
DIFFERENCE-SPLITTING AND THE EQUAL WEIGHT VIEW

Abstract. Dawid, DeGroot and Mortera showed, a quarter century ago, that
any agent who regards a fellow agent as a peer–in particular, defers to the
fellow agent’s prior credences in the same way that she defers to her own–
and updates by split-the-difference is prone (on pain of triviality) to diachronic
incoherence. On the other hand one may show that there are special scenarios
in which Bayesian updating approximates difference splitting, so it remains
an important question whether it remains a viable (approximate) response to
“generic” peer update. We look at arguments by two teams of philosophers
(Fitelson & Jehle and Nissan-Rozen & Spectre) against difference splitting.

1. On an old triviality result for split-the-difference

In the literature on peer disagreement, one encounters an Equal Weight View,
according to which “When you count an advisor as an epistemic peer, you should
give her conclusions the same weight as your own” (Elga 2007). Some philoso-
phers have taken “splitting the difference” (i.e., adoption of the arithmetic mean)
between competing peer credences to be constitutive of the Equal Weight View.
Kelly (2010), e.g., writes:

...if the agnostic gives credence .5 to the proposition that God
exists while the atheist gives credence .1 to the same propo-
sition, the import of The Equal Weight View is clear: upon
learning of the other’s opinion, each should give credence .3
to the proposition that God exists.

The popularity of Equal Weight difference splitting persists, despite the fact that
it was shown, a quarter century ago in Dawid, DeGroot and Mortera (1995), to
entail probabilistic incoherence.1 Indeed, philosophers who are aware of these
incoherence results may dispute that it applies to the situation that interests us,
namely that of two peers having identical evidence but different priors. Bradley
(2018), for example, rehearses such incoherence results, yet writes:

1Many philosophers addressing peer update fail to cite this paper. Indeed, being newcomers
and working in isolation, we rediscovered the result and submitted it as original research thrice
before receiving a report indicating that it was not. (Thanks to two anonymous referees here.)
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...this study leaves open the question of whether linear averag-
ing is the appropriate response to situations in which you find
yourself in disagreement with peers who hold the same infor-
mation as you and are as good at judging its significance. In
the philosophical literature, the view that one should respond
to such disagreements by taking an equal-weighted average of
your opinions has been hotly debated. But nothing presented
here militates either for or against this view.

We are baffled by this; considerations along the lines of Dawid et. al. (1995)
clearly do “militate” (decisively) against split-the-difference, considered as an im-
plementation of the Equal Weight View2, in cases where two peers hold the same
information but do not have almost surely identical prior credences.

We present our original proof of this old result, which is slightly different than
extant versions. Suppose that i and j are agents and P is a proposition-valued
random variable, so that i’s initial credence x in P and j’s initial credence y
in P are also random variables. We take P ’s distribution to be supported on
propositions P0 for which i and j are peers.

Because P is a random variable, there is some ambiguity concerning “credence in
P” we need to address. Suppose that a card, c, is drawn from a standard deck
and P is either Card c is a face card or Card c is an Ace (with equal probabilities).
In this case, P is in fact Card c is an Ace, but i doesn’t know this. In such a case
there are two readings of “i’s credence in P”. On the first reading, it refers to
i’s credence in Card c is an Ace, namely 1

13
. On the second reading it refers to

i’s credence in the proposition either P is “Card c is a face card” and Card c is
a face card or P is “Card c is an Ace” and Card c is an Ace, namely 2

13
. We’ll

write Cri(P ) when we intend the first reading and Cri(T (P )) when we intend the
second. (It may help to think of T (P ) as “P is true”, read de dicto.) Notice that
Cri(P ) = x regardless of whether i knows the value of P , whereas it will typically
be the case that Cri(T (P )) = x only after i learns P or at least Cri(P ).

When we say that i is “diachronically coherent almost surely” or “Reflection3

obeying almost surely”, we mean that if i’s credence in P0 is x0 then

2Splitting the difference with a non-peer can of course be coherent; if my credence in P is
one-half and I believe that your credence in whichever of P , ¬P is true is 1 with probability
.75 and zero with probability .25 then I surely don’t consider you a peer (it seems that I think
you are more sensitive to which of P , ¬P is true, yet wildly overconfident), but should intend
to split the difference with you when you tell me your credence.

3“Reflection” was coined by van Fraassen (1984). Roughly, an agent satisfies it when her
current credence in a proposition P is equal to the expectation of her credence in P at a future
time t, where t is typically an almost-surely future, possibly random time satisfying certain
technical criteria (a so-called “stopping time”–see Schervish et. al. 2004). In the current
application t is the time immediately after j’s credence in P is revealed.
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Ey(u(x, y)|P = P0) = x0,

where u(x, y) denotes the posterior credence in P adopted by i upon learning the
values of P , x and y. (Or in T (P ) upon learning just x and y.) In particular, for
almost every x0 in the essential range of x one has

Ey(u(x, y)|x = x0) = x0.

That is, if she were to learn her own initial credence x = x0 (without learning P )
then she would both come to have credence x0 in T (P ) and expected posterior
(posterior to learning y, that is) credence x0 in T (P ).

Here is a natural necessary condition on peerhood.

PN: If i is diachronically coherent almost surely and regards
j as a peer then for almost every y0 in the essential range of
y one has Ex(u(x, y)|y = y0) = y0.

PN cashes out the intuition that if i regards j as a peer then she has the same
confidence in j’s initial credences that she has in her own. As observed above, if i
were to learn that, and only that, x = x0, then she would come to have credence
x0 in T (P ). So if she regards j as a peer and were to learn that, and only that,
y = y0, then she ought, similarly, to come to have credence y0 in T (P ). But if
she learns the value of x, say x = x0, after learning that y = y0, her posterior
credence in T (P ) will be u(x0, y0). By Reflection, then, her current (i.e. after
learning y = y0 but before learning x = x0) credence, namely y0, should be the
expectation of this posterior, that is Ex(u(x, y)|y = y0).

We can now establish incoherence (on pain of triviality) of split-the-difference
(and more “general linear pooling”) for Equal Weighters.

Theorem 1. If i is diachronically coherent almost surely, regards j as a peer and
updates by linear pooling (i.e. u(x, y) = wx + (1 − w)y, where 0 < w < 1) then
Prob(x 6= y) = 0.

Proof. For reductio, assume that Prob(x 6= y) > 0. The following is routine:

Lemma 1. If X is a random variable and E(X) = k then

E(X − k|X > k)Prob(X > k) = E(k −X|X < k)Prob(X < k).

Since j is diachronically coherent almost surely, for almost every x0 in the essential
range of x one has

Ey((u(x, y)|x = x0) = Ey(wx + (1− w)y|x = x0) = x0.
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But obviously Ey(x|x = x0) = x0, so in fact Ey(y|x = x0) = x0. By Lemma 1,

Ey(y − x|x = x0 ∧ y > x)Prob(y > x|x = x0)

=Ey(x− y|x = x0 ∧ y < x)Prob(y < x|x = x0).

Multiplying both sides of this equation by x0, we can move occurrences of x0

inside the expectations (since these are integrals in the variable y). So for a.e. x0,

Ey(x(y − x)|x = x0 ∧ y > x)Prob(y > x|x = x0)

=Ey(x(x− y)|x = x0 ∧ y < x)Prob(y < x|x = x0).

Integrating over x0, we get

E(x(y − x)|y > x)Prob(y > x) = E(x(x− y)|y < x)Prob(y < x). (1)

Since i regards j as a peer, for almost every y0 in the essential range of y one has
Ex(wx + (1− w)y|y = y0) = y0 (by PN). But obviously Ex(y|y = y0) = y0, so in
fact Ex(x|y = y0) = y0. By Lemma 1, it follows that

Ex(x− y|y = y0 ∧ x > y)Prob(x > y|y = y0)

=Ex(y − x|y = y0 ∧ x < y)Prob(x < y|y = y0).

Multiplying by y0 and employing x > y or y > x where applicable,

Ex(x(x− y)|y = y0 ∧ x > y)Prob(x > y|y = y0)

≥Ex(y(x− y)|y = y0 ∧ x > y)Prob(x > y|y = y0)

=Ex(y(y − x)|y = y0 ∧ x < y)Prob(x < y|y = y0)

≥Ex(x(y − x)|y = y0 ∧ x < y)Prob(x < y|y = y0),

for a.e. y0, with strict inequality wherever Prob(x > y|y = y0) is positive. Inte-
grating over y0, we therefore get

E(x(y − x)|x > y)Prob(x > y) > E(x(x− y)|x < y)Prob(x < y).

Multiplying both sides by -1, swapping sides and rearranging some comparisons,
we get

E(x(y − x)|y > x)Prob(y > x) > E(x(x− y)|y < x)Prob(y < x),

contradicting (1). qed
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These considerations clearly kill the difference splitting implementation of the
Equal Weight View. On the other hand, coherent peer update schemes may
approximate difference splitting. There is, moreover, an extremely simple way of
producing such schemes. Recall, we are interested in the case where our fellow
agents have identical evidence and different priors. However, any scheme that is
adapted to a specific scenario in which the agents begin with identical priors but
then acquire different evidence and then condition on the other’s new credence
will automatically be coherent for some specific same-evidence case.

We sketch such an example. Suppose a point x is chosen uniformly at random
on the unit interval. A standard Brownian motion Z is initiated at x and evolves
until it exits the interval. P is the event that it exits to the right, i.e. at 1. Neither
i nor j know the value x. Suppose next that two independent standard Brownian
motions, Zi and Zj, are initiated at x and stopped at time t = 10−24. i is told the
value xi = Zi(t) and j is told the value xj = Zj(t). Since the standard deviation
of these motions is so small, the expectation x′i of x conditional on xi (which is
precisely i’s probability for P upon learning xi) will, with very high probability, be
extremely close to (distance much less than 10−12, say) xi. Similarly, j’s credence
in P will be, with high probability, extremely close to xj.

On the other hand, the expected value x′ of x conditional on xi and xj will with
high probability be extremely close to (distance much less than |xi − xj|) the
midpoint of xi and xj; so when i and j share their credences, they will, with high
probability, adopt posterior credence x′ = u(x′i, x

′
j) in P extremely close to the

midpoint of their shared credences x′i and x′j.

To reiterate, though this is not a same evidence scenario, the update rule u(·, ·)
that falls out of it will be coherent in any same-evidence scenario in which the joint
distribution of the peers agents’ priors x′i and x′j is the same as in the example.
This fact motivates a search for additional, non-coherence based constraints on
peer update that might tell in favor of or against schemes that approximate to
difference splitting and purport to be viable in generic (i.e. representative of the
mean) scenarios. We examine two such constraints in the following sections.

2. On an overrestrictive peerhood constraint of Nissan-Rozen
and Spectre

Ittay Nissan-Rozen and Levi Spectre (2017) present an original argument against
difference splitting as an implementation of the Equal Weight View. It fails, as
we presently demonstrate. It begins with a proposed constraint on peerhood:
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Our main contribution takes the form of a pragmatic con-
straint on the notion of peerhood: if an agent, j, is your peer,
then assuming that j is sympathetic–she wants you to gain
as much as possible–you should be willing–in exchange for a
certain payoff–to let her decide for you whether to accept a
bet with positive expected utility. If you are not willing to ac-
cept this exchange even for a sure payoff, you do not seriously
regard j as your peer.

Nissan-Rozen and Spectre now prove the following theorem, in which P is a
proposition for which i has an initial credence, and i is committed to updating
via linear pooling (with weight w) upon learning j’s initial credence.

Theorem 2. (Nissan-Rozen and Spectre 2017) Let i be an agent for whom j is
a fully rational and sympathetic peer. For any credence function of i that assigns
a non-trivial probability value to the possibility that j’s degree of belief in P is
different from i’s degree of belief in P , and for any 0 < w < 1, there always exists
a bet with positive expected utility such that i (if she updates by linear pooling
with weights w, 1−w) will be willing to pay a positive amount of utility in order
to avoid passing the choice of whether to accept the bet (on i’s behalf) to j.

The bet guaranteed by Theorem 2 violates Nissan-Rozen and Spectre’s pragmatic
constraint. If the constraint is viable, then, linear pooling Equal Weighters do
not regard their fellow agents as peers, which implies in particular that difference
splitting cannot be a viable implementation of the Equal Weight View.4

Nissan-Rozen and Spectre claim that their constraint (in conjunction with Theo-
rem 2) “makes room for the development of a new Conciliatory view that calls for
varying weights” (Nissan-Rozen and Spectre 2017). By a variable weight view, we
take them to mean a view on which u(x, y) lies strictly between x and y, if x 6= y,
and u(x, x) = x. But on this understanding, Theorem 2 doesn’t, in fact, make
room for such views; to what extent the argument attaches a deficient notion of
peerhood to split-the-difference, plausible variable weight Conciliatory views are
collateral damage.

To see why, let u(y) be i’s posterior credence under such a scheme when i learns
y = Crj(P ). Since we are assuming a “variable weight” rule5 the function u(y)

4Nissan-Rozen and Spectre also prove that there will be a bet with positive expected utility
such that a difference splitting i will be inclined to pay a positive amount of utility in order
to pass the bet to j. This violates an apparently endorsed (if only implicitly) variant of their
constraint whereby you should be willing–in exchange for a certain payoff–to decide for yourself
whether to accept a bet with positive expected utility in a case where you are otherwise obliged
to pass it to j. The details aren’t precisely the same, but this variant overgeneralizes as well,
and so cannot be used to resuscitate the Nissan-Rozen/Spectre argument. In any event we set
this aside, as they don’t formally invoke (or even formulate) the variant in question.

5Some authors (e.g. Easwaran et. al. 2016) advocate for synergy, which implies that in case
y = x 6= 1

2 , i’s posterior distribution should be more extreme than the common initial credence.
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satisfies u(y) = x for x = y, with u(y) strictly between x and y otherwise. Since
i regards j as a peer, meanwhile, we can assume that u(y) is strictly increasing.
Finally, since i is coherent, she should obey Reflection; in particular her initial
credence x = Cri(P ) ought to be equal to the expectation of her posterior, i.e.
x = Ey(u(y)).

Under these assumptions, one can always find a bet that i will pay a positive
amount to avoid passing to j whenever y isn’t, by i’s lights, equal to x almost
surely. For in such a case i must, by non-triviality and Reflection, assign positive
probability to the event y < u(y) < x. Let y0 be the essential infimum of y.6

Choose k with y0 < k < u(y0) < x. Bet 1 pays 1 if P is true and pays 0 if P
is false, if accepted; one receives a sure k if Bet 1 is rejected. Since i’s posterior
(after learning y, that is) credence in P is almost surely greater than k, acceptance
of Bet 1 has positive expected utility for i. She will be willing, moreover, to pay
any amount less than (u(y0)− k)Prob(y < k) > 0 to avoid having this bet passed
to j, since j would reject it whenever y < k.

We think what Nissan-Rozen and Spectre had in mind was that one should deem
a peer as being no worse (in expectation) than oneself when it comes to accepting
or rejecting a bet of the form given (1 if the proposition is true and 0 if it is false,
if accepted; a certain k if rejected), prior to learning one’s own initial credence x
in the proposition in question. Once one learns the value of x, that might change.
If x is very close to k, the agent will recognize that the expected relative utility of
her choice is small (non-existent, when x = k), and she may want to pass the bet
to j. In at least some other cases (cases in which x and k are not close, typically),
she will be inclined to want to field the bet herself, rather than pass it.

The proposed constraint is implausible and would, if valid, rule out too much. The
most natural explanation for this data is that it isn’t valid–it isn’t a requirement
of peerhood that for every such offer one should think that one’s peer has expected

We believe the intuition to be an artifact of the more common case in which the agents have
different evidence and the same priors. Suppose we have common prior distribution for the
bias of a coin uniform on [0, 1] and are each allowed to toss it once privately. If we reconvene
and simultaneously announce credence of 1

3 in the next toss of the coin landing heads, we will

update not to 1
3 but to 1

4 (Laplace rule of succession). That is because our credences effectively
allow for a pooling of evidence. Something like this is going on, for example, when so-called
meta-analyses obtain “statistically significant” results (i.e. sufficiently extreme p values) by
pooling studies that individually were unable to derive such results. In the same-evidence case
we are interested in, however, the practice is plainly unjustified, indeed a bit like concluding
that, because a certain balloon looks orange to everyone in the room, it must therefore be red.

6That is, Prob(y < y0) = 0, but Prob(y > y0 + ε) > 0 for every ε > 0.
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return not less than one’s own.7 We conclude that Nissan-Rozen and Spectre’s
argument fails.

3. On a would-be desideratum of Fitelson and Jehle

Fitelson and Jehle (2009) attempt to discredit difference splitting simpliciter (i.e.
their argument does not invoke peerhood) on the grounds that it fails to com-
mute with conditionalization. Such an argument, it’s probably worth mentioning,
cannot counsel against difference splitting for two cell partitions, for the simple
reason that if one conditionalizes on a non-trivial event from a two cell partition,
the resulting space is trivial and there is only one candidate credence function over
it. So Theorem 1 is more general, even if this alternative argument has merit.

The argument in its current form has serious problems, however, owing to the
fact that Fitelson and Jehle believed the matter to be much simpler than it is.
Indeed, they regarded it as transparent enough to relegate to a footnote:

Some Bayesian defenders of EWV require that (ideally) the
result of an EWV update should be equivalent to a (clas-
sical) conditionalization, which conditionalizes “on whatever
you...have learned about the circumstances of the disagree-
ment” (Elga 2007, 490). If that’s right, then [commutativ-
ity] will follow from the definition of (classical) Bayesian con-
ditionalization, since pairs of (classical) conditionalizations
must commute. (Fitelson and Jehle 2009, footnote 12.)

That just isn’t right. What’s true is that if i conditions on A and then condi-
tions on B, she should arrive at the same posterior as if she were to have first
conditioned on B and then on A. But that’s not what’s going on here.

Suppose for example that i’s original prior on (A,B,C) is (1
4
, 1
4
, 1
2
) and j’s is

(1
4
, 1
2
, 1
4
). It is certainly true that i should arrive at the same posterior if she first

learned j’s credence function then learned ¬C as she should if she first learned
¬C and then learned j’s original prior. And these are just the propositions i will
learn in a case where the agents first perform a peer update and then condition on
¬C. It is not, however, what i will learn if the agents first condition on ¬C and
then perform a peer update. In the latter case, i will learn only that j’s original
prior was of the form (x, 2x, 1 − 3x) for some 0 < x ≤ 1

3
. There is no reason to

think, then, that her posterior here must be the same.

In fact, one can easily construct coherent peer update rules that fail to commute
with conditionalization: rules that approximate split-the-difference, for example,

7The alternative, it would seem, is that there is something wrong with Conciliatory views
more broadly construed. For those who subcribe to the uniqueness of rational priors, that
conclusion seems inevitable so far as ideal agents are concerned. Even for those, however, there
is still an intuition that there ought to be a viable Equal Weight View for non-ideal agents.
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will violate this commutativity. The two-cell scheme presented at the end of
Section 1 can be adapted to three cells to this end, as we now show.

Consider an equilateral triangle and a point generated uniformly at random in its
interior, having barycentric coordinates (x, y, z) (x, y and z denote the distances
from the point to the sides of the triangle; we assume x + y + z = 1). A two
dimensional Brownian motion will be initiated at this point. When it hits a
side (i.e. when one of the coordinates becomes zero), the Brownian motion will
become 1-dimensional on that side until it terminates at a vertex. Let PX be the
event that the motion terminates at the vertex X having barycentric coordinates
(1, 0, 0); PY and PZ are similarly defined.

Neither i nor j knows the initial point (x, y, z). However, they each learn the
identity of a nearby point–points (xi, yi, zi) and (xj, yj, zj) respectively–chosen
from independent bivariate normal distributions having mean at the point with
barycentric coordiates (x, y, z) and common, extremely small known variance.
Assuming the agents to be rational, their resulting credences in (PX , PY , PZ) will
be (x′i, y

′
i, z
′
i) ≈ (xi, yi, zi) and (x′j, y

′
j, z
′
j) ≈ (xj, yj, zj). Upon sharing these cre-

dences, they will each come to have posterior credence (x′, y′, z′) ≈ 1
2
((x′i, y

′
i, z
′
i) +

(x′j, y
′
j, z
′
j)) in (PX , PY , PZ). The error in these approximations will be small com-

pared to the distance between (x′i, y
′
i, z
′
i) and (x′j, y

′
j, z
′
j) with very high probability.

In particular, the error will always be small in those (extremely) rare cases where
the points (x′i, y

′
i, z
′
i) and (x′j, y

′
j, z
′
j) are far from each other (and not too close

to the edges). For example, when (x′i, y
′
i, z
′
i) = (.02, .2, .78) and (x′j, y

′
j, z
′
j) =

(.8, .08, .12), peer update will result in a credence ≈ (.41, .14, .45). If one then
conditions on ¬PZ one will obtain posterior ≈ (41

55
, 14
55
, 0). On the other hand

if i and j first condition on ¬PZ they will come to have credences ( 1
11
, 10
11
, 0)

and (10
11
, 1
11
, 0), respectively. If now they perform a peer update, preservation of

zero considerations and symmetry imply a posterior of (1
2
, 1
2
, 0) 6≈ (41

55
, 14
55
, 0). So

commutativity of conditionalization and peer update simply doesn’t follow from
naive Bayesian (i.e. coherence) considerations alone.

Fitelson and Jehle did go on to say (as a hedge, perhaps): “But even if we don’t
think of EWV-rules as equivalent to some conditionalization, we think [commu-
tativity with conditionalization] should remain a desideratum for EWV-updates.
We don’t have the space to defend this claim here.” It’s of course a pity that they
do not defend the claim, as it certainly requires defense.

Any such defense would have to begin, we believe, with an attempt to explain
away examples such as the foregoing one in which something near to difference
splitting is rationally mandated. Note that the example favors difference splitting
because the Euclidean midpoint of the segment connecting the ordered pairs whose
barycentric coordinates correspond to the agents’ priors minimizes the sum of the
absolute deviations of the approximating bivariate normals (and so is near to the
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expectation of their mean). One would have to say, then, why the Euclidean
metric is the wrong one to be working with in the generic situation in which two
agent have identical evidence but different priors.

On the other hand, perhaps one would not have to say much here, for there is
absolutely no reason to think that the Euclidean metric would be an appropriate
metric in this context. When measuring the distance from a probability measure
x = (x1, . . . , xn) to another probability measure y = (y1, . . . , yn), the information
distance–so called Kullback-Leibler divergence KL(x, y) =

∑n
i=1 xi log xi

yi
, is a far

more likely default candidate. And, as we shall see below, when i and j’s common
posterior is chosen so as to minimize the sum of these distances to their respective
priors, the resulting update scheme does commute with conditionalization.

Another option would be to employ the strategy of Section 1. First one would
argue that, in a case where i knows j’s prior credence function and knows that
¬C (say) is the case, knowledge of her own current credence function “screens off”
the significance of her prior credence in C. The example involving barycentric
coordinates shows why one cannot make this assumption on the basis of coherence
considerations alone...the joint distribution of the two priors and the partition
in question ({A,B,C}, say) may be such that i’s prior credence in C yields
information about the relative likelihoods of A and B beyond that provided by
j’s prior credence function and her own current credence function alone. One
might argue that the generic, same-evidence situation is different, though.

Indeed, it seems that nothing would change if i hadn’t formulated any original
prior in C at all. She formulated her conditional probabilities Prob(A|¬C) and
Prob(B|¬C), and that was enough for her to compute her current credence func-
tion, once ¬C was learned. Should she now think, upon learning j’s prior, that
she might generate “evidence” for or against A, simply by going back and formu-
lating, ex post facto, a prior for C? It’s difficult to imagine where this evidence
might come from, given that she isn’t proposing to gather any new data; what
she’s proposing is simply an armchair exercise. (This should be contrasted with
the triangle thought experiment, in which her prior in C was generated by an
external process.) Finally, if i can say that her own prior credence in C is not
relevant in a situation where she knows her current credence and j’s prior, she
can invoke peerhood to conclude that j’s prior credence in C isn’t relevant in a
situation where she knows her own prior and j’s current credence; at that point
she can claim that conditionalization on ¬C commutes with peer update after all.

We don’t claim that these considerations are entirely conclusive, but they are
compelling. Accordingly, we accept Fitelson and Jehle’s desideratum; peer update
ought (in the absence of any known protocols suggesting otherwise) to commute
with conditionalization.
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4. Peer update and relative entropy minimization

In this final section we present an update scheme that we believe should in some
sense be considered “standard”.8 The rule isn’t new. It is, for example, one
member of a family of update rules considered in Easwaran et. al. (2016).9 On the
other hand, we will argue its virtues in a couple of new ways. Among these virtues,
one finds that it commutes with conditionalization, preserves independences and
minimizes the sum of the Kullback-Leibler divergences from the priors to the
common posterior. (Since a general apology for this updating scheme isn’t our
main purpose, complete proofs of these somewhat trivial properties are omitted.)

According to this rule, if A and B are two cells of the partition under consideration

and ri = Pi(A)
Pi(B)

, rj =
Pj(A)

Pj(B)
are ratios assigned by i and j to these cells’ respective

probabilities, then the corresponding ratio arising from the common posterior
ought to be the geometric mean of r1 and r2. In the two-cell case {A,¬A},
therefore, one updates to (u, 1− u) given priors (x, 1− x) and (y, 1− y), where

u

1− u
=
( x

(1− x)

y

(1− y)

)1/2
. (1)

As motivation for (1) we’ll provide two arguments (one heuristic) in the case where
i’s prior is (1/5, 4/5) and j’s is (1/2, 1/2). That is, we’ll give plausible reasons
why, in this case, the common posterior should be (1/3, 2/3).

The first argument is simply the relative entropy one. The Kullback-Leibler di-
vergence from (u, 1 − u) to (1/5, 4/5) is given by u log u

1/5
+ (1 − u) log 1−u

4/5
; the

Kullback-Leibler divergence from (u, 1 − u) to (1/2, 1/2) is given by u log u
1/2

+

(1− u) log 1−u
1/2

. The sum of these quantities is

H(u) = 2u log u + 2(1− u) log(1− u)− u log 1/5− (1− u) log 4/5− log 1/2.

The minimum of H occurs where

H ′(u) = 2 log
u

1− u
+ log 4 = 0.

A quick calculation gives (u, 1− u) = (1
3
, 2
3
), in agreement with (1).

8We don’t claim that it would be immune from (coherence-based, even) objections. In par-
ticular, it would likely be subject to the usual array of criticisms that have plagued entropy
maximization solutions in other contexts (see, e.g., Seidenfeld 1986 or Friedman and Shimony
1971). On the other hand, such solutions arguably do have formal merit as approximations to
ideal behavior in extreme or limiting cases (we urge caution here, but see Vasudevan 2018).
At any rate it isn’t possible to criticize a method that one doesn’t know about; this scheme,
whatever its faults, marks a clear advance on difference splitting, and should be disseminated.

9These authors, curiously, do not favor the member of the family we are interested in. This
is because they advocate for synergy in updating; we take issue with this in footnote 5.
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For the second argument, imagine that a fair coin will be tossed if and only if ¬A
obtains. If i and j expand the algebra to accomodate the toss then of course their
expanded priors will be (1/5, 2/5, 2/5) and (1/2, 1/4, 1/4). Suppose now they were
to condition on the disjunction of the first two cells (the event A∨ (¬A∧ heads),
say) and then perform a peer update. Their credences after conditioning will be
(1/3, 2/3, 0) and (2/3, 1/3, 0). Symmetry and preservation of zero considerations
now indicate that their credences will be (1/2, 1/2, 0) after the peer update.

We next assume that i and j’s peer updating commutes with conditionalization.
(As we stated at the end of Section 3, we accept Fitelson and Jehle’s proposed
desideratum.) Thus they will also come to have credence function (1/2, 1/2, 0)
should they peer update then condition. After the initial peer update they will
have credences of the form (x, x, y). On the other hand, permutation consider-
ations point to x = y. That implies that i’s posterior credence in A, when she
considers the coin toss, is 1/3. The final step is then that peer update should
commute with marginalization onto the original sub-algebra.

Beware: i mustn’t subscribe to the commutativity of peer updating and marginal-
ization in general. What justifies it in this case (the proponent will say) is that the
ratio of the sizes of the to-be-amalgamated subcells is uncontroversial. Indeed,
that the coin is fair was always common knowledge, so i knew in advance that j’s
ratio would be equal to her own. If they were to have revealed credences over the
original two-cell partition first, then these ratios, i wouldn’t have obtained any
“new information” from the latter reveal affecting her posterior in A.10

Unlike split-the-difference, the proposed scheme can be coherently implemented
with a peer. For imagine a proposition-valued random variable P . Denote i’s
initial credence in P by x and j’s initial credence in P by y. Suppose that i
regards j as a peer and updates in agreement with (1). We assume, for simplicity,
that i’s joint distribution for (x, y) is distributed on eight pairs, with weights as
indicated in Table 1. Also, we imagine that learning the value of P provides no
more information about the value of y than does learning x. (While not generic,
these assumptions are clearly satisfiable, which is all that we require.)

It is now easy to see that i is Reflection-obeying. For example, if P0 is such that
x = 1/5 then, upon learning that P = P0, i’s posterior distribution for u will be
(2/5, 3/5) on (0, 1/3). In particular, E(u|P = P0) = 1/5. The remaining cases
are similar, so i’s behavior under this model exhibits diachronic coherence.

10One may make a fruitful comparison to the “Infomin” solution to the Judy Benjamin
problem (van Fraassen 1981) here. (Given that the solution being discussed agrees with that
obtained by Kullback-Leibler divergence minimization, this should not be surprising.) When
Judy receives a message yielding information about the relative sizes she ought to assign the
Red regions, this may (according to Infomin) influence her credence in Blue–but not in a case
where the message fails to alter Judy’s relative credences in the Red regions. In particular (less
contentiously, in fact), not in a case where Judy knows this in advance.
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Table 1

x y u Prob
0 1/5 0 1/10

1/5 0 0 1/10
1/5 1/2 1/3 3/20
1/2 1/5 1/3 3/20
1/2 4/5 2/3 3/20
4/5 1/2 2/3 3/20
4/5 1 1 1/10
1 4/5 1 1/10

The model moreover represents a plausible implementation of the Equal Weight
View. (Apart from employing the EWV-friendly (1), i’s joint distribution for
(x, y) and update function u(x, y) are symmetric in the variables x and y, im-
plying that, from i’s perspective, her own credences and those of j are treated
interchangeably.) Since, then, it is not the case that x = y almost surely, we may
conclude that Theorem 1 doesn’t overgeneralize in the manner of Theorem 2.
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