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Abstract. Putnam (1963) construed the aim of Carnap’s program of induc-

tive logic as the specification of a “universal learning machine,” and presented
a diagonal proof against the very possibility of such a thing. Yet the ideas

of Solomonoff (1964) and Levin (1970) lead to a mathematical foundation of
precisely those aspects of Carnap’s program that Putnam took issue with, and

in particular, resurrect the notion of a universal mechanical rule for induction.

In this paper, I take up the question whether the Solomonoff-Levin proposal
is successful in this respect. I expose the general strategy to evade Putnam’s

argument, leading to a broader discussion of the outer limits of mechanized in-

duction. I argue that this strategy ultimately still succumbs to diagonalization,
reinforcing Putnam’s impossibility claim.

1. Introduction

Putnam (1963a) famously challenged the feasibility of Carnap’s program of in-
ductive logic on the grounds that a quantitative definition of “degree of confir-
mation” can never be adequate as a rational reconstruction of inductive reasoning.
Specifically, he formulated two conditions of adequacy on any reconstruction of “the
judgements an ideal inductive judge would make” (ibid., 778), and proceeded to
give a diagonal proof to the effect that no Carnapian measure function can satisfy
both. In (1963b), Putnam explicitly assumed the view that “the task of induc-
tive logic is the construction of a ‘universal learning machine’” (ibid., 303), and
accordingly presented his proof as showing the impossibility of this notion. What
was shown, in these terms, is that there can be no learning machine that is also
universal : no inductive method that is effectively computable, that is also able to
eventually detect any pattern that is effectively computable.

Independently of the work of Putnam, the suggestions of Solomonoff (1964) to-
wards an “optimum induction system” gave rise to a definition that is very much in
this spirit. The elements that Solomonoff took from Carnap’s program, and those
that he added to it—most importantly, the central role of effective computability—
are the very elements that Putnam presumed in his challenge to it. Solomonoff’s
ideas found a secure mathematical footing in the work by Levin (1970), resulting in
what qualifies, perhaps, as the definition of a universal inductive machine (also see
Li and Vitányi, 2008; Hutter, 2007; Rathmanner and Hutter, 2011). Namely, the
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Solomonoff-Levin measure does manage to unite versions of Putnam’s two adequacy
conditions—though, crucially, involving a weakened notion of effective computabil-
ity.

In this paper I investigate whether the Solomonoff-Levin proposal indeed gives
a definition of an “optimum,” “cleverest possible,” or universal inductive machine.
More broadly, this is an investigation into the possibility of a perfectly general and
purely mechanical rule for extrapolating data—against the lesson that has generally
been taken from Putnam that “[t]here is no universal algorithm” for induction
(Dawid, 1985b, 341; also see van Fraassen, 2000, 260; 1989, 132ff). I will argue
that there is promise in the general strategy that underlies the Solomonoff-Levin
proposal, which is to try and identify a natural class of effective elements that is
immune to diagonalization. This opens the prospect of attaining plausible versions
of Putnam’s two conditions that are compatible, and that enable a notion of an
inductive rule that is universal in a Reichenbachian sense: this optimal inductive
rule will learn successfully if any inductive rule does. I will then show, however, that
Putnam’s lesson prevails: on a closer inspection of the proper interpretation of the
relevant elements we see that this general strategy cannot escape diagonalization
after all.

2. Overview

First, in section 3, I will introduce Putnam’s original argument, which shows
that no confirmation function can fulfill both of two conditions to qualify as a
universal inductive rule: the first on its convergence to any effectively computable
hypothesis, the second on it being effectively computable itself. This is only one
part of Putnam’s charge; the other is that this is a defect peculiar to confirmation
functions, because other methods, that respect the role of scientific theories (in
particular, the hypothetico-deductive or HD method), can satisfy it. Next, in
section 4, I explain how Solomonoff took his cue from Carnap’s project, and went
on to develop his ideas in a direction that (perhaps unlike Carnap’s own approach)
falls squarely within the general outlook and formal set-up that Putnam assumed
for his argument. This raises the question how the resulting Solomonoff-Levin
definition evades the diagonal argument.

The only way around Putnam’s argument is to argue for a weakening of at least
one of the two conditions that he showed are incompatible. Hence the question
is what weakening the Solomonoff-Levin proposal introduces, and whether it can
be given a proper motivation. To be in a position to answer this question, I need
to go through a more technical exposition, section 5, that traces the way to the
exact definition of the Solomonoff-Levin measure function. Here I describe the
general strategy of identifying a class of effective measure functions that cannot be
diagonalized; the Solomonoff-Levin measure is a universal element in this class. This
definition does satisfy Putnam’s first condition on convergence to any computable
hypothesis, but it is effective in too weak a sense to still satisfy Putnam’s second
condition.

Turning to the question whether an accordingly weakened condition is defensible,
I must first consider the second component of Putnam’s charge. This is the claim
that the conjunction of the two original conditions is not unreasonably strong, since
the HD procedure does satisfy it. The conclusion that I reach in section 6 is that
this claim does not stand up to scrutiny: drawing a distinction between specific
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methods and an underlying architecture, we see that the HD approach and the
Bayesian approach of confirmation functions are in the same predicament. The
lesson of the diagonal argument is rather that no fully specified or fixed method
can satisfy this pair of conditions. Given this, it stands to reason to explore the
possibility of a notion of a universal inductive rule that only satisfies a weaker pair.
This I do in the final part of the paper, through an evaluation of the Solomonoff-
Levin proposal.

I start in section 7 with the question whether the Solomonoff-Levin function,
in the spirit of the first condition, can detect all reasonable patterns. The naive
interpretation of this question fails to be convincing, which prompts a different and
much more natural interpretation. This Reichenbachian interpretation, pursued
in section 8, takes the Solomonoff-Levin functions as optimal among all possible
inductive rules. If the original class of effective measure functions represents all
possible inductive rules, then the Solomonoff-Levin measure, as a universal element,
is in a precise sense at least as good as any possible inductive rule. In general, the
identification of an undiagonalizable class of elements, if conjoined with a successful
argument that it represents all possible inductive rules, yields a notion of a universal
inductive rule.

Unfortunately, there is a problem with this strategy, a problem that even goes
beyond worries about the weaker notion of computable approximability. Namely,
it is obstructed by the fact that inductive rules should actually be identified with
confirmation functions, i.e., conditional measure functions. This fact might sound
innocuous, but it impacts their effectiveness properties. I will show that Putnam’s
original argument implies that this indeed blocks the central strategy of identifying
a class of effective elements that cannot be diagonalized. Thus, as I conclude in
section 9, the analysis of this paper provides further support to Putnam’s case:
there can be no such thing as a universal inductive rule.

3. Putnam’s argument

Consider a simple first-order language with a single monadic predicate G and
an ordered infinity of individuals xi, i ∈ N>0. Let a computable hypothesis h
be a computable set of sentences h(xi) for each individual xi, where h(xi) equals
one of Gxi and ¬Gxi. A Carnapian confirmation function C gives the degree of
confirmation that one statement confers upon another. In particular,

C(h(xn+1), h(x1) & . . . & h(xn))

is the degree to which the statement that the next individual xn+1 satisfies h is
confirmed by the fact that all of x1 up to xn do so already. (Carnap also calls this
the instance confirmation of h.) Now, if a given Carnapian confirmation function is
supposed to be a rational reconstruction of our inductive practice, then, since our
actual inductive methods would be sure to discern any computable pattern even-
tually, so should this given confirmation function. Hence a condition of adequacy
on such a confirmation function C is that

(I) For any computable hypothesis h, the value for the instance confirmation
C(h(xn+1), h(x1) & . . . & h(xn)) should converge to 1 as we observe a longer
and longer succession of confirming individuals x1, . . . , xn.

But for any confirmation function C that itself satisfies a weak condition of effective
computability (to not be “of no use to anybody,” Putnam, 1963a, 768):
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(II) For every n, it must be possible to compute a k such that if G holds
for the next k individuals xn+1, . . . , xn+k, then the instance confirmation
C (Gxn+k+1, Gxn+1 & . . . & G(xn+k)) exceeds 0.5,

one can prove by diagonalization C’s violation of (I). This is Putnam’s diagonal
argument: if the ideal inductive policy is to fulfill (I) and (II), then it is provably
impossible to reconstruct it as a Carnapian confirmation function.

Let me simplify things a little. We can treat condition (I) as an instance of the
condition on an ‘inductive method’ M, a condition I will leave slightly informal in
its generality, that

(I*) M converges on any true computable hypothesis.

Moreover, in later expositions of the argument (e.g., Earman, 1992, 207ff; Kelly,
2004, 701f), the somewhat cumbersome condition (II) is often replaced by the
(stronger) condition that C is simply a computable function. The general con-
dition on an inductive method M is that

(II*) M is computable.

The diagonal proof of the incompatiblity of (I*) and (II*) for confirmation func-
tions is straightforward. Given candidate computable confirmation function C, we
construct a computable hypothesis h such that C fails to converge on h, as follows.
Starting with the first individual x1, compute C(Gx1,>) and let h(x1) be ¬Gx1

precisely if C(Gx1,>) > 0.5. For each new individual xn+1, proceed in the same
fashion: compute C(Gxn+1, h(x1) & . . . & h(xn)) and let h(xn+1) be ¬Gxn+1 pre-
cisely if this probability is greater than 0.5. The hypothesis h is clearly computable,
but by construction the instance confirmation given by C does not converge to 1:
indeed, it never even goes above 0.5. Thus, again, if the ideal inductive policy is to
be able to converge to any computable hypothesis, and is to be computable itself,
then it is impossible to reconstruct it as a confirmation function.

But maybe such a policy is so idealized as to escape any formalization? To seal
the fate of Carnap’s program, Putnam proceeds to give an example of an inductive
method that is not based on a confirmation function and that does satisfy the two
requirements. This method HD is the hypothetico-deductive method : supposing
some enumeration of hypotheses that are proposed over time, at each point in time
select and use for prediction (accept) the hypothesis first in line among those that
have been consistent with past data. Then it satisfies convergence condition (I*),
or more precisely:

(I†) For any true computable hypothesis h, if h is ever proposed, then HD will
eventually come to (and forever remain to) accept it.

The distinctive feature of HD is that it relies on the hypotheses that are actually
proposed. To Putnam, this is as it should be. Not only does it conform to scientific
practice: more fundamentally, it does justice to the “indispensability of theories as
instruments of prediction” (ibid., 778). This appears to be the overarching reason
why Putnam takes issue with Carnap’s program (ibid., 780):

Certainly it appears implausible to say that there is a rule whereby one
can go from the observational facts . . . to the observational prediction
without any ‘detour’ into the realm of theory. But this is a consequence of
the supposition that degree of confirmation can be “adequately defined”;
i.e. defined in such a way as to agree with the actual inductive judgements
of good and careful scientists.
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Incredulously (ibid., 781):

. . . we get the further consequence that it is possible in principle to build
an electronic computer such that, if it could somehow be given all the
observational facts, it would always make the best prediction—i.e. the
prediction that would be made by the best possible scientist if he had
the best possible theories. Science could in principle be done by a moron
(or an electronic computer).

Here Putnam is still careful not to attribute to Carnap too strong a view: “Of
course, I am not accusing Carnap of believing or stating that such a rule exists;
the existence of such a rule is a disguised consequence of the assumption that
[degree of confirmation] can be ‘adequately defined’” (ibid., 780). Nevertheless, in
his Radio Free Europe address (1963b), Putnam declares that “we may think of
a system of inductive logic as a design for a ‘learning machine’: that is to say,
a design for a computing machine that can extrapolate certain kinds of empirical
regularities from the data with which it is supplied” (ibid., 297); and “if there is
such a thing as a correct ‘degree of confirmation’ which can be fixed once and for
all, then a machine which predicted in accordance with the degree of confirmation
would be an optimal, that is to say, a cleverest possible learning machine” (ibid.,
298). Again, the diagonal proof would show that there can be no such thing: it is
“an argument against the existence – that is, against the possible existence – of a
‘cleverest possible’ learning machine” (ibid., 299).

4. Solomonoff’s new start

Solomonoff (1964) aimed to describe precisely that: an “optimum” inductive
method, a formal system of inductive inference that “is at least as good as any
other that may be proposed” (ibid., 5). His ideas can indeed be seen as a particular
offspring of Carnap’s inductive logic; one that takes Putnam’s picture of a learning
machine seriously.

Solomonoff’s objective is clear (ibid., 2):

The problem dealt with will be the extrapolation of a long sequence of
symbols—these symbols being drawn from some finite alphabet. More
specifically, given a long sequence, represented by T , what is the proba-
bility that it will be followed by the subsequence represented by a? In
the language of Carnap (1950), we want c(a, T ), the degree of confirma-
tion of the hypothesis that a will follow, given the evidence that T has
just occurred.

The underlying motivation is also very much in accord with things Carnap writes
in his 1950 book. Solomonoff’s suggestion that “all problems in inductive inference
. . . can be expressed in the form of the extrapolation of a long sequence of symbols”
(ibid.) parallels Carnap’s insistence on the primacy of the predictive inference—
“the most important and fundamental inductive inference” (1950, 207). Carnap’s
requirement of total evidence (see ibid., 211ff) returns in Solomonoff’s remark that
“the corpus that we will extrapolate . . . must contain all of the information that we
want to use in the induction” (ibid., 8). And Carnap’s discussion under the header
“Are Laws Needed for Making Predictions?” (ibid., 574f)—conclusion: “the use of
laws is not indispensable”—is easily read as informing Solomonoff’s statement that
his proposed methods are “meant to bypass the explicit formulation of scientific
laws, and use the data of the past directly to make inductive inferences about
specific future events” (1964, 16).



6 STERKENBURG

This already very much resembles the picture that Putnam painted in order to
challenge it. What is more, the problem setting of sequence extrapolation is readily
translatable into the formal set-up that Putnam presupposes in his paper. Let us
suppose, as is customary in modern discussions of Solomonoff’s theory, that we
have an alphabet of only two symbols, ‘0’ and ‘1.’ Now Putnam assumes with
Carnap a monadic predicate language L, but with an ordered domain x1, x2, x3, . . .
of individuals. Let L have a single monadic predicate G. Identifying the individuals
with positions in a sequence as Putnam does (1963a, 766), we can have a ‘1’ at the
i-th position express the fact that individual xi satisfies G, and a ‘0’ that it does
not. Thus we translate a symbol sequence of length t into the observation of the
first t individuals.

Solomonoff’s setting is then fully within the scope of Putnam’s argument. This
in contrast to that of Carnap, who could still resort to the defense that in his
works he does not assume an ordered domain, and so “the difficulties which Put-
nam discusses do not apply to the inductive methods which I have presented in
my publications” (1963a, 986). Nevertheless, Carnap does acknowledge at various
places the need for taking into consideration the order of individuals in explicating
degree of confirmation (e.g., 1950, 62ff; 1963b, 225f); and he envisioned for this
future project the same kind of “coordinate language” that Putnam assumes (also
see Skyrms, 1991). For such a language, Carnap should have agreed with Put-
nam’s charge that an inductive system that is “not ‘clever’ enough to learn that
position in the sequence is relevant” is too weak to be adequate. The difference in
opinion then ultimately comes down to what regularities in the observed individ-
uals should be extrapolated (i.e., what hypotheses or patterns should gain higher
instance confirmation from supporting observations).

Carnap states in (1963a, 987; 1963b, 226) that he would only consider “laws of
finite span.” In terms of symbol sequence extrapolation, these are the hypotheses
that make the probability of a certain symbol’s occurrence at a certain position
only depend on the immediately preceding subsequence of a fixed finite length (i.e.,
a Markov chain of certain order). In particular, hypotheses must not refer to abso-
lute coordinates, which immediately rules out Putnam’s example of the hypothesis
that “the prime numbers are occupied by red” (1963a, 765). In Carnap’s view, “no
physicist would seriously consider a law like Putnam’s prime number law” (1963a,
987), hence “it is hardly worthwhile to take account of such laws in adequacy con-
ditions for [confirmation functions]” (1963b, 226). According to Putnam, however,
“existing inductive methods are capable of establishing the correctness of such a hy-
pothesis . . . and so must any adequate ‘reconstruction’ of these methods” (1963a,
765). Indeed, the same goes for any effectively computable pattern; this is his
adequacy condition (I*).

Others have charged Carnap’s confirmation functions with an inability to meet
various adequacy conditions on recognizing regularities (notably Achinstein, 1963;
in fact the critique of Goodman, 1946, 1947 can be seen as an early instance of
this line of attack). What is distinctive about Putnam’s adequacy conditions is
the emphasis on effective computability. Interestingly, this notion of effective com-
putability is also the fundamental ingredient in Solomonoff’s proposal. It is this
aspect that genuinely sets Solomonoff’s approach apart from Carnap’s. The mea-
sure functions that Solomonoff proposed in (1964), and that evolved in the modern
definition of a measure function QU that we will see below, were explicitly defined



THE IMPOSSIBILITY OF A UNIVERSAL LEARNING MACHINE 7

in terms of the inputs to a universal Turing machine. Moreover, one can show that
the instance confirmation via QU of any true computable hypothesis will converge
to 1, thus fulfilling convergence condition (I*).

5. The Solomonoff-Levin measure

How could Solomonoff evade Putnam’s diagonal argument? If the Solomonoff-
Levin function QU is within the scope of Putnam’s argument, and it still fulfills
convergence condition (I*), then it must give way with respect to effectiveness
condition (II*). To explain how QU fulfills (I*) but not (II*), we will need to go
into the details. This we do in the current section; in the next section we return
to the main thread and see what this means for QU as a purported “optimum,” or
universal inductive rule.

Specifically, we will work in this section towards the precise specification of QU ,
and show that it satisfies (I*). For a large part this amounts to retracing the
formal setting that was developed in the landmark paper of Zvonkin and Levin
(1970), based on Levin’s doctoral thesis (translated as Levin, 2010).

We start with the notion of a computable (probability) measure on the Cantor
space {0, 1}ω, the set of all infinite sequences of symbols in {0, 1}. More accurately,
a measure on Cantor space is defined on a tuple ({0, 1}ω,F), with F a σ-algebra on
{0, 1}ω. Then a probability measure on ({0, 1}ω,F) is a countably additive function
µ : F → [0, 1] with µ({0, 1}ω) = 1. Let the basic cylinder JxxxK be the class of all
infinite extensions in {0, 1}ω of the finite sequence xxx ∈ {0, 1}∗. It is convenient
to view a measure (as well as the associated σ-algebra F) as being generated from
an assignment of probability values to just the basic cylinders JxxxK for all finite
sequences xxx. That is, we view a measure as being generated from a pre-measure,
a function m : B∗ → [0, 1] on the finite sequences that satisfies m(∅∅∅∅∅∅∅∅∅) = 1 for the
empty sequence ∅∅∅ and m(xxx0)+m(xxx1) = m(xxx) for all xxx ∈ {0, 1}∗ and its one-symbol
extensions xxx0 and xxx1. The extension theorem due to Carathéodory (see Tao, 2011,
148ff) then gives a σ-algebra F over {0, 1}ω (which includes all Borel classes) and
unique measure µm on F with µm(JxxxK) = m(xxx). I will follow the custom of simply
writing ‘µ(xxx)’ for ‘µ(JxxxK).’ (See Reimann, 2009, 249ff; Nies, 2009, 68ff for more
details.)

The most basic example of a measure on Cantor space is the uniform measure λ.
It is generated from the pre-measure with m(xxx) = 2−|xxx| for all xxx, where |xxx| denotes
xxx’s length.

Now a measure is computable if it is generated from a computable pre-measure.
A pre-measure m is computable if its values can be uniformly computed up to any
given precision. That is, there is a computable f : {0, 1}∗ × N → Q such that
|f(xxx, s)−m(xxx)| < 2−s for all xxx ∈ {0, 1}∗, s ∈ N (see Downey and Hirschfeldt, 2010,
202f). I will adopt the nomenclature of the arithmetical hierarchy of levels of effec-
tive computability (see Soare, 2016, 79ff) and henceforth refer to the computable
measures as the ∆1 (‘delta-one’) measures.

We will see below that the Solomonoff-Levin measure QU has the property that
for any ∆1 measure µ, if the data is in fact generated by µ, then with probability

1 (‘µ-almost surely’) the values QU (xn+1 | xxxn) = QU (xxxn+1)
QU (xxxn) for xn+1 ∈ {0, 1},xxxn ∈

{0, 1}n converge to the values µ(xn+1 | xxxn) as n goes to infinity. That is, QU
satisfies the following condition on an inductive method M:

(I: ∆1) M converges µ-almost surely to ∆1 measure µ.
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This is an instance of convergence condition (I*) on a measure function, that at the
same time generalizes from ‘deterministic’ computable hypotheses or single infinite
computable sequences to hypotheses that are probability measures on infinite se-
quences. (The special case of a computable infinite sequence xxxω corresponds to a
∆1 measure that assigns probability 1 to every initial segment xxxn of xxxω.) Moreover,
we can rephrase effectiveness condition (II*) on a measure as

(II: ∆1) M is ∆1.

This condition is not satisfied by QU . It is effectively computable in a weaker sense,
that we turn to now.

Namely, we proceed with the notion of a semi-computable or Σ1 (‘sigma-one’)
measure on the extended space {0, 1}ω ∪ {0, 1}∗ of infinite and finite sequences.
This notion will strike those who see it for the first time as cumbersome, if not
downright awkward; I will try to explain in what sense it is both natural and
important. First I will briefly describe how this class of measures comes about as
precisely the effective transformations of the uniform measure on the Cantor space.
Then I will discuss the crucial property of this class that it cannot be diagonalized,
meaning that it contains universal elements. The Solomonoff-Levin measure is such
a universal element.

Let a transformation λF of the uniform measure by Borel function F : {0, 1}ω →
{0, 1}ω be defined by λF (A) = λ(F−1(A)). Every Borel measure µ on Cantor space
can be obtained as a transformation of λ by some Borel function (see Reimann, 2009,
252f).

We will now consider transformations by functions that are effectively com-
putable. There are some details involved in the need to downscale these trans-
formations to functions f on finite sequences, in order to impose the property of
computability (see ibid., 253f); in the end we are led to precisely those functions
that can be represented by a particular type of Turing machine. Originally dubbed
an algorithmic process (Zvonkin and Levin, 1970, 99), this type of machine is now
better known as a monotone machine (see Shen et al. 2017): it can be visualized
as operating on a steady stream of input symbols, producing an (in)finite output
sequence in the process. We then indeed have an effective analogue to the ear-
lier statement: every ∆1 measure can be obtained as a transformation λM of the
uniform measure by some monotone machine M (Zvonkin and Levin, 1970, 100f).

The monotone machines leading to the ∆1 measures have the special property
that they are ‘almost total,’ meaning that they produce an unending sequence on λ-
almost all infinite input streams (ibid.). In general, however, a monotone machine
M can fail to do so. This translates into the possibility that λM (xxx) is strictly
greater than λM (xxx0)+λM (xxx1) for some xxx. In that case we can say that λM assigns
positive probability to the finite sequence xxx. A function λM can thus be interpreted
as a measure on the collection of infinite and finite sequences.

Levin calls the class of transformations λM by all monotone machines M the class
of semi-computable measures on {0, 1}ω ∪{0, 1}∗. This is because the pre-measures
corresponding to these transformations are precisely the functions m : {0, 1}∗ →
[0, 1] with m(xxx) ≥ m(xxx0) + m(xxx1) for all xxx that satisfy a weaker requirement of
computability, that can be paraphrased as computable approximability from below
(Zvonkin and Levin, 1970, 102f). In exact terms (see Downey and Hirschfeldt, 2010,
202f), we call m (lower) semi-computable if there is a computable f : {0, 1}∗×N→
Q such that for all xxx ∈ {0, 1}∗ we have f(xxx, s) ≤ f(xxx, s + 1) for all s ∈ N and
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lims→∞ f(xxx, s) = m(xxx). Equivalently, the so-called left-cut {(q,xxx) ∈ Q × {0, 1}∗ :
q < m(xxx)} is computably enumerable or Σ1. For that reason I will refer to a
semi-computable measure on {0, 1}ω ∪ {0, 1}∗ as a Σ1 measure.

Let me reiterate the parallel between, on the one hand, the expansion from the
∆1 to the Σ1 measures, and, on the other, the expansion from the total computable
(t.c.) to the partial computable (p.c.) functions. It is well-known since Turing
(1936) that the class of t.c. functions is diagonalizable, and that this is overcome
by enlarging the class to the p.c. functions (see Soare, 2016, 4ff). More precisely:

under the assumption that there exists a universal t.c. function f̊ that can emulate

every other t.c. function (meaning that f̊(i, x) = fi(x) for a listing {fi}i∈N of all

t.c. functions), we can directly infer a diagonal function g (say g(x) := f̊(x, x) + 1)
that is t.c. yet distinct from every single fi (because g(i) = fi(i) + 1 6= fi(i) for all
i), which is a contradiction. (Note the similarity to the argument in section 3.) To
say that the class of t.c. functions is diagonalizable is therefore to say that there

can be no such universal f̊ , hence no effective listing of all elements: the class is
not effectively enumerable. The introduction of partialness, however, defeats the
construction of a diagonal function (consider: what if fi(i) is undefined?); and
indeed the class of p.c. functions is effectively enumerable, does contain universal
elements. Likewise, the class of ∆1 measures is not effectively enumerable, does not
contain universal elements; the larger class of Σ1 measures is and does. I now turn
to these universal Σ1 measures (Zvonkin and Levin, 1970, 103f).

Informally, a universal Σ1 measure “is ‘larger’ than any other measure, and is
concentrated on the widest subset of {0, 1}ω ∪ {0, 1}∗” (ibid., 104, notation mine).
Formally, a universal Σ1 measure µ̊ is such that it majorizes every other Σ1 measure:
for every µi ∈ Σ1 there is a constant ci ∈ [0, 1] such that for all xxx ∈ {0, 1}∗ it holds
that µ̊(xxx) ≥ ci · µi(xxx). “This fact is one of the reasons for introducing the concept
of semi-computable measure” (ibid.)—we may take it as the main reason.

A natural way of obtaining a universal Σ1 measure is the following. Since the
monotone machines can also be effectively enumerated, we can likewise specify uni-
versal such machines. Let {zzzi}i∈N be some prefix-free set of finite strings that serves
as an encoding of all monotone machines Me: the universal monotone machine that
employs this encoding emulates any other monotone machine Me on first receiving
the corresponding code sequence zzze. More precisely, this universal machine is such
that it produces output xxx on input zzzeyyy if and only if Me produces output xxx on
input yyy. Now a transformation λU of λ by such a universal machine U yields a
universal Σ1 measure.

We have finally arrived at the definition of the Solomonoff-Levin measure. The
measure QU is precisely the transformation of λ by universal monotone machine U .

Definition 1. QU := λU .

So there are in fact infinitely many such measures, one for each choice of universal
monotone machine U . Each is a universal Σ1 measure. It is this property that is
exploited in the adequacy result.

Proposition 2. QU fulfills (I: ∆1).

Proof. Let µ be a ∆1 measure. The fact that QU majorizes µ entails that µ is
absolutely continuous with respect to QU (i.e., µ(A) > 0 implies QU (A) > 0 for all
A in the σ-algebra B), which by the classical result of Blackwell and Dubins (1962)
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entails that µ-almost surely the variational distance supA∈B |µ(A | xxxn) − QU (A |
xxxn)| → 0 as n→∞ (see, e.g., Huttegger, 2015, 617f), so in particular (I: ∆1). �

6. HD-methods and Bayesian methods

So how does the Solomonoff-Levin function evade Putnam’s diagonal argument?
As we saw above, the very motivation for the expansion to the class of Σ1 measures
is to evade diagonalization—to obtain universal elements. The Solomonoff-Levin
measure is a universal element; as such, it tracks every ∆1 measure in the sense
of (I: ∆1). The downside is that, as a universal Σ1 element, the Solomonoff-Levin
measure is itself no longer ∆1 (or the class of ∆1 measures would already have
universal elements).

The force of Putnam’s diagonal proof is that no confirmation function can sat-
isfy both (I*) and (II*), and the Solomonoff-Levin proposal is no exception. The
Solomonoff-Levin function is powerful enough to avoid diagonalization and fulfill
convergence condition (I: ∆1), but the price to pay is that it might be said to be
too powerful. It is no longer effective in the sense of (II: ∆1). Does this invalidate
the Solomonoff-Levin function as an inductive rule—let alone a universal one?

One reply is that we cannot hold this against the Solomonoff-Levin definition,
since, after all, Putnam has shown that this incomputability is really a necessary
condition for a policy to be optimal in the sense of convergence condition (I*): “an
optimal strategy, if such a strategy should exist, cannot be computable . . . any
optimal inductive strategy must exhibit recursive undecidability” (Hintikka, 1965,
283). However, this reply seems to miss the second component of Putnam’s charge.
This is the claim that, while no confirmation function can fulfill both adequacy
conditions, other methods could—in particular, the method HD.

In the current section we consider this claim. As discussed already in some detail
by Kelly et al. (1994, 99ff), it actually turns out to be the weak spot in Putnam’s
argument. When we have this claim out of the way, we can, in the next section,
follow up on the above reply and consider the question of QU ’s adequacy afresh.

6.1. HD methods and confirmation functions. Recall that I formulated (I*)
and (II*) as conditions on inductive methods in general, not just confirmation
functions. Again, Putnam (1963a, 770ff) takes it to be important for his case
against Carnap that these conditions are not supposed to be mutually exclusive a
priori ; or it could be seen as a rather moot charge that no confirmation function can
satisfy both, either. No confirmation function can satisfy both—conditions (I: ∆1)
and (II: ∆1) are mutually exclusive—but other methods can: and the method HD
that Putnam describes is to be the case in point.

Crucially, however, Putnam’s method HD depends on the hypotheses that are
actually proposed in the course of time. The method HD fulfills convergence con-
dition (I†), which is so phrased as to accommodate this dependency: the method
will come to accept (and forever stick to) any true computable hypothesis, if this
hypothesis is ever proposed. Thus the method HD relies on some “hypothesis
stream” (Kelly et al., 1994, 107) that is external to the method itself; and the
method will come to embrace a true hypothesis whenever this hypothesis is part of
the hypothesis stream.

In computability-theoretic terminology, the method uses the hypothesis stream
as an oracle. The HD method is a simple set of rules, so obviously computable—
given the oracle. But the oracle itself might be incomputable. Indeed, since the
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computable hypotheses are not effectively enumerable, the hypothesis stream of
computable hypotheses is incomputable. This is why Putnam must view the ora-
cle as external to the method HD. The alternative is to view the generation of a
particular hypotheses stream η as part of the method itself ; but if any such HD-
with-particular-hypothesis-stream-η method—or simply ‘HDη method’—is power-
ful enough to satisfy convergence condition (I*), then the hypothesis stream and
hence the method HDη as a whole must be incomputable. Putnam is well aware of
this: “it is easily seen that any method that shares with Carnap the feature: what
one will predict ‘next’ depends only on what has so far been observed, will also
share the defect: either what one should predict will not in practice be computable,
or some law will elude the method altogether” (Putnam, 1963a, 773). The diagonal
proof described in section 3 readily applies to any method M: simply construct a
computable sequence that goes against M’s computable predictions at each point
in time (also see Kelly et al., 1994, 102f).

In short, the HDη methods are in much the same predicament as Carnap’s
confirmation functions. Conditions (I*) and (II*) are mutually exclusive—unless
we allow the method to be such that “the acceptance of a hypothesis also depends
on which hypotheses are actually proposed” (Putnam, 1963a, 773), i.e., allow the
method access to an external hypothesis stream.

But Putnam’s assumption of an (incomputable) external oracle does, of course,
raise questions of its own. The idea would be that we identify the oracle with
the elusive process of the invention of hypotheses, the unanalyzable “context of
discovery”; ultimately rooted, maybe, in “creative intuition” (Kelly et al., 1994,
108) or something of the sort. Is this process somehow incomputable? How would
we know? More importantly, “if Putnam’s favourite method is provided access to a
powerful oracle, then why are Carnap’s methods denied the same privilege?” (ibid.,
107).

Kelly et al. offer Putnam the interpretation that the method HD provides an
“architecture,” a recipe for building particular methods (in my above terminology,
HDη methods), that is “universal” in the sense that for every computable hypoth-
esis, there is a particular computable instantiation of the architecture (a particular
computable HDη method) that will come to accept (and forever stick to) the hy-
pothesis if it is true. “A scientist wedded to a universal architecture is shielded
from Putnam’s charges of inadequacy, since . . . there is nothing one could have
done by violating the strictures of the architecture that one could not have done
by honoring them” (ibid., 110). Kelly et al. are not convinced, though, that their
suggestion saves Putnam’s argument, for the reason that it makes little sense for
Putnam to endorse a universal architecture while calling every particular instance
inadequate and therefore “ridiculous” (ibid., 110f; here they quote Putnam, 1974,
238). There is, however, a more fundamental objection. Again, Putnam’s argument
against Carnap would only be completed if the above way out for the method HD
were not open to confirmation functions. That is, it would only succeed if con-
firmation functions could not be likewise seen as instantiations of some universal
architecture. But as a matter of fact, they can. They can be seen as instantiations
of the classical Bayesian architecture. (I follow Diaconis and Freedman, 1986, 11
in adopting the designation ‘classical Bayesian.’ Also see Skyrms, 1996.)

This architecture Bayes employs a countable hypothesis class (where hypotheses
are again measures over Cantor space), as well as a prior distribution that gives
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positive probability to every element of this hypothesis class. Given a hypothesis
class H and prior w, the corresponding Bayes-with-particular-hypothesis-class-H
method—or ‘BayesH method’—is given by the measure that is simply the w-
weighted mean over the hypotheses in H, i.e., ξHw (xxx) :=

∑
h∈H w(h)h(xxx).

The classical Bayesian architecture is a universal architecture because for every
(computable) deterministic hypothesis, there is a particular (computable) instan-
tiation of the architecture (a BayesH method where H contains the hypothesis)
that will converge on it when it is true. Just like the HD architecture is guaranteed
to converge on (i.e, accept and stick to) every true deterministic hypothesis, when-
ever it is included in the hypothesis stream, so the classical Bayesian architecture
is guaranteed to converge on every true deterministic hypothesis, whenever it is
included in the hypothesis class. And this extends to hypotheses that are them-
selves probabilistic: a BayesH method will come to accept and forever stick to any
hypothesis µ with µ-probability 1 whenever it is in H. This property is also known
as Bayesian consistency. It follows from the exact same argument as the proof of
theorem 2, given the fact that ξHw majorizes every element in H: for every h ∈ H
we clearly have for all xxx ∈ B∗ that ξHw (xxx) ≥ w(h)h(xxx).

The upshot is that there is an analogy between the situation for the method
HD and for the method Bayes. No particular confirmation function—BayesH

method—can satisfy both (I*) and (II*). But, similarly, no particular HDη method
can satisfy both (I*) and (II*). Nevertheless, the HD architecture is universal. But,
similarly, the Bayes architecture is universal.

6.2. The fixity of methods. Still, there remains a conspicious disanalogy between
the HD and the Bayes approach. This difference is not the use of theory per se,
even though Putnam took that to be the salient characteristic of the method HD.
After all, the Bayes approach uses theory, in the form of the hypothesis class H.

Rather, this difference seems to lie in the use of new theory. What is somewhat
shrouded in the above analogy between the ‘oracles’ S and H is that the method
HD is conceived to operate dynamically, with hypotheses that come to it on the
fly (hypotheses that are likely prompted by the actual data!), whereas a Bayes
method must do with a class of hypotheses that is fixed from the start. The latter
is the well-known Bayesian problem of new theory (see Earman, 1992, 195ff) or the
“fixity of the theoretical framework” (Gillies, 2001b): the Bayesian procedure, in
its standard form, can only be run after we have fixed the model, and no matter
how seriously at odds with the data this model will turn out to be, the procedure
does not allow us to take a step back and adjust it.

But for our purposes this is really just an instance of the general fact of the fixity
of an inductive method. An inductive method is a fixed method, a function that
for every possible finite data sequence has fixed a prediction. And as highlighted
before, any such fixed method falls prey to Putnam’s diagonal argument.

This issue is actually quite independent even of the role of new theory. We could
modify the method BayesH to evaluate its own performance at certain points, and,
if called for, derive from the data new hypotheses and insert those in H—but in
the end this more complicated procedure again specifies a single fixed inductive
method (also see Dawid, 1985a, 1255). Likewise, an algorithm that implements the
method HD, plus an automated search for and discovery of new hypotheses, in the
end again fully specifies a particular algorithm for extrapolating data (cf. Gillies,
2001a). These are all fixed methods, and the relevant difference from Putnam’s HD
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architecture is that the latter is an architecture, a method that is not fully specified.
(Incidentally, the modified method BayesH could also be seen as instantiating a
modified Bayes architecture that is capable of incorporating new theory.)

In conclusion, Putnam’s argument, purporting to show that confirmation func-
tions have fundamental shortcomings that other methods do not, fails. If there is
a shortcoming, it is being a fixed inductive method at all. If Putnam wants to
maintain that it is possible for some procedure to satisfy both of his conditions,
then this cannot be a fixed procedure. It needs to leave things unspecified, as the
HD architecture does, and as the (modified) Bayes architecture does, too. And,
again, that what is left unspecified needs to be filled in by something incomputable.
Putnam would need to say that the scientific process of coming up with hypotheses
is an incomputable process.

What Putnam has shown, at the end of the day, is that we are stuck with
a dilemma between two possibilities that both sound dubious: either science is
fundamentally unable to discover some computable patterns, or science is itself
fundamentally incomputable.

7. A universal inductive rule

We have observed that (I*) and (II*) are mutually exclusive: no fixed method
can satisfy both. Let me then follow up on the earlier suggestion to not dismiss the
Solomonoff-Levin function QU out of hand simply because it does not satisfy the
special cases (I: ∆1) and (II: ∆1)—that it cannot do the impossible. Instead, let me
conclude this investigation with a fresh look at the question: could the Solomonoff-
Levin definition be an adequate characterization of a universal inductive rule?

One can still, with Putnam, divide this question into two parts. First, in the
spirit of (I*), is a Solomonoff-Levin function capable of converging on every rea-
sonable (reasonably effective) hypothesis, if it is true—is it universal in this sense?
Second, in the spirit of (II*), is a Solomonoff-Levin function itself still a reasonably
effective method—a proper inductive rule?

To start with the first. Could the Solomonoff-Levin function be called universal
in the sense that it is able to track any pattern? The best vantage point to address
this question is to view it as an instantiation of the classical Bayesian architecture
that we saw in the previous section. It turns out that the Solomonoff-Levin func-
tions QU correspond to the classical Bayesian methods that employ the class of all
Σ1 hypotheses (see Sterkenburg, 2016). To be exact, the measures QU are precisely
the BayesHΣ1 measures ξΣ1

w with a semi-computable prior w over the hypothesis
class HΣ1 of all Σ1 measures. (In particular, the choice of universal machine U
corresponds to the choice of semi-computable prior w over HΣ1 .) That means that
theorem 2, the statement that QU satisfies convergence condition (I: ∆1), is simply
an instance of Bayesian consistency: the measures ξΣ1

w over all Σ1 hypotheses, which
includes all ∆1 hypotheses, will almost surely converge on any ∆1 hypothesis.

The Solomonoff-Levin proposal can be seen as explicitly aiming at an all-inclusive
hypothesis class: and it would be successful in this respect insofar the class of Σ1

hypotheses (or already the class of ∆1 hypotheses) is indeed such an all-inclusive,
universal class of hypotheses. It certainly appears in this spirit that Li and Vitányi
(2008), presenting the Solomonoff-Levin measure as a “universal prior distribution,”
make reference to Hume and claim that the “perfect theory of induction” invented
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by Solomonoff “may give a rigorous and satisfactory solution to this old problem
in philosophy” (ibid., 347).

In his book on the problem of induction, Howson (2000) argues that the choice
of prior distribution constitutes our inevitable inductive assumptions (ibid., 88):

According to Hume’s circularity thesis, every inductive argument has a
concealed or explicit circularity. In the case of probabilistic arguments
. . . this would manifest itself on analysis in some sort of prior loading in
favour of the sorts of ‘resemblance’ between past and future we thought
desirable. Well, of course, we have seen exactly that: the prior loading
is supplied by the prior probabilities.

(Also see Romeijn, 2004, 357ff.) From the classical Bayesian perspective, the basic
structure of the inductive assumption is given by the elements of the hypothesis
class. The hypothesis class embodies the regularities that can be extrapolated, the
patterns that should gain higher instance confirmation from supporting instances.

As an aside, one can say that the choice of hypothesis class answers by stipula-
tion Goodman’s riddle: supposing for a moment that we actually had justification
for extrapolating the pattern from the past—Hume’s original problem—then which
of the many patterns we do we actually extrapolate? (Also recall section 4 above.)
Still, working with the same hypothesis class does not preclude that after any finite
data sequence two different Solomonoff-Levin functions can give opposed confirma-
tion values for the next datum, depending on the choice of universal machine or
particular effective prior over the class. This issue of the remaining subjectivity
in the Solomonoff-Levin function and the relation to Goodman’s riddle warrants a
discussion of its own, that would take me too far from the present concern with the
property of convergence to the elements of a general class of hypotheses.

Returning to the original problem of induction, it is important for the observation
that Bayesian methods cannot escape Hume’s argument that inductive assumptions
must be restrictive: that it is impossible to have a prior over everything that could
be true (Howson, 2000, 61ff; Romeijn, 2004, 357ff). From the classical Bayesian
perspective, it must be the case that no hypothesis class H can contain every
possible hypothesis, that no H is fully general. Could HΣ1

, then, escape Hume’s
argument—is HΣ1

fully general?
Rathmanner and Hutter (2011, 1118) write that “according to the Church-Turing

thesis, the class of all computable measures includes essentially any conceivable
natural environment.” Howson (2000, 77), when discussing the claim that only the
computable hypotheses represent “genuine discussable hypotheses,” demurs:

it is just not true that we can consider only denumerably many hy-
potheses . . . in the language of ordinary analysis hypothesis spaces of
uncountably many elements are dealt with as a matter of course. The
fact is that these are all possibilities and they cannot be ignored at the
behest of an arbitrary restriction on language.

The issue here is not so much whether or not we can conceive of these possibilities
or genuinely discuss them (though this will be important below!): the point is
rather that these are all possibilities. There are uncountably many possible things
nature could do, and our restriction to the computable possibilities is just that: a
restriction of possibilities.

This restriction is definitely not equivalent to the (widely accepted) Church-
Turing thesis, that is a thesis about what we can possibly calculate in a purely
mechanical fashion. What would be needed is some kind of physical variant of the
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Church-Turing thesis, and a “bold” one at that, that not just says that what nature
can calculate must be Turing-computable but indeed that what nature can do must
be Turing-computable (also see Sterkenburg, 2016, 477). This is a fertile topic for
speculation, but I think that at the end of the day there simply is little justification
for promoting the eminently epistemological notion of computability to a restriction
on what hypotheses could ever be true, really a metaphysical assumption on the
world.

8. An optimal inductive rule

Nevertheless, even if the world might not be constrained by computability, it
sounds plausible that we necessarily do “view the world through the rose-colored
glasses of computable forecasting systems” (Schervish, 1985, 1274). Plausibly, we
are constrained by computability in our inductive methods.

Consequently, if we interpret the elements of HΣ1
as corresponding to induc-

tive methods rather than hypotheses, then HΣ1 might be interpreted as containing
all possible inductive methods. Wherefore the Solomonoff-Levin function can be
reinterpreted as aggregating over the pool of all possible inductive methods.

8.1. Towards an optimal inductive rule. As explained in more detail in the
appendix, the convergence theorem 2 can actually be derived from the following
more ‘absolute’ fact. For any Σ1 measure ν, there is a constant bound on the surplus
logarithmic loss (expressing the divergence between the given confirmation values
and the symbols that actually obtain) incurred by QU relative to this measure ν,
on any symbol sequence. Thus, if we take the Σ1 measures as giving all possible
inductive rules, then QU is a universal inductive rule in the following powerful sense:
it is an inductive rule that compared to any other inductive rule will never perform
much worse.

To put it another way. A Solomonoff-Levin function might not do well if nature
generates—incomputably—adversarial data: but there is a sense in which this is
not so interesting. Arguably, no inductive method would do well in that case. More
interesting is the case when at least some inductive method would do well. And
in a precise sense, on the proposed interpretation, a Solomonoff-Levin function
will do well in such a case: it will do well if any inductive method does. I will
brand this the optimality interpretation: rather than reliable (guaranteed with
certainty to converge on the true hypothesis), QU is optimal in the sense that it
is guaranteed to converge on successful predictions (and in particular, converge on
the true hypothesis) if any inductive rule does. The inductive rule QU is vindicated
in the sense of Reichenbach (1933, 421f; 1935, 410ff; 1938, 348ff; see Salmon, 1967,
52ff, 85ff; 1991).

This interpretation is actually more in line with Putnam’s demand that the
cleverest possible inductive rule should be able to eventually pick up any pattern
that our actual inductive methods would. It is also more in line with Solomonoff’s
original aim that given “a very large body of data, the model is at least as good as
any other that may be proposed” (1964, 5, emphasis mine).

If we accept this, then the Solomonoff-Levin function is a universal inductive
rule—defying Putnam’s lesson that there can be no such thing (see, in particular,
the discussion of van Fraassen, 2000, 257ff of a Reichenbachian conception of a
universal inductive rule). As we have seen, the crucial move to unlock this possi-
bility after all, hence the crucial precondition to our optimality interpretation, is
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the expansion to the nondiagonalizable class of Σ1 elements. It is time to answer
the question whether this move is reasonable at all. Analogous to convergence con-
dition (I*) about the identification of all hypotheses with the ∆1 measures: is it
reasonable to identify all possible prediction methods with those corresponding to
the Σ1 measures?

8.2. Towards a universal pool of inductive methods. Most importantly, is
the class of Σ1 measures not too wide—does a Σ1 measure that fails to be ∆1 still
constitute a proper inductive rule? In particular, we have returned to the second
question at the start of the previous section: does the Solomonoff-Levin function
itself constitute a reasonable (reasonably effective) method?

With the Solomonoff-Levin definition, we do embark, in Putnam’s words, on
the “doubtful project of investigating measure functions which are not effectively
computable” (1963a, 778). An incomputable measure function is certainly imprac-
tical, or indeed “of no use to anybody” (Putnam, 1963a, 768) in any practical
way—but that already goes for any measure function that is computable but not
in some sense efficiently so. The minimal requirement that Putnam was after is
computability in principle, i.e., given an unlimited amount of space and time. In-
deed, under the Church-Turing thesis, computability is just what it means to be
(in principle) implementable as an explicit method—computability is the minimal
requirement to be a method at all. On this view, a ∆1 measure is a measure that
corresponds to a method that (given unlimited resources) for any finite sequence
returns the probability that the measure assigns to it. But, likewise, a Σ1 mea-
sure still corresponds to a method that (given unlimited resources) for any finite
sequence returns increasingly accurate approximations of its probability. So, albeit
in a weaker sense, a Σ1 measure is still connected to some explicit method.

But even if this is so, the property of mere semi-computability is, on a closer
inspection, not so easy to make sense of. To illustrate, consider, in a setting of
categorical induction (where a method for a given observed data sequence issues a
symbol 0 or 1, rather than a probability), the unsuitability of a partial computable
function (see Kelly et al., 1994, 104). For a given data sequence the function might
not be defined, and we either have to be prepared to wait forever (in which case,
if the function is indeed not defined there, the induction is put on hold indefi-
nitely), or we wait until at some point we decide to break the spell and just issue
a default symbol (in which case we actually use a method that reduces to a total
computable method, or, if this decision is somehow incomputable, a method that is
not computable at all). In all cases, we end up with a total function that is either
not universal (because computable) or not computable. Now a semi-computable
function is at least defined on all trials, which makes it look less problematic: but
the situation is still fundamentally the same. For each observed data sequence we
can only compute lower approximations to the next symbol’s probabilities of un-
known accuracy, and we either have to be prepared to wait forever to reach the
actual value (and unless the probability values sum to 1, in which case we will
reach surety about the value up to any accuracy, the induction freezes forever),
or we have to (incomputably?) decide at some point to just go with the current
approximation. Again, the actual prediction function is either not universal or not
computable.

This is already a serious drawback—it casts serious doubt on the adequacy of the
effectiveness condition that the Solomonoff-Levin function still satisfies. As such, it
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is also an additional problem for the universal reliability interpretation of section 7:
both conditions are dubious. But for the universal optimality interpretation there
is actually another problem that precedes this one, a crucial detail that decisely
invalidates this interpretation.

8.3. Diagonalization strikes again. This crucial detail is the fact that for the
purpose of induction, we are not so much interested in the probabilities issued by
the measure functions, but by the conditional probabilities that give the corre-
sponding confirmation functions’ outputs. But this has repercussions for the level
of effectiveness.

This aspect is easy to oversee, because for the ∆1 measures it makes no difference.
If a measure µ is ∆1, so µ as a function on finite sequences is computable, then (and
only then) the two-place function µ(· | ·), given by µ(xn+1 | xxxn) = µ(xxxn+1)/µ(xxxn),
is computable as well. Thus the ∆1 measures correspond precisely to the ∆1 condi-
tional measures, or confirmation functions. However, for the Σ1 measures this does
make a difference.

Namely, a fraction m(·) = m1(·)
m2(·) of two functions m1 and m2 that are both

Σ1 need not itself be Σ1. The two approximating functions g1 and g2 for m1

and m2, respectively, give rise to an approximating function g(xxx, s) = g1(xxx,s)
g2(xxx,s) ; but

this function, while it satisfies lims→∞ g(xxx, s) = m(xxx), does not need to satisfy
g(xxx, s) ≤ g(xxx, s+1) for all s ∈ N. For such a function we do not even know whether
any given approximation is a lower aproximation, and whether the approximation
at s+ 1 will be at least as accurate as the one at s. In technical terms, the function
m is only limit-computable or ∆2 (see Soare, 2016, 63ff). Thus, a confirmation
function corresponding to (i.e., a fraction of terms of) a Σ1 measure is ∆2, but
need no longer be Σ1. In particular, the conditional Solomonoff-Levin function
QU (· | ·) is no longer Σ1.

As a matter of fact, this follows from Putnam’s original diagonalization argu-
ment, that shows the incompatibility of the conditions (I) and (II) that I introduced
in 3. In particular, recall the statement of Putnam’s original effectiveness condition,
that in our setting of a binary alphabet reads

(II) For every xxxn, it must be possible to compute a k such that C(1,xxxn1k) >
0.5.

If QU (· | ·) were Σ1, then QU would also satisfy effectiveness condition (II): for

any given xxxn, by computing lower approximations of QU (xn′+1 | xxxn1n
′
) for increas-

ing n′ > n we will effectively discover a k with QU (1 | xxxn1k) > 0.5. This would
mean that QU satisfies both (I) and (II), which is shown impossible by the diag-
onal argument. For completeness, the following proof recounts the details of this
diagonalization. (See Putnam, 1963a, 768f, Putnam, 1963b, 299 for the original.
A different proof has been given by Leike and Hutter, 2015, 370f, but the current
proof has the advantage of being very direct.)

Proposition 3. QU (· | ·) /∈ Σ1.

Proof. Suppose towards a contradiction that QU (· | ·) is Σ1, so that (II) holds for
QU . We can now construct a computable infinite sequence xxxω as follows. Start
calculating QU (0 | 0n) from below in dovetailing fashion for increasing n ∈ N,
until an n0 such that QU (0 | 0n0) > 0.5 is found (since QU satisfies (I) such
n0 must exist). Next, calculate Q(0 | 0n010n) for increasing n until an n1 with
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QU (0 | 0n010n1) > 0.5 is found. Continuing like this, we obtain a list n0, n1, n2, ...
of lengths; let xxxω := 0n010n110n21 . . . . Sequence xxxω is computable, but for each
iteration i we have that QU (1 | 0n01 . . . 0ni) ≤ 1 − QU (0 | 0n01 . . . 0ni) < 0.5.
Thus by construction the instance confirmation of xxxω will never remain above 0.5,
contradicting (I). �

Now one could try to argue that QU (· | ·) is still ∆2 or limit computable, meaning
that it still corresponds to a method that converges to any given finite sequence’s
probability in the limit (see ibid., 365). But the problem runs deeper. The problem
is that we cannot recover the optimality interpretation for conditional measures.

Namely, if we would accept that a ∆2 confirmation function (i.e., a ∆2 condi-
tional measure) still counts as a possible inductive method, then we should iden-
tify the possible inductive methods with the class of ∆2 confirmation functions
(rather than the original class of confirmation functions with underlying Σ1 mea-
sures). That means that the sought-for optimality would have to be relative to this
class. But the Solomonoff-Levin predictor is not optimal among the ∆2 confirma-
tion functions—no ∆2 confirmation function is. This is because the class of ∆2

measures, that precisely induces the class of ∆2 confirmation functions, is diago-
nalizable: just like in the ∆1 case, one can, for any given ∆2 measure, construct a
∆2 sequence that it will never converge on. The easiest way to infer this is to realize
that the ∆2 measures are precisely the ∆1 measures that have access to the halting
set ∅′ as an oracle: in the diagonal proof we can simply replace all occurances of
‘∆1’ with ‘∆1 in ∅′.’ In computability-theoretic jargon, the diagonal argument can
be relativized to ∅′, thus applying to the ∆2 measures.

Nor can we take a step back and settle for the class of Σ1 prediction methods.
Once again it follows from Putnam’s argument above that there cannot exist uni-
versal elements in the class of measures that induce the Σ1 prediction methods:
in the exact same way as above, one can for any given Σ1 conditional measure
construct a Σ1 conditional measure (namely, a computable sequence) it will never
converge on.

All of this easily relativizes to any jump ∅(n) of the Halting set, showing that the
diagonal argument works for the class of ∆n+1 prediction methods and the class of
Σn+1 prediction methods, for any n ∈ N. The strategy for optimality cannot work
on any level in the arithmetical hierarchy.

9. Conclusion

Thus we conclude this paper on an unhappy note. We discussed how Putnam’s
diagonal argument shows that no fixed method whatsoever can satisfy at the same
time two conditions to qualify as a universal inductive rule: the one on the ability to
detect every effectively computable pattern, the other on the effective computability
of the method itself. In light of this impossibility result, we considered as candi-
date universal inductive rules functions that only satisfy a weaker pair of conditions;
specifically, we considered the Solomonoff-Levin definition of a universal measure
function. The overarching strategy we identified to bring versions of the two con-
ditions together is to locate a natural class of effective functions that cannot be
diagonalized, i.e., that contains universal elements. If one could reasonably identify
this class of functions with all possible inductive rules, then the universal elements
would be vindicated as universally optimal inductive rules: they constitute induc-
tive rules that are in a strong sense at least as good as any other inductive rule.
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In particular, the Solomonoff-Levin measures are constructed as universal elements
among the Σ1 measures—and so, our hope ran, they could qualify as such optimal
inductive rules. Unfortunately, however, this hope was tempered, first, by the ob-
servation that it is actually hard to make sense of an inductive method that is only
computably approximable; subsequently, it was squashed by the observation of a
fatal flaw in the strategy for optimality: inductive rules should be identified with
two-place confirmation (conditional measure) functions rather than the underlying
one-place measure functions. As, it turned out, already follows from Putnam’s orig-
inal proof, this affects their effectiveness properties, which ultimately means that
no level in the arithmetical hierarchy yields an undiagonalizable class of inductive
rules. Putnam’s argument stands.

Appendix

Theorem 2 is in the literature (Li and Vitányi, 2008, 352ff; Hutter, 2003, 2062; Poland
and Hutter, 2005, 3781) usually presented as a consequence of (variations of) the following
stronger result, first shown by Solomonoff (1978, 426f). Let us introduce as a measure
of the divergence between two distributions P1 and P2 over {0, 1} the squared Hellinger
distance

(1) H(P1, P2) :=
∑

x∈{0,1}

(√
P1(x)−

√
P2(x)

)2

.

Then, for every µ ∈ ∆1, the expected infinite sum of divergences between QU and µ

(2) EXω∼µ

[
∞∑
n=0

H (µ(· | Xn), QU (· | Xn))

]
is bounded by a constant.

To see how (I: ∆1) follows from this constant bound, suppose that QU does not satisfy
(I: ∆1): there is a µ ∈ ∆1 such that with probability ε > 0 there is a δ > 0 such that
|µ(xn+1 | xxxn)−QU (xn+1 | xxxn)| > δ infinitely often. But that means that with positive
probability the infinite sum of squared Hellinger distances is infinite, and the expectation
(2) cannot be bounded by a constant.

The proof of the constant bound on (2) starts with the fact that the distance H(P1, P2)
is bounded by the Kullback-Leibler divergence

(3) D(P1 ‖ P2) := EX∼P1

[
− log

P2(X)

P1(X)

]
.

The term − logP (xxx) expresses the logarithmic loss of P on sequence xxx, a standard

measure of prediction error; the difference − logP2(xxx) − (− logP1(xxx)) = − log P2(xxx)
P1(xxx)

ex-

presses the surplus prediction error or regret of P2 relative to P1 on sequence xxx. Thus the
Kullback-Leibler divergence (3) expresses the P1-expected regret of P2 relative to P1.

Using H(P1, P2) ≤ D(P1 ‖ P2) one can work out that (2) is bounded by

(4) EXω∼µ

[
∞∑
n=0

− log
QU (Xn+1 | Xn)

µ(Xn+1 | Xn)

]
.

Now by the universality of QU in the class of Σ1 measures we know that QU majorizes
µ: for every finite xxx there is a constant c ∈ [0, 1] such that QU (xxx) ≥ c · µ(xxx). Indeed we
can identify c with w(µ), where w is the prior over hypothesis class HΣ1 in the classical
Bayesian representation ξΣ1

w of QU . This fact allows us to derive that for every sequence



20 STERKENBURG

xxxm of any length m

m−1∑
n=0

− log
QU (xn+1 | xxxn)

µ(xn+1 | xxxn)
= − log

m−1∏
n=0

QU (xn+1 | xxxn)

µ(xn+1 | xxxn)

= − log
QU (xxxm)

µ(xxxm)

≤ − logw(µ).(5)

This concludes the proof that (2) is bounded by a constant: since the bound (5) holds for
any individual sequence of any length, it also holds for (4) and thus for (2).

The absolute optimality property mentioned in section 8 is just this individual sequence
bound (5), which continues to hold for ν that are Σ1. To reformulate, for any such ν, the
sum of surplus prediction errors (regrets) of QU relative to ν will always (for any sequence
xxxm of any length m) be bounded by a constant:

m−1∑
n=0

(− logQU (xn+1 | xxxn)− (− log ν(xn+1 | xxxn))) ≤ − logw(ν).
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