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Abstract

The CPT theorem states that any causal, Lorentz-invariant, thermodynam-
ically well-behaved quantum field theory must also be invariant under a
reflection symmetry that reverses the direction of time (T), flips spatial
parity (P), and conjugates charge (C). Although its physical basis remains
obscure, CPT symmetry appears to be necessary in order to unify quantum
mechanics with relativity. This paper attempts to decipher the physical
reasoning behind proofs of the CPT theorem in algebraic quantum field
theory. Ultimately, CPT symmetry is linked to a systematic reversal of
the C∗-algebraic Lie product that encodes the generating relationship be-
tween observables and symmetries. In any physically reasonable relativistic
quantum field theory it is always possible to systematically reverse this gen-
erating relationship while preserving the dynamics, spectra, and localization
properties of physical systems. Rather than the product of three separate
reflections, CPT symmetry is revealed to be a single global reflection of the
theory’s state space.
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1 Introduction: The CPT Puzzle

Virtually every serious candidate for a fundamental physical theory from Newto-
nian gravitation to classical electrodynamics has been time reversal invariant —
for every nomologically possible world, there is an otherwise identical nomolog-
ically possible world where the direction of time is reversed. Surprisingly, this
is not true for relativistic quantum field theories (QFTs). It is possible to write
down physically reasonable QFTs which are not time reversal invariant, and as
James Cronin and Val Fitch demonstrated in 1964, weak nuclear interactions in
the actual world are described by such a theory.1

While QFTs may fail to be symmetric under simple time reversal, a deep foun-
dational theorem ensures that there is always a more complicated time reversal
symmetry present. The CPT theorem states that any causal, Lorentz invariant,
thermodynamically well-behaved QFT must be invariant under a combined sym-
metry operation that reverses the direction of time (T), flips spatial parity (P), and
conjugates all charges present in the theory (C). Since particles and antiparticles
carry opposite charge, the net effect of charge conjugation is to swap matter and
antimatter. In a CPT invariant theory, every nomologically possible world has a

1In work that would win them the 1980 Nobel Prize, Cronin and Fitch observed that neutral
kaons transform into their antiparticle partners at a different rate than the reverse process.
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dopplegänger where the future is the past, right is left, and you and I are made
out of antiparticles.2

It is far from obvious why this should be the case. Why is this seemingly
ad hoc combination of reflections always a symmetry of nature? Greaves (2010)
observes that the theorem becomes even more puzzling when one recasts it in
terms of possible temporal, spatial, and charge orientation structures that the
laws of nature might make use of. If a theory fails to be time reversal invariant,
it does so because its laws somehow pick out a distinguished temporal direction.
The CPT theorem then says that no well-behaved QFT can make use of one kind
of orientation independently of the other two kinds. The laws can single out a
preferred temporal orientation, but only up to a choice of spatial handedness and
charge sign. The puzzle, as Greaves notes, is that these orientation structures
appear to be “paradigm cases of distinct existences; it’s odd to find such necessary
connections between them” (2010, p. 38). Indeed, in relativistic spacetime one
can show that spatial orientation and temporal orientation are mathematically
independent; a choice of one does not fix the other. While their relationship to
charge orientation is less clear cut, charge superselection structure arises from
internal gauge symmetries associated with the particular forces that the charges
couple to, and these internal symmetries have no direct connection to spacetime
structure.3

Such a connection appears essential, however, in order to unify quantum me-
chanics and special relativity. Straightforward extensions of Schrödinger wave
mechanics to relativistic spacetime generate non-physical negative energy states.
A series of no-go results show that it is impossible to excise these states while
maintaining locality and Lorentz invariance (Strocchi, 2013, ch. 1). Interestingly,
in quantum field theory it becomes possible to reinterpret negative energy states as
positive energy antiparticle states. This trick only works to restore Lorentz invari-
ance, though, if there is an exact correspondence between particles and antipar-
ticles; they must be indistinguishable except for their charge. The CPT theorem
accounts for this, explaining why particle/antiparticle pairs have the same mass,

2As in the case of T invariance, CPT invariance is often interpreted as indicating that these
apparently distinct possibilities are in fact different representations of the same physically possible
world. For present purposes, I will set aside this interpretive question.

3Here the Coleman-Mandula theorem (Coleman and Mandula, 1967) gives us prima facie
support for a kind of independence result. The theorem says that with the exception of su-
persymmetry, there is no non-trivial way to combine internal gauge symmetries and external
spacetime symmetries of the QFT scattering matrix. This result makes a necessary connection
between C and PT symmetries all the more puzzling.
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spin, and lifetime. It is therefore a result with deep foundational significance.
Despite its importance, the physical basis for CPT symmetry remains obscure.

As Bain (2016) emphasizes, part of the problem is that there are several different
versions of the theorem with different starting assumptions. Many of the more tech-
nical assumptions do not have a clear physical interpretation, making comparisons
between various proofs challenging. To compound this difficulty, the theorems are
couched within different mathematical frameworks, Lagrangian QFT, Wightman
QFT, S-matrix QFT, and algebraic QFT. The Lagrangian and S-matrix proofs,
while more physically transparent, lack mathematical rigor, whereas the rigorous
axiomatic proofs in the Wightman and algebraic frameworks are more physically
opaque. This state of affairs has prompted Greaves and Thomas (2014) to for-
mulate a rigorous Lagrangian version of the CPT theorem based on central ideas
from Bell (1955). In this paper I attack the problem from the opposite direction,
by looking for a more physically perspicuous interpretation of proofs in algebraic
QFT, the framework most familiar to philosophers of physics.4

In §2, I give an overview of algebraic QFT, focusing on the features most
essential for understanding the CPT theorem. Extant algebraic proofs rely on the
following main idea: in the vacuum representation of any physically well-behaved
QFT, certain local algebraic invariants associated with spacelike wedge regions
act geometrically as elements of the Poincaré group. One of these invariants, the
modular conjugation operator, JW , implements a full CPT transformation of the
theory when combined with a spatial rotation. But why do modular invariants
play such a pivotal role, and what makes wedge regions so special?

The central portion of the paper, §3, takes the form of a mathematical physics
whodunit. If we suspect that a generic QFT must have some generalized time-
reversal symmetry, where might we look for it in the structure of algebraic QFT?
As we dissect the theorem piece by piece, we will discover why the wedge modular
conjugation must be the culprit.

4This paper is based on previous dissertation work (Swanson, 2014, ch. 3). The main conclu-
sions drawn and the broad structural account of the algebraic CPT theorem are the same, but
some of the central details are different. In particular, the distinction between ∗-isomorphisms,
anti-isomorphisms, and conjugate-isomorphisms are more clearly drawn by lemma 1 and di-
rectly connected to modular theory by lemma 2. Rather than starting from modular covariance,
the present account uses Borchers’s auxiliary analyticity assumptions to more clearly link cen-
tral steps in the proof back to the Haag-Kastler axioms, thereby reinforcing the arguments in
Swanson (2018). The discussion of charge conjugation in §3.6 is also different, highlighting the
importance of modular inclusions and hewing more closely to existing proofs in the mathemati-
cal physics literature. The natural interdefinability of temporal, spatial, charge, and state space
orientations will be explored in more detail in future work.

4



Our detective work points towards an intriguing resolution of the CPT puzzle.
In QFT, temporal, spatial, and charge orientation structures are less independent
than they look. As we explore the structural explanation supplied by the algebraic
CPT theorem in §4, we will see that the reflection implemented by JW is not the
product of three separate operations at all, but rather a single, global state space
reflection which systematically reverses the connection between symmetries and
the conserved quantities that generate them. Whereas Greaves (2010) maintains
that the theorem is essentially a relativistic result, the present discussion suggests
that the theorem relies on central assumptions from both relativity and quantum
mechanics.

2 The Algebraic CPT Theorem

One of the most mathematically rigorous approaches to QFT currently on the
table, algebraic QFT (AQFT) serves as a natural framework for investigating the
conceptual underpinnings of relativistic quantum theories. Rather than beginning
with the specification of a Hilbert space, AQFT starts with an abstract charac-
terization of the algebraic properties of gauge-invariant physical quantities known
as observables. It is typically assumed that the observables of a quantum system
form the self-adjoint part of a noncommutative C∗-algebra. Such an algebra, A,
is a linear vector space over C equipped with a noncommutative multiplication
operation and closed under a canonical involution mapping, ∗ : A→ A, satisfying:

(A∗)∗ = A, (A+B)∗ = A∗ +B∗ (1)

(cA)∗ = c̄A∗, (AB)∗ = B∗A∗,

where c ∈ C, and c̄ denotes complex conjugation. Additionally, A must be com-
plete with respect to the uniform topology induced by a norm, || ||, subject to the
constraints,

||A∗A|| = ||A||2, ||AB|| ≤ ||A|| ||B||. (2)

In what follows, the involution mapping plays a major role. It is the abstract
analogue of the Hilbert space adjoint operation, and allows us to define important
subsets of elements. An operator is self-adjoint if A = A∗, an isometry if A∗A = I,
unitary if AA∗ = A∗A = I, and a projection if AA∗ = A. A Von Neumann algebra
is a C∗-algebra that contains a complete lattice of projection operators. Such
algebras can be classified into different types based on the structure of this lattice.
Finite algebras, commonly used in nonrelativistic quantum mechanics, are always
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isomorphic to the algebra of bounded operators on a finite dimensional Hilbert
space. Infinite algebras, employed in QFT and quantum statistical mechanics,
are isomorphic to a subalgebra of bounded operators on an infinite dimensional
Hilbert space. As we will see in §3, the proof of the CPT theorem hinges on
the physical interpretation of the involution mapping and its implementation by
modular invariants of infinite von Neumann algebras.

A state, φ : A → C, is a (normalized, positive) linear functional whose values
represent the expectation values of observables in A. Given a state, the Gelfand-
Naimark-Segal (GNS) construction determines a unique representation, πφ(A), of
A as a concrete subalgebra of bounded linear operators acting on a separable
Hilbert space, Hφ. Within a representation, the closure of πφ(A) with respect to
the Hilbert space weak topology defines a von Neumann algebra equivalent to the
double commutant, πφ(A)′′. In AQFT, this procedure allows for the definition of
additional representation-dependent observables including the energy-momentum
operators and superselected charges. Two representations πφ1 , πφ2 are quasiequiv-
alent iff πφ1(A)′′ and πφ2(A)′′ are ∗-isomorphic. Because field systems in AQFT
have infinitely many degrees of freedom, GNS representations of a given algebra
will typically not be quasiequivalent (unlike the situation in non-relativistic quan-
tum mechanics).

Figure 1: A doublecone, a spacelike wedge, and a spacelike cone.

We will focus on AQFT in flat spacetime. Throughout, O will denote an open
region of Minkowski spacetime and O′ the interior of its causal complement, the
set of all points spacelike separated from all points in O. Certain special regions
will be important to keep track of. A doublecone is a compact region formed by
the intersection of a past and future lightcone at two timelike separated points. A
spacelike wedge is an infinitely extended wedge-shaped region, whose two defining
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planes are tangent to the edges of some lightcone. A spacelike cone is a cone-shaped
subset of a spacelike wedge, infinitely extended in one spacelike direction.

2.1 Assumptions

With these preliminary definitions in place, a model of AQFT is given by an
assignment, {A(O)}, of C∗-algebras to regions of spacetime satisfying the Haag-
Kastler axioms, along with a set of physically possible states, {φ}. Each state in
{φ} determines a GNS representation and a corresponding assignment of local von
Neumann algebras, {Rφ(O)} = {πφ(A(O))′′}. The self-adjoint elements of these
algebras represent locally measurable physical quantities, while the Haag-Kastler
axioms specify the dynamics and enforce the joint requirements of relativity and
quantum mechanics. There are five standard axioms, and they all play a crucial
role in the algebraic CPT theorem:

Isotony: If O1 ⊂ O2, then A(O1) ⊂ A(O2). This gives the assignment
{A(O)} the structure of a net and allows us to define the quasilocal algebra,
A, as its upwards inductive limit. (The family of physical states {φ} is
formally defined as a set of states of A.)

Microcausality: If O1 ⊂ O′2, then A(O1) and A(O2) commute. This en-
forces relativistic no-signaling constraints, ruling out act-outcome correla-
tions at spacelike separation. (It is also sometimes called the Einstein causal-
ity or locality axiom.)

Covariance: The net {A(O)} transforms covariantly under a strongly con-
tinuous representation of the connected Poincaré group (or more generally
its covering group) as automorphisms of A. The full group of isometries
of Minkowski spacetime is the Poincaré group, while its covering group has
the same Lie algebra and is used to represent symmetries of spinor fields.
The connected Poincaré group is the subgroup topologically connected to
the identity, consisting of translations, rotations, and boosts. (It does not
include orientation-reversing isometries like P, T, or PT reflections.) The
dynamical laws of the theory are encoded in the translation subgroup of this
representation and are guaranteed to be Lorentz invariant.

Vacuum: There exists at least one translation invariant state, ω ∈ {φ}.
This is a necessary condition for ω to be interpretable as a vacuum state.
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In the corresponding GNS representation, the translation subgroup is im-
plemented by a strongly continuous 1-parameter group of unitary operators,
U(a). The group generators are the energy-momentum observables and are
affiliated with the global von Neumann algebra, Rω = πω(A)′′.

Spectrum Condition: In each vacuum GNS representation, the energy-
momentum observables have spectral support in the same lightcone lobe in
momentum space. This ensures that the energy spectrum is bounded from
below in all Lorentz frames and that the vacuum is thermodynamically sta-
ble.5

In addition to the Haag-Kastler axioms, the algebraic CPT theorem relies on five
other assumptions:

Additivity For any family of bounded open regions, {Oi}, the local algebra
A(∪Oi) is the C∗-algebra generated by the family of local algebras {A(Oi)}.
This is a technical condition relating the algebras of bounded and unbounded
regions. It is used in the analysis of charge superselection structure, and it
entails weak additivity in vacuum representations. Weak additivity ensures
that the global von Neumann algebra Rω can be generated by translations of
any local algebra Rω(O). It is an important ingredient in the Reeh-Schlieder
theorem and several crucial lemmas in the algebraic CPT theorem.

Wedge Intersection Property: For any doublecone D, in any vacuum
representation, Rω(D) =

⋂
Rω(Wi) for all spacelike wedges Wi ⊃ D. This

is another technical condition allowing vacuum doublecone algebras to be
defined by the intersection of families of wedge algebras. It is used to in the
proof of the Bisognano-Wichmann property and to construct the minimal
Poincaré representation in §3.5. If a model of AQFT does not satisfy the
wedge intersection property it is always possible to expand the net of local
algebras so that it is satisfied, although the extension will not typically be
unique.

Split Property: If regions O1 and O2 are spacelike separated and not tan-
gent, then in the vacuum representation Rω(O1) and Rω(O2) can be “split,”

5As usually formulated, the spectrum condition requires that the spectral support of U(a) lie in
the closed forward lightcone, V +, in momentum space. The apparent reference to a distinguished
temporal orientation is eliminable. It is only required that U(a) must have spectral support in
a closed convex set V which is asymmetric under taking additive inverses: {V } ∩ {−V } = {0}.
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i.e., they generate a tensor product of von Neumann algebras. Along with
the spectrum condition, the split property is part of the characterization
of thermodynamically well-behaved QFTs. It entails that the family {φ}
includes well-defined thermal equilibrium states satisfying the Kubo-Martin-
Schwinger (KMS) condition and is a necessary condition for a model of
AQFT to have an emergent particle interpretation (Haag, 1996, ch. V.5).
Existing algebraic proofs of the CPT theorem rely on the weaker distal split
property, which only requires the existence of some pair of spacelike separated
wedges such that Rω(W1) and Rω(W2) can be split.

Analyticity: At certain critical stages, proofs of the algebraic CPT theorem,
like proofs in the Wightman framework, rely on tricky analytic continuation
arguments. As we will go on to see, in AQFT many important analyticity
properties are derived from the Haag-Kastler axioms and weak additivity. It
remains an open question if these assumptions along with the split property
are sufficient to derive all of the analyticity needed for the CPT theorem.
Existing algebraic proofs require auxiliary analyticity assumptions, and the
choice of which assumptions to make marks a place where different algebraic
proofs diverge. In our presentation, two closely related assumptions, B-
analyticity and B-reality, will be introduced in §3.5-6 once we have developed
the necessary technical machinery.

DHR/BF Selection Criteria: For every physical state φ ∈ {φ}, the GNS
representation πφ(A)′′ is quasiequivalent to the vacuum representation in the
causal complement of some doublecone or spacelike cone. This final assump-
tion is the key to the algebraic analysis of charge structure. Its physical
motivation is the subject of the next section.

2.2 Charges and Superselection Structure

Rather than a single Hilbert space, the state space of a model of AQFT is a col-
lection of different GNS representations, grouped into unitary equivalence classes
called sectors. Each representation in a given sector has the same folium of density
operators, representing states with the same global boundary conditions, charac-
terized by the values of representation-dependent observables in the global algebra
Rφ = πφ(A)′′. In different models of AQFT, different families of global states and
their corresponding GNS representations carry physical significance. The analysis
of charge representations initiated by Doplicher, Haag, and Roberts (1969a,b) is
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one of the crowning achievements of AQFT and plays a central role in the algebraic
CPT theorem.

Charges are gauge invariant, conserved quantities associated with particular
force laws. For example, electric charge is the conserved quantity that couples to
the electromagnetic force; color charge is the conserved quantity that couples to the
strong force.6 Besides satisfying global conservation laws, they obey superselection
rules that forbid states which are superpositions of different charges. In addition,
charges can be localized within some region of spacetime, and every charge has a
well-defined conjugate charge. Particles carrying conjugate charges can annihilate
each other, producing pure energy. Conversely, particle/antiparticle pairs can
spontaneously spring from the vacuum state.

In AQFT, these features are captured using special mappings of the quasilocal
algebra into itself called localized transportable endomorphisms. Formally, such a
morphism is an injective ∗-homomorphism, % : A → A. It must be localized in
some region, O (i.e., it acts as the identity on A(O′)), and it must be possible
to transport % to any other similarly shaped region in spacetime using unitary
mappings (i.e., for any similar region, O2, there is a localized endomorphism, %2,
and a unitary operator, U , such that U%(A) = %2(A)U for all A ∈ A).

The collection of localized transportable endomorphisms has a rich mathemati-
cal structure, that of a symmetric tensor ∗-category. In particular, the category has
a natural tensor product which allows us to define notions of charge composition
and conjugate charges. Each endomorphism induces a corresponding mapping on
global states over A. If ω is a vacuum state, ω ◦ % describes a state with charge
Q localized in region O. Its conjugate is defined as the unique endomorphism, %̄,
such that ω ◦ % ◦ %̄ is a mixed state containing a component in the vacuum sector.
This captures the necessary condition for pair creation/annihilation.7

Doplicher, Haag, and Roberts analyze charges described by endomorphisms
localized in compact spatiotemporal regions. Such charges couple to forces like the
strong force, whose strength falls off sharply as a function of distance. They prove

6The notion of color charge discussed here is not the same as the more familiar quark color
labels red, blue, and green. These labels do not have a gauge invariant meaning and can be
superimposed. Color charge is a Z3-valued gauge-invariant superelected quantity in the center of
SU(3) constructed from functions of local Casimir invariants. See Kijowski and Rudolph (2003)
for a discussion of the superselection structure of quantum chromodynamics on a fnite lattice.

7An example of a common annihilation event is e+ + e− → γ + γ. Since charge is globally
conserved and photons are chargeless, any interaction of this kind requires that particles and
antiparticles have conjugate charge. If ω ◦%◦ %̄ is a mixed state with a component in the vacuum
sector, then the probability of a creation/annihilation event is nonzero according to the Born
rule.
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that the relevant category of localized transportable endomorphisms is equivalent
to the category of GNS representations of states satisfying the DHR selection
criterion — φ satisfies the DHR selection criterion if its GNS representation is
quasiequivalent to the vacuum representation in the causal complement of some
doublecone. The corresponding charge sectors are labeled by the value of the
total charge observable, and conjugate sectors are defined by the condition that
π(A)′′ ⊗ π̄(A)′′ contains a copy of the vacuum representation πω(A)′′. According
to the DHR picture, matter and antimatter states are represented by states in
conjugate sectors, giving rigorous mathematical content to the idea that such states
have opposite charge quantum numbers (Baker and Halvorson, 2010).

For theories with compactly localized charges like quantum chromodynamics,
the DHR selection criterion is a physically plausible constraint on the family of
possible global states {φ}. Buchholz and Fredenhagen (1982) extend the DHR
picture to include topological charges localized in spacelike cones. In theories
with a mass gap, there is a 1-1 correspondence between particle representations
and states satisfying the BF selection criterion — φ satisfies the BF selection
criterion if its GNS representation is quasiequivalent to the vacuum representation
in the causal complement of some spacelike cone. While impressive, the analysis
of charge structure in AQFT is still incomplete. Because of the infrared problem,
we currently lack a full understanding of the localization properties of massless
charged particles, and thus the algebraic proof of the CPT theorem cannot be
applied to theories like quantum electrodynamics at this stage.

2.3 CPT Symmetry and the Bisognano-Wichmann Prop-
erty

Within the setting of the DHR/BF picture, we can frame necessary and sufficient
conditions for the existence of a CPT symmetry operator, Θ:

(a) Θ is unitary or antiunitary,8 and if O1 ⊂ O2, then ΘA(O1)Θ ⊂ ΘA(O2)Θ.

(b) ΘA(O)Θ = A(−O), where −O is the region obtained from O via a full
spatiotemporal reflection in both the space and time coordinates.

(c) In any representation carrying a unitary representation, U(a,Λ), of the con-
nected Poincaré transformations, ΘU(a,Λ)Θ = U(−a,Λ).

8An antiunitary operator acting on a Hilbert space must satisfy V ∗V = V V ∗ = I like a
unitary operator, however it is complex antilinear, V (c1Φ + c2Ψ) = c̄1V Φ + c̄2VΨ, rather than
linear.
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(d) For any charge endomorphism, θ◦%◦θ = %̄, where θ is the (anti-)isomorphism
defined by the adjoint action of Θ, θ(A) := ΘAΘ for all A ∈ A.

The first condition is a general constraint on symmetries in AQFT. Wigner’s the-
orem requires that symmetries must be unitarily or antiunitarily implemented in
order to preserve transition probabilities. Additionally, symmetries should pre-
serve the localization information captured by isotony. Conditions (b)-(c) ensure
that Θ implements a full spatiotemporal reflection and has the right commutation
relations with the Poincaré transformations. In particular, (c) ensures that Θ com-
mutes with the dynamics and preserves the mass and spin properties of particles.
The final condition tells us that Θ conjugates all charges present in the theory.

This leads to a general statement of the main theorem:

CPT Theorem. Given a model of AQFT satisfying the Haag-Kastler axioms, ad-
ditivity, the wedge intersection property, the distal split property, and the DHR/BF
selection criterion, if the model also satisfies analyticity conditions sufficient to
entail the Bisognano-Wichmann property, then there exists an antiunitary CPT
operator, Θ, satisfying (a)-(d).

Algebraic proofs of the CPT theorem are based on generalizations of a lesser known
result from constructive QFT. Bisognano and Wichmann (1975, 1976) prove that
for QFTs satisfying the Wightman axioms, local algebras associated with space-
like wedges in the vacuum representation contain special invariants that generate
particular Poincaré transformations. The modular unitarites, ∆it

W , associated with
Rω(W ) generate the unique 1-parameter group of W -preserving Lorentz boosts,
ΛW (t).9 The modular conjugation, JW , implements a P1T reflection that reverses
the direction of time and flips one spatial direction perpendicular to the edge of
the wedge. Interestingly, it turns out that JW also conjugates charge. The CPT
theorem is then an immediate corollary of rotational covariance.

9A spacelike wedge is the region of Minkowski spacetime causally connected to an immortal,
uniformly accelerating observer, the so-called Rindler wedge. If the observer is accelerating in
the x1 direction, their trajectory can be written in standard coordinates as

x0(τ) = a−1 sinh(τ)

x1(τ) = a−1 cosh(τ)

x2(τ) = x3(τ) = 0,

where τ is proper time. The wedge region is defined by the condition x1 > |x0|. The Bisognano-
Wichmann theorem tells us that in the vacuum representation, ∆it = e2πitK1 (where K1 is
the generator of an x1-boost). This is a simple rescaling of proper time translations along the
observer’s worldline.

12



Figure 2: The P1T reflection implemented by JW

The original proof of the Bisognano-Wichmann theorem uses extensive ana-
lytic continuation techniques relying on the special properties of gauge-dependent
Wightman field operators. It thus does not directly apply to AQFT. Nonetheless,
mathematical physicists have long suspected that the theorem is actually a more
general consequence of the structure of gauge-independent local observables. As
we will see in §3.3, the existence of local modular invariants is a consequence of
the Haag-Kastler axioms and weak additivity, and their geometric interpretation
is tightly constrained. This motivates the following:

Bisognano-Wichmann Property: In the vacuum representation, for any
spacelike wedge W , the wedge modular unitaries generate ΛW (t).

The Bisognano-Wichmann property holds iff JW implements a CP1T reflection.
Algebraic proofs of the CPT theorem therefore attempt to isolate analyticity as-
sumptions that are sufficient for establishing the Bisognano-Wichmann property.

In 2-dimensional theories, no additional assumptions are needed. The first
algebraic proof of the CPT theorem, Borchers (1992), inventively uses the ana-
lyticity properties entailed by covariance and the spectrum condition to establish
the Bisognano-Wichmann property for 2-dimensional models of AQFT. In higher
dimensions the situation is less clear. Haag (1996) conjectures that the Haag-
Kastler axioms and the split property should be sufficient to entail the Bisognano-
Wichmann property on their own, but this problem remains unsolved. Although
there are models of the Haag-Kastler axioms in which the Bisognano-Wichmann
property fails (Yngvason, 1994; Buchholz et al., 2000), there are none that also
satisfy the split property.
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The first proof for 3- and 4-dimensional theories, Guido and Longo (1995),
drops the covariance axiom and spectrum condition in favor of a geometric con-
straint on ∆it

W :

Modular Covariance: In the vacuum representation, for any spacelike
wedge W ,

∆it
WRω(O)∆−itW = Rω(ΛW (t)O) .

This requires that the adjoint action of the modular unitaries maps arbitrary local
algebras in the vacuum representation onto the algebras of ΛW (t)-boosted regions.
This covariance entails the Bisognano-Wichmann property, but showing that each
∆it
W acts geometrically as a boost requires a detailed argument exploiting the al-

gebraic and analytic properties of the modular invariants. Bain (2016) draws a
number of philosophical conclusions about the algebraic CPT theorem (e.g., that
it does not assume Lorentz invariance) based on a direct reading of the Guido-
Longo proof. Swanson (2018) cautions against such a direct reading, arguing that
modular covariance essentially bundles together the covariance axiom, spectrum
condition, and additional analyticity properties, obscuring the physical justifica-
tion behind various steps in the proof.

Here I will focus on the approach of Borchers (1995, 1996a, 1998, 2000), which
seeks to identify precisely which analyticity conditions are needed in higher dimen-
sions in addition to those already implicitly encoded in the Haag-Kastler axioms.
Although in their present form these conditions are quite technical and their phys-
ical motivation is poorly understood, pursuing this strategy will enable us to trace
the clearest possible chain of argument back to the Haag-Kastler axioms.10

3 Deciphering the Theorem

Summing up the mathematical philosophy behind AQFT, Halvorson and Müger
(2006, p. 740) observe:

AQFT proceeds by isolating some structural assumptions that hold in
most known QFT models. It formalizes these structural assumptions,

10There are several other approaches that deserve mention. Kuckert (1997) proves that if the
wedge modular invariants map open regions onto open regions, then the Bisognano-Wichmann
property follows. Buchholz et al. (2000) employs an alternative geometric constraint, the con-
dition of geometric modular action, on the family of wedge modular conjugations {JW }. Mund
(2001) proves the Bisognano-Wichmann property for asymptotically complete QFTs with a mass
gap using elementary algebraic assumptions and tools from Haag-Ruelle scattering theory.
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and then uses “abstract but efficient nonsense” to derive consequences
of these assumptions.

Prima facie, the algebraic CPT theorem is a paradigm example of this approach.
With the exception of technical conditions like additivity, the wedge intersec-
tion property, and analyticity, its main structural inputs are reasonably physically
transparent. The chain of argument is anything but. Somehow, using the geomet-
ric properties of wedge-localized modular invariants, we can construct an extended
representation of the Poincaré group which miraculously includes an antiunitary
CPT operator. To make the situation even more challenging, presentations of the
CPT theorem in the mathematical physics literature typically start at a very late
stage of the argument, are spread over many separate papers, and often appeal
to more abstract assumptions than the Haag-Kastler axioms, aiming for the high-
est level of mathematical generality possible. (Frequently they seek to prove the
spin-statistics theorem at the same time.) The goal of this section is to decipher
the chain of physical reasoning behind the CPT theorem, starting from a more
elementary algebraic foundation and proceeding slowly and carefully through the
core of the proof. The argument is certainly abstract, but it is less nonsensical
than it first appears.

3.1 The Canonical Involution

We suspect that a generic model of AQFT should contain a hidden CPT reflection
symmetry, but the Haag-Kastler axioms only require covariance with respect to
connected Poincaré symmetries. How can a reflection like CPT get into the mix?

Our first important observation is that there is already an algebraic reflection
symmetry hiding in plain sight — in every C∗-algebra, the canonical involution
can be viewed as a reflection of the algebra across its self-adjoint subspace. Every
operator in A can be uniquely written in “complex form,” A = H + iK, where
H = 1

2
(A + A∗) and K = i

2
(A∗ − A) are self adjoint. A quick calculation reveals

that the canonical involution mapping, ∗ : A→ A, acts as “complex conjugation,”
sending A = H + iK to A∗ = H − iK and leaving the self-adjoint subspace, ASA,
pointwise invariant. Thus just like the complex numbers, a C∗-algebra is self-
similar; there is a conjugation operation that reflects the algebra across its “real
axis,” ASA. The positive and negative “imaginary halves” of the algebra, while
distinct, have identical algebraic properties.

Strictly speaking, the canonical involution is not an automorphism of A. It
reverses the order of operator multiplication, (AB)∗ = B∗A∗, and it is conjugate-
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linear on the underlying vector space, (c1A + c2B)∗ = c1A
∗ + c2B

∗. It restricts
to the identity on ASA, however, and since physical quantities are represented by
self-adjoint operators, this suggests that we should interpret it as a symmetry.
Moreover, while the order of multiplication and the difference between i and −i
matters within the algebra, from the outside looking in, the choice of a operator
product and complex unit looks like an arbitrary convention. We could choose
right instead of left operator multiplication and −i rather than i as a complex unit
and still be able to encode the same algebraic relations.

We can capture this intuition as follows. Let Aop denote the opposite algebra
relative to A, consisting of the same underlying vector space, involution, and norm
as A, but with the opposite C∗-product, (AB)op = BA. Similarly, let Ac denote the
conjugate algebra, consisting of the same involution, norm, and operator product
as A, but whose underlying vector space is conjugate, ic = −i. Finally, let Acop

denote the analogously defined conjugate-opposite algebra.
We say that two C∗-algebras are ∗-isomorphic if there exists a linear bijection

between them that preserves the identity, involution, and the operator product.
(These conditions entail that the norm is also preserved.) An anti-isomorphism is
similarly defined but reverses the order of the operator product, while a conjugate-
isomorphism acts conjugate linear on the underlying vector space. A conjugate-
anti-isomorphism does both. It follows from this cluster of definitions that A is
antiautomorphic, conjugate-automorphic, or conjugate-antiautomorphic (to itself)
iff A is isomorphic to Aop, Ac, or Acop respectively.

Lemma 1. Let A be any C∗-algebra:

(i) A is naturally isomorphic to Acop,

(ii) Aop is naturally isomorphic to Ac,

(iii) A is naturally anti-isomorphic to Aop and Ac,

(iv) A is naturally conjugate-isomorphic to Aop and Ac,

with the relevant isomorphisms defined by the involution structure common to all
four algebras.11

11Proof. All four algebras have the same involution structure and self-adjoint subspace (which
includes the identity element). To prove (i), define the isomorphism ϕ : A → Acop as the linear
mapping whose restriction to ASA is the identity and that sends i 7→ ic and AB 7→ (AB)op. It
is well-defined because the product of two self-adjoint elements is self adjoint iff they commute
(and thus iff AB = (AB)op), and iA is not self-adjoint for any self-adjoint element A. Using
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This lemma precisely characterizes the sense in which a C∗-algebra is self-similar:
A is naturally conjugate-antiautomorphic to itself, with the canonical involution
defining the relevant reflection symmetry. Furthermore, it reveals that there is an
entire family of related isomorphisms linking C∗-algebras with opposite choices of
operator product and complex unit.

3.2 The Dual Lie-Jordan Product

Do these formal algebraic symmetries have any physical consequences? If the ob-
servables are all contained in ASA, what role does the “imaginary” part of the al-
gebra play? Our second important observation, following Alfsen and Shultz (2001,
2003), is that observables have dual roles — they represent physical quantities and
they act as infinitesimal generators of symmetries. The C∗-algebraic product is in
fact two products in disguise:

Theorem (Alfsen-Shultz). In any C∗-algebra, the operator product has a natural
decomposition,

AB = A •B − i(A ? B) , (3)

where A • B := 1
2
(AB + BA) is a commutative, non-associative Jordan product,

and A ? B := i
2
(AB −BA) is a noncommutative, associative Lie product.12

the fact from the main text, every element A ∈ A can be uniquely written as A = H + iK
with H,K ∈ ASA. Consequently ϕ(A) = H + icK = H − iK = A∗, so the map is a bijection.
Moreover, ϕ(I) = I and ϕ(A∗) = H− icK = H+ iK = A∗∗ = ϕ(A)∗, so it preserves the identity
element and involution structure. Finally, it is multiplicative, since ϕ(AB) = (AB)∗ = B∗A∗ =
(A∗B∗)op = (ϕ(A)ϕ(B))op, and is thus a ∗-isomorphism. Naturality follows from the fact that for
any ∗-homomorphism, π, π(A∗) = π(A)∗, and therefore π ◦ ϕ(A) = π(A∗) = π(A)∗ = ϕ ◦ π(A).

The proof of (ii) follows the same reasoning, with ϕ̃ : Aop → Ac the analogously defined
natural ∗-isomorphism. To prove (iii) define the anti-isomorphism ϕop : A → Aop as the linear
mapping whose restriction to ASA is the identity and that sends i 7→ i and AB 7→ (BA)op.
ϕ̃ ◦ ϕop : A → Ac then defines an anti-isomorphism between A and Ac. Similarly, to prove (iv)
define the conjugate-isomorphism ϕc : A→ Ac as the conjugate-linear mapping whose restriction
to ASA is the identity and that sends i 7→ −ic and AB 7→ AB. ϕ̃−1 ◦ ϕc : A→ Aop then defines
a conjugate-isomorphism between A and Aop. Naturality follows from the naturalness of ϕ̃ and
the fact that ϕop(A) = ϕc(A) = A, and so both mappings commute with ∗-homomorphisms. �

Interestingly, A is not necessarily isomorphic to Aop or Ac. The first such examples are due to
Connes (1975). It remains an open question which (if any) natural constraints might entail that
an algebra is antiautomorphic (equiv. conjugate-automorphic) to itself.

12See Alfsen and Shultz (2003, ch. 6). The Jordan product satisfies the Jordan identity,

(A2 •B) •A = A2 • (B •A) ,
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The self-adjoint subspace, ASA, is closed under the Jordan product which en-
codes all spectral information about the observables.13 The Jordan product there-
fore captures the way in which observables represent physical quantities. The Lie
product, on the other hand, captures the way in which observables generate sym-
metries. Each element A ∈ ASA defines a 1-parameter group of automorphisms of
A, given by

αt(X) := eitAXe−itA, (4)

for all t ∈ R, X ∈ A. Infinitesimally, this can be rewritten in terms of the Lie
product:

dαt(X)

dt
|t=0 = i(AB −BA)

= 2(A ? X) (5)

Thus the Lie product A ? X represents the tangent vector of the flow associated
with the group of symmetries defined by A at t = 0. Unlike the Jordan structure,
ASA is not closed under the Lie product. In fact the closure of ASA with respect
to the Lie product is the entire C∗-algebra. This reveals that the imaginary part
of A algebraically encodes the generating relationship between observables and
symmetries.

Putting this result together with lemma 1, we see that the four algebras we
have introduced, A, Aop, Ac, and Acop, all have the same Jordan product, so they
agree on spectral properties of observables. The choice of a C∗-operator product,

where A2 := A •A, while the Lie product satisfies the well-known Jacobi identity,

A ? (B ? C) + C ? (A ? B) +B ? (C ? A) = 0 .

They also satisfy two important compatibility conditions, the Leibniz rule and the associator
identity:

A ? (B • C) = (A ? B) • C +B • (A ? C) , and (A •B) • C −A • (B • C) = (A ? C) ? B .

The first tells us that that the map B 7→ A ? B is a derivation on (ASA, •) viewed as a real
Jordan algebra. The second quantifies the departure from associativity of the Jordan product
and is linked to the Heisenberg uncertainty relations. This structure allows us to canonically
view the original C∗-algebra, A, as a dual Lie-Jordan algebra defined on the complexified space
ASA+iASA. See Zalamea (2018) for an analysis of the physical significance of this dual structure
in both quantum and classical mechanics.

13The spectrum of A ∈ ASA is defined as the set of real numbers λ such that A − λI is not
invertible. The invertibility of A − λI is equivalent to the existence of B ∈ ASA such that
(A− λI) •B = I and (A− λI)2 •B = (A− λI) (Alfsen and Shultz, 2003, Lem. 1.16–Cor. 1.19).
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Lie product, and complex unit are constrained — specifying any two naturally
defines a choice for the third:

Algebra C∗-Product Lie Product Complex Unit
A AB A ? B i
Aop BA B ? A i
Ac AB B ? A −i
Acop BA A ? B −i

The algebras A and Acop adopt one possible convention linking observables to
symmetries, the Lie product A?B, while Aop and Ac adopt the opposite convention,
the opposite Lie product (A ? B)op = B ? A.14 Furthermore, by definition any Lie
product must satisfy the condition A?B = −(B ?A), so if we choose the opposite
Lie product, the tangent vectors defined by (5) will point in opposite directions.
The canonical anti-isomorphism and conjugate-isomorphism linking A with Aop

and Ac reverse the Lie product. They flip the generating relationship between
observables and symmetries. Down the line, this will prove to be a central part of
the explanation for CPT symmetry.

3.3 Tomita-Takesaki Modular Theory

We have gone from no suspects to an entire slew of them. Every C∗-algebra em-
ployed by AQFT comes equipped with a canonical conjugate-antiautomorphism as
well as a family of related mappings connecting the algebra to its opposite, conju-
gate, and conjugate-opposite algebra. We do not expect every algebraic symmetry
to be a symmetry, however; symmetries must preserve transition probabilities, and
by Wigner’s theorem, only algebraic symmetries that are implemented by unitary
or antiunitary operators in a given representation will do this. Do we have reason
to think that any of our suspects will always be unitarily or antiunitarily imple-
mentable?

In general the canonical involution will not be unitarily or antiunitarily imple-
mentable, but under certain technical conditions that are guaranteed to hold for
every local vacuum algebra (via the Reeh-Schlieder theorem), the involution can
be split into two pieces, one of which is antiunitary. Furthermore this antiunitary
piece implements the canonical anti-isomorphism between A and Aop. This is our
third important observation and the subject of Tomita-Takesaki modular theory.

14There will typically be infinitely many Lie products compatible with the given Jordan prod-
uct. Every such compatible Lie product has a unique opposite.
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In its most general mathematical setting, modular theory studies the action
of a von Neumann algebra, M, on a Hilbert space, H, with a cyclic, separating
vector, Φ. The former means that MΦ = H (where the overline denotes closure
in the Hilbert space norm topology), and the latter means that AΦ = BΦ entails
A = B. As a result, we can use Φ to translate between algebraic structure on
M and geometric properties of H. In general, the canonical algebraic involution
does not give rise to an isometry of the Hilbert space structure, but can always be
represented as a reflection with an additional “twist.”

Using Φ, we can define the (generally unbounded) antilinear operator,

S0AΦ = A∗Φ , (6)

for all A ∈M. This can be extended to a closed, antilinear operator, S, defined on
a dense subset of H. Any such operator has a unique polar decomposition into a
partial isometry and a positive, self-adjoint (generally unbounded) operator called
the modulus. In the present case, the polar decomposition of S is given by:

S = J∆1/2 , (7)

with partial isometry J and modulus (S∗S)1/2 = ∆1/2. It can be shown that
J = J∗ = J−1, and thus J , called the modular conjugation, is both antiunitary and
self-adjoint. The positive operator ∆ is called the modular operator. The Hilbert
space action of the algebraic involution can thus be broken up into a reflection, J ,
with an additional twist, ∆1/2.

Together, the operators ∆, J have a rich structure that forms the basis of
Tomita-Takesaki modular theory. Its central theorem establishes the existence
of a canonical group of automorphisms of M and a canonical anti-isomorphism
between M and its commutant M′:

Theorem (Tomita-Takesaki). If M is a von Neumann algebra acting on a sepa-
rable Hilbert space H with a cyclic and separating vector Φ ∈ H, then

(i) JΦ = Φ = ∆Φ ,

(ii) ∆itM∆−it = M,∀t ∈ R,
(iii) JMJ = M′

where ∆, J are the associated modular invariants.15

15In the case where S is a bounded operator an elementary proof can be given. See Blackadar
(2006, Thm. III.4.3.2.). The unbounded case is highly non-trivial. See Takesaki (2000, Ch.
VI-VII) and Kadison and Ringrose (1997, Ch. 9.2) for different versions of the full proof.
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Since ∆ is positive, ∆it is unitary, and (ii) defines a strongly continuous 1-parameter
automorphism group of M — the modular automorphism group. By (iii), the ad-
joint action of the modular conjugation generates an anti-isomorphism and an
equivalent conjugate-isomorphism between M and M′. This allows us to canoni-
cally identify M′ with Mop and Mc:

Lemma 2. Let M be a von Neumann algebra with a cyclic and separating vec-
tor Φ ∈ H, and let ∆, J be the associated modular objects. J defines natural
∗-isomorphisms ψop : M′ →Mop and ψc : M′ →Mc.16

Thus within the setting of modular theory, we find that the reflection symmetry
relating M and Mop (equiv. Mc) is always antiunitarily implemented, with the
commutant M′ identified with Mop (equiv. Mc).

In AQFT, the Reeh-Schlieder theorem guarantees these conditions hold for
local algebras in the vacuum representation:

Theorem (Reeh-Schlieder). If a model of AQFT satisfies the Haag-Kastler axioms
and weak additivity, then the vacuum state is cyclic and separating for every Rω(O)
such that O′ is a proper subset of Minkowsi spacetime.17

So every local algebra in the vacuum sector has a canonical antiunitary conjuga-
tion, J , the reflection portion of the Tomita operator, S, representing the algebraic

16Proof. The mapping j∗ : M →M′ defined j(A) := JA∗J is the required anti-isomorphism,
and the mapping j : M → Mc defined j(A) := JAJ is the equivalent conjugate isomorphism.
To check this, note that j∗(AB) = J(AB)∗J = JB∗A∗J = JB∗JJA∗J = j∗(B)j∗(A) and
j∗(iI) = J(iI)∗J = J(−iI)J = iI since iI ∈M∩M′ and for any such central element JAJ = A∗.
Thus j∗ is an anti-isomorphism. It follows from a similar calculation that j preserves products
but j(iI) = −iI, so j is a conjugate-isomorphism. (These morphisms are natural since J is
uniquely fixed by M and Φ.) Using Lemma 1, we can then define the natural isomorphisms
ψop := ϕop ◦ (j∗)−1 and ψc := ϕc ◦ j−1. �

17This is the first instance of an analytic continuation argument in the proof of the CPT theo-
rem. Here is the main idea: for some region O, suppose that Φ is orthogonal to Rω(O)Ω. Φ will
also be orthogonal to U(a)Rω(Õ)U(−a)Ω where Õ is any subregion strictly contained in O and
U(a) are sufficiently small translations. The spectrum condition entails that the vector-valued
function U(a)Ω has analytic extension to the forward tube T (V +) := {z ∈ C4|Im z ∈ V +}, where
V + is the forward lightcone. This fact is used to show that the function 〈Φ, U(a)Rω(Õ)U(−a)Ω〉
is the boundary value of a holomorphic function on the forward tube that vanishes in some
neighborhood of the origin and therefore vanishes everywhere. Consequently Φ is orthogonal to
U(a)Rω(Õ)U(−a)Ω for all translations. Weak additivity then entails that Φ = 0, and so Ω is
cyclic for R(O). Microcausality entails the separating property. (For a full proof, see Horuzhy
1990, Thm. 1.3.1.) It should be noted that this result generalizes to any state analytic for the
energy including DHR/BF charge states.
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involution. Lemma 3 then entails that the reflection symmetry linking Rω(O) to
Rω(O)op (equivalently Rω(O)c) is always antiunitarily implemented with Rω(O)′

identified with Rω(O)op (equivalently Rω(O)c). As we will go on to see, this has
important geometric ramifications since commuting algebras are associated with
spacelike separated regions.

3.4 Time Reversal

The local modular conjugation operators are prime suspects for implementing time
reversal transformations. In AQFT, the dynamics are encoded in the strongly
continuous representation of the translation subgroup whose existence is posited
by the covariance axiom. Relative to a given Lorentz frame, we can write the time
evolution of an arbitrary observable as

αt(X) = eitP0Xe−itP0 , (8)

where P0 is the global Hamiltonian.
Choosing an arbitrary t = 0 allows us to identify time evolved observables in

two distinct temporal directions, t and −t. As Roberts (2017) emphasizes, in any
quantum theory a time reversal transformation, T , should reverse the temporal
ordering of observables (in the Heisenberg picture) while preserving the length of
temporal intervals, thus mapping observables at time t to observables at time −t.
Moreover, it should be involutive, T 2 = I. If the theory is time reversal invariant
(in any generalized sense), then T should also be a symmetry, hence implemented
by a unitary or antiunitary operator. In addition, it should commute with P0 so
that the dynamics are unaffected by the reversal. Putting these four constraints
together, we have

Tα−t(X)T = TeitP0Xe−itP0T = e−itP0TXTeitP0 = α−t(TXT ) . (9)

The spectrum condition entails that the spectrum of P0 is positive in all Lorentz
frames. As a consequence, Roberts shows that the only way to consistently im-
plement (9) with P0 6= 0 is for T to be antiunitary. The key idea is simple, but
illuminating. Since the generators of the translations are unique, it follows from
(9) that TitP0T = −itP0. If T is unitary, then Tit = itT , and so TP0T = −P0.
Since unitary operators preserve inner products, if P0 6= 0 the spectrum of P0

cannot be bounded from below, violating the spectrum condition.
Roberts’s argument sheds considerable light on why time reversal symmetries

in quantum mechanics must be antiunitary. Our discussion of the dual Lie-Jordan
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product in §3.2 yields additional insight. Any time reversal symmetry worth the
name must send αt 7→ α−t. There are only two ways to to do this. The first
is a unitary transformation sending P0 7→ −P0. The second is an antiunitary
transformation that reverses the Lie product and thus the generating relationship
between P0 and αt.

18 The first route is blocked by the spectrum condition, leaving
the second as the only viable way to implement time reversal symmetry in QFT.
Given the constraints linking the Lie product, C∗-product, and complex unit,
antiunitary time reversal can be viewed either as a conjugate-isomorphism sending
i 7→ −i with fixed C∗-product (thus sending eit 7→ e−it) or an anti-isomorphism
sending AB 7→ BA with fixed complex unit (thus sending eit e−it 7→ e−it eit).
Since Ac is naturally isomorphic to Aop, the viewpoints are completely equivalent.
Physically speaking, both are ways of reversing the generating relationship between
observables and 1-parameter groups of symmetries.

In order to be a symmetry of AQFT, a time reversal transformation should
also preserve subsystem localization information; T should be a symmetry of the
net of observable algebras, not just the global algebra. If O1 ⊂ O2, and thus
R(O1) ⊂ R(O2), we require that TR(O1)T ⊂ TR(O2)T . Moreover, if a system
is localized in a particular type of region (e.g., a lightcone, doublecone, spacelike
wedge, spacelike cone), time reversal symmetry should preserve this localization.
It should map like-regions onto like-regions.

By the main Tomita-Takesaki theorem, JR(O)J = R(O)′, therefore in order
for J to implement a time reversal symmetry, R(O)′ must be the local algebra of a
region with the same geometry as O. In general, there is no guarantee that R(O)′

will be a local algebra at all, however microcausality entails that R(O′) ⊂ R(O)′.
If a stronger duality relation obtains, the local algebras are as large as possible
consistent with microcausality and R(O′) = R(O)′. If O has the same geometry
as O′, then the modular conjugation meets this necessary requirement.

Are there regions like this — regions that are isometric to their spacelike com-
plement and for which we expect duality to hold quite generally? The answer is
yes. The causal complement of a spacelike wedge is another spacelike wedge. In
fact, spacelike wedges are essentially the only causally well-behaved regions with
this property. Any open, convex, causally complete region such that O and O′ are
isometric must be a wedge.19 Moreover, wedge duality, Rω(W )′ = Rω(W ′), when

18A symmetry preserves the Lie product iff it is unitarily implemented and reverses the lie
poduct iff it is antiunitarily implemented. See Alfsen and Shultz (2001, Thm. 4.27).

19Suppose some open, convex, causally complete region O is isometric to O′ and is not a space-
like wedge. Thomas and Wichmann (1997) prove that every closed, convex, causally, complete
subset of Minkowski spacetime is the intersection of closed spacelike wedges, so O ⊂ W for
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combined with the Haag-Kastler axioms is a sufficient condition for applying the
tools of DHR/BF superselection theory and is expected to hold (at least in the
vacuum representation) with greater generality than other forms of duality.20

3.5 Wedge Reflection

The focus of our investigation has narrowed to modular conjugations associated
with spacelike wedges in the vacuum sector. (Incidentally, this is where most
presentations of the algebraic CPT theorem begin, obscuring the physical detective
work that has gotten us this far.) If wedge duality holds, then JWRω(W )JW =
Rω(W )′ = Rω(W ′), where JW is the modular conjugation associated with wedge
W , and W ′ is the opposite wedge, the reflection of W across one spatial direction
(perpendicular to the edge of W ). Thus, because of the fact that JW is a modular
conjugation, mapping Rω(W ) onto its commutant, combined with duality and the
unique geometry of W , JW is a candidate for implementing a spatial reflection.
As an antiunitary involution, if JW commutes with the dynamics, it will also
implement a time reversal symmetry.

Under the same elementary conditions needed for the Reeh-Schlieder theorem,
Borchers (1992) and Weisbrock (1992) establish a remarkable result answering this
latter question:

Theorem (Borchers-Weisbrock). If a model of AQFT satisfies the Haag-Kastler
axioms and weak additivity, then the spectrum condition holds iff

∆it
WU(a)∆−itW = U(ΛW (t)a)

JWU(a)JW = U(ra)

where U(a) is the unitary representing an arbitrary translation in the vacuum
representation, ΛW (t) is the unique 1-parameter group of W -preserving Lorentz

some wedge W and thus W ′ ⊂ O′. Spacelike wedges are maximal in the lattice of open, convex,
causally complete subregions, so it follows that O′ is a wedge. The causal complement of a wedge
is a wedge and (O′)′ = O (since O is causally complete), so O is a wedge, contradicting the initial
assumption.

20Wedge duality entails essential duality, a technical condition needed to prove that the
DHR/BF category has sufficient structure to represent charges. Essential duality requires that
the dual net, Rω(O)d := Rω(O′)′, satisfies microcausality. (It should be noted that as a restric-
tion on the family of physical states, {φ}, the DHR/BF selection criteria can be applied whether
or not duality obtains.) Another widely discussed duality condition, Haag duality, requires that
Rω(D)′ = Rω(D′) for any doublecone D. It is equivalent to the absence of spontaneous symme-
try breaking in the vacuum sector and is therefore of more limited interest although it does hold
in a number of important models such as a free bosonic field.
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boosts, and r is the P1T reflection defined by r(a0, a1, a2, a3) = (−a0,−a1, a2, a3),
with a1 being a spacelike translation perpendicular to the edge of the wedge.21

The modular objects ∆it and JW thus have the right commutation relations with
the translations to be interpreted as wedge-preserving Lorentz boosts and a P1T
reflection. For 2-dimensional AQFTs, wedge duality is a direct corollary of the
Borchers-Weisbrock theorem. In higher dimensions, however, counterexamples
constructed by Yngvason (1994) show that things can go haywire in the directions
along the edge of the wedge and the modular invariants may not map doublecones
onto doublecones.

To ensure that the modular invariants act geometrically, additional analyticity
assumptions are needed. Borchers (1995, 1996a, 1998, 2000) identifies two such
conditions that are equivalent to wedge duality and the Bisognano-Wichmann
property. Let D be a doublecone contained within a spacelike wedge, W , and
let K(D) ⊂ W denote the cylindrical set obtained by translating D in some
direction parallel to the edge of the wedge. Wedge duality requires that there be
enough elements A ∈ Rω(K(D)) such that U(ΛW (t))AΩ has bounded analytic
continuation into the strip S(−1/2, 0). For any such element,

U(ΛW (−i/2))AΩ = ÂΩ , (10)

where Â is affiliated with Rω(K(−D)) ⊂ Rω(W ′). The Bisognano-Wichmann
property requires that in addition, there is a large enough set of such analytic
elements closed under involution. This motivates the following:

21Borchers originally proved the forward direction and Weisbrock the converse. The forward
proof has since been greatly streamlined by Florig (1998). The key idea is as follows: spacelike
translations along any direction in the characteristic 2-plane of W form a positively generated
1-parameter group U(s), such that U(s)Ω = Ω and U(s)R(W )U(−s) ⊂ R(W ) for s ≥ 0 (a
group of so-called half-sided translations). Using the fact that U(s) is positively generated, along
with the analytic properties of the modular automorphism group encoded in the KMS condition,
Florig shows that the function

f(z) = 〈∆iz
WA

′Ω, U(e2πz)∆−izW AΩ〉

which is analytic in the interior of the complex strip S(0, 1/2), can be extended to a holo-
morphic function which is bounded, and thus constant. (Here, A and A′ are arbitrary ele-
ments of R(W ) and R(W )′ respectively.) This entails, in particular, that ∆it

WU(e2πts)∆−itW =
∆i0
WU(e2π0s)∆−i0W = U(s) and JWU(−s)JW = U(s). Extending these commutation relations to

arbitrary translation vectors, a, is then a straightforward calculation exploiting the algebraic and
analytic properties of ∆it

W and JW .
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B-Analyticity The set of A ∈ Rω(K(D)) such that U(ΛW (t))AΩ has bounded
analytic continuation into the strip S(−1/2, 0) is ∗-strong dense in Rω(K(D)).

B-Reality The set of A ∈ Rω(K(D)) such that both U(ΛW (t))AΩ and

U(ΛW (t))A∗Ω can be analytically continued, with Â∗ = Â∗, is ∗-strong dense
in Rω(K(D)).

Theorem (Borchers). If a model of AQFT satisfies the Haag-Kastler axioms and
the wedge intersection property, then

(i) wedge duality holds in the vacuum representation iff B-analyticity holds,

(ii) the Bisognano-Wichmann property holds iff wedge duality and B-reality hold.22

Setting V (ΛW (t)) := ∆it
W , this theorem allows us to define a unitary representation

of the Poincaré group, called the minimal representation, which acts covariantly on
the observable net and satisfies the spectrum condition.23 Because of the analytic

22The wedge intersection property is only needed for (ii). Borchers’s proof is very technical,
but we can gain some understanding of it by focusing on the significance of the cylindrical sets
K(D) and equation (10). Note that for any K(D) ⊂ W , K(D) = (W + a) ∩ (W ′ + b) where
a, b, are spacelike translations in the characteristic 2-plane of W . We consider two algebras
Rω(K(D)) = Rω(W + a) ∩Rω(W ′ + b) and R̂ω(K(D)) = Rω(W + a) ∩Rω(W + b)′. It follows

that, Rω(K(D)) ⊆ R̂ω(K(D)).
It follows from the Borchers-Weisbrock theorem that ∆it and U(ΛW (t)) commute, and since

both leave Ω invariant, they differ by a 1-parameter group FW (t). If A ∈ Rω(K(D)) is an
analytic element, then at the lower boundary of S(−1/2, 0)

U(ΛW (−i/2))AΩ = FW (−i/2)∆
1/2
W AΩ

= FW (−i/2)JWA
∗JWΩ

= JWFW (−i/2)A∗JWΩ ,

where the second line follows from the definition of the modular invariants, S = J∆1/2, and
the last line by the Borchers-Weisbrock theorem. In general, FW (−i/2)A∗ is not a bounded
operator, but it is affiliated with Rω(K(D)) ⊂ Rω(W + a) ⊂ Rω(W ). Thus by the Tomita-
Takesaki theorem and the Borchers-Weisbrock theorem, JWFW (−i/2)A∗JW is affiliated with

R̂ω(K(rD)) ⊂ Rω(W − a)′ ⊂ Rω(W )′. Wedge duality holds iff R̂ω(K(rD)) = Rω(K(rD)).
Using Lorentz invariance, Borchers shows that this is that case iff the set of analytic elements
is ∗-strong dense. The Bisognano-Wichmann property holds iff FW (t) is trivial. If so, then we

have Â∗Ω = JWAJWΩ = (JWA
∗JW )∗Ω = Â∗Ω, and B-reality holds. The converse requires a

detailed analytic continuation argument. See Borchers (2000, Thm. IV.2.2) for details.
23The key to defining the Lorentz group is to note that any Lorentz transformation is the

product of boosts in three linearly independent spacelike directions, and that each such boost is
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properties of these unitaries, ∆
1/2
W = V (ΛW (−i/2)) is an element of the complex

Lorentz group and hence that JW = ∆
1/2
W SW is the product of a complex Lorentz

transformation and the canonical involution on the wedge algebra implemented by
SW . This allows us to show that the minimal representation contains additional
reflection symmetries. In particular, we can define a “PT” operator,

Θ := JWV (RW (π)) , (11)

where V (RW (π)) implements a spatial rotation by π in the plane along the edge
of the wedge.24 The scare quotes are included to emphasize that Θ may do more
than just implement a PT reflection. Indeed, in the next section we will see that
it must also conjugate charge, making it a CPT operator.

But before we can proceed, one final wrinkle must be ironed out. As a conse-
quence of the Haag-Kastler axioms and weak additivity, we have discovered that
JW has the right algebraic properties to implement a P1T reflection. Adding
B-analyticity and B-reality ensures that it does in fact have such a geometric in-
terpretation as part of an antiunitary representation of the Poincaré group. The
difficulty is that this antiunitary representation may not be an extension of the
original unitary representation posited by the covariance axiom. In this case we
have two distinct representations, U(Λ, a) and V (Λ, a), encoding potentially dif-
ferent physics. The physics described by the minimal representation V (Λ, a) must
be Θ-invariant, but there is no similar guarantee for U(Λ, a).

Streater (1967) and Oksak and Todorov (1968) exploit this gap to construct
counterexamples to the CPT and spin-statistics theorems. In all of these examples
the mass spectrum is infinitely degenerate with respect to spin. As a result, such
QFTs violate the split property and are thermodynamically ill-behaved, lacking

part of the stabilizer subgroup of some wedge. The translations are a bit trickier. Consider two
wedges W + a ⊂ W , where a is a lightlike translation in the characteristic 2-plane of W. Using
the Borchers-Weisbrock theorem, it can be shown that

lim
t→∞

∆it
W+a∆−itW = lim

t→∞
V (ΛW+a(t))V (ΛW (−t))

converges strongly and therefore defines a unitary operator V (a) acting like a lightlike translation
in the a direction. The remaining translations can then be constructed as products of lightlike
translations. See Borchers (2000, §IV.4) for the complete construction.

24In order to prove this it must be shown that the product JW maps doublecones onto dou-
blecones and that JWV (RW (π)) does not depend on the choice of a particular wedge W . This
hinges on the analytic properties of the modular invariants, Poincaré covariance, and the special
geometry of wedges. See Borchers (2000, §IV.3) for details.

27



stable equilibrium states and emergent particles. Exactly how physically patho-
logical they are remains to be investigated, but Brunetti et al. (1993) prove that
if the split property obtains, even in its weaker distal form, U(Λ, a) is the unique
covariant representation of the Poincaré group acting on the vacuum representa-
tion:

Theorem (Brunetti-Guido-Longo). If a model of AQFT satisfies the Haag-Kastler
axioms and the distal split property, then there can only be one covariant repre-
sentation of the Poincaré group in the vacuum representation.25

So if the minimal representations exists, then the distal split property ensures that
U(Λ, a) = V (Λ, a) and the relevant physics is Θ-invariant.

3.6 Charge Conjugation

The hardest part of the CPT puzzle is to understand why charge conjugation is
connected to a spatiotemporal symmetry like PT. The answer lies in how the PT
transformation constructed above is implemented. In effect we are performing a
spatiotemporal reflection by flipping the Lie product, by changing how quantities
and symmetries are linked at a fundamental level. The Lie product not only
defines how spatiotemporal symmetries are tied to quantities like mass and spin,
it also defines how internal symmetries are tied to gauge charges. Flipping the Lie
product, while preserving the charge localization structure, maps each charge to
its conjugate. This is exactly what JW does.

Recall from §2 that in AQFT information about global gauge symmetries is
encoded in the structure of the category of localized transportable endomorphisms
of the quasilocal algebra. Conjugate charges, % and %̄, have the defining property
that % ◦ %̄ contains the identity. If a model of the Haag-Kastler axioms satisfies
additivity and the distal split property, the statistical dimension of each charge
sector is finite, and each charge has a unique conjugate up to unitary equivalence
(some charges may be self-conjugate). At the heart of the algebraic CPT theorem,
Guido and Longo (1992) establish the following:

25Here is the central idea: the Doplicher-Roberts reconstruction theorem (Doplicher and
Roberts, 1990) shows that if the distal split property holds, the gauge group G is compact
and commutes with any representation of the Poincaré group. If U(Λ, a) and V (Λ, a) are two
different representations of the Poincaré group, then the adjoint action of U(Λ, a)V (Λ−1,−a)
is an internal symmetry, and thus an element of G. This defines an action of the Poincaré
group in G. Since G is compact and the Poincaré group has no non-trivial finite dimensional
representations, the action must be trivial and U(Λ, a) = V (Λ, a).
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Theorem (Guido-Longo). If a model of AQFT satisfies the Haag-Kastler axioms,
additivity, the distal split property, the Bisognano-Wichmann property, and the
DHR/BF selection criterion, for any charge endomorphism, %, localized in a dou-
blecone/spacelike cone

%̄ = jW ◦ % ◦ jW ,
where jW (A) = JWAJW (for all A ∈ A) is the endomorphism defined by the adjoint
action of the vaccuum wedge modular conjugation, JW .

Rotational invariance then entails that %̄ = θ ◦ % ◦ θ, where θ(A) = ΘAΘ.
In order to understand the Guido-Longo theorem, there are two questions that

must be answered — why is jW ◦ % ◦ jW a suitably localized transportable en-
domorphism, and why is it conjugate to %? The answer to the first question
is relatively straightforward. Since JW implements a P1T reflection in the vac-
uum representation, it implements a P1T reflection on the defining net of lo-
cal C∗-algebras, {A(O)}, common to all sectors of the theory.26 Consequently
JWA(rO)JW = A(O), and since J2

W = I, it follows that jW ◦ % ◦ jW is a nontrivial
endomorphism on A(rO) and the identity on A(rO′). Therefore jW ◦ % ◦ jW is
localized in rO a region with the same geometry at O. Since % is transportable
and JW acts geometrically, jW ◦ % ◦ jW is similarly transportable.

The answer to the second question is less obvious and comes from a deep
connection between conjugacy and modular inclusions. Let M be an infinite factor
(i.e., an infinite von Neumann algebra with a trivial center, M∩M′ = CI) acting
on a separable Hilbert space with a cyclic, separating vector Φ. (Eventually M
will be identified with Rω(W ).) It follows from the Tomita-Takesaki theorem that
M′ is also an infinite factor. Let % be an irreducible endomorphism of M (i.e.,
%(M)′ ∩M = C), and assume that Φ is also cyclic and separating for %(M). In
this setting, Longo (1984) establishs the existence of a canonical isomorphism,
γ% : M→ %(M), defined by

γ%(A) := J%JAJJ% (12)

where J and J% are the modular conjugations of M and %(M) with respect to Φ.
This canonical isomorphism in turn defines a conditional expectation, εγ : %(M)→

26Borchers and Yngvason (2000, Thm. 2.1-3) prove that if we have an algbraic CPT symmetry
θ (i.e., a conjugate-linear automorphism of A such that θ(A(O)) = A(−O) and θ◦αa = α−a◦θ for
translations αa) then θ is represented by an antiunitary operator Θ in the universal enveloping
von Neumann algebra A∗∗, and that the adjoint action of Θ preserves the family of charge,
particle, and thermal representations. This explains how we can lift the action of JW defined in
the vacuum representation, to other sectors of the theory.
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M, which can be viewed as characterizing the statistical location of the subalgebra
%(M) inside M.27

If %̄ is a conjugate to %, then by definition there exist a isometries V,W ∈ M
such that %%̄(A)V = V A and %̄%(A)W = WA for all A ∈M. Longo (1990) proves
that the equation

ε%%̄(A) := %(V )∗%%̄(A)%(V ) (13)

also defines a conditional expectation ε%%̄ : %(M)→M. Since % is irreducible and
M is an infinite factor, there can only be one such conditional expectation due to
a seminal theorem by Takesaki (1970). It follows that ε%%̄ = εγ, and consequently
that

γ% = %%̄ (14)

up to unitary equivalence. (It similarly follows that γ%̄ = %̄%.) Putting all of
these pieces together, we discover that (up to unitary equivalence) a conjugate
endomorphism must have the general form

%̄ = %−1 ◦ γ% , (15)

where %−1 is the inverse of %. If U U∗ are unitaries implementing %, then %−1 is
the result of simply reversing the order of multiplication, U∗ U .28 The conjugate
endomorphism is revealed to be something slightly more complex, the result of
reversing the order of multiplication combined with a canonical isomorphism γ%
relating the modular structure of M and %(M). The modular conjugation of %(M)
can be written as J% = %(J) = UJU∗. Therefore %̄ is implemented by JU∗J JUJ .

Returning now to physics, consider a transportable DHR/BF charge endomor-
phism % : A→ A localized in a doublecone or spacelike cone O ⊂ W . Wedge dual-
ity entails that % generates a transportable endomorphism %W : Rω(W )→ Rω(W )
localized in W . The wedge algebra Rω(W ) is an infinite factor, and by the Reeh-
Schlieder theorem, the vacuum state is cyclic and separating for both Rω(W ) and
%(Rω(W )). For simplicity we assume that the %W is irreducible.29 This places us

27If N ⊂ M are von Neumann algebras acting on a Hilbert space, a conditional expectation,
ε : M→ N, is a positive linear mapping such that ε(N) = N for all N ∈ N. Such mappings must
be norm-1 projections from M onto N and generalize the notion of a conditional expectation
from classical probability theory to a non-commutative context. If M ∈ M and φ is a normal
state on M that is compatible with ε (i.e., φ(M) = φ(ε(M))), then ε(M) can be interpreted
as the expectation value of M conditional on φ(N). In particular, ε(M) reduces to a classical
conditional probability for families of compatible observables.

28In the DHR/BF picture where % is interpreted as a localized charge creating morphism, %
will always be unitarily implementable within its localization region, however the corresponding
unitaries do not give rise to a unitary equivalence between charge sectors.

29Nothing turns on this simplification. See Guido and Longo (1992) for the general case.
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in the general mathematical setting discussed above.
Using equation (15), we can define a W -localized conjugate endomorphism

%̄W = %−1
W ◦ γ%W . Choosing unitaries U U∗ implementing %W , a straightforward

calculation shows that

%W =

{
U U∗ on W
id on W ′ %̄W =

{
JWU

∗JW JWUJW on W
id on W ′ . (16)

Meanwhile, jW ◦ %W ◦ jW is localized in the opposite wedge,

jW ◦ %W ◦ jW =

{
id on W
JWUJW JWU

∗JW on W ′ . (17)

It follows that JWUJW %̄WJWU
∗JW = jW ◦ %W ◦ jW , and since JWUJW is unitary,

jW ◦ %W ◦ jW and %̄W are thus unitarily equivalent.
This is the situation for every W ⊃ O. If it is possible to choose a consistent

family of conjugates, {%̄Wi
}, such that

%̄W1|W1∩W2 = %̄W2|W1∩W2 (18)

for every W1,W2 ⊃ O, then this consistent family will define an endomorphism of
A localized in O conjugate to the original %. (The flexibility to choose different
%̄W comes from the fact that charge endomorphisms are only defined up to unitary
equivalence.) Guido and Longo (1992) prove that it is possible to choose such a
consistent family as a consequence of the distal split property, Poincaré covariance,
and the geometric action of JW .

Thus we find that all of the special properties of JW are essential for explaining
why it conjugates charge. Because it implements a P1T reflection, it preserves
the regions that DHR/BF charges are localized in, and thus maps objects to ob-
jects in the relevant category of localized transportable endomorphisms. Because
it is an antiunitary operator, it reverses the Lie bracket and thus the order of
C∗-multiplication, inverting the endomorphism. But because it is also a modular
conjugation for some spacelike wedge W , it also implements the canonical iso-
morphism γ%W characterizing the statistical position of %W (Rω(W )) ⊂ Rω(W ),
and thus maps W -localized endomorphisms onto their conjugates given by the for-
mula %̄W = %−1

W ◦ γ%W . In DHR/BF representations of a Poincaré covariant QFT
satisfying the distal split property, each DHR/BF localized endomorphism is gen-
erated a consistent family of such wedge-localized endomorphisms, and therefore
in addition to implementing a P1T reflection, JW conjugates charge.
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3.7 Summary

The algebraic proof of the CPT theorem shows how it is always possible, in a
broad class of thermodynamically well-behaved models of AQFT, to systemically
reverse the generating relationship between symmetries and observables while pre-
serving the dynamics, spectra, and localization properties of physical systems. As
a consequence of the Reeh-Schlieder theorem, for any local algebra in the vacuum
sector of a generic model of AQFT, the canonical involution can be broken into
two pieces, one of which is the antiunitary modular conjugation operator, J. The
modular conjugation maps the relevant local algebra onto its commutant, reversing
the Lie product in the process. Commuting algebras are associated with spacelike
separated regions, hinting at a possible geometric interpretation, and since J is
antiunitary, by Wigner’s theorem, it is a candidate for a physical symmetry.

For spacelike wedges, the associated modular conjugation, JW , is in fact always
a physical symmetry. Because of the spectrum condition, any generalized time
reversal symmetry must be implemented by an antiunitary involution that reverses
the Lie product, commutes with the dynamics, and acts uniformly on spacetime.
Because JW is a modular conjugation operator, JWR(W )JW = R(W )′, and if
wedge duality holds, R(W )′ = R(W ′), suggesting that JW implements a P1T
reflection. Proving that JW commutes with the dynamics, that wedge duality
holds, and that JW implements a uniform geometric reflection requires a detailed
technical argument exploiting analyticity properties derived from covariance, the
spectrum condition, and the distal split property, as well as auxiliary assumptions
B-analyticity and B-reality.

The Lie product also appears in the characterization of wedge-localized charge
endomorphisms, related by the formula %̄ = %−1 ◦ γ%. The Lie product encodes the
relational distinction between % and its inverse %−1, and since JW reverses the Lie
product, it flips this distinction. Moreover since JW is a modular conjugation, it
preserves the statistical position of subalgebras related by charge endomorphisms
(encoded by the conditional expectation associated with γ%). Because JW acts
uniformly on spacetime, it preserves all types of localization regions, and since
the theory is Poincaré covariant, endomorphisms localized in doublecones and
spacelike cones can be constructed from families of compatible wedge-localized
endomorphisms. Consequently, JW also conjugates DHR/BF charges.
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4 Discussion

4.1 Explaining CPT Invariance

The story just outlined is an example of what Bain (2016) calls a structural expla-
nation, insofar as it appeals to “mathematical constraints on a theory’s state space
that are independent of the specification of the theory’s dynamics” (p. 155). It
should be emphasized, however, that the explanation is not a purely mathematical
one. While they do take the form of mathematical conditions, the assumptions
in §2.1 represent important physical constraints imposed on any causal, Lorentz
invariant, thermodynamically well-behaved QFT. By connecting each stage of the
proof back to the Haag-Kastler axioms, and by linking CPT reflection to a system-
atic reversal of the generating relationship between observables and symmetries,
the aim has been to illuminate how the steps of the algebraic proof trace out im-
portant physical dependency relations present in any such QFT.30 The upshot is
that the only consistent way to realize these constraints is for the theory’s state
space to be CPT invariant, a fact which has physical consequences for its particle
spectrum as well as for scattering and decay processes. A structural explanation is
only as good as our understanding of how the mathematics represents the physics,
both at the level of a proof’s inputs and outputs, as well as its logical structure.

Of course, we do not understand the entire story yet. B-analyticity and B-
reality are bootstrap assumptions. Their physical interpretation and justification
is a major question mark at the heart of the algebraic proof. The role of analytic
continuation arguments must be better understood, even in cases like the Reeh-
Schlieder and Borchers-Weisbrock theorems where the starting assumptions are
physically well-motivated. Whether or not additivity and the wedge intersection
property can be eliminated or physically motivated remains to be seen. In addi-
tion, there are significant limitations to the scope of existing algebraic proofs. It
is currently not known how to extend the DHR/BF picture to describe charges
associated with local gauge symmetries, and because of the infrared problem, it
cannot be applied to theories with massless particles yet. The argument also
crucially relies on analyticity properties associated with symmetries of a continu-

30For our purposes it can be left open exactly sorts of things these dependency relations are.
They might be nomological or meta-nomological relations, counterfactual relations, grounding
or constitutive relations, or a mixture thereof. (It seems unlikely that they are causal relations,
however, making the CPT theorem an important prima facie example of non-causal explanation.)
At this level, the story will depend not only on further analysis of the relevant physics, but on
metaphysical debates about laws, modality, and fundamentality.
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ous spacetime manifold, as well as on microcausality holding at arbitrarily short
length-scales. Consequently, it is not clear how to generalize the algebraic argu-
ment to cover effective QFTs.31 The version of the proof outlined here makes the
further assumption that spacetime is flat.

Despite these limitations, there are reasons for optimism on several fronts. Re-
cent model-dependent results due to Morinelli (2018) suggest that the Bisognano-
Wichmann property is logically weaker than the split property, breathing life into
Haag’s conjecture that it can be proven from existing, physically justified axioms.
The Bisognano-Wichmann property can be formulated in any spacetime with well-
defined wedge regions, and it has been used to prove the CPT theorem in curved
spacetimes with a large group of global isometries (Buchholz et al., 2000). More
recently, the generally covariant AQFT program initiated by Brunetti, Freden-
hagen, and Verch has made substantial progress towards an axiomatic version of
AQFT in arbitrary curved spacetimes (Brunetti et al., 2015).32 Combined with
developments in perturbative AQFT, this program has also started to provide a
provisional picture of what effective QFTs with local gauge symmetry might look
like in the algebraic framework (Fredenhagen and Rejzner, 2013, 2016). Strocchi
(2013) tentatively identifies the physical significance of local gauge invariance with
the holding of Gauss-type conservation laws for the associated charge densities,
and Kijowski and Rudolph (2003) apply the DHR picture to study the supers-
election structure of lattice quantum chromodynamics. Meanwhile, by studying
certain equivalence classes of superselection sectors called charge classes, Buchholz
and Roberts (2014) have started to clarify the complex superselection strucuture of

31Although the split property and weak additivity can be replaced by distal versions that hold
at some sufficiently long length-scale without affecting the details of the proof, it is much more
difficult to envision relaxing microcausality and covariance.

32Fewster (2016) applies this framework to prove a general curved spacetime version of the
the spin-statistics theorem, the CPT theorem’s close cousin. The proof shows that any QFT on
curved spacetime that can be related to a QFT on flat spacetime by certain deformations must
be obey the spin-statistics connection if the flat spacetime QFT does. This suggests that flat
spacetime versions of the CPT and spin-statistics theorems might continue to carry important
explanatory insight in a curved spacetime context. It also could help diffuse a potentially serious
objection to the logic of the algebraic proof sketched in §3. In an arbitrary curved spacetime, it
is no longer true that the causal complement of a wedge is always a wedge, and this is a necessary
condition in order for JW to implement a P1CT reflection. Borchers has conjectured that W ′

is a wedge only if the background spacetime is conformally equivalent to either Minkowski or
deSitter spacetime (see Hollands and Rheren 2012). If Fewster’s strategy works for the CPT
theorem, then in general the CPT operator will not be implemented by JW in curved spacetime,
but will rather be defined by deformations of JW from a corresponding flat spacetime model.
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massless theories.33 Together, this work suggests that key ideas from the DHR/BF
picture will apply to theories like the standard model.

Bain takes a more guarded view. Citing the current inability of AQFT to
rigorously model local gauge theories, he argues that the algebraic CPT theorem
does not explain why the actual laws of nature are CPT invariant: “the systems
of interest; those that make contact with empirical tests, lie outside the subclass
of systems for which the CPT and spin-statistics theorems provide structural ex-
planations” (Bain, 2016, p. 157). These systems, the Yang-Mills theories that
comprise the standard model, can be described using techniques from perturba-
tive Lagrangian and S-matrix formulations of QFT, but proofs of the CPT theorem
in these frameworks differ significantly from those in AQFT on Bain’s telling. For
example, they disagree about whether or not Lorentz invariance is necessary to
prove the CPT theorem, as well as about whether CPT invariance entails the
spin-statistics connection or vice versa. Consequently Bain thinks “it will be hard
to make a case for a common underlying mathematical structure,” shared across
frameworks, that a structuralist explanation of CPT invariance can appeal to (p.
156).

While I agree that right now the algebraic CPT theorem is only a potential
explanation for the CPT symmetry found in nature, I think that Bain’s conclusion
is overly pessimistic. In my review of Bain’s book (Swanson, 2018), I argue that his
presentation of the algebraic CPT theorem misinterprets the physical content of
modular covariance and obscures the role of Lorentz invariance, the spectrum con-
dition, and the split property in the physical argument at the center of the theorem.
In doing so, it overemphasizes differences and underestimates commonalities be-
tween the algebraic CPT theorem and proofs couched in other frameworks. Upon
closer inspection, we can identify a set of core of assumptions which appear (in
slightly different forms) in virtually all known versions of the CPT theorem: re-
stricted Lorentz invariance, energy positivity, causality, finite particle multiplicity,
and analyticity.

Our detective work in §3 reinforces this critique. Unlike some versions of the

33As in the massive case, charge endomorphisms are localized in spacelike cones. Unlike the BF
picture where the direction of the cone is arbitrary, however, in massless theories the direction of
the cone determines an additional superselected global observable associated with the asymptotic
boundary conditions of soft photon clouds. Sectors are labeled by the value of the total charge
along with this asymptotic flux parameter. Although we currently lack tools to define a tensor
product on the relevant category of representations, Buchholz and Roberts show that considering
equivalence classes of sectors with the same global charge, many of the tools from the DHR/BF
picture can be imported into this new setting.
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algebraic CPT theorem, the proof outlined there explicitly displays this common
logical form. The covariance axiom, spectrum condition, and microcausality axiom
enforce Lorentz invariance, energy positivity, and causality, while the split property
ensures that the spectrum of any particle representation is at most finitely degen-
erate. Together, the covariance axiom, spectrum condition, and Tomita-Takesaki
modular theory entail important analyticity properties (sufficient to establish the
CPT theorem in 2-dimensional models), while B-analyticity and B-reality supply
additional constraints needed in higher dimensions. Moreover, our analysis locates
the seed of CPT reflection symmetry in a systematic reversal of the algebraic Lie
product, a structure found not only in AQFT, but in every formulation of QFT
that represents observables using Hilbert space operators including Lagrangian,
S-matrix, and Wightman QFT.34

While there are significant structural commonalities between proofs in differ-
ent frameworks, there are also non-trivial mathematical differences. Whether these
stem from a deep disagreement about the fundamental character of QFT, as Bain
contends, or if they are simply the product of different modeling techniques and
goals, remains an open question. Regardless, a strong case can be made that the
algebraic approach offers us the best explanatory insight into the CPT theorem
at present. Unlike Lagrangian and Wightman QFT which start with assump-
tions about gauge-dependent field operators, the Haag-Kastler axioms character-
ize constraints on gauge-independent physical quantities, making their physical
interpretation and justification more direct. Moreover, there are models of CPT
invariant AQFTs that violate the Wightman axioms, that are not the quantization
of any known classical Lagrangian, and which do not satisfy the assumptions of
Haag-Ruelle scattering theory, a mathematically rigorous analogue of the standard
S-matrix picture (Summers, 2012; Lechner, 2015). While the Wightman axioms
are known to fail for QFTs with local gauge symmetry (Strocchi, 2013, ch. 6), the
jury is still out on the Haag-Kastler axioms. All of this suggests that AQFT has
a wider scope than other frameworks, providing a better characterization of what
all relativistic QFTs have in common.

So even though we must wait for further developments in constructive AQFT
to determine whether the algebraic CPT theorem gives us the right story about
our own universe, we can be reasonably confident that central ideas from the proof
will be part of the eventual explanation. In the interim, even as a provisional

34In some frameworks, including perturbative AQFT (Brunetti et al., 2009), the local algebras
are not C∗-algebras but more general types of ∗-algebras. Nonetheless, such algebras contain a
canonical involution operation, and thus we might hope to find a suitable generalization of the
ideas sketched in §3.1-2.
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explanation, it can shed light on a number of conceptual puzzles about the nature
of CPT symmetry including the mysterious link between temporal, spatial, and
charge orientation.

4.2 Antimatter and Time Reversal

One of the greatest insights of the DHR/BF analysis, is that the algebraic de-
scription of charge structure outlined in §2.2 is physically equivalent to the more
traditional picture of charge structure arising from conservation laws associated
with internal gauge symmetries. If the observable algebras are generated by field
operators as in Lagrangian and Wightman QFT, the observable net corresponds
to the gauge invariant portion of the underlying field algebra. In this context,
we can characterize superselection sectors using irreducible representations of the
relevant gauge group G. For instance, in the standard model the gauge group is
SU(3) × SU(2) × U(1). The abelian U(1) piece describes the symmetries of the
electromagnetic force, while the non-abelian groups SU(2) and SU(3) character-
ize the symmetries of the weak and strong force respectively. The superselected
charges are defined using the Casimir invariants of the conserved currents gen-
erated by these gauge transformations. The Wightman fields act on a a single,
underlying Hilbert space H. Under the action of G, H splits into a direct sum
of G-invariant subspaces, H =

⊕
Hσ. These subspaces are in 1-1 correspondence

with the superselection sectors in DHR/BF theory. Restricting the action of G
to Hσ yields a direct sum of irreducible representations of G with same charac-
ter, σ. These subspaces are also A-invariant. Restricting A to Hσ yields a direct
sum of quasiequivalent, irreducible representations of A satisfying the DHR/BF
selection criteria. Conversely, the reconstruction theorem proven by Doplicher and
Roberts (1990) shows that given the category of DHR/BF representations, one can
naturally reconstruct a unique minimal field algebra and gauge group, G.

In the field algebra picture, we find that the action of JW takes a given repre-
sentation of G to its complex conjugate representation, which models the conjugate
charge sector. We do not have to look far to see why. A representation (π,H) of G
can be specified by a set of generating fields, T a, lying in the (weak closure) of the
field algebra, that satisfy the commutation relations [T a, T b] = ifabcT c (where fabc

are the group structure constants for G). The complex conjugate representation
is given by −(T a)∗. Within these relations we immediately recognize the ubiq-
uitous Lie product. The same structure which encodes how observables generate
symmetries also encodes how unobservable field operators generate internal gauge
transformations. Flipping this structure yields the complex conjugate representa-
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tion. It is because the same Lie structure is employed in describing both internal
gauge symmetries and external spacetime symmetries that we find a connection
between them.

It is worth examining just how tight this connection is. Physicists have long sus-
pected that in quantum theories, time reversal and charge conjugation are closely
linked. For example, Bell (1955) argues that proper time reversal entails charge
conjugation in much the same way that it entails velocity and momentum reversal.
On his view, time reversal has to be a CT transformation. Others have argued that
in one way or another the matter/antimatter distinction can only be made with
respect to a background temporal orientation. Feynman (1949) famously proposes
a picture of antiparticles as regular particles traveling backwards in time. Wallace
(2009) contends that the distinction hinges on splitting the space of solutions to
the field equations into positive and negative frequency subspaces. This in turn
depends on a choice of a complex structure associated with the direction of time.35

Our analysis has revealed that there is a tight connection between charge struc-
ture and temporal structure in AQFT, but it turns out to be weaker than on any
of the above views. Because of the spectrum condition, any time reversal must be
antiunitarily implemented, and thus reverses the Lie product. But the Lie product
also helps to encode the relational distinction between different charges, and since
any time reversal symmetry must act uniformly on spatial degrees of freedom, it
preserves charge localization regions. Thus it appears at first glance that any time
reversal operator also conjugates charge.

There are two problems with this line of thought, however. First, we have seen
in §3.6 that in addition to reversing the Lie product and preserving localization
regions, charge conjugation must also preserve the canonical conditional expecta-

35In the limit of no interactions, quantum electrodynamics admits an interpretation in terms
of plane waves with opposite frequency. Conventionally, positive frequency solutions correspond
to particle states and negative frequency solutions correspond to antiparticle states. This divi-
sion into positive and negative frequency states requires a choice of complex structure on the
theory’s state space, essentially a choice of a Lie product, forging a link between frequency sign
and translations in opposite temporal directions. Positive frequency solutions have a wavevec-
tor co-aligned with the direction of time and negative frequency solutions have an anti-aligned
wavevector. Reversing the direction of time switches which wavevectors are co-aligned and anti-
aligned.

This is the standard Lagrangian view defended by Wallace. Feynman saw a way of reading into
this a story according to which annihilation reactions are just the same particle doubling back
on itself in time. It simplifies certain problems, and has an elegant pictorial representation in
terms of Feynman diagrams, though it is doubtful that he saw any deep metaphysical significance
behind it.

38



tion associated with %(A) → A. The fact that the CPT operator, Θ, does so is
linked to its implementation by a wedge-modular conjugation, so it is not clear
that an arbitrary antiunitary time reversal operator will have this property.

Second, although it is always possible to conjugate charge by reversing the
Lie product using the CPT operator, in theories where charges and and parity are
treated symmetrically by the laws, it is possible to define unitary C and P operators
that preserve the Lie product. In this case one can combine an antiunitary CPT
reflection with unitary C and P transformations to produce a net antiunitary time
reversal. This allows for theories like quantum electrodynamics which are invariant
under C, P, and T symmetries independently. (More generally, it might be possible
to define a unitary CP operator, allowing for theories invariant under T, CP, and
CPT transformations.)

Thus, while T and C symmetries are closely related, they are not definition-
ally related like time and motion reversal. Indeed on Feynman’s view it is hard
to make sense of unitary charge conjugation at all. Since antiparticles just are
particles traveling in the opposite temporal direction, any proper charge conju-
gation must involve a reverse of temporal orientation. The algebraic picture also
has a distinct advantage over Wallace’s view. The positive/negative frequency
distinction he relies on only makes sense in the free field limit where the theory
can be linearized and solutions to the equations of motion can be expanded in
terms of plane waves with opposite frequency. This leads Wallace to conclude that
the matter/antimatter distinction is an emergent concept which only appears in
the no-interaction limit where we can coherently talk about particle states. In
contrast, the algebraic picture draws a fundamental distinction between matter
and antimatter which is known to apply to rigorous models of low-dimensional
interacting theories like 2-dimensional Yukawa theory. After all, the CPT theorem
is generally viewed as a deep, foundational result. It would be odd if it turned
out merely to describe high-level, emergent phenomena. The algebraic description
of charge structure reinforces this idea. If a theory is asymptotically abelian and
thus has a limiting particle interpretation, one can show in the AQFT framework
how matter and antimatter states are conventionally linked to opposite frequency
wave solutions, thereby explaining the origins of the emergent Lagrangian picture
(Mund, 2001).

4.3 Greaves’s Structural Explanation

In her thought-provoking study of the CPT theorem, Greaves (2010) gives a differ-
ent structural explanation for the physical origins of CPT symmetry. (Arntzenius
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2011 offers a similar story.) Although it has since been superseded by the more
nuanced account developed by Greaves and Thomas (2014), the original, simpler
version is worth investigating on its own terms first. The explanation has two
main components. The first is a theory of antimatter based on Feynman’s inter-
pretation that conceptually links time reversal and charge conjugation. Particles
are represented by oriented worldlines. Regular particles are co-aligned with the
direction of time, while antiparticles are anti-aligned.36 As a result, any time re-
versal symmetry will transform particles into antiparticles and vice versa. This
collapses the CPT puzzle into a PT puzzle.

The second component is a PT theorem for classical field theories in Minkowski
spacetime. The CPT theorem, Greaves maintains, is essentially a relativistic phe-
nomenon, or at least it has a direct analogue for classical field theories. The only
apparent difference between her classical PT theorem and the quantum CPT theo-
rem is the presence of antimatter which is easily handled by the Feynman picture.
So according to Greaves any reasonable field theory, quantum or classical, has to
be PT invariant, and if the theory has antiparticles then PT invariance is the same
thing as CPT invariance.

There are two primary problems with this explanation. The first concerns the
adequacy of the Feynman-inspired picture of antimatter. If particles and antiparti-
cles are identical except for the orientation of their worldlines, then it is conceptu-
ally impossible for there to be particle/antiparticle pairs with different masses and
spins. But this is a coherent possibility. Tureanu (2013) reviews a number of CPT
violating QFTs with these features. Although there is considerable debate about
the status of Lorentz invariance and locality in these models, they prove that parti-
cle/antiparticle mass splitting is a conceptual possibility, even if the models are not
well-behaved relativistic QFTs. Unlike Greaves’s picture, the algebraic view does
not build this conceptual restriction into its definition of antimatter. Instead anti-
matter is characterized solely in terms of internal charge structure. The possibility
of creation/annihilation events only requires that partners have conjugate charge,
not that they are otherwise identical. This is a clear advantage of the algebraic
approach, in which the validity of the CPT theorem for Lorentz invariant QFTs
explains why particle/antiparticle partners in those theories have the same mass,
spin, and lifetime. Indeed, from this vantage point, the CPT theorem explains
why the Feynman interpretation is possible in the first place. It is because the

36The view leaves open what exactly does the orientation work. It could be a 4-momentum
as in the Feynman picture. It could be a wavevector as in the standard Lagrangian picture. It
could be something else entirely.
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theory is CPT invariant that we can interpret a forward moving antiparticle with
charge Q as a backwards moving (opposite handed) regular particle with charge
Q.37

The second major problem concerns the scope of Greaves’s explanation. Even
if we accept her theory of antimatter, the classical PT theorem she relies on cannot
recapture the full scope of the quantum CPT theorem. Her PT theorem considers
classical field theories defined over Minkowski spacetime and has three central
assumptions:

1. The fields transform as tensor quantities under diffeomorphisms of the space-
time manifold.

2. The laws have the form of partial differential equations (PDEs) which express
the vanishing of some local polynomial combination of tensor fields.

3. The set of solutions is invariant under connected Poincaré transformations.

The theorem shows that any such theory must also be invariant under a discrete
PT transformation.

Theorem (Greaves). In Minkowski spacetime it is impossible to directly encode
only a temporal orientation using tensor fields. That is, any ploynomial combina-
tion of tensor fields that is invariant under connected Lorentz transformations is
also invariant under T symmetry.38

As Greaves notes, the situation is markedly different for non-relativistic field
theories in Galilean spacetime, where it is possible to directly encode a temporal
orientation using a special 1-form field (see Malament 2012, ch. 4.1). In this setting,

37We might attempt to salvage Greaves’s view by arguing that the identification of antipar-
ticles with anti-aligned worldlines is a physical rather than conceptual necessity in relativistic
QFTs. Alternatively, we could try to accommodate particle/antiparticle mass splitting by adding
additional laws of nature that forbid particles and antiparticles from having certain masses. Ei-
ther way, the algebraic picture is revealed to have greater unifying power as an explanation,
describing charges and antimatter in theories where these additional laws fail to hold (as well
as in theories that lack a coherent fundamental notion of particle worldlines). In addition, the
algebraic CPT theorem provides an explanation for when and why antiparticles can be reinter-
preted as backwards moving particles. The connection between charge structure and worldline
orientation lacks a clear explanation on the Greaves view, and this is only made more difficult
if the connection turns out to be to be physical rather than conceptual. So while these evasive
tactics are in principle available, they sacrifice much of the attractiveness of the original view.

38See Greaves (2010), fn. 12 for a proof. The same basic argument underwrites the classical
PT theorem (Thm. 5.6) in Greaves and Thomas (2014).
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there is no analogue of the PT theorem to be found. The difference boils down to
what kinds of orientation structures can be encoded by polynomial combinations
of tensor fields on spacetime. In this sense, the PT theorem (and by extension the
CPT theorem) is effectively a classical relativistic result.

The problem is that conditions (1) and (2) are not physically motivated. The
requirement that the fields transform under a tensor representation of the Poincaré
group excludes both pseudotensors and spinors. The former transform just like
tensors under diffeomorphisms, but pick up a phase factor under discrete transfor-
mations. The latter are required for describing charged matter with half-integer
spin, an essential ingredient in any theory like the standard model with a wide
assortment of fermions in its particle zoo. Both kinds of fields can be used to
construct counterexamples to the classical PT theorem, and yet both fall under
the scope of the quantum CPT theorem.39

Similarly, it is difficult to see what motivates (2) apart from mathematical
convenience. QFTs with non-polynomial interactions are a rich area of study in
mathematical physics. Notable examples include Sine-Gordon models, Liouville
field theory, and Weinberg’s chiral Lagrangian for π-mesons, all of which are ex-
pected to be CPT invariant.40 In addition, in AQFT, much of the interesting
theoretical work is done by axioms like the spectrum condition, microcausality,
and the split property which are not PDEs at all.

With regard to these problems of scope, the algebraic account has a decisive ad-
vantage over Greaves’s explanation. It expressly allows for the possibility of field
operators transforming under non-tensor representations of the Poincaré group.
Moreover, it is extremely liberal with the mathematical form the laws can take.
Orientation structures can be naturally defined by any mathematical means what-
soever. They do not have to be encoded directly by special tensor fields. While
Greaves acknowledges the limited scope of her account, she maintains that there
is something puzzling about the PT connection even in the restricted class of clas-
sical tensor field theories. Presumably she thinks that the pattern of explanation

39A static PT-pseudoscalar field is a particularly simple counterexample. Spinor fields can be
used to construct PT-pseudotensors as well. The bilinear currents ψ̄γµγ5ψ and ψ̄ i

2 [γµ, γν ]ψ both
pick up a sign under PT transformations, as does the partial derivative operator, ∂µ. Here ψ and
ψ̄ are conjugate Dirac spinors and γµ are Dirac spin matrices. These pieces can be employed to
construct PT violating Lagrangians.

40The Sine-Gordon equation has soliton solutions and is used in research across particle physics,
condensed matter theory, and optics. Liouville field theory has applications in 2-dimensional
string theory, quantum gravity, and 3-dimensional classical gravity on negatively curved space-
times. Weinberg’s Lagrangian is employed in his SU(2)× SU(2) model of π-mesons.
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will carry over directly to bosonic QFTs, which can be constructed without spinor
fields. However, if we loosen her restrictions on laws and definability, this appears
doubtful. More importantly, what makes the CPT theorem so interesting is that
it holds for a broad, physically natural class of theories. The algebraic account
supplies a common explanation which holds across this class. It is hard to see how
Greaves’s account could produce a similarly general explanation.

In newer work, Greaves and Thomas (2014) give a more complex interpretation
of the Lagrangian CPT theorem drawing upon a general result dubbed strong re-
flection invariance. There are direct parallels between strong reflection invariance
and a global reversal of the Lie product, thus the relationship between this work
and the algebraic account deserves more attention than can be given here.41 The
results obtained by Greaves and Thomas reinforce many of the criticisms noted
above. They conclude that while there is a classical PT theorem for tensor the-
ories, there is no similar theorem for spinor theories. In addition, the Feynman
picture of antimatter no longer plays a prominent role. Instead, inspired by the
standard Lagrangian picture, Greaves and Thomas characterize antimatter by a
splitting of the space of field configurations into complex subspaces. Consequently
their version of the CPT theorem for relativistic QFTs diverges significantly from
the structural explanation developed by Greaves (2010). (They also prove a CPT
theorem for relativistic classical field theories that will be discussed in §4.5.) At
the same time, the restriction to polynomial interactions persists in their con-
cept of a classical formal field theory, defined as a complex affine subspace of the
set of polynomial combinations of field symbols and their derivatives, and so the
algebraic CPT theorem still appears to have greater scope.

4.4 CPT Symmetry and state space Orientation

Although the scope of Greaves’s structural account is too narrow, its central in-
sight is promising. Even if different types of orientation structures are logically
independent, there may be constraints on how laws of a particular type can en-
code these orientation structures. If these constraints are suitably rigid, the laws
can only define one type of orientation up to a choice of the other(s). Greaves
locates these constraints in laws expressing the vanishing of polynomial, Lorentz
invariant tensor fields, but the story might go differently. In addition to temporal,
spatial, and charge orientation, there are additional orientation structures that the

41A strong reflection is defined as a PT operation on the field symbols combined with a reversal
of the order of products. As we have seen in §3.2-3.3, reversing the order of the C∗-product is
one way of reversing the Lie product in QFT.
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laws might make use of. And in the presence of these other orientation structures,
temporal, spatial, and charge orientation are less independent than it first seems.

A simple example of this phenomenon is given by the relationship between
temporal, spatial, and total manifold orientations in Minkowski spacetime. Math-
ematically, a temporal orientation, τ , can be represented by an equivalence class
of co-aligned continuous timelike vector fields (Malament, 2012, Prop. 2.2.2). A
spatial orientation, ε, is a continuous labeling of right- and left-handed triads of
linearly independent spacelike 4-vectors. This can be represented by choosing
a nowhere vanishing 3-form that is orthogonal to some timelike vector field, ta,
defining a consistent notion of spatial handedness across spacetime. Any two such
3-forms related by a strictly positive function will pick out the same orientation,
thus we define ε as an equivalence class of 3-forms related by strictly positive
functions (Wald, 1984, p. 60, 429-434).

While both of these orientation structures require the metric, there is a third
kind of orientation which depends solely on the underlying manifold structure. A
total manifold orientation, ε, is a continuous labeling of right- and left-handed
tetrads of linearly independent 4-vectors, represented by an equivalence class of
nowhere vanishing 4-forms related by strictly positive functions. As we noted
back in §1, specifying either a temporal or spatial orientation does not fix the
other. In this sense the two structures are logically independent. If the laws
employ a total manifold orientation, however, this is not the case; specifying a
temporal orientation naturally defines a spatial orientation and specifying a spatial
orientation naturally defines a temporal orientation.42

Although the laws of relativistic QFT do not make use of a total spacetime
orientation, they do make use of a Lie product. As Alfsen and Shultz (2001, 2003)
demonstrate, the Lie product can be geometrically reinterpreted as a kind of total
orientation structure, not on spacetime, but on state space.

The state space of a C∗-algebra, S(A), is the collection of all positive, normal-
ized C-valued linear functionals on A. It is a compact convex set, with extremal

42In fact any two orientation structures out of the set τ , ε, ε naturally define the third. Consider
ta ∈ τ , eabc ∈ ε, and eabcd ∈ ε. First take ta and eabc. The latter must be orthogonal to some
timelike vector field sa co-aligned with ta. Define the 4-form eabcd := −s[aebcd]. Now take ta

and eabcd. Using the natural contraction operation, define the 3-form ebcd := taeabcd. Since ta

is timelike, eabc must be orthogonal to some timelike vector field. Finally, take eabc and eabcd.
Define the vector field ta := eabcdebcd. Since eabc is orthogonal to some timelike vector field, ta

must be timelike. In all three cases since the input objects are nowhere vanishing, the defined
object is similarly nowhere vanishing. Furthermore, one can show that given different choices of
input objects from the same equivalence class, the defined object will be unique up to a positive
function, thus the definitions are natural.
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points representing pure states. It has a natural order structure inherited from A
and its exposed faces form a lattice whose orthogonality relations mirror the spec-
tral information encoded in the lattice of projection operators in A. Every self-
adjoint element A ∈ ASA determines a continuous affine function Â : S(A) → R
defined by Â(ρ) = ρ(A) for all states ρ ∈ S(A). Kadison (1951) proves that the
mapping A 7→ Â is an isometric isomorphism between ASA and S(A). Thus all of
the spectral information encoded in the real Jordan algebra (ASA, •) is encoded in
the geometry of S(A).

Figure 3: S(M2) with clockwise orientation.

Alfsen et al. (1980) prove that full structure of A can be recovered by equipping
S(A) with an orientation structure that determines a 1-1 pairing between observ-
ables, viewed as R-valued affine functions on S(A), and 1-parameter groups of sym-
metries of S(A). For a 2-level quantum system, this orientation structure is easily
visualized. In this case the state space, S(M2), is isomorphic to a Euclidean 3-ball
whose boundary points represent pure states and whose interior points represent
mixed states. Each observable A determines a bounded affine function attaining
maximum and minimum values on some pair of antipodal points. The non-self-
adjoint operators iA and −iA generate infinitesimal rotations of the 3-ball around
the diameter connecting these antipodal points. There are two possible choices
of orientation: iA can generate clockwise and −iA counterclockwise rotations, or
vice versa.

This basic idea forms the basis for the general case. For an arbitrary C∗-algebra,
every minimal exposed face of S(A) is either isomorphic to a Euclidean 3-ball or
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a line segment, the former if the face is generated by distinct pure states whose
GNS representations are quasiequivalent and the latter if the GNS representations
are inequivalent. An orientation for S(A) is then given by a suitably continuous
choice of orientation, clockwise or counterclockwise, for each facial 3-ball. Unlike
a total manifold orientation where there are only two choices, there are in general,
infinitely many orientation structures of S(A) that are in 1-1 correspondence with
Jordan-compatible Lie products on ASA (Alfsen and Shultz, 2001, Thm. 5.73).
Every such orientation, however, has a unique opposite.

This gives us additional geometric insight into the CPT operator constructed
in §3. Since it reverses the Lie product, it reverses the corresponding state space
orientation. It is not a product of three separate reflection symmetries, C, P, and
T, but rather a single, global reflection of QFT state space. This conclusion is
reinforced by proofs of the CPT theorem in Wightman QFT and Greaves’s and
Thomas’s recent Lagrangian proof. In both cases, a CPT operator is proven to
exist without decomposing it into separate C, P, and T reflections. The algebraic
framework, however, gives a clearer picture of the geometric origins of this operator
as a systematic reversal of the generating relationship between observables and
state space symmetries.

It also forms the basis for an intriguing conjecture:

Conjecture. In a causal, Lorentz invariant, thermodynamically well-behaved QFT,
the choice of a state space orientation constrains the possible choices of temporal,
spatial, and charge orientation structures, ensuring CPT invariance.

This has the same flavor as Greaves’s original PT theorem, but with significantly
different mathematical and physical content. This conjecture will be the subject
of future work.43

4.5 Classical or Quantum?

Unlike Greaves’s account, the algebraic proof of the CPT theorem employs founda-
tional assumptions from both relativity and quantum mechanics. Covariance and
microcausality appear to be essentially relativistic constraints, while the spectrum
condition and modular theory are quantum mechanical in origin. This suggests
that the full explanation of CPT symmetry requires ingredients from both theories.
To what extent is the theorem unique to relativistic QFT?

43CPT, Spin-Statistics, and state space Geometry (in preparation).
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In a classical field theory over Minkowski spacetime all observables have deter-
minate values at all times, this suggests that local observable algebras can be rep-
resented by commutative C∗-algebras. But in a commutative algebra, there is no
natural algebraic orientation since right and left mulitplication are indistinguish-
able. In addition, in commutative von Neumann algebras, the modular structure
becomes trivial. The modular automorphism group acts as the identity iff the
generating state is tracial, i.e. φ(AB) = φ(A)φ(B) for all A,B ∈ R, but if the
algebra is commutative, every state is a tracial state, so the modular unitaries act
trivially. As a result there is no meaningful analogue of the Bisognano-Wichmann
property. Furthermore, every abelian von Neumann algebra is maximal, R = R′.
Thus JRJ = R, and so the modular conjugation operator cannot carry the geo-
metric significance of a CPT operator. To compound these difficulties, Borchers
(1996b, Thm. IV.6.2) shows that no net of commutative C∗-algebras can satisfy
the spectrum condition.

Given the central role played by modular theory and the spectrum condition
in the algebraic CPT theorem, these observations cast serious doubt on the ex-
istence of a classical theorem with similar generality and physical motivation as
the quantum CPT theorem. At the same time, there are reasons to believe that
this skeptical conclusion might be premature. In classical field theories, physical
quantities are linked to symmetries by Noether’s theorem just as in QFT. Since
this generating relationship is not captured by the structure of commutative C∗-
algebras, this suggests that they are not the right mathematical tools to model
classical field theories. This view is adopted by the deformation quantization
program, which models classical theories using dual Lie-Jordan algebras just like
quantum theories.44 The principle difference between classical and quantum Lie-
Jordan algebras is the associativity or non-associativity of the underlying Jordan
product. Weinstein (1997) develops the basic tools of modular theory within the
setting of classical associative Lie-Jordan algebras. Whether or not such algebras
can be used to evade Borchers’s no-go result remains to be seen, however there are
hints that the link between observables and symmetries is more tightly constrained
in the quantum case than in the classical case. As Zalamea (2018) shows, since the
classical Jordan product is associative, the spectral properties of classical observ-
ables are independent of their role as generators. In contrast, the non-associative
quantum Jordan product directly relates the spectral properties of quantum ob-
servables to the state space symmetries that they generate.45 This suggests that

44See Landsman (1998) for an overview.
45Zalamea compares the symplectic manifold formulation of classical mechanics and the Kähler
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even if a classical version of the spectrum condition can be formulated, it may have
very different physical consequences for the existence of reflection symmetries like
CPT.

Galilean QFT offers another useful test case. Greaves attempts to explain the
lack of a CPT theorem in this domain by pointing out that in Galilean spacetime
(unlike Minkowski spacetime), it is possible to use tensor fields to directly encode
a temporal orientation without any excess baggage. But as we have seen, this is
an artificial restriction on definability. In principle though, the explanation must
boil down to a difference between the structure of Galilean and Minkowski space-
time. One might hold out hope that orientation structures in Galilean spacetime
are even more independent than in Minkowski spacetime. After all, the causal
structure of Minkowski spacetime is encoded in a single spatiotemporal metric,
while in Galilean spacetime there are two orthogonal metrics representing spatial
and temporal distances separately (Malament 2012, ch. 4.1). Although it is an
attractive possibility, it turns out to be false. Once we define the Galilean ana-
logues of temporal, spatial, and total orientation, we find that any two orientation
structures naturally define the third, just as in Minkowski spacetime (Weatherall,
2011).

The difference seems to come from the fact that the causal structure of Galilean
spacetime is weaker than the causal structure of Minkowski spacetime. In rela-
tivistic theories, we require matter fields to propagate inside light cones, signals
cannot travel faster than c. In contrast, Galilean spacetime has no built-in speed
limit. This is reflected in the fact that the Galilean version of microcausality is
a significantly weaker condition. Observables on a given simultaneity hypersur-
face are required to commute with each other, but this places no constraints on
commutation relations at different times. Relativistic microcausality is a much
more potent, 4-dimensional condition. Galilean microcausality only applies to a
3-dimensional submanifold of spacetime.

This is not the only significant difference. Unlike in the Poincaré group, in

manifold formulation of quantum mechanics in which quantum mechanical state space is viewed
as a Kähler manifold, (M,ω, g, J), i.e., a symplectic manifold equipped with a compatible Rie-
mannian metric, g, and almost-complex structure, J . In both the classical and quantum case,
observables can be defined as continuous R-valued functions that preserve all of the geomet-
ric structure of the relevant state space. In classical mechanics, the Jordan product is just
the product of functions f • g = fg. In quantum mechanics, the Jordan product is given by
f • g = fg + g(vf , vg), where g(vf , vg) is the metric-induced inner product of the Hamiltonian
vector fields vf and vg generated by f and g. On this picture, the uncertainty of a quantum ob-
servable, ∆f = g(vf , vf ), in a given state, φ, is a measure of how much the symmetry generated
by f changes φ.
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the Galilei group temporal and spatial translations are distinct subgroups and
thus have distinct generators in the corresponding Lie algebra.46 This reflects a
deep sense in which time and space are separate entities in Galilean spacetime
and leads to substantial modifications of the spectrum condition. In Galilean
QFT, the stability of matter is secured by a mass superselection rule along with
a lower bound imposed on the spectrum of a particle’s internal energy, which is a
completely free parameter in the theory (Lévy-Leblond, 1967). These restrictions
are insufficient to endow either the modular operators or Wightman functions with
the analyticity properties needed to prove the CPT theorem.47

This discussion indicates that the spectrum condition is not entirely a quantum
mechanical axiom. While it ensures stability of the vacuum state, a quantum
mechanical constraint, it does so by imposing restrictions on the energy-momentum
operators, whose character is sensitive to the background spacetime structure.
Relativistic and quantum considerations are more entangled in the axioms for
AQFT than it initially appears. What is clear, however, is that the algebraic proof
of the CPT theorem hinges on subtle interplay between the spectrum condition
and microcausality. In Galilean QFT, the analogues of microcausality and the
spectrum condition are to weak to secure the result. In classical field theories, it is
not clear if we can even formulate the spectrum condition. If it turns out that we
can by using associative Lie-Jordan algebras in place of commutative C∗-algebras,
it is still unknown what analyticity properties will follow.

Notably, Greaves and Thomas (2014) claim to give a proof of a classical CPT
theorem with the same logical structure as their version of the CPT theorem for
Lagrangian QFTs. True, they are both instances of the same schema:

Theorem (Greaves-Thomas). If a classical/quantum formal field theory is (a)
supercommutative and (b) invariant under a representation of the (cover of the)
connected Lorentz group, then the theory is invariant under CPT reflections iff it
is $-hermitian.48

Supercommutativity is a version of the standard spin-statistics connection for for-
mal field theories, while $-hermiticity requires invariance under a certain involution

46The Poincare group is the semidirect product of the spatiotemporal translations with the
Lorentz group, P = T o L. The Galilei group is significantly more complex: G = U o (S oR),
where U includes both spatial translations and Galilean boosts, S are the time translations, and
R are the rotations.

47See Bain (2016, ch. 3-4) for further discussion of the failure of the CPT and spin-statistics
theorems in non-relativistic spacetime.

48For proof, see Greaves and Thomas (2014, Thm. 9.6).
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mapping. The problem is that different notions of $-hermiticity are required to
prove the classical and quantum versions. In the quantum case, the relevant no-
tion is defined with respect to the canonical involution. In the classical case, it
is defined with respect to the charge conjugation involution. Thus the classical
theorem asserts that if a classical field theory obeys the spin-statistics connection
and is invariant under a (cover) of the Lorentz group, then it is CPT invariant iff it
is C invariant. The quantum CPT theorem permits C violating theories which are
nonetheless still CPT invariant. Thus there is interesting interaction between spa-
tiotemporal and charge structure in the quantum theorem that is entirely absent
in the classical version. The Greaves-Thomas classical CPT theorem is therefore
markedly different from its quantum counterpart, despite initial appearances to
the contrary.49

While more work is needed to fully clarify the role of relativistic and quantum
mechanical assumptions in the CPT theorem, our preliminary conclusion is that,
contra Greaves, the theorem essentially depends on the unification of relativity
and quantum mechanics. This conclusion is broadly consistent with the historical
development of QFT. Initial attempts to relativize quantum theory in the late
1920s ran aground on a cluster of problems stemming from a deep conflict between
relativistic causality and energy positivity. At the time, physicists were searching
for a Lorentz invariant wave equation which could play the role of the Schrödinger
equation in standard quantum mechanics. The most direct strategy begins with
the Schrödinger equation and replaces the the classical energy dispersion relation
E = p2/2m with the relativistic dispersion relation E =

√
p2 +m2. While the

resulting equation is Lorentz invariant, it has a number of problems including the
following — if we begin with a wavepacket, ψ, describing a particle localized in
some region, under time evolution the wavepacket spreads out faster than c. As a
result the probability of detecting the particle outside its own lightcone is nonzero.
This raises the specter of faster-than-light signaling and other causality-violating
paradoxes. Special relativity requires something more than just Lorentz invariance.
It requires hyperbolic equations of motion describing localized initial data whose
time evolution propagates with speed less than c.

49Flato and Raczka (1977) construct an example of a classical field theory with λφ5 self-
interaction that is not C invariant. Since this is a polynomial field theory, combined with Greaves
and Thomas’s classical CPT theorem, this provides a prima facie example of a CPT violating
classical field theory. Flato and Raczka draw a different conclusion: whether we describe this
example as CPT-violating and T-symmetric or as T-violating and CPT-symmetric depends on
a conventional choice of phase for the T operator. This shows that even in the classical case, the
status of reflection symmetries is a subtle problem requiring further study.
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One can avoid this problem by starting with a hyperbolic wave equation like
the Klein-Gordon or Dirac equation. Unfortunately, such equations typically have
both positive and negative energy solutions. The presence of unbounded negative
energy solutions mean that it is always possible for a system to decay into lower
and lower energy states. There will be no stable matter in such a theory. Fur-
thermore, the negative energy solutions create serious difficulties for interpreting
|ψ|2 as a probability density, destroying any hope for recovering the probabilistic
formalism of standard quantum mechanics.50 One can implement a cutoff condi-
tion which throws away the negative energy states, but only at the cost of ruining
hyperbolicity or Lorentz invariance.51

QFT effectively sidesteps this problem by dropping the requirement that the
theory describe a finite, fixed number of particles. The negative energy states
never really go away. Rather they are reinterpreted as positive energy states with
opposite charge. Antiparticles and creation/annihilation processes thus emerge as
critical ingredients in building a consistent QFT. But not just any old antiparticles
will do the trick. They need to have exactly the same mass and spin as their
conjugate partners. A number of partial results indicate that upsetting this balance
will lead to violations of microcausality, Lorentz invariance, or both.52 Viewed
from this angle, CPT symmetry plays a fundamental explanatory role in QFT. It
is only because the theory is CPT invariant that we can reinterpret negative energy
states as describing antiparticles in a manner consistent with the requirements of
relativistic causality.
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50In non-relativistic quantum theory, |ψ|2 is interpreted as a probability density, ρ, satisfying
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invariant, leading to non-conservation of the associated probability current J. Order can be
restored by replacing J with a relativistically invariant current, jµ, but now the time component,
j0, is no longer positive definite, yielding negative probabilities. (Interestingly, the Dirac equation
does not suffer from this problem, and was therefore an important stepping stone towards QFT.)
See Strocchi (2013), Ch. 1.2 for a discussion of this problem.

51These obstacles can be turned into a rigorous no-go theorem. See Strocchi (2013, Prop. 2.2).
52See Greenberg (2002), Peskin and Schroeder (1995), §2.4, and Weinberg (1995), §5.1, for

different formulations of this kind of argument. To date, none of them have been made fully
rigorous. Bain (2016, ch. 2.3) offers detailed criticism of the existing arguments.
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that it was based on.
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Feynman, R. (1949). The theory of positrons. Physical Review, 76, 749–59.

Flato, M. and Raczka, R. (1977). On parity, charge-conjugation, and time-reversal
violation in relativistic classical non-linear field theory. Letters in Mathematical
Physics, 1, 443–453.

Florig, M. (1998). On Borchers’ theorem. Letters in Mathematical Physics, 46,
289–93.

Fredenhagen, K. and Rejzner, K. (2013). Batalin-Vilkovisky formalism in perturba-
tive algebraic quantum field theory. Communications in Mathematical Physics,
317, 697–725.

Fredenhagen, K. and Rejzner, K. (2016). Quantum field theory on curved space-
time: Axiomatic framework and examples. Journal of Mathematical Physics,
57, 031101-38.

Greaves, H. (2010). Towards a geometrical understanding of the CPT theorem.
British Journal for the Philosophy of Science, 61, 27–50.

Greaves, H. and Thomas, T. (2014). On the CPT theorem. Studies in the History
and Philosophy of Modern Physics, 45, 46-65.

Greenberg, O. (2002). CPT violation implies violation of Lorentz invariance. Phys-
ical Review Letters, 89, 231602–4.

Guido, D. and Longo, R. (1992). Relativistic invariance and charge conjugation in
quantum field theory. Communications in Mathematical Physics, 148, 521–51.

54



Guido, D. and Longo, R. (1995). An algebraic spin statistics theorem. Communi-
cations in Mathematical Physics, 172, 517–33.

Haag, R. (1996). Local Quantum Physics. Berlin: Springer-Verlag.
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