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Abstract  10 

A popular view presents explanations in the cognitive sciences as causal or mechanistic and argues that 11 

an important feature of such explanations is that they allow us to manipulate and control the 12 

explanandum phenomena. Nonetheless, whether there can be explanations in the cognitive sciences 13 

that are neither causal nor mechanistic is still under debate. Another prominent view suggests that both 14 

causal and non-causal relations of counterfactual dependence can be explanatory, but this view is open 15 

to the criticism that it is not clear how to distinguish explanatory from non-explanatory relations. In this 16 

paper, I draw from both views and suggest that, in the cognitive sciences, relations of counterfactual 17 

dependence that allow manipulation and control can be explanatory even when they are neither causal 18 

nor mechanistic. Furthermore, the ability to allow manipulation can determine whether non-causal 19 

counterfactual dependence relations are explanatory. I present a preliminary framework for 20 

manipulation relations that includes some non-causal relations and use two examples from the cognitive 21 

sciences to show how this framework distinguishes between explanatory and non-explanatory, non-22 

causal relations. The proposed framework suggests that, in the cognitive sciences, causal and non-causal 23 
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relations have the same criterion for explanatory value, namely, whether or not they allow manipulation 24 

and control. 25 

Keywords 26 

explanation; non-causal explanations; manipulation and control; the cognitive sciences; counterfactual 27 

dependence; 28 

1 Introduction 29 

Philosophers have characterized various types of explanations in the cognitive sciences. Functional 30 

analyses (Cummins 1983, 2000), mechanistic models (Craver 2007a), computational models (Chirimuuta 31 

2014; Egan 2017; Rusanen and Lappi 2016; Shagrir 2006; Shagrir and Bechtel 2017) as well as network, 32 

topological, and mathematical models (Chirimuuta 2017; Huneman 2010; Silberstein and Chemero 2013) 33 

have all been said to have explanatory value. This poses a challenge to philosophers – how does one 34 

present a framework for explanation in the cognitive sciences, when said explanation is so deeply diverse 35 

in range1?  36 

One prominent - albeit highly contended - view is the mechanistic view of explanations in the cognitive 37 

sciences. According to proponents of this view (henceforth: “mechanists”) (Craver 2007a, 2007b, 2016, 38 

Kaplan 2011, 2017; Kaplan and Craver 2011; Milkowski 2013; Piccinini 2015; Piccinini and Craver 2011), 39 

generally, models in the cognitive sciences are explanatory to the extent that they describe relevant causal 40 

structures. These relevant causal structures are those “that produce, underlie, or maintain the 41 

explanandum phenomenon” (Kaplan and Craver 2011, p. 602). On this view, explanations in the cognitive 42 

sciences are often mechanistic - the phenomenon is explained by appeal to its underlying causal structure, 43 

a mechanism. The appeal of this view is strong: it implies that many explanations in the cognitive sciences 44 

                                                 
1 One can also be a pluralist and argue that there is no single, unifying framework that can accommodate all these 
explanations. In this paper, I assume that, were it to be possible, such a framework would be preferable. 
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have a unifying feature, namely, the description of relevant causal structures. Nonetheless, in recent 45 

years, mechanists have had to defend their view against claims that some models in the cognitive sciences 46 

explain phenomena in ways that are outside the scope of the mechanistic framework (Bechtel and Shagrir 47 

2015; Chirimuuta 2014; Egan 2017; Huneman 2010; Rusanen and Lappi 2016; Shagrir and Bechtel 2017; 48 

Shapiro 2017; Silberstein and Chemero 2013). The mechanists reply that these models are either 49 

explanatory because they describe relevant causal structures or they are not explanatory at all (Craver 50 

2016; Kaplan 2011, 2017; Kaplan and Craver 2011; Piccinini and Craver 2011). This debate is still ongoing. 51 

Furthermore, the mechanistic view has been criticized on the grounds that it diminishes the explanatory 52 

value of non-mechanistic models such as functional analyses (Shapiro 2017) and computational models 53 

(Shagrir and Bechtel 2017). 54 

Another approach, which is geared towards scientific explanation in general, is the counterfactual-55 

dependence view of explanation. Woodward and Hitchcock (Hitchcock and Woodward 2003; Woodward 56 

2003; Woodward and Hitchcock 2003) suggest that explanations provide the resources for answering a 57 

variety of what-if-things-had-been-different questions. The counterfactuals implied in these questions are 58 

described by appeal to intervention, a procedure formally and extensively set forth in (Woodward 2003) 59 

as part of an account of causal relations. Many mechanists also adopt Woodward’s framework for causal 60 

relations. Diverging from the mechanists who focus on the explanatory value of causal relations, several 61 

philosophers have extended this framework and asserted that explanations reveal relations of 62 

counterfactual dependence more generally, so that some explanatory counterfactuals cannot be 63 

described as the result of interventions. In this way, non-causal counterfactual dependences, too, can be 64 

taken as explanatory (Baron et al. 2017; Bokulich 2011; Chirimuuta 2017; Jansson 2015; Jansson and Saatsi 65 

2017; Pexton 2016; Reutlinger 2016; Saatsi and Pexton 2013; Woodward 2018; Ylikoski and Kuorikoski 66 

2010).  67 
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This approach has promise, but it faces a challenge confronted by many frameworks that describe non-68 

causal relations as explanatory: some counterfactual dependence relations are symmetrical (e.g., 69 

mathematical relations), yet in many of those cases, only one direction of dependence is taken to be 70 

explanatory (Craver 2016; Craver and Povich 2017)2.  71 

In this paper, I take a different route and combine an important feature of the mechanistic framework 72 

with the notion that non-causal dependences can also be explanatory. Mechanists often trace the initial 73 

interest in mechanistic explanations in the cognitive sciences to a desire to manipulate and control3 neural 74 

and cognitive phenomena (in this, they follow Woodward, who makes a similar argument for causal 75 

explanation in general (2003)). Here, I suggest that some relations can allow manipulation of cognitive 76 

and neural phenomena even when these relations are not part of causal structures that produce or 77 

underlie these phenomena (henceforth, “non-causal relations”). Therefore, the motivation to manipulate 78 

cognitive and neural phenomena can be extended to account for the explanatory value of some 79 

dependence relations that do not comply with mechanistic requirements. Moreover, I argue that a 80 

framework that links explanation with the motivation to manipulate phenomena can account for some of 81 

our intuitions about the type of non-causal counterfactual dependences that are explanatory in the 82 

cognitive sciences4.  83 

                                                 
2 This issue has been addressed in several papers that develop such frameworks. (Saatsi and Pexton 2013) reply 
that the explanation of regularities, rather than a singular event, can be symmetrical, and therefore non-causal. 
For example, the fact that the length of pendulums is proportional to the gravitational field can be explained by 
the mathematical equation that relates the two. (Jansson 2015; Jansson and Saatsi 2017) describe specific 
dependence or determination relations and argue that they are not symmetrical. 
3 Throughout the paper, I treat ‘manipulation’ and ‘control’ as having the same meaning in this context. They are 
often found together in the literature. To avoid redundancy, generally, I will only speak of manipulation.  
4 Although they do not discuss manipulation and control directly, some of the studies that address the issue of the 
asymmetry of explanation in symmetrical dependence relations suggest solutions that seem consistent with this 
idea. (Woodward 2018) proposes, when describing one example, that if one side of a dependence relation can be 
explained by other ordinary causes, the direction of explanation runs from this side to the other. (Jansson and 
Saatsi 2017), for their part, claim that, in some mathematical relations, the dependence runs only in one direction 
when fixing a value of one variable determines the value of the other, but not vice versa.  
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This suggestion can contribute to both frameworks. Regarding the counterfactual dependence view, 84 

associating explanation with manipulation provides a way to distinguish explanatory from non-85 

explanatory counterfactual dependences that is applicable to both causal and non-causal dependences in 86 

the cognitive sciences. In the future, this suggestion can be extended to other fields. Regarding the 87 

mechanistic framework, the point that non-causal dependences can also allow manipulation of the 88 

explanandum may be a good reason to extend this framework to include some explanatory dependences 89 

that are not causal or mechanistic. 90 

In this paper, I analyze two examples of mathematical relations in the cognitive sciences, aiming to show 91 

that they allow manipulation in the direction of explanation. In the first example, the fact that an 92 

estimator that combines inputs from two modalities is optimal is explained by the statistics of the inputs 93 

(Ernst and Banks 2002). In the second example, the magnitude of fluctuations in the input to a neuron is 94 

explained by the ratio between its excitatory and inhibitory incoming inputs (Softky and Koch 1993; van 95 

Vreeswijk and Sompolinsky 1996). 96 

A variety of models in the cognitive sciences have already been presented as explanatory despite the fact 97 

that they do not satisfy the mechanistic requirement of describing relevant causal structures (Chirimuuta 98 

2014; Egan 2017; Huneman 2010; Rusanen and Lappi 2016; Silberstein and Chemero 2013). Unlike these 99 

studies, I do not aim to argue that some explanations in the cognitive sciences are non-causal. According 100 

to some manipulability frameworks for causation, relations of manipulability simply are relations of causal 101 

dependence (Woodward 2003). Proponents of such views may interpret the argument of this paper as 102 

showing that some dependence relations that were previously taken to be non-causal allow manipulation 103 

and therefore are, in fact, causal. Those who adopt such a view of causation for the examples presented 104 

here will have to concede that cause and effect can be mathematically related and occur simultaneously. 105 

Furthermore, if they accept that constitutive relations in mechanisms allow manipulation, then they must 106 

take constitutive relations to be causal. Such consequences are usually understood as undesirable 107 
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(Baumgartner and Gebharter 2016; Craver and Bechtel 2007; Romero 2015). Nonetheless, an 108 

interpretation of this paper that takes mathematical relations to be causal is possible, and I will not argue 109 

against it here.  110 

The paper is organized as follows: section 2 will describe the role of manipulation and control in 111 

Woodward’s framework and in the mechanistic framework. Section 3 will present a preliminary 112 

formulation of a manipulation relation that can accommodate causal and non-causal relations. Section 4 113 

will provide two examples of non-causal explanations in the cognitive sciences that describe relations that 114 

allow manipulation. Finally, section 5 will discuss a few possible objections and counter-objections to the 115 

proposed framework.   116 

2 manipulation and control in Woodward’s and the mechanists’ writings 117 

Woodward develops an ‘interventionist’ or ‘manipulationist’ framework for causal relations and 118 

explanation, which is based on the notion that causal relations can potentially be used to manipulate the 119 

environment. He writes: “…our interest in causal relationships and explanation initially grows out of a 120 

highly practical interest human beings have in manipulation and control” (2003, p. 10) and states the 121 

following conditions for X to be a cause of Y: 122 

(M) X causes Y if and only if there are background circumstances B such that if some 123 

(single) intervention that changes the value of X (and no other variable) were to occur in 124 

B, then Y or the probability distribution of Y would change…An intervention on X with 125 

respect to Y [is] an idealized experimental manipulation of X which causes a change in Y 126 

that is of such a character that any change in Y occurs only through this change in X and 127 

not in any other way (Woodward 2010, p.4, italics in the original; for a more detailed 128 

description see Woodward 2003) 129 
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Craver, developing a framework for mechanistic explanation, writes: “Explanations in neuroscience are 130 

motivated fundamentally by the desire to bring the CNS [central nervous system] under our control.” 131 

(Craver 2007a, p. 160) . Building on Woodward’s framework, he states that a component is relevant to 132 

the behavior of a mechanism when “the two are related as part to whole and they are mutually 133 

manipulable” (2007a, p. 153 italics in the original).  134 

Woodward (2003) and Craver (2007a) describe causal and mechanistic explanations, respectively, in terms 135 

of manipulability. I draw on this work and take causal relations and constitutive relations in mechanisms 136 

to allow manipulation. There is also a second, weaker, sense in which Woodward and Craver tie together 137 

explanation and manipulation - namely, both present explanation as motivated by the desire to be able 138 

to manipulate and control phenomena. This relation between manipulation and explanation has been 139 

echoed in other philosophical (Dretske 1994) and scientific (Lazebnik 2002) writings.  140 

Inspired by this suggestion, I continue by arguing that, in the cognitive sciences, there are explanatory 141 

counterfactual dependence relations that allow manipulation of the explanandum and are neither causal 142 

nor mechanistic. Therefore, it may be possible to treat all these manipulation-allowing relations similarly, 143 

forming a more unified framework for explanation in the cognitive sciences. I begin by presenting a 144 

framework for manipulation.  145 

3 Relations of manipulation and control (manipulation*) as explanatory relations 146 

Ideally, I would use Woodward’s (2003) interventionist framework to describe manipulation relations. 147 

However, such a framework might not be able to accommodate non-causal dependence relations. In the 148 

case of constitutive relations, it is argued that ideal interventions on the part with respect to the whole, 149 

and vice versa, are not possible. In an ideal intervention, according to Woodward (2003), the intervention 150 

variable that changes X must not be a cause of Y through a path that does not include X. Arguably, 151 

however, any manipulation of the part can also be considered a direct manipulation of the whole, and 152 
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vice versa, thus ruling out the possibility of an ideal intervention (Romero 2015). Similar claims can be 153 

made regarding supervenience, mathematical and other dependence relations in which the variables 154 

cannot be considered distinct. 155 

Therefore, I suggest a slightly different account that is intended to also fit cases where the variables are 156 

not distinct. To differentiate this extended manipulation from that of Woodward, I term it manipulation*. 157 

Take two non-identical variables, X and Y. Then Y can be manipulated* through X iff: 158 

(1) There is at least one manipulation* variable M that can be used to manipulate* X5. So that in the 159 

counterfactual scenario in which M is used to change the value of X, while all variables are held 160 

constant except for {M, X, Y, the variables on the path from M to X, and the variables that are 161 

manipulated through X}, the value of Y changes as well. 162 

(2) The influence of M on the value of Y is completely mediated through X: if M is used to manipulate 163 

X as in (1), while any other manipulation* variable M is used to keep X constant and all variables 164 

are held constant except for {M, M, Y, the variables on the path from M to X, the variables on the 165 

path from M to X, and the variables that are manipulated through X}, Y will remain constant6. 166 

The first requirement cannot tell us whether the change in Y occurred because of the change in X or 167 

because of the change in M directly. To meet the second requirement, the change in Y must occur only 168 

because of the change in X. When both requirements are met, the implication is that there is some 169 

dependence of Y on X that can be used to change the value of Y by changing X.  170 

                                                 
5 This requirement makes the manipulation* framework non-reductive; a manipulation* relation cannot be 
described without appeal to other manipulation* relations. In this respect, it is similar to Woodward’s framework 
(Woodward 2003). 
6 The requirement that any manipulation* variable can be used to keep X constant may seem too strong. However, 
note that for causal relations, the effect of the intervention variable on Y must be mediated through X by 
definition. Hence, however we keep X constant, while keeping all other variables that can manipulate* Y constant, 
Y will not change. This is also the case for mathematical relations, where the value of Y is determined by the value 
of X and by the other variables that mathematically define Y.  
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I take it that, in the cognitive sciences, if Y can be manipulated* through X, then, to some extent, X and 171 

the dependence relation explain Y. This is a counterfactual framework because the change in M describes 172 

a counterfactual scenario. However, the counterfactuals discussed here differ slightly from those found 173 

in Woodward (2003) and describe different possible manipulations* of X, which are not ideal 174 

interventions. I will assume here that in the counterfactual scenarios of the manipulations*, the 175 

mathematical relations of the factual world still hold7. 176 

Several points are worth noting here. First, I am certainly not suggesting that “if I can manipulate it I can 177 

explain it”. Instead, the relation between manipulation and explanation is such that manipulation* 178 

relations and manipulating* variables can be used to explain the dependent explanandum. Second, like 179 

Woodward‘s manipulability for causal relations, the manipulation* relation does not have to be practically 180 

possible but only conceptually so. Finally, I focus on the cognitive sciences. It may be possible to extend 181 

this framework to other sciences, but I suspect that there are some fields, such as fundamental physics, 182 

that may not be as concerned about manipulation of their investigated phenomena. Therefore, I refrain 183 

from making a more general claim. 184 

4 manipulation and control in mathematical explanations in the cognitive sciences 185 

In this section, I use the manipulation* framework to analyze two examples of explanations in the 186 

cognitive sciences that appeal to mathematical relations. As a warm-up, I will take the well-known - albeit 187 

not from the cognitive sciences - example of a mathematical explanation: Königsberg’s bridges (Craver 188 

and Povich 2017; Lange 2013; Reutlinger 2016). 189 

Euler’s theorem states that it is possible to walk through a graph traversing each edge exactly once (an 190 

Euler walk) iff exactly zero or two nodes in the graph are connected to an odd number of edges. Therefore, 191 

the fact that it is impossible for someone to take an Euler walk in Königsberg is explained by the fact that 192 

                                                 
7 See (Baron et al. 2017) for a discussion of counterfactuals regarding mathematical relations. 
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Königsberg has four parts that are connected to an odd number of bridges. In this example, although in 193 

some conditions the organization of Königsberg’s bridges (in terms of whether it meets Euler’s criterion) 194 

and the possibility of an Euler walk there can each be derived from the other, we take the organization of 195 

Königsberg’s bridges to explain the impossibility of an Euler walk there and not vice versa (Craver and 196 

Povich 2017). Intuitively, the direction of manipulation in this example coincides with the direction of 197 

explanation; we can manipulate the possibility of someone taking an Euler walk by changing the 198 

organization of Königsberg’s bridges, but we cannot manipulate the organization of Königsberg’s bridges 199 

by changing the possibility of someone taking an Euler walk. This intuition can be explicated in the 200 

manipulation* framework. 201 

Let us consider a manipulation* variable M that can change the organization of Königsberg’s bridges. For 202 

example, we can tear down a bridge in Königsberg with the purpose of having only two parts with an odd 203 

number of bridges. Such a change is expected to manipulate* both the organization of Königsberg’s 204 

bridges and whether someone can take an Euler walk there. The change in possibility of taking an Euler 205 

walk is mediated via the change to the organization of Königsberg’s bridges; any manipulation* to keep 206 

the organization of Königsberg’s bridges constant (e.g., quickly build a new bridge) will make this walk 207 

impossible again. Thus, both requirements for a manipulation* relation are met: the possibility of an Euler 208 

walk can be manipulated* via the organization of Königsberg’s bridges. When considering whether this 209 

manipulation* relation can also work in the other direction, we must seek a manipulation* that can 210 

change both variables such that when the possibility of an Euler walk is held constant, the organization of 211 

Königsberg’s bridges would remain constant as well. However, we can hold the possibility of an Euler walk 212 

constant by barricading the city so that it is impossible for someone to take an Euler walk there. It is 213 

difficult to fathom a manipulation* that would change the organization of Königsberg’s bridges when the 214 

city is not barricaded but would not affect this organization when the city is barricaded. Considering the 215 

destruction of bridges, it would change both variables, but the change in the organization of Königsberg’s 216 
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bridges would remain regardless of whether the city is barricaded. Therefore, until someone comes up 217 

with an example that fits this requirement, this framework does not imply that we can manipulate* the 218 

organization of Königsberg’s bridges via the possibility of an Euler walk. In this example, the direction of 219 

manipulation* fits the direction of explanation.   220 

4.a Optimal integration of information from two modalities 221 

Consider a task where you are asked to estimate the length of a wooden bar. You have both visual and 222 

haptic inputs that reflect the length of this bar, but because both these inputs are noisy, the visual and 223 

haptic inputs differ slightly. What will your answer be? Ideally, you would like your answer to be optimal 224 

in the sense that, given the information you have, it will minimize the difference between your estimate 225 

and the true bar length. Measurements of this difference are called ‘cost functions’. 226 

It can be shown mathematically that when the inputs from the two modalities are independent and 227 

normally distributed around the true bar length (see Fig. 1a), the following estimate minimizes three 228 

common cost functions (number of errors, mean absolute error (L1) and mean squared error (L2))8. This 229 

estimate is a weighted mean of the inputs, so that the weight of each modality is inversely related to the 230 

variance of the input noise (see Fig. 1b):  231 

(1) 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝜇) =
𝑆𝑉∙(

1

𝜎𝑉
2 )+𝑆𝐻∙(

1

𝜎𝐻
2 )

(
1

𝜎𝑉
2 )+(

1

𝜎𝐻
2 )

 232 

 Where 𝜇 is the real length of the bar, 𝑆𝑉 and 𝑆𝐻 are the inputs that we get from the visual and the haptic 233 

modalities, respectively, and 𝜎𝑉
2  and 𝜎𝐻

2  are the variance of the noise of visual and haptic inputs (i.e.,  234 

𝑆𝑉 ~𝑁(𝜇, 𝜎𝑉
2), 𝑆𝐻 ~𝑁(𝜇, 𝜎𝐻

2)). 235 

                                                 
8 Throughout this discussion I assume that we have no information about the prior probability of the bar length.  
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Therefore, if one posits that the inputs of the different modalities are distributed as described and the 236 

cost of errors in the task is one of the three common cost functions, an optimal strategy would be to 237 

answer in accordance with (1). Indeed, Ernst and Banks (2002) discovered that, in such a task, people gave 238 

answers that were similar to the answers equation (1) would yield. 239 

Now, one can ask ‘why is it the case that eq. (1) is optimal?’. We can answer this question by referring to 240 

a mathematical relation. It can be shown that when it is assumed that the distributions of the inputs are 241 

independent and normal with an expected value that is the real bar length 𝜇 (as in Fig. 1a), then equation 242 

(1) can be mathematically derived as minimizing the common cost functions. But (1) may not be optimal 243 

if these assumptions about the inputs are not correct. For example, if the expected value of the visual and 244 

haptic inputs, 𝑆𝑉 and 𝑆𝐻, is not the actual bar length 𝜇 (i.e., they are biased estimates) then equation (1) 245 

will not yield an optimal answer (see Fig. 1c-d). The optimal estimate will be one that takes this bias into 246 

account. Therefore, the optimality of (1) depends on the probability distributions of the inputs. The 247 

probability distributions of the inputs and the mathematical derivation that yields (1) as the optimal 248 

estimate together explain the optimality of (1).  249 

The probability distributions of the inputs explain (1)’s optimality even though (1)’s dependence on the 250 

probability distributions of the inputs would generally not be considered causal: the probability 251 

distributions of the inputs and the optimality of (1) occur simultaneously, and the dependence is between 252 

variables that are mathematically connected rather than between two distinct variables (Craver and 253 

Bechtel 2007)9. 254 

                                                 
9 As discussed in the introduction, non-causal by popular opinion that considers simultaneous, mathematical 
relations to be non-causal. 
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Given that this relation is not causal, it seems that the mechanistic framework cannot account for it. How 255 

can the manipulation* framework elucidate this case? Intuitively, the optimality of (1) can be manipulated 256 

via the probability distributions of the inputs. I will show that this is indeed a manipulation* relation.  257 

 Let us consider a variable that can be used to manipulate* the probability distributions of the inputs. It is 258 

possible to change the probability distributions of the inputs by changing the experimental conditions. 259 

(Ernst and Banks 2002) used specialized lab equipment to simulate visual and haptic inputs that differed 260 

in their variance. Thus, it is possible to change experimental conditions so that the probability distributions 261 

of the inputs become biased (their expected value is no longer the true bar length) and by this to render 262 

(1) no longer optimal. We can show that the optimality of (1) can be manipulated* via the probability 263 

distributions of the inputs by finding a manipulation* variable that cannot change Y when X is held 264 

constant. Consider the aforementioned manipulation* variable, where the experimental conditions are 265 

changed with the purpose of biasing the visual and haptic inputs. It is possible to counter the change to 266 

the probability distributions of the inputs, for example by giving subjects special glasses that will remedy 267 

the bias. In such a case, the probability distributions of the inputs as well as the optimality of (1) will both 268 

remain constant. In fact, because of the mathematical dependence relation, we know that if we change 269 

the experimental conditions, however we choose to keep the probability distributions of the inputs 270 

constant, while keeping other relevant variables such as the cost function constant, the optimality of (1) 271 

will remain constant as well. Therefore, the two conditions for manipulation* are met. We can conclude 272 

that we can manipulate* the optimality of (1) via the probability distributions of the inputs, and therefore 273 

the latter, together with the mathematical dependence relation, explain the former. 274 

What about the asymmetry of the direction of explanation, despite the symmetrical mathematical 275 

dependence (Craver 2016; Craver and Povich 2017)? The optimality of (1) is mathematically related to the 276 

probability distributions of the inputs. So, one might argue that the manipulation* relation should be 277 

symmetrical. Yet, it would seem very odd to say that the probability distributions of the inputs are 278 
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explained by (1)’s optimality. Luckily, this direction of explanation is not a consequence of the 279 

manipulation* framework.  280 

To see if the probability distributions of the inputs can be manipulated* via the optimality of (1), we search 281 

for a manipulation* variable M that can change the value of both variables, but if some variable is used 282 

to hold the optimality of (1) constant, the probability distributions of the inputs do not change. One way 283 

to hold the optimality of (1) constant is by changing the cost function. However, it is difficult to imagine 284 

how some manipulation* can change the probability distributions of the inputs for one cost function but 285 

not for another. For this reason, until someone comes up with such a variable, in this example, the 286 

manipulation* framework implies that manipulation* and explanation go only in one direction: the 287 

probability distributions of the inputs can be used to manipulate* and explain the optimality of (1), but 288 

not vice versa. The manipulation* framework yields the desired results: a symmetrical mathematical 289 

relation allows manipulation* only in one direction, which is the direction we would also take to be the 290 

direction of explanation. 291 

4.b Cortical neurons spike irregularly despite having a large number of incoming synaptic connections  292 

Generally speaking, neurons in the cortex fire irregularly (Softky and Koch 1993): their inter-spike intervals 293 

(the time between two consecutive spikes) vary greatly. A common regularity measure is the coefficient 294 

of variation (𝐶𝑉): 295 

(1) 𝐶𝑉 =
𝜎Δ𝑡

Δ𝑡̅̅̅̅  296 

Where Δ𝑡 is the inter-spike interval, Δ𝑡̅̅ ̅ is the mean of Δ𝑡 and 𝜎Δ𝑡 is the standard deviation of Δ𝑡 (for a 297 

period where many inter-spike intervals are measured). The 𝐶𝑉 of many cortical neurons tends to be 298 

between 0.4 and 1.2, while for regular firing we would expect 𝐶𝑉 ≪ 1 (i.e., the 𝐶𝑉 should be an order of 299 

a magnitude smaller than 1; see simulated examples in Fig. 2a) (Softky and Koch 1993). Given that the 300 
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number of input synapses on cortical neurons is on the order of thousands, this finding is bewildering. 301 

Usually, the firing of a neuron is viewed as reflecting an approximate summation of synaptic inputs. 302 

According to the Central Limit Theorem, when the number (𝑛) of independently and identically distributed 303 

(iid) random variables is very large, the sum of these random variables has an asymptotically normal 304 

distribution with an expected value proportional to 𝑛  and a standard deviation proportional to √𝑛 . 305 

Formally: 306 

(2) lim
𝑛→∞

∑ 𝑥𝑖
𝑛
𝑖=1  ~𝑁(𝑛 ∙ 𝐸(𝑥), 𝑛 ∙ 𝜎𝑥

2)   307 

Where 𝑛 is the number of inputs, 𝑥𝑖 is a random variable 𝑖, 𝐸(𝑥) is the expected value of 𝑥 and 𝜎𝑥
2 is the 308 

variance of 𝑥. According to this formula, when the number of summed random variables is very large, 309 

the standard deviation of their sum (also called fluctuations in the signal) is equal to √𝑛 ∙ 𝜎𝑥, which is 310 

negligible relative to the signal (i.e., the sum itself)10. To illustrate, if 𝐸(𝑥) = 𝜎𝑥, for a thousand inputs 311 

and total signal size of 1, the fluctuations will be around 0.03. This means that when the number of iid 312 

inputs is very large, we can mathematically derive that the total input will be approximately constant 313 

(Fig. 2b, left). Studies have shown that it is not likely that the irregular firing is an intrinsic property of the 314 

neurons (Mainen and Sejnowski 1995), and therefore the irregular firing is likely produced by large 315 

fluctuations in the inputs (Fig. 2b, right). So, the puzzling question is this: why do neurons with many 316 

input synapses receive highly fluctuating inputs, despite what we know from the Central Limit Theorem? 317 

One possible explanation for the surprising irregularity of the neurons’ firing is that the inputs are not 318 

independent. Instead, neurons are a part of a network in which excitatory and inhibitory synaptic inputs 319 

to each neuron are balanced such that most of the excitatory and inhibitory inputs cancel out and the 320 

total input is reduced to the order of magnitude of the fluctuations. Indeed, (van Vreeswijk and 321 

                                                 
10 This occurs because the sum is proportional to 𝑛  and the fluctuations are proportional to √𝑛, so the sum and its 

fluctuations differ by a magnitude of √𝑛.  
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Sompolinsky 1996) have shown that such a balance can be achieved in a network that has some general 322 

connectivity properties (e.g., one requirement is sparse connectivity). In this way, the number of inputs 323 

to each neuron is still very large but the total input fluctuates strongly. The theory of excitatory-inhibitory 324 

balance has received experimental support (Wehr and Zador 2003; Xue et al. 2014). According to this 325 

theory, the magnitude of fluctuations in the neurons’ total input depends on the balance between 326 

excitatory and inhibitory synaptic inputs and therefore this inhibitory-excitatory (henceforth IE) balance 327 

explains the fluctuations. 328 

As in the previous example, the relation between the IE balance and the fluctuations in the total input 329 

does not comply with our usual description of a causal relation; the variable ‘fluctuations in total input 330 

to the neuron’ is simultaneous with the variable ‘IE balance’, and the relation between the IE balance 331 

and the fluctuations in total input is a mathematical relation: without IE balance, the Central Limit 332 

Theorem yields a barely fluctuating input, and when there is IE balance in accordance with the model 333 

from (van Vreeswijk and Sompolinsky 1996), the mathematical model yields a highly fluctuating input.  334 

According to the manipulation* framework, this relation is explanatory. There is a manipulation* 335 

variable that changes the IE balance and the fluctuations in the neuron’s input. For example, we can 336 

block many of the inhibitory inputs, disturbing the IE balance in the network, and this will yield a barely 337 

fluctuating input. Furthermore, however we choose to restore the IE balance (e.g., by blocking many 338 

excitatory inputs or by increasing the firing rate of the remaining inhibitory inputs), we will also restore 339 

the fluctuations in the input. Therefore, this example meets the two requirements for manipulation* 340 

and, according to the manipulation* framework, the fluctuations in total input are explained by the IE 341 

balance.  342 

What about the challenge from symmetry of non-causal relations (Craver 2016; Craver and Povich 2017)? 343 

We can see that the manipulation* account does not imply that the IE balance can be manipulated* via 344 
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the fluctuations in total input. One way to keep the fluctuations in total input to the neuron constant is 345 

by using an electrode to add external current to the neuron. However, it is again difficult to fathom a 346 

variable that will change the balance between excitatory and inhibitory synaptic inputs for one value of 347 

electrode current but not for another value. Hence, there is no implication regarding manipulation* and 348 

explanation in the opposite direction, in accordance with our intuition about manipulation and 349 

explanation in this example. 350 

I have brought three examples in which the manipulation* account can come to our aid in distinguishing 351 

explanatory from non-explanatory relations of mathematical dependence. I believe these examples 352 

show convincingly that, for some non-causal explanations, explanatory value is closely related to 353 

manipulation. In the following section, I discuss several possible objections to the proposed framework. 354 

5 Possible criticisms of the manipulation* framework 355 

a) The manipulation* view ignores important differences between causal and non-causal 356 

relations that make non-causal relations unfit for manipulation. 357 

The manipulation* view bundles together causal and non-causal relations and treats them 358 

similarly. This, it may be argued, misses crucial differences between these relations. Importantly, 359 

when manipulation is discussed regarding causal relations one distinct variable is manipulated 360 

via another. However, for paradigm non-causal relations, the two variables are closely linked – 361 

they are logically or mathematically related or at least occupy the same space-time slice. What 362 

sense does it make to talk about manipulation when the two variables’ values are determined 363 

simultaneously? It may make more sense to say that we are manipulating both variables 364 

together, through an external variable.  365 

However, even though in the two examples from the cognitive sciences presented here the 366 

explanans occur simultaneously and are mathematically related to the explananda, in both cases 367 
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discovering the manipulation* relation between the variables can help us manipulate the 368 

explananda in ways we could not have done before.  369 

Considering the first example, the dependence of the optimality of an estimate on the 370 

probability distributions of the inputs allows us to organize experimental settings so that some 371 

estimate is optimal. This mathematical dependence is especially crucial since there is no way to 372 

observe the optimality of an estimate. Unlike the common case with causal relations where the 373 

values of the cause and the effect can be observed, the optimality of an estimate is a latent 374 

variable that can only be derived mathematically. Hence, this mathematical dependence is 375 

essential to the manipulation of the optimality of an estimate and cannot be replaced by causal 376 

dependences. Despite the fact that such optimal estimates are latent variables, currently, they 377 

play an important part in explaining the behavior of humans and animals (Berniker et al. 2010; 378 

Ernst and Banks 2002; Fernandes et al. 2014; Vul et al. 2014; Weiss et al. 2002) and therefore 379 

are central in the cognitive sciences11.  380 

Let us now consider the second example. Without the dependence of the fluctuations in total 381 

input to the neuron on the IE balance, we could still contemplate a causal manipulation of the 382 

fluctuations in total input through the activity of specific neurons, but this relation would lack 383 

systematicity and would be very difficult to generalize. In light of the mathematical dependence 384 

of the fluctuations in total input on the IE balance, we can know how the fluctuations will change 385 

when we change the activity of different pre-synaptic neurons because we can consider the 386 

change in IE balance.  387 

                                                 
11 Some may be surprised that scientific explanations of phenomena can be given in terms of optimality. In the 
cognitive sciences, where behavior and neuronal activity are often explained by underlying computational models, 
such explanations are very common. Generally, these explanations assume that the cognitive system has evolved 
enough by evolution to reach some (at least locally) optimal strategy regarding perception and decision-making 
problems.  
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Therefore, while it is true that manipulations that employ a non-causal dependence of Y on X 388 

often (perhaps always) need an external variable that can causally affect X, I think it is undeniable 389 

that some non-causal dependences extend the ways in which we can manipulate phenomena.   390 

b)  Manipulation of variables in models is not equivalent to the manipulation of physical objects 391 

One could argue that the manipulation* framework abuses the point that Woodward and Craver 392 

were trying to make; when Craver discusses manipulation of the CNS (central nervous system), 393 

he means that we want to manipulate and control actual physical objects: we want to cure 394 

Alzheimer’s disease, treat anxiety disorders, or enable paraplegics to walk. My examples, this 395 

argument will continue, are of manipulation of abstract mathematical variables that appear only 396 

in models, and it is not clear how these variables relate to real, physical brains. In this sense, 397 

manipulation* does not truly allow us to manipulate the CNS. 398 

It is true that, in the examples given here, the mathematical dependence relations are between 399 

abstract variables: estimates, probability distributions, random variables, etc. But these abstract 400 

relations are applied to real phenomena12, allowing us to manipulate them. It is easy to see this 401 

point regarding the Königsberg’s bridges example. Euler’s mathematical theorem describes 402 

abstract phenomena, namely, graphs and paths. Nonetheless, this theorem has real, physical, 403 

implications: it would be impossible for me to take an Euler’s walk in Königsberg.  404 

In the example offered in 4.a, the mathematical dependence tells us what computation some 405 

machine or organism should perform under certain conditions to minimize estimation error. This 406 

estimation error may be related to an organism’s fitness and affect its survival. In the example 407 

provided in 4.b, we can eliminate the fluctuations in the total input to the neuron by disrupting 408 

                                                 
12 See (Kuorikoski and Ylikoski 2015) for a discussion of the relation between counterfactual dependences in 
models and in real phenomena. 



20 

 

the IE balance, and observe the results of this change. Therefore, we see that mathematical 409 

relations between abstract entities can allow the manipulation of physical phenomena. 410 

c) manipulation* relations are explanatory relations only because both manipulation and 411 

explanation are related to more basic ontic relations, which are the interesting relations 412 

I imagine this argument goes something like this: it may be true that explanatory relations and 413 

manipulation* relations tend to describe the same relations, but this is only because both rely 414 

on similar ontic relations such as cause-effect, part-whole, structure-function, etc. It is these 415 

ontic relations that should be examined and taken as relevant to explanations.  416 

I cannot deny that manipulation* relations rely on some specific ontic relations – wholes can be 417 

manipulated through parts, effects through their causes, etc. The types of ontic relations that 418 

allow extended manipulation are definitely worth investigating. It is especially interesting that, 419 

in the given examples, the manipulation* is possible in exactly one direction because the 420 

manipulated* variable, Y, also depends on another variable that is independent of X and can be 421 

used to hold Y constant. Nonetheless, this does not diminish the importance of the fact that 422 

explanatory and manipulation* relations tend to be the same relations, and that explanation is 423 

tightly linked to manipulation, even for non-causal relations.  424 

Moreover, while it may be possible to characterize explanatory relations as a collection of 425 

various ontic relations, such a description will not yield a reason for the explanatory value of 426 

these specific ontic relations but not others. In contrast, the notion that some relations explain 427 

a phenomenon because they allow its manipulation at least suggests a reason for the 428 

explanatory value of some relations and lack thereof of others.  429 

d) The manipulation* framework is inferior to the mechanistic framework, which already has a 430 

clear formulation of causal relations as explanatory relations  431 



21 

 

The mechanists provide a clear and elegant framework where causal relations are explanatory. 432 

This framework accounts for causal and mechanistic explanations. Thus far, the mechanists have 433 

answered (Craver 2016; Kaplan 2011, 2017; Kaplan and Craver 2011; Piccinini and Craver 2011) 434 

most of the many challenges that have been presented to them (Bechtel and Shagrir 2015; 435 

Chirimuuta 2014; Egan 2017; Huneman 2010; Rusanen and Lappi 2016; Shagrir and Bechtel 2017; 436 

Shapiro 2017; Silberstein and Chemero 2013). It can be argued that, compared to the 437 

mechanistic framework, the manipulation* framework is overly broad and adds unnecessary 438 

complications in an attempt to answer questions already dealt with by the mechanistic 439 

framework. 440 

My response to this criticism is twofold. First, like many other non-causal explanations found in 441 

the literature, this paper presents two non-causal explanations that the mechanistic framework 442 

does not easily accommodate. The mechanists would probably have to argue that the examples 443 

I offered are not explanations, that they appeal to some causal relation or that they are 444 

exceptions to their general framework. Alternatively, they could argue that mathematical and 445 

constitutive relations are causal. None of these options seems very natural to me, while the 446 

manipulation* framework accommodates these examples easily. 447 

Second, according to the mechanistic framework, explanations describe relevant causal 448 

relations. However, many explanatory dependence relations in this framework are the relations 449 

between the explanandum phenomenon and the components in the mechanistic decomposition 450 

of this phenomenon. These dependence relations are not causal, but constitutive.  In his seminal 451 

work, Craver (2007a) describes the relations between a phenomenon and its mechanistic 452 

components also as manipulability relations, based on Woodward’s (2003) framework for causal 453 

relations.  454 
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However, many have made the point that the mechanistic framework has problems with 455 

describing manipulation and intervention in a way that fits relations between the phenomenon 456 

and its mechanistic components (Baumgartner and Casini 2017; Baumgartner and Gebharter 457 

2016; Harbecke 2010; Harinen 2014; Leuridan 2012; Romero 2015). The arguments in these 458 

works are usually similar in spirit to the one by (Romero 2015) presented in section 3: 459 

phenomena and their mechanistic components are related in part-whole relations, and occupy 460 

the same space-time slice, so it is problematic to talk about an ideal intervention in Woodward’s 461 

sense (2003) on one with respect to the other. Even if such interventions are possible, this could 462 

imply that constitutive relations are causal, a result that many believe should be avoided 463 

(Baumgartner and Gebharter 2016; Craver and Bechtel 2007; Romero 2015). 464 

Thus, it seems that if one wished to argue that relevant mechanistic components allow 465 

manipulation of the explanandum, one might have to forgo the claim that only causal relations 466 

in Woodward’s sense allow manipulation 13 . In many ways, then, constitutive relations in 467 

mechanistic explanations face similar issues to the mathematical relations I described here, and 468 

so, these too can benefit from a framework that accommodates non-causal relations.    469 

6 Conclusions 470 

There are two promising frameworks for explanations in the cognitive sciences. One of these takes the 471 

view that counterfactual dependences, causal and non-causal alike, are the basis for explanations. The 472 

second, mechanistic framework, emphasizes the relation between manipulation and explanation and 473 

                                                 
13 Another baffling issue in Craver’s mutual manipulability criterion is that Craver takes the direction of 
manipulation to go both from phenomenon to its components and from the components to the phenomenon, 
while the direction of explanation goes only from the components to the phenomenon. Franklin-Hall’s (2016) 
interpretation of mutual manipulability suggests a solution to this issue: top-down manipulation amounts to 
manipulation of the input conditions of the phenomenon. So, we can consider this top-down manipulation a causal 
manipulation of components by the inputs. 
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takes only causal dependences to be the basis for explanations. In this paper, I suggested a view of 474 

explanation that relates to both these frameworks. I argued that some non-causal counterfactual 475 

dependence relations also allow manipulation of the explanandum. This may be a good enough reason 476 

for the mechanists to also accept some non-causal relations as explanatory. Moreover, whether 477 

counterfactual-dependence relations allow manipulation may enable us to differentiate explanatory 478 

from non-explanatory ones. A major advantage of this framework is that it suggests a general criterion 479 

for explanatory value in the cognitive sciences without relinquishing non-causal explanations. In this 480 

paper, I focused on relations of mathematical dependence in which the counterfactual dependence can 481 

be determined analytically. Future work should discuss other counterfactual dependence relations and 482 

how they can be identified. This can be a step towards a more unified view of explanations in the 483 

cognitive sciences.   484 
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Figures 

Figure 1 Equation (1) is an optimal estimate of 

the bar length when inputs are normally 

distributed around the actual bar length and 

is sub-optimal when inputs are biased (based 

on analyses from (Ernst and Banks 2002)). The 

probability distributions of the inputs given 

the actual bar length are denoted in black. 

The probability distributions of the bar length, 

given each input, are denoted in grey (a-b) 

Estimation is optimal when inputs are 

unbiased. (a) Probability distribution of inputs 

given the actual bar length. (𝜎𝑉
2)  and (𝜎𝐻

2) 

are the variances of the visual and haptic 

inputs (b) Example of estimation of bar length 

using (1) from visual and haptic inputs. 𝑆𝑉 and 

𝑆𝐻  are the visual and haptic inputs. Dotted 

and dashed gray distributions are the 

probability distributions of bar length from 

visual input alone, and haptic input alone, 

respectively. The line denoted by (1) is the 

estimated bar length according to eq. (1). On 

the left, the variances of the inputs are equal. 

On the right, the variance of the haptic input 

is much larger. Although the estimate from (1) 

is not exactly the actual bar length, it is 

optimal because on average it yields the 

minimal error. (c-d) same as in (a-b) for biased 

inputs. (c) Probability distributions are biased 

so that the expected values of these 

distributions are not equal to the actual bar 

length. (d) Example of estimates of bar length 

using (1) from visual and haptic inputs. True 

bar length is denoted in black. Legend 

otherwise is the same as in (b). Because inputs 

are biased, the estimate given by (1) is not 

optimal.  
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Figure 2 Simulated examples. (a) Spike trains of regularly and irregularly spiking neurons. Both neurons 

have an average firing rate of 10 spikes/s. (b) Simulated total synaptic input current. Left, synaptic input 

is barely fluctuating. This is the type of input we expect from many independent synapses. Right, synaptic 

input is highly fluctuating. This is the type of input we expect in the case that inhibitory and excitatory 

synaptic inputs are balanced.   

 

 

 


