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Abstract

To systematically answer the generalized Kretschmann objection, we propose a mean to make operational a
criterion widely recognized as allowing to decide if the gauge symmetry of a theory is artificial or substantial.
Our proposition is based on the dressing field method of gauge symmetry reduction, a new simple tool from
mathematical physics. This general scheme allows in particular to straightforwardly argue that the notion of
spontaneous symmetry breaking is superfluous to the empirical success of the electroweak theory. Important
questions regarding the context of justification of the theory then arise.
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1 Introduction

The philosophical analysis of gauge symmetries, long overdue, gained particular interest in the past fifteen years.
Several notions deserve scrutiny. One is the gauge principle, according to which imposing a local/gauge symme-
try on a free theory turns it into an interacting theory. This was suggestively encapsulated by Yang’s aphorism
“Symmetry dictates interaction” [1], clearly one of the conceptual revolution of the last century. But not long ago
philosophers of physics took hold of the celebrated principle and scrutinized it (see e.g [2–4]), as did some dis-
senting physicists much earlier, see e.g [5]. It was quickly found that actually gauge symmetries might not be the
sole criterion constraining the space of admissible theories and that others like, renormalizability, may be more
fundamental.

Nevertheless, it seems undeniable that gauge symmetries are a powerful heuristic guide to find fruitful and
ultimately empirically adequate theories of the fundamental interactions. So, they appear to tell something deep and
important about Nature. But this conclusion raises a well known problem, which can be summarized by saying that
there is a generalized Kretschmann objection applicable to gauge symmetries. As a reminder, shortly after Einstein
delivered his General Theory of Relativity (GR), Erich Kretschmann suggested in 1917 that the principle of general
covariance was empty, unable to constrain the space of admissible theories, since any theory could be written as
to be generally covariant. There has been a long and lively debate over the validity of Kretschmann’s objection
and the relevance of general covariance in relativity theory, and much effort to determine if there is a demarcation
criterion to distinguish artificial general covariance from substantial general covariance [6]. It happens that much
of this discussion applies, mutatis mutandis, to gauge symmetries and that a generalized Kretschmann objection
[7; 8] can be raised against the gauge principle: Physicists have devised many ways to implement a gauge symmetry
in a theory lacking it [9; 10], so if any theory can be turned into a gauge theory how come gauge symmetries are
regarded as a fundamental insight into the hidden structure of Nature?

One is led to suspect that there are “native” gauge theories endowed with substantial gauge symmetries signal-
ing a genuine physical content, and theories whose gauge symmetries are artificial and devoid of physical meaning.
Identifying the physical signature of substantial gauge symmetries, even partially, is necessary to determine a de-
marcation criterion. Once found such a criterion, it may still be another matter to suggest a systematic tool to make
it operational.
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It is by now quite widely acknowledged that substantial gauge symmetries are related to locality/non-locality in
field theory [11–14].1 Precisely, substantial gauge theories exhibit a trade-off between gauge symmetry and locality:
Either the theory is expressed with local gauge field variables, or with non-local gauge invariant ones. Theories with
artificial gauge symmetries do not have this property, they can be expressed in terms of gauge invariant local field
variables. On this distinction one can draw the conclusion that since, as far as we know, the physical content of a
theory is gauge invariant, a substantial gauge symmetry would then signal the existence of non-local phenomena.

Whether or not this notion exhausts the content of gauge symmetries, we can take it as a first robust demarcation
criterion. But how can it be implemented on any given gauge theory? Absent a general theorem, it appears that the
best strategy available is to try to show that the theory can be written in term of gauge invariant local variables. The
failure of all efforts to do so ascertains, at least provisionally, the substantial nature of the gauge symmetry of the
theory. Success, on the other hand, definitely shows that the gauge symmetry is artificial. The problem at hand is
then to make this asymmetric strategy as systematic and operational as possible.

One of the goal of the present paper is to bring attention to a new simple mathematical tool to deal with gauge
symmetries, the dressing field method, that might be suited for just such a task and which applies to a wide class
of gauge theories, namely those that can be formalized in the language of Lagrangians (and fiber bundles). Section
2 gives a brief description of this method, which is easy to grasp in its gist, and refers to the published literature
for technical details and elaborations. Then, to motivate our proposition for an operational criterion based on
the method, we compare the massive Stueckerlberg electromagnetic model and the standard massless U(1)-gauge
theory. A point that is highlighted by the method is that the nature of a gauge symmetry depends essentially on the
field content of the theory. This is illustrated by a discussion of the Aharonov-Bohm effect, and by considering the
tetrad gauge theoretic formulation of GR. Also, to further probe the scope of the method, we briefly indicate why
the so-called “clock fields” appearing in massive gravity and bi-gravity theories are natural instances of dressing
fields.

Section 3 articulates the second main point of the paper, namely that the orthodox interpretation of the elec-
troweak unification is untenable. It is indeed still common wisdom among practicing physicists to consider the
notion of spontaneous symmetry breaking (SSB) as pivotal to the success of the theory. The idea is often seen as an
important insight into the structure of physical reality. This opinion is shared widely enough that virtually all mod-
ern textbooks on gauge field theory or quantum field theory (QFT) have a chapter on SSB, and that even prominent
physicists and science popularizers convey it to the layman [15; 16] (sometimes going as far as to suggest that it is
the most revolutionary discovery of XXth century theoretical physics [17; 18]).

But since at least fifteen years, philosophers of physics have voiced skepticism. Here we provide supporting
evidences: By relying on the dressing field method, which gives a clear conceptual language to elucidate the real
content of the electroweak unification, we argue that the empirical success of the Glashow-Weinberg-Salam model
is entirely independent of the interpretation in terms of SSB. It is to be hoped that this conclusion will come to be
more widely acknowledged in the physics community. Unfortunately, scientists can be somewhat dismissive of the
inquiries of philosophers,2 an attitude for which little price is usually paid, in the short term at least. But in this case,
not acknowledging the insights of philosophers of physics would certainly lead to a long-lived misconception at the
heart of particle physics to remain uncorrected for still some times, and important ensuing questions regarding the
context of justification of the electroweak model to remain unasked, let alone answered. This is addressed in the
concluding remarks of section 4.

Notice that throughout the paper we will use the language of differential forms,3 first because it is common prac-
tice in mathematical physics and in differential geometry (within which the dressing field method was developed),

1 As far as field theory is concerned, locality can be seen as consisting in the following three desiderata. (1) Relativistic causality: Physical
processes (carrying energy/information) propagate within the lightcone structure of spacetime. (2) Field locality: Physical properties (fields)
are defined pointwisely (in the idealized limit of arbitrary small regions of spacetime), and interact pointwisely in regions where they do
not vanish. It is closely related to (3) Separability: Physical properties (fields configurations) of any region of spacetime are recovered from
physical properties of its constitutive subregions. Relativistic causality is still non-negotiable, so failure of locality means infringing field
locality [12] or separability [13; 14], or both [11].

2One recalls the notorious example of [19], or the controversial interview by Lawrence Krauss in The Atlantic [20] where he opinioned
that “[...] the worst part of philosophy is the philosophy of science; the only people, as far as I can tell, that read work by philosophers of
science are other philosophers of science. It has no impact on physics what so ever, and I doubt that other philosophers read it because it’s
fairly technical. And so it’s really hard to understand what justifies it.” He later gave a retraction in a column of Scientific American [21].

3Here, differential forms should be understood broadly as including twisted forms [22], or pseudo-forms [23], describing tensor densities
needed e.g for integration on non-orientable manifolds (even if usually we will assume spacetime to be orientable).
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and also because it frees the mind of cumbersome index notations. I hope that readers unfamiliar with this language
will nevertheless follow most of the argument presented without much trouble.

2 The Dressing Field Method of Gauge Symmetry Reduction

The dressing field method has been devised as a mean to handle, i.e reduce, gauge symmetries in a way that differs
markedly from either gauge fixing or SSB mechanisms, and bears some resemblance to the bundle reduction theorem
from the differential geometry of fiber bundles (see [24], p.147-149, proposition 2.14). It has been applied mainly
to conformal geometry where it allows to recover tractor and twistor calculi (analogues for conformal manifolds of
the Ricci and spinorial calculi on Riemannian manifolds) from a gauge reduction of the Cartan conformal geometry
[25; 26]. It also uncovered a new class of gauge fields, called non-standard or twisted gauge fields, which generalize
connections and sections of vector bundles used in Yang-Mills theories to model gauge potentials and matter fields.
See [27] for a review with technical details and references. The method is fully developed within the geometry of
fiber bundles, but its basics and application to physical models are easy to state.

2.1 The basic mathematical setup of the method

First, we need to lay the setup for a gauge theory. Consider a gauge theory on a m-dimensional spacetime manifold
(M, g), whose gauge group of symmetry isH := {γ :M→ H} with H a Lie group with Lie algebra h, and which by
definition acts on itself via γγ2

1 = γ−1
2 γ1γ2.4 The basic space of fields is Φ = {A, F, ϕ}, where F is the field strength

(curvature 2-form ∈ Ω2(M, h)) of the gauge potential A (connection 1-form ∈ Ω1(M, h)), and ϕ is a matter field

pertaining to a representation (ρ,V) of H. The gauge group acts on the space of fields, Φ
H
−−→ Φγ, as

Aγ = γ−1Aγ + γ−1dγ, Fγ = γ−1Fγ,

ϕγ = ρ(γ−1)ϕ and Dϕγ = ρ(γ−1)Dϕ, (1)

where D := d + ρ∗(A) is the covariant derivative implementing the minimal coupling between the matter field and
the gauge potential.

Now, a physical theory is specified by its Lagrangian m-form L(A, ϕ). In the case of a gauge theory, the La-
grangian is required to be H-gauge invariant: L(Aγ, ϕγ) = L(A, ϕ). A prototypical and almost minimal Yang-Mills
Lagrangian is

L(A, ϕ, ϕ′) = LYM + LScalar + LDirac,

= 1
2 Tr(F ∧ ∗F) + 〈Dϕ, ∗Dϕ〉 − m2〈ϕ, ∗ϕ〉 + 〈ϕ′,γ ∧ ∗Dϕ′〉 − m′〈ϕ′, ∗ϕ′〉, (2)

where ϕ is a scalar field with mass m and ϕ′ is a spinor field with mass m′. Here ∧ is the wedge product of
differential forms, ∗ : Ωp(M) → Ωm−p(M) is the Hodge star operator, while Tr and 〈 , 〉 are bilinear forms on h
and V respectively. As for γ = γµdxµ, it is a one form whose components are Dirac gamma matrices. A mass term
for the gauge potential A, µ2Tr(A ∧ ∗A), failing to be gauge-invariant by virtue of (1), is forbidden so that a gauge
interaction is a priori long range.

The core idea of the dressing field method consists in the following simple observation. Suppose the structure
group H has some normal subgroup J,5 so that the gauge group H correspondingly has a normal subgroup J .
Suppose further that from the space of fields Φ of a gauge theory, one can extract a field u : M → J defined by
the transformation property under γ ∈ J : uγ = γ−1u. Such a field is called a dressing field. It allows to perform a
change of field variables, Φ→ Φu, by forming the following composite fields :

Au : = u−1Au + u−1du, Fu = u−1Fu,

ϕu : = ρ(u−1)ϕ and Duϕu = ρ(u−1)Dϕ, (3)

4HereH can be seen either as the pulled-back version of the group of vertical automorphisms of the underlying principal bundle P(M,H)
overM, or as the group of transition functions between different trivializations of P. Dealing with active or passive gauge transformations
makes no formal difference.

5The subgroup J is normal if ∀h ∈ H on has h−1 Jh = J. Said otherwise ∀h ∈ H and ∀ j ∈ J : h−1 jh ∈ J. The requirement of normality for
J, while not strictly necessary, insures that H/J is still a group. Nothing conceptually important rests on this technical detail.
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where Du := d + ρ∗(Au). These fields are J-invariant variables. Notice that despite a formal similarity with (1), (3)
are not gauge transformations. Indeed, by virtue of its defining transformation property, the dressing field is not an
element of the gauge group: u < H .

Taking advantage of the H-gauge invariance of the Lagrangian, which holds as a strictly formal property, and
of the formal similarity between (1) and (3), we can rewrite the gauge theory in terms of the J-invariant variables:

L(A, ϕ, ϕ′) = L(Au, ϕu, ϕ′u),

= 1
2 Tr(Fu ∧ ∗Fu) + 〈Duϕu, ∗Duϕu〉 − m2〈ϕu, ∗ϕu〉 + 〈ϕ′u,γ ∧ ∗Duϕ′u〉 − m′〈ϕ′u, ∗ϕ′u〉.

This theory is therefore not aH-gauge theory, as the Lagrangian (2) would have us think, but aH/J-gauge theory.
Clearly the transformation of the composite fields (3) under the residual H/J-gauge symmetry depends on the
behavior of the dressing field under this same symmetry. Interesting cases are described in [27].

Insofar as the genuine physical degrees of freedom (d.o.f) of a gauge theory are given by gauge invariant quan-
tities, the dressing field method helps to exhibit the physical content of a gauge theory.

A question naturally arise: Is the field redefinition (3) harmless? As already observed above, formally the
dressing operation exactly mimics gauge transformations (1) which form a symmetry of the theory. So, it is expected
that at the classical level the theories expressed with the original variables and the dressed ones are equivalent: The
field equations for the composite fields {Au, ϕu, ϕ′u} obtained from L(Au, ϕu, ϕ′u) are the same as those of the original
gauge variables {A, ϕ, ϕ′} obtained from L(A, ϕ, ϕ′). Both are in a relation of “covariance” with respect to (w.r.t) the
dressing operation by u, in the same way that the field equations of gauge related fields {A, ϕ, ϕ′} and {Aγ, ϕγ, ϕ′γ}
are in a relation of covariance w.r.t the action of the gauge groupH .

For the same reason, at the quantum level the redefinition (3) should be harmless if the gauge symmetry is
preserved in the quantized theory, i.e if it is free of gauge anomalies, which is the case for any viable candidate as a
fundamental QFT [28]. One would then submit that if a gauge QFT is anomaly free, it is equivalent to its dressed
counterpart.6

Now, even if one considers a quantized effective theory where the gauge symmetry is broken, the “harm” done
by the field redefinition (3) is arguably still under control. An outline of the argument is as follows. In an effective
QFT, the gauge symmetry breaking anomaly belongs to the cohomology of the BRST nilpotent operator s, whose
action on the gauge variables reproduces their infinitesimal gauge transformations, but with infinitesimal gauge
parameter replaced by the Fadeev-Popov ghost field v (formally one could write γ = 1 + v in (1)). The nilpotency,
s2 = 0, is secured via the relation sv = − 1

2 [v, v] = −v2 (the commutator is graded w.r.t the form and ghost degrees,
v has ghost degree 1). An anomaly is thus a n-form A(v, A) linear in v, which is s-closed, sA(v, A) = 0, but not
s-exact, A(v, A) , sB(A). It is determined algebraically through the Stora-Zumino descent equations and receives
no contribution from perturbation theory beyond one-loop. Thus, in complete analogy, one could define a “mock
BRST operator”, s̄, whose action on the gauge variables produce the infinitesimal version of the composite fields.
Formally one could write u = 1 + υ in (3), where the infinitesimal dressing field satisfies s̄υ = − 1

2 [υ, υ] = −υ2,
so that s̄2 = 0. The difference between the effective QFT and its dressed counterpart would be controlled by the
“mock anomaly” Ā(υ, A) linear in υ, belonging to the s̄-cohomology, obtained algebraically via analogues of the
Stora-Zumino descent equations and receiving no contribution beyond one-loop from perturbation theory.

2.2 Artificial vs Substantial Gauge Symmetry

Due to the many good properties of gauge theories (notably in relation with renormalizability), over time physicists
have devised various ways to implement a gauge symmetry in a theory lacking it [7]. The Stueckelberg trick is the
forefather of these and its generalization seems to be of some relevance still to contemporary studies [9]. It is easily
illustrated on the historic example of the Proca model (1936) for massive electromagnetism. Proca’s Lagrangian is

L(A) = 1
2 F ∧ ∗F + µ2A ∧ ∗A (4)

6This has some relevance regarding our discussion of the electroweak model on section 3. Conversely, if a gauge QFT can be ”dressed”
with a dressing field for J (a local one, see section 2.2), then it is trivially free of J-gauge anomalies. Indeed, once expressed in terms of
the composite fields (3) there remains no J-gauge symmetry to break in the quantization procedure.
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and describes a massive vector field, so that the theory has no U(1) gauge symmetry. Now, it is possible to im-
plement such a gauge symmetry by following the suggestion of Stueckelberg (1938) to add a compensating field,
the Stueckelberg field B satisfying Bγ = B − µθ, while the vector field becomes a gauge field transforming as
Aγ = A − dθ, with γ = eiθ ∈ U(1). A minimal Stueckelberg Lagrangian is then,

L(A, B) = 1
2 F ∧ ∗F + µ2(A − 1

µdB) ∧ ∗(A − 1
µdB) (5)

and is aU(1)-gauge theory.
In spite of what would be infered from a superficial reading, the Lagrangian (4) and (5) actually describe the

same theory. Indeed theU(1) gauge symmetry is artificial, its presence being compensated by the d.o.f of the field B.
In the case at hand, the Stueckelberg field is actually an abelian dressing field: u := ei/µB so that uγ = ei/µ(B−µθ) = γ−1u.
The associatedU(1)-invariant composite fields are then Au := A + iu−1du = A− 1

µdB, and its field strength Fu = F.
So the Stueckelberg Lagrangian (5) is rewritten in terms of gauge invariant composite fields as:

L(A, B) = L(Au) = 1
2 Fu ∧ ∗Fu + µ2Au ∧ ∗Au, (6)

which is nothing but the Proca Lagrangian, devoid of any gauge symmetry. One may think of the dressing field
method as a reciprocal to the Stueckelberg trick: the latter aims at implementing an artificial gauge freedom, the
former seeks to erase it to reveal the gauge-invariant content.

The above simple discussion is illustrative of an important point: If one can find in a gauge theory a local
dressing field, meaning that its value at a spacetime point depends only on this point and no others,7 then the
invariant composite fields in terms of which the theory can be rewritten are local variables. So, one pays no price
in erasing the gauge symmetry, which is then fully dispensable. One therefore proposes the following operational
criterion:

A local dressing field in a gauge theory signals that its gauge symmetry is artificial. (C1)

Gauge theories present a number of conceptual as well as technical challenges. Among those, the fact that
the gauge variables have a nondeterministic evolution, and the hindrance gauge symmetry poses a priori to the
quantization of the theory. Dirac has pondered long and hard about these difficulties in the context of electromag-
netism, an abelian U(1)-gauge theory. A solution he first proposed in a 1955 paper [29] and then developed in the
1958 fourth edition of his Principles of Quantum Mechanics ([30], section 80), was to reformulate the theory with
gauge-invariant variables, which would qualify as physical variables.

In the following we use essentially the notations of [29] while setting all fundamental constants to 1. Let
ψ be the electron spinor field and A = (A0, Ar) the electromagnetic gauge potential, subject to the U(1)-gauge
transformations ψ′ = eiSψ and A′ = A + dS . Dirac introduces the new variables ψ∗ = eiCψ (Eq [16]) and the
associated “covariant” derivative dψ∗ − iA∗ψ∗ = eiC(dψ − iAψ), with A∗ = A + dC (Eq [21] and below). The phase
factor is defined by C(x) =

∫
cr(x, x′)Ar(x′)d3x′, and in order for the new variables to be gauge invariant cr(x, x′)

must satisfy ∂
∂x′r

cr(x, x′) = δ(x − x′) (Eq [18]). Dirac then notices that the latter equation admits the Coulomb
potential as a solution,8 so that by proceeding with the quantization of the electromagnetic theory written in terms
of his invariant variables, he interprets ψ∗ in the following way:

“We can now see that the operator ψ∗(x) is the operator of creation of an electron together with its
Coulomb field, or possibly the operator of absorption of a positron together with its Coulomb field. It
is to be contrasted with the operator ψ(x), which gives the creation or absorption of a bare particle.
A theory that works entirely with gauge-invariant operators has its electrons and positrons always
accompanied by Coulomb fields around them, which is very reasonable from the physical point of
view.”

An appealing conclusion indeed.

7This is the notion (2) Field locality, mentioned in the first footnote.
8Other solutions differing only by terms dependent on the gauge-invariant Maxwell-Faraday field strength F.
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It is not hard to see that Dirac’s scheme is an instance of the dressing field method. Indeed under gauge trans-
formation of the gauge potential, the phase factor transforms as

C′(x) =

∫
cr(x, x′)A

′r(x′)d3x′ = C(x) +

∫
cr(x, x′) ∂S

∂x′r
(x′)d3x′,

= C(x) −
∫

∂
dx′r

cr(x, x′)S (x′)d3x′ = C(x) − S (x).

So u = eiC transforms under γ = eiS ∈ U(1) as u′ = γ−1u, and is therefore an abelian dressing field, which means
that ψ∗ and A∗ in Dirac’s equation [16] and [21] are abelian instances of the composite fields ϕu and Au in (3) above.

Should we then conclude, on the basis of the criterion (C1), that Dirac has revealed the U(1) gauge symmetry
of electromagnetism to be artificial? We must resist that conclusion because here, contrary to what happened in
the Stueckelberg model, gauge-invariance wasn’t free; it could be achieved only at the price of locality. Indeed
the dressing field u = eiC is clearly non-local, so that the gauge-invariant composite fields ψ∗ = ψu and A∗ = Au

in terms of which the theory is rewritten are also non-local variables. It appears then that in classical or quantum
electrodynamics, there is a trade-off between gauge symmetry and locality: either one works with local gauge
variables, or with non-local gauge-invariant ones.

This conclusion extends to non-abelian Yang-Mills theories. A beautiful articulation is provided by Healey [12]
who argues that the physical content of gauge theories is best represented by the path-ordered trace holonomies of
the connection, also known as Wilson loops, which are gauge-invariant non-local variables. The trade-off gauge in-
variance vs locality is indeed a characteristic features of genuine gauge theories ([11; 13; 14]), so that one may argue
that what is probed, indirectly, by a substantial gauge symmetry is the existence of non-local physical phenomena.
In complement to (C1), one therefore proposes the following criterion:

If only non-local dressing fields exist in a gauge theory, then its gauge symmetry is substantial. (C2)

In principle there is an asymmetry: It is easier to verify (C1) than (C2), since for the latter it seems hard to be
sure to have exhausted all possibilities in any given case. But an important point should be reminded and stressed
at this stage: The dressing field must be constructed out of the space of primary gauge variables of the theory.
This means that in most relevant cases, the range of options is limited and for all practical purpose the degree of
confidence of having verified (C2) can be quite high. This also highlights an obvious but crucial fact, namely that
the verdict on the nature of the gauge symmetry of a theory depends on its field content.

As a manner of illustration, consider the Aharonov-Bohm (AB) effect ([31; 32]). We recall that one setup of the
effect is a modified double slit experiment involving electrons, ψ, where a solenoid stands behind the first screen
between the two slits. When a current traverses the solenoid, the interference pattern formed by the electrons on
the second screen is shifted due to a phase factor depending only on the flux of magnetic field inside the solenoid:
ei

∫
c A = ei

∫
s F (c being a closed path from the source of electron beam through the two slits to a point on the final

screen, and enclosing the surface s traversed by the solenoid). Yet, outside the solenoid - the only region accessible
to the electrons - the electromagnetic field strength vanishes, F = 0, and only the electromagnetic potential A is
non-zero. So, the latter is the only local variable that is available to maintain a semblance of explanation of the
alteration of the behavior of the electrons via a local interaction between two fields, A and ψ.

Of course the gauge non-invariance of A makes it a doubtful candidate as a genuine physical field, as many
among physicists and philosophers alike have pointed out. Curiously, it is not often stressed that it is also true for
the spinor field ψ, either seen as a wave function for electrons or as the electron quantum field. Both field variables
A and ψ should then be equally faulted for the difficulty in interpreting the AB effect in terms of local interactions
of physical fields. Therefore, several authors didn’t shy away from concluding that the AB effect forces us to
accept, not the physicality of the gauge potential A (which was usually seen as a computational device in classical
electromagnetism) as Aharonov and Bohm argued, but rather that there are such things as non-local electromagnetic
properties represented by gauge invariant non-local variables.9

But as pointed out by Wallace in [33], in the semi-classical framework where ψ is a complex scalar field, a gauge
invariant local interpretation for the AB effect is available. As the reader now acquainted with the dressing field

9As Aharonov and Bohm also argued. To wit, in [32] p.1513 second paragraph: “The observable physical effects in question must
therefore be attributed to the potential integrals themselves. Such integrals, being not only gauge invariant, but also Hermitian operators, are
perfectly legitimate examples of quantum-mechanical observables. They represent extended (non-local) properties of the fields [...].”
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method will recognize, Wallace extracts a local dressing field from the polar decomposition ψ = ρu, with ρ = |ψ|

and u = eiθ, since indeed ψγ = γ−1ψ implies uγ = γ−1u. He then proceeds to show that the theory can be expressed
in terms of the gauge invariant local composite fieds ψu = u−1ψ = ρ and Au = u−1Au − iu−1du = A + dθ (called
“gauge-covariant derivative of θ” and noted Dθ in [33]), with field strength Fu = F, so that the phase factor is ei

∫
c Au

.
Thus, from (C1) one concludes that in the scalar-electromagnetic (EM) framework, U(1) is artificial and the AB
effect can be interpreted as resulting from the local interaction of the gauge invariant fields ψu and Au.10

Notice however that such a (U(1) adequate) polar decomposition is not available for a Dirac spinor field, so
that a local dressing field cannot be thus constructed in the spinorial-EM framework. In this theoretical context, as
shown in Dirac’s scheme, the only dressing field available is non-local and constructed out of the gauge potential.
Hence, via (C2) one concludes that the U(1)-gauge symmetry in spinorial-EM is substantial and signals non-local
electromagnetic properties, and the AB effect is interpreted as illustrating that fact.

The dependence of the nature of a gauge symmetry on the field content of the theory is further echoed in
the theorization of gravitational physics. The gauge structure of General Relativity is most apparent in the tetrad
formulation. It is based on the bundle of pseudo-orthonormal frames with the Lorentz group as structure group,
P(M, S O(1, 3)), endowed with the spin connection A ∈ Λ1(M, so(1, 3)) whose curvature is the Riemann 2-form
R(A) = dA + A ∧ A. Furthermore, as a frame bundle it comes with a soldering, which is a linear isomorphism
between the tangent space at each point x ∈ M and Minkoswki space, θ : TxM → R1,3 = {R4, η}. It it thus
represented by a 1-form θ ∈ Λ1(M,R1,3) written explicitely as θa = ea

µdxµ, where ea
µ is the vierbein, or tetrad field

(hence the name of the formulation). The Lagrangian of pure gravity GR, L(θ, A), is invariant under the Lorentz
gauge group SO = {γ : M → S O(1, 3)} acting on the variables as Aγ = γ−1Aγ + γ−1dγ and θγ = γ−1θ.

By inspection, it appears clearly that the tetrad field e = ea
µ is a local dressing field since it satisfies eγ = γ−1e.

The SO-invariant local composite fields are none other than the linear connection Γ = e−1Ae + e−1de, and its
Riemann curvature R(Γ) = e−1R(A)e.11 The Lorentz gauge symmetry is then artificial and can be erased at no cost
in the theory, whose Lagrangian reduces to the standard Einstein-Hilbert metric formulation: L(θ, A) = LEH(g,Γ).
The metric field, written as g = eTηe, indeed appears as a natural SO-invariant field in the Lagrangian. This remains
true when gravity couples to radiation (EM), classically described matter (ponderable matter, gas of particles, dust,
fluids) or scalar fields, collectively described as ϕ. So, according to (C1), in general relativistic theories with
Lagrangians L(θ, A, ϕ) = L(g,Γ, ϕe), the local Lorentz gauge symmetry SO is artificial and encodes no physics that
is not already in the metric formulation (not even torsion or the gravitational AB effect), and doesn’t restrict its
interpretive resources.

Now, when matter is described by spinor fields, Lorentz gauge symmetry seems no longer dispensable. Indeed,
the minimal coupling of spinors ψ to gravity is achieved via A, more precisely via ρ(A), where ρ : S O(1, 3) →
S L(2,C) is a morphism from the Lorentz group to its universal cover: Dψ = dψ+ ρ(A)ψ. A Lorentz gauge transfor-
mation for the spinor field is then ψγ = ρ(γ−1)ψ. There is an induced isomorphism ρ̄ : R1,3 → Herm(2,C) between
Minkoswski space and the space of 2 × 2 hermitian matrices, such that for any v = va ∈ R1,3 and S ∈ S O(1, 3)
one has: ρ̄(S v) = ρ(S )ρ̄(v)ρ(S )∗, with ∗ the complex conjugation and transposition. This means in particular that
ρ̄(γ−1θ) = ρ(γ−1)ρ̄(θ)ρ(γ−1)∗, so that the tetrad ρ(e) no longer satisfies the defining property of a dressing field w.r.t
ρ(SO) and cannot be used to dress ψ. Thus, in a general relativistic theory with spinors L(θ, A, ψ), there is no local
dressing field fitting for the whole theory, and only non-local dressing fields constructed via the holonomy of the
spin connection are likely available. According to (C2), the Lorentz gauge symmetry SO is then substantial.12

10It happens that the abelian U(1) Higgs model can be treated via dressing along the same line, as is shown explicitly in [34]. This is
directly relevant to our discussion of the electroweak model in the next section.

11As an aside, notice that in line with the general remark in section 2.1 following Eq. (3), Γ is not in the gauge orbit of A and they should
not be seen as related by a mere gauge transformation, as indeed the tetrad e is not an element of the Lorentz gauge group SO.

12This conclusion should be slightly nuanced in light of the following fact. Locally, i.e so long as one works on U ⊂ M seen both as a
coordinate patch and a trivializing open set for the Lorentz bundle, one can decompose the tetrad as e = ut, where u = ua

b ∈ S O(1, 3) and
t = tb

µ has the same d.o.f as the metric field and is such that g = tTηt. This decomposition relies on the Schweinler-Wigner orthogonalization
procedure, see [34] section 4.3 for details en references. Therefore, one has on the one hand uγ = γ−1u, so that u is a (minimal) local SO-
dressing field. On the other hand, one has ρ̄(θ) = ρ(u)ρ̄(t)ρ(u)∗, and from ρ̄(γ−1θ) one deduces ρ(uγ) = ρ(γ)−1ρ(u). So, u is indeed a dressing
field suited for the spinor field ψ, and one can built - in accordance with (3) - the SO-invariant composite spinor field ψu := ρ(u)−1ψ, which
couples minimally to gravity via the SO-invariant field Au := u−1Au + u−1du. Unfortunately, u and by extension the composite fields built
from it, depend on the coordinate chart onU in such a way that they have no determined well-behaved transformation law under coordinate
changes. Which makes them ill-defined as global geometrical objects.
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It is interesting to notice that in bothU(1)-EM and SO-gravity, it is the spinorial nature of matter that obstructs
the construction of a suitable local dressing field. So that it is the coupled systems “spinorial matter + EM” and
“spinorial matter + gravitation” that display substantial gauge symmetries.

To wrap up this digression on gravitation, let us consider briefly a final example. In the tentative alternatives
to GR known as massive gravity and bi-gravity, general coordinate invariance is broken because beside the usual
dynamical metric g, a reference metric fab (often ηab) is necessary present in the mass term. Given any arbitrary
coordinate system {xµ}, general covariance is restored via the introduction of scalar fields φa used to define a vielbein
ea

µ =
∂φa

∂xµ that allows to promote the reference metric to a covariant tensor f̄µν = eµa fabeb
ν (see [36] for a review).

The scalar fields φa, or the vielbein e, are sometimes referred to as “clock-fields” (see [7] and references therein)
or “Stueckelberg fields”, given that they play a role analogous to the Stueckelberg B field used to restore U(1) in
massive EM. It is therefore no surprise that, beyond the mere analogy, the vielbein clock field is also a dressing
field in the technical sense. Let G = Gµ

ν ∈ GL(4) be the Jacobian of a coordinate change, the vielbein transforms
as e′ = eG. So, u = e−1 satisfies u′ = G−1u and is indeed a local dressing field, which indicates that the general
covariance in massive gravity or bi-gravity is artificial and hides the existence of a “true gauge”: the preferred
coordinates xµ = φa.

The method presented here applies to various situations spanning a significant range of interesting physics. It
suggests a criterion that allows to adjudicate the nature of the gauge symmetry of a theory in an almost algorithmic
way: Inspect the field content, try to built a local dressing field. If you succeed, (C1), then you have shown the gauge
symmetry to be artificial and have found, in the form of the local gauge invariant composite fields (3), mathematical
objects closer to adequate representatives of the true local physical d.o.f of the theory. If you fail and produce only
non-local DF, (C2), then you have shown (in all likelihood) the gauge symmetry to be substantial and have located
in your theory non-local physical d.o.f that can be represented by the composite fields (3).

The only remaining non algorithmic part of this scheme is the explicit construction of the dressing field. But
given the clear specifications 1) to satisfy the defining gauge transformation property uγ = γ−1u, and 2) to be
constructed out of the space of field variables of the theory, the problem is quite well circumscribed and should not
pose much of a challenge in most interesting situations.

In any outcome, by systematically providing a “Ockhamized” version of the theory, the method clarifies its inter-
pretive landscape. In particular, as shown by the discussion of the electromagnetic AB effect, given the observations
of physical facts, slightly differing formalisms used to predict these facts may sharply differ in the metaphysical
interpretations they allow.

As a case in point, the Glashow-Weinberg-Salam electroweak theory is of particular interest to philosophy of
physics. It is therefore apt to analyze it in light of the dressing field method. We do so in the following section.

3 The Electroweak Theory Without Spontaneous Symmetry Breaking

The opinion that the notion of SSB is pivotal to the success of the electroweak unification is quite common among
physicists. But in the past fifteen years, philosophers of physics started to consider the notion as suspicious. We
here argue that their intuitions and conclusions are correct: The SSB interpretation of the electroweak theory is
superfluous to its empirical success. Hints at this conclusion were scattered in the gauge field theory literature for
years, from the mid-sixties onward, as we will show in the commentary section 3.2. But first, in the following
section we prove the main point in sketching the treatment of the theory via the dressing field method. Further
details and comments can be found in [27].

It seems that this construction bears some relation to the attempts - pioneered in the ‘50s and ‘60s by DeWitt, Ogievetsky and Polubarinov
- to built spinors without introducing tetrads and Lorentz gauge symmetry. In this context t would be called a “square root” of the metric.
See [35] for a nice review with an extensive bibliography. Upon mild restrictions on the admissible coordinate systems, the coordinate
transformation law for such spinors is formally attainable, but only in the weak field regime, i.e when g is a small perturbation around η, and
even then the transformation law is metric dependent and highly non-linear. It is thus not yet clear that such a framework is satisfactory in
the strong field regime of GR, and that it can be accommodated to QFT in curved spacetime. So, a prudent commitment to the assessment
given in the main text seems reasonable.
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3.1 The electroweak model treated via dressing

The gauge group postulated a priori for the model isH = U(1)×SU(2) = {α × β :M→ U(1) × S U(2)}. The space
of field is Φ = {A, F, ϕ}, where A = a+b is the gauge potential 1-form with curvature F = fa+gb, and ϕ is a C2-scalar
field. The latter couples minimally with the gauge potential via the covariant derivative Dϕ = dϕ+ (g′a + gb)ϕ, with
g′, g the coupling constants of U(1) and S U(2) respectively. The gauge group acts as:

aα = a + 1
g′α
−1dα,

aβ = a,

bα = b,

bβ = β−1bβ + 1
gβdβ,

and ϕα = α−1ϕ,

and ϕβ = β−1ϕ.

TheH-invariant Lagrangian form of the theory is,

L(a, b, ϕ) = 1
2 Tr(F ∧ ∗F) + 〈Dϕ, ∗Dϕ〉 − U(ϕ) vol,

= 1
2 Tr( fa ∧ ∗ fa) + 1

2 Tr(gb ∧ ∗gb) + 〈Dϕ, ∗Dϕ〉 −
(
µ2〈ϕ, ϕ〉 + λ〈ϕ, ϕ〉2

)
vol, (7)

where µ, λ ∈ R and vol is the volume form on spacetimeM. As it stands, nor a nor b can be massive, and indeed L
contains no mass terms for them. While at least one massless field is expected in order to carry the electromagnetic
interaction, the weak interaction is short range so its associated fields must be massive. Hence the necessity to
reduce the SU(2) gauge symmetry in order to allow for mass terms for the weak fields.

As the usual narrative goes, this is achieved via SSB: If µ2 < 0, the electroweak vacuum given by U(ϕ) = 0
seems degenerate as it appears to be an SU(2)-orbit of non-vanishing vacuum expectation values for ϕ. When
the latter settles randomly - spontaneously - on one of them, this breaks SU(2) and generates mass terms for the
weak fields with which it couples. Oddly, in order to exhibit the physical modes of the theory it is claimed that a
convenient choice of gauge is necessary, the so-called unitary gauge (see e.g [37]). But how come we are allowed
to use a gauge freedom if it is supposedly broken?

We suggest that a better approach and a more satisfactory interpretation is provided by the dressing field method.
Indeed it is not hard to find a dressing field in the electroweak model. Considering the polar decomposition in C2 of
the scalar field ϕ = uη with

u ∈ S U(2) and η :=
(

0
||ϕ||

)
∈ R+ ⊂ C2, one has ϕβ ⇒ uβ = β−1u. (8)

Thus, u is a SU(2)-dressing field that can be used to construct the SU(2)-invariant composite fields:

Au = u−1Au + 1
g u−1du = a + (u−1bu + 1

g u−1du) = a + B,

Fu = u−1Fu = fa + u−1gbu = fa + G, with G = dB + gB2,

ϕu = u−1ϕ = η, and Duη = u−1Dϕ = dη + (g′a + gB)η. (9)

Since u is local, so are the above composite fields. Therefore, by virtue of criterion (C1) we conclude that the
SU(2)-gauge symmetry of the model is artificial, so that the theory defined by the electroweak Lagrangian (7) is
actually aU(1)-gauge theory, described in terms of local SU(2)-invariant variables:

L(a, B, η) = 1
2 Tr(Fu ∧ ∗Fu) + 〈Duη, ∗Duη〉 −

(
µ2η2 + λη4

)
vol . (10)

We already reached our main conclusion: Since the SU(2)-gauge symmetry is artificial, the interpretation of the
model in terms of SSB is superfluous, and indeed impossible when expressed in the form (10). We could then stop
here. But at this point it is not clear that as it stands our analysis reproduces all the phenomenology usually obtained
via the standard interpretation. In what follows we show that it is indeed so: It is done simply by proceeding to the
natural step of analyzing the residual and substantialU(1) gauge symmetry of the model, which is very easily done
from the viewpoint of the dressing field method.
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ResidualU(1) symmetry By its very definition ηβ = ηα = η, so it is already a fullyH-gauge invariant scalar field
which then qualifies as an observable. As a rule, the U(1)-residual gauge transformation of the SU(2)-invariant
composite fields depends on theU(1)-gauge transformation of the dressing field u. One finds that

ϕα ⇒ uα = uα̃, where α̃ =

(
α 0
0 α−1

)
.

Therefore, Bα = (bα)uα = buα̃ = α̃−1u−1buα̃+ 1
g α̃
−1(u−1du)α̃+ 1

g α̃
−1dα̃ = α̃−1Bα̃+ 1

g α̃
−1dα̃.Given the decomposition

B = Baσ
a, where σa are the hermitian Pauli matrices and Ba ∈ iR, we have explicitly

B =

(
B3 B1 − iB2

B1 + iB2 −B3

)
=:

(
B3 W−

W+ −B3

)
, and Bα =

B3 + 1
gα
−1dα α−2W−

α2W+ −B3 −
1
gα
−1dα

 .
The fields W± transform tensorially, it is then possible for these two fields to be massive. B3 transforms as aU(1)-
gauge potential, but with a different coupling constant, making it another massless field together with the initial
U(1)-gauge potential a. But consider theU(1)-transformation of the SU(2)-invariant covariant derivative:

Duη = dη + (g′a + gB)η =

(
gW−η

dη − gB3η + g′aη

)
, and (Duη)α =

(
gα−2W−η

dη − gB3η + g′aη

)
.

We see that a U(1)-invariant combination of a and B3 appears. So, considering (a, B3) as a doublet in C2, one is
invited to perform the natural change of variables(

A
Z0

)
=

(
cos θW sin θW

− sin θW cos θW

) (
a
B3

)
=

(
cos θWa + sin θW B3
cos θW B3 − sin θWa

)
,

where cos θW = g/
√

g2 + g′2 and sin θW = g′/
√

g2 + g′2 (θW is known as the Weinberg, or weak mixing, angle). By construc-
tion, the 1-form Z0 is fullyH-gauge invariant, thus observable and potentially massive. Now, still by construction,
Aβ = A and Aα = A + 1

eα
−1dα with coupling constant e = gg′/

√
g2 + g′2. So, A transforms as aU(1)-gauge potential, it

can thus be interpreted as the massless mediator of the electromagnetic interaction whose coupling constant e is the
elementary electric charge.

The electroweak theory (10) is then expressed in terms of the gauge invariant fields η,Z0 and of theU(1)-gauge
fields W±, A:

L(A,W±,Z0, η) = 1
2 Tr(Fu ∧ ∗Fu) + dη ∧ ∗dη − g2η2 W+ ∧ ∗W− − (g2 + g′2)η2 Z0 ∧ ∗Z0 −

(
µ2η2 + λη4

)
vol .

The next natural step is to expand the R+-valued scalar field η around its unique groundstate η0,13 given by
U(η0) = 0, as η = η0 + H where H is the gauge invariant Higgs field. Mass terms for Z0,W± and H depending on
η0 appear from the couplings of the electroweak fields with η and from the latter’s self interaction.14 The theory has
two qualitatively distinct phases. In the phase where µ2 > 0, η0 vanishes and so do all masses. But in the phase
where µ2 < 0, the groundstate is non-vanishing: η0 =

√
− µ2/2λ. The masses of the fields Z0,W± and H are then

mZ0 = η0
√

(g2 + g′2), mW± = η0g and mH = η0
√

2λ. All physical predictions of the electroweak theory are indeed
preserved in our treatment: masses are gained through a phase transition of the unique electroweak vacuum.

In conclusion, notice that this approach to the electroweak model offers a satisfactory reconciliation with
Elitzur’s theorem ([39]), stating that in lattice gauge theory a gauge symmetry cannot be spontaneously broken.

3.2 There Is No SSB In The Electroweak Model And We Long Suspected It

It turns out that several authors were close to formulating such a gauge invariant account of the electroweak theory.
Even before the theory was proposed, in 1965 - barely a year after his celebrated paper - Higgs hinted at a gauge
invariant formulation of the mechanism that ended-up bearing his name by working on an abelian toy model, see
section IV in [40]. In 1966, two years after his own celebrated contribution with Guralnik and Hagen, Kibble [41]
suggested a similar analysis but working on both abelian and non-abelian models. Just before the conclusion of his
paper he writes:

13According to [38] the very meaning of the terminology “spontaneous symmetry breaking” lies in the fact that the manifold of vacua is
not reduced to a point.

14Since A does not couple to η directly it is massless. The two photons decay channel of the scalar boson involves intermediary leptons,
not treated here but whose inclusion in this scheme is straightforward.
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“We note certain characteristic features of our model. It is perfectly possible to describe it without ever
introducing the notion of symmetry breaking, merely by writing down the Lagrangian (66) [written
with gauge invariant variables]. Indeed if the physical world were really described by this model, it is
(66) rather than (64) [i.e, the Lagrangian written in terms of gauge variables] to which we should be led
by experiment.”

With insight it is clear that both Higgs and Kibble were using instances of the dressing field method: see equation
(22) and below (dressing and composite fields) in [40] as well as equations (9)-(59) (dressing fields) and (16)-(61)
(composite fields) in [41].

But then the Glashow-Weinberg-Salam model was proposed the next year, using the BEHGHK15 mechanism
with its original interpretation in terms of SSB. So these important insights from Higgs and Kibble were eclipsed,
and the view of the SSB a real physical phenomenon which had happened in the early universe gained currency. In
a panel discussion during a large conference on the foundation of quantum field theory gathering physicists as well
as historians and philosophers of physics in Boston in 1996, the following exchange took place [42]:

Nick Huggett: [...] what is the mechanism, the dynamics for spontaneous symmetry breaking supposed
to be? [...] My worry is there’s supposed to be a transition from an unbroken symmetry to the [current]
state [...] isn’t this a dynamic evolution, something that happens in the history of the universe? [...]

Sidney Coleman: Yes, typically at high temperature the density matrix has a symmetry which then
disappears as the temperature gets lower. But its also true for ordinary material objects. [...] The
difference between the vacuum and every other quantum mechanical system is that it’s bigger. And
that’s from this viewpoint the only difference. If you understand what happens to a ferromagnet when
you heat it up above the Curie temperature, you’re a long way towards understanding one of the possible
ways it can happen to the vacuum state.

Yet, the treatment of the electroweak model through the bundle reduction theorem - see e.g [38; 43; 44] - already
cast some doubts on the interpretation of the SSB as a dynamical phenomenon. Indeed, thus formulated it appears
that the model can naturally be rewritten on a U(1)-subbundle of the initial U(1) × S U(2)-bundle.

As far as I know the first to give a fully SU(2)-gauge invariant formulation of the electroweak theory were
Fröhlich, Morchio and Strocchi in 1981 ([45]). Their account it actually fully equivalent to ours, but much less
synthetic and systematic: They are working on individual scalar components of all the fields involved! See their
equations (6.1) describing the composites fields (including dressed electron and neutrino). Subsequently, and espe-
cially in the last 10 years, several researchers independently rediscovered the gauge invariant description formulated
essentially as in the above treatment, but without the conceptual clarity given by the dressing field method, as often
the dressing field was mistaken for an element of the gauge group ([46], see in particular equations (6)-(7) and
comment in between) or the interpretive shift was not fully embraced ([47; 48]). Interestingly, the textbook by
Rubakov gives essentially the dressing treatment of the abelian Higgs model, but sticks to the usual treatment of the
electroweak model using the unitary gauge, see [49] chapter 6. Some improvement in conceptual clarity is found in
[50]. But it is Masson and Wallet [51] who first really appreciated the interpretive shift that comes with the invariant
formulation, and as a matter of fact their paper was a precursor to the development of the dressing field method.
Unfortunately it never get published.

In parallel, in the last fifteen years, philosophers of science have questioned the orthodoxy of the SSB in the
electroweak model. Earman first raised the issue in striking terms:

“But what exactly is accomplished [in the BEHGHK mechanism] is hidden behind the veil of gauge
redundancy. The popular presentations use the slogan that the vector field has acquired its mass by
‘eating’ the Higgs field. [...] The popular slogan can be counterbalanced by the cautionary slogan that
neither mass nor any other genuine attribute can be gained by eating descriptive fluff. None of this need
be any concern for practicing physicists who know when they have been presented with a fruitful idea
and are concerned with putting the idea to work. But it is a dereliction of duty for philosophers to repeat
the physicists’ slogans rather than asking what is the content of the reality that lies behind the veil of
gauge.”

15Brout-Englert-Higgs-Guralnik-Hagen-Kibble, to honor all contributors.

11



[52] pp189-190.

Shortly after, in [53], he reiterated that “a genuine property like mass cannot be gained by eating descriptive fluff,
which is just what gauge is. Philosophers of science should be asking the Nozick question: What is the objective
(i.e., gauge invariant) structure of the world corresponding to the gauge theory presented in the Higgs mechanism?”.
Emphasizing Dirac’s constrained Hamiltonian formalism as a systematic way to extract the gauge invariant quanti-
ties of a gauge system he asks:

“What is the upshot of applying this reduction procedure to the Higgs model and then quantizing the
resulting unconstrained Hamiltonian system? In particular, what is the fate of spontaneous symmetry
breaking? To my knowledge the application has not been carried out. [...]

While there are too many what-ifs in this exercise to allow any firm conclusions to be drawn, it does
suffice to plant the suspicion that when the veil of gauge is lifted, what is revealed is that the Higgs
mechanism has worked its magic of suppressing zero mass modes and giving particles their masses
by quashing spontaneous symmetry breaking. However, confirming the suspicion or putting it to rest
require detailed calculations, not philosophizing.”

[52] pp190-191.

Since then, several authors have raised to the challenge, noticing or rediscovering for themselves the invariant
formulation ([54–58]) and all essentially concluded that gauge SSB is indeed a dispensable notion. Since they rely to
some significant degree on the dressing field method, the considerations presented in section 3.1 fully confirm their
conclusion in synthesizing the core technical argument, and vindicates Earman’s suspicion. Furthermore, it clearly
places the specific question of gauge SSB in the electroweak model within the broader problem of distinguishing
substantial from artificial gauge symmetries.

4 Closing statement, open questions

We have seen that if it is usually recognized that an important demarcation criterion between artificial and substantial
symmetries is that the former can be erased without forsaking the locality of a theory while this is not so for the
latter, in practice the distinction is not so readily recognized. The dressing field method is a general tool that
allows to systematically implement that criterion. If a gauge theory contains a suitable local dressing field, it can be
rewritten in terms of local gauge invariant composite fields. Nothing is then lost in erasing the gauge symmetry, so
one can argue that it was artificial, stemming from an uneconomical - a “non-Ockhamized” - choice of variables.
If on the contrary a gauge theory contains only non-local dressing fields, then its gauge symmetry is erased at the
price of a rewriting in terms of non-local gauge invariant variables. One then conclude that the gauge symmetry of
the theory is substantial, and may signal the existence of non-local physical phenomena (as the analysis of the AB
effect in spinorial EM exemplifies). Furthermore, the dressing field method highlights the - subtle or obvious - fact
that the verdict on the nature of a gauge symmetry, and therefore the available interpretations of the theory, crucially
depend on the field content of the theory. Our discussion of the AB effect illustrates that point. In particular,
the treatment of the electroweak model via the dressing field method shows that the SU(2) gauge symmetry is
artificial, canceling the need for the notion of gauge SSB. Only the residual U(1) gauge symmetry is substantial.
Provocatively, one could say that the substantial gauge group of the Standard Model of particle physics is therefore
notU(1) × SU(2) × SU(3), but merelyU(1) × SU(3).

It is the job of both mathematical physicists and philosophers of physics to prune a theory from any superfluous
notion that pertains to the context of discovery so as to reveal its core conceptual and technical structure, and to clear
the horizon of its context of justification. Here we conclude that the notion of gauge SSB pertains to the context
of discovery of the electroweak unification: It has historical interest and has been a valuable heuristic guide to the
correct theory, but it cannot belong to the context of justification.

A puzzling facts remains: How are we to understand that the artificial SU(2) formulation of the model - such
as suggested by the gauge principle - is structurally much more simple than the substantialU(1) - and phenomeno-
logically clearer - formulation? Let us continue the quotation from Kibble [41]:
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“Indeed if the physical world were really described by this model, it is (66) [the Lagrangian written with
gauge-invariant variables] rather than (64) [the Lagrangian exhibiting a gauge symmetry] to which we
should be led by experiment. The only advantage of (64) is that it is easier to understand the appearance
of an exact symmetry than of an approximate one. Experimentally, we would discover the existence of a
set of four vector bosons with different masses but whose interactions exhibited a remarkable degree of
symmetry. We would also discover a pair of scalar particles forming an apparently incomplete multiplet
under the group describing this symmetry. In such circumstances it would surely be regarded as a
considerable advance if we could recast the theory into a form described by the symmetric Lagrangian
(64).”

But given that the gauge symmetry is in this circumstance artificial, it must me clarified in what respect it is an
advance. Furthermore, if SU(2) is artificial and as such should not tell us anything important, it is a remarkable feat
that the model guessed from it eventually had such predictive power.16 Are we to believe that the distinction artificial
vs substantial gauge symmetry does not capture all important theoretical differences and must be reconsidered?

I find this unlikely. My guess is that it remains to determine what constitutes the proper context of justification
for the electroweak theory. The gauge principle associated with the substantial U(1)-symmetry is clearly insuffi-
cient. And if a phenomenological a posteriori reconstruction is possible, it does not illuminates the key ideas or
principles that might explain the structure of the theory. Actually the question stands: Is there a principle that would
make the theory something other than a raw fact? Renormalizability of the quantum theory may come to mind as a
powerful constraining factor, but is it to be elevated to such a high position in the explicative hierarchy? Effective
field theory physicists would disagree. Interestingly, it can be shown that the requirement that vector fields inter-
acting with spinor and scalar fields have spin 1 leads naturally to the group structure of interactions characteristic
of Yang-Mills theories ([59–61]). For massless vector fields this requirement is equivalent to imposing a gauge
symmetry. One could then consider that it is the notion that weak fields have spin 1 that explains the SU(2)-gauge
structure of the electroweak model, rather than postulating the gauge structure as explaining the weak interactions
in terms of spin 1 fields. This would partly alleviate the puzzlement on why an artificial SU(2) symmetry turned
out to be a good heuristic guide: It flows “accidentally” from a reasonable physical “spin 1 principle”. But then, this
principle produces Lagrangians in the “undressed” form displaying both artificial and substantial gauge symmetries,
and is therefore blind to the difference. It is still surprising that a principle producing directly the empirically clear
U(1)-substantial form of the theory is elusive.

It is admitted that the Standard Model should be a low energy limit of a more fundamental theory. The governing
principle we search for may be part of the new framework within which this fundamental theory is expressed.
Could it be a new geometric framework, such as non-commutative geometry or transitive Lie algebroids? Could
it be a firmer mathematical foundation for quantum field theory, such as the algebraic formulation or category
theory? Reversing the logic, it may be that pondering on what explains the form of the electroweak unification
could provide hints on this as yet unidentified framework and on what lies beyond the Standard Model. These
questions can be genuinely explored only if the orthodoxy of SSB, a context of justification turned into a common
wisdom, is challenged. Philosopher of physics have spearheaded that challenge in the past fifteen years. It is to be
hoped that the community of physicists catches up quickly.
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