Werndl and Frigg are thus relaxed, they are very
strong and hardly apply to anything by highly idealized models. The authors don’t
seem to realize where the strength of their assumptions lies. They write:

The crucial assumptions of the theorem are (i) that the macro-variable
is a sum of the observable on the constituent space and (ii) that the
macro-variable on the constituent space corresponds to a partition with
cells of equal probability. (p. 16)

But assumption (i) is often justified, while the “equal probability” in (ii) plays no
important role at all. The crucial and very strong assumption is the statistical in-
dependence of the constituent variables (their joint distribution factorizes!), which
doesn’t hold, in most relevant cases, due to interactions or conserved quantities.
(It is precisely this loss of statistical independence that becomes significant in the
Ising below the critical temperature.) Controlling correlations – or justifying in
some other way a “law of large numbers” – is in fact the key issue in many of the
hard problems of statistical mechanics.

4. The authors’ insistence that “we need other conditions next to the Khinchin condi-
tion” is ill-motivated to begin with. They present examples (however ill-conceived)
in which the Khinchin condition fails to obtain, but those are also examples in
which they find the Boltzmannian and Gibbsian values to disagree. In fact, a good
case can be made that the Khinchin condition – in the sense of “uniqueness and
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dominance of the Boltzmann equilibrium” – is not only sufficient, but also nec-
essary. Suppose we agree on a definition of “Boltzmann equilibrium” according
to which 1) the phase space volume associated to an equilibrium region is many
orders of magnitude larger than the phase space volume associated to any non-
equilibrium region and 2) the phase space regions associated to all equilibrium
states together exhausts almost the entire phase space volume. Then, a violation
of the above condition means that there is either no Boltzmann equilibrium (hence
no macro-value that is particularly likely to be observed on an individual trial) or
that phase space is dominated by two or more equilibrium regions corresponding
to significantly different macro-values – in which case the phase average will corre-
spond to an average of these values rather than any one in particular (unless this
average happens to equal one of the Boltzmannian equilibrium values).

However, instead of arguing this point in greater detail, a more concise and pro-
ductive remark is maybe the following: If the Khinchin condition doesn’t hold, it
means that there’s a high probability of finding macro-values that differ signifi-
cantly from the Gibbsian phase average, so that the phase average, as a prediction
for individual measurements, is highly dubious in the first place.3

In conclusion, even if one concurs with Werndl and Frigg that specifying new condi-
tions for the equivalence of Boltzmannian and Gibbsian equilibrium values is a serious
foundational problem in statistical mechanics (and I don’t), their “Ensemble Equivalence
Theorem” is no progress whatsoever. The sufficiency of their conditions is a mathemat-
ical commonplace, a simple application of the law of large numbers, and thus certainly
known to the cognescenti. And while it may be legitimate for a philosopher of physics
to present even the most basic results to a less knowledgable audience, if the aim is to
clarify their meaning and put the results into proper context, I worry that the authors
do quite the opposite.

3 Macro-states confused

I want to return to one of my initial remarks and discuss what I believe to be the
fundamental misconception underlying the discussion of Werndl and Frigg.
It is important to note that while the LNN follows immediately from their assumptions,

the “theorem” stated and proven by Werndl and Frigg is strictly speaking not a LLN
statement, in that their Boltzmann equilibrium value and its equality to the phase

3It is common misconception that one measures “ergodic time-averages”. This is wrong since ergodic
time-scales are much too long (cf. Goldstein (2001)).
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average is supposed to be exact. In particular, when they speak of “the largest macro-
region”, as in the formulation of the “Ensemble Equivalence Theorem”, they refer to the
subset of X on which K takes precisely the value N

k (κ1 + κ2 + . . .+ κk).
In my opinion, this doesn’t make their result more original from a mathematical point

of view, but misses the point entirely. For one, the measure of that particular set goes
to zero for large N . Even more basic, it is neither reasonable nor useful (except in the
idealization of the thermodynamic limit) to define macro-states in terms of arbitrarily
precise values of physical quantities. For these reasons, Werndl’s and Frigg’s “largest
macro-region” has little to do with a Boltzmann equilibrium and little physical relevance
in general.
The law of large numbers is in fact the paradigm that one should have in mind when

one thinks about the Boltzmann equilibrium: there is a certain range of typical values
for the relevant quantities. And the larger the particle number, the more weight (phase
space measure or probability, if you will,) is concentrated on an ever smaller range of
values around the mean.
Alternatively, one can think of the central limit theorem and imagine that, for large

N , the distribution of 1
NK is approximately a normal distribution with variance ∼ 1

N .
Werndl and Frigg are essentially pointing at the peak of the bell curve, saying: “this is
the most likely value!” But this is missing the point. The relevant observation is that
the weight of the distribution is concentrated within a few standard deviations of order

1√
N
. Since N is very large, such variations are tiny and empirically negligible on macro-

scopic scales. It is this range of typical and for all practical purposes indistinguishable
values – not just the peak of the distribution – that one identifies with the Boltzmann
equilibrium.4

To be clear: a “macro-variable”, qua mathematical object, is usually some nice func-
tion of the microscopic variables – think for instance of the energy H(q, p) as a function
of the particles’ positions and momenta in a canonical ensemble. But such a variable
is in general too fine-grained to consider all its different values as “macroscopically dis-
tinct”. A possible source of confusion is that the term “macro-variable” is used both
synonymously with “random variable” (in a technical sense) and with “macroscopic ob-
servable” (in a conceptual one). If used in the latter sense, however, we must take it
with a grain of salt, keeping in mind that the relevant macroscopic observations have a
limited accuracy – both in practice and by definition.
I believe the reason why this point is not more regularly emphasized in the scien-

4The authors may believe that their macro-variable is already properly coarse-grained from partitioning
the one-constituent space into cells. But this is a coarse-graining on the microscopic scale (order K

N
),

and thus much too fine.
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tific literature, is that physicists are trained to think the “error bars” by default, while
mathematicians (and some mathematically minded physicists) usually work in the ther-
modynamic limit of infinitely many degrees of freedom (N → ∞) where the typical
values become, indeed, sharp. (In view of the central limit theorem, think of a sequence
of more and more peaked normal distributions converging to a delta-distribution.)
Another potential source of confusion is that the Gibbsian equilibrium value, if iden-

tified with the phase average (1), is a definite real number by definition. But here too,
the common physicist – maybe only after being pressured on it – will find it obvious
that this can hardly be read as an “infinitely precise” prediction of the theory. Instead,
one can for instance compute the ensemble variance

(∆f)2 :=
∫

(f(x)− 〈f〉)2ρ(x) dx (4)

and identify the Gibbsian prediction, to be compared with the Boltzmannian one, with
〈f〉 ±∆f .5

Considering their recent work, Frigg’s and Werndl’s literal-mindedness about macro-
values seems to be at the core of their misconceptions about Boltzmannian statistical
mechanics in general and its relationship to the Gibbsian framework in particular. One
of many such instances is their discussion of the “baker’s gas” (a model for the ideal gas
based on the baker’s transformation), that the authors have used in multiple publications
to demonstrate how the Boltzmann equilibrium fails to be dominant, i.e. to cover the
great majority of phase space volume. To this end, they partition the one-particle
phase space (corresponding to the unit square in the baker’s model) into k cells and
claim that the macro-state corresponding to the Boltzmann equilibrium is the “uniform
distribution” for which each cells contains exactly N

k particles. It is then easy to see that
while the phase space volume associated with the uniform distribution is greater than
the phase space volume associated with any other particular arrangement of particles, it
fails to exhaust a majority of phase space volume for large N . In the present paper, the
authors exploit this fact – amounting to an apparent failure of the Khinchin condition –
by introducing a (very artificial) macro-variable, weighing the previously defined “macro-
regions” in such a way that the Gibbsian phase average differs significantly from the
Boltzmannian equilibrium value.
In such discussions, however, the authors simply fail to consider an appropriate coarse-

graining into macro-states, repeating the mistakes of Lavis (2005), already pointed out by

5Note that our first formulation of the Khinchin condition was precisely that the dispersion ∆f is
small. If it isn’t, the “Gibbsian equilibrium value” is not a useful or reliable predictions for individual
measurements to begin with, cf. point 4 above.
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Lazarovici and Reichert (2015). Exact uniform distributions, where each cell contains
precisely N

k particles, are very special configurations, their measure actually goes to
zero for large N . But configurations for which the density of particles in each cells
differs only slightly from 1

k are macroscopically indistinguishable and coarse-grain to the
same macro-state. Otherwise, we would have to say, for instance, that a gas is “out of
equilibrium” if the left-hand-side of the volume contains even a single particle more than
the right-hand-side.6

More precisely, it is an elementary result in probability theory (part of the standard
proof of the LLN, actually,) that the variance (= dispersion squared) in a sum of N
independent random variables – such as the occupation number of each cell in an ideal
gas model – is additive. This is to say, in particular, that typical fluctuations are of
the order

√
N and we will not have a dominant equilibrium region if the coarse-graining

into macro-states is finer than that. This is a trivial mathematical fact, not a deep
foundational issue.

In the present case, a dominant macro-state with respect to the considered uniform
measure would be the one containing all configurations for which the relative number
of particles in each cell is within 1

k ±
1√
N

(I’m neglecting a k-dependent constant that
would yield somewhat better bounds). Since 1√

N
is a tiny number for macroscopic N ,

corresponding to density fluctuations of less than one tenth of a billionth of a percent,
these configurations look macroscopically uniform and constitute the relevant Boltzmann
equilibrium.7

Werndl and Frigg may maintain that their discussion is simply assuming a different
notion of “macro-state”. But if this is so, it is assuming a notion of “macro-state” that is
clearly inappropriate, a notion that no one, who has understood the basics of probability
theory and the scope of statistical mechanics, could have ever had in mind. Nevertheless,
it seems to be a general methodology of Frigg and Werndl to define macro-states as it
pleases them and expound on the problems they encounter in return. A charitable
reading is that this approach is just taken from the standard playbook of analytical
philosophy: arguing by means of counterexamples – however far-fetched – to uncover
foundational issues and push for conceptual clarity. But even then I believe that the
subject matter (and it’s protagonists, some of which the authors like to criticize on a

6If the relevant macro-variable is not actually “occupation numbers”, but whatever corresponds to the
function that Werndl and Frigg introduce, the physical reasoning is slightly different but the need
for appropriate coarse-graining remains the same.

7And what if we had extremely precise measurement devices? Well, then we would actually observe
density fluctuations in an “ideal” gas; but this doesn’t put into question any of the results or concepts
of statistical mechanics. One possible way of speaking, if one is worried about terminology, would be
to say that such observations cease to be “macroscopic” in the relevant sense.
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regular basis,) deserve a little more respect, a little more consideration given to basic
results, insights and intentions. No Boltzmannian – least of all Boltzmann himself – ever
claimed that you could partition phase space in any arbitrary and physically irrelevant
manner and end up with a dominant equilibrium state.
In general, I am rather skeptical of this ad absurdum approach to the foundations

of statistical mechanics. In my opinion, it misses the point of the discipline, which is
not an “axiomatic theory” but an effective framework for the description of complex
systems that requires some degree of pragmatism and good physical sense. A crucial
difference, to my mind, is that in an axiomatic theory, any counterexample can point to
foundational issues, while in statistical mechanics, some counterexamples point merely
to incompetent use.
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