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Abstract

Scientists and Bayesian statisticians often study hypotheses that

they know to be false. This creates an interpretive problem because

the Bayesian probability assigned to a hypothesis is typically inter-

preted as the probability that the hypothesis is true. I argue that

solving the interpretive problem requires coming up with a new se-

mantics for Bayesian inference. I present and contrast two solutions

to the interpretive problem, both of which involve giving a new inter-

pretation of probability. I argue that both of these new interpretations

of Bayesian inference have the same advantages that the standard in-

terpretation has, but that they have the added benefit of being ap-

plicable in a wider set of circumstances. I furthermore show that the

two new interpretations are inter-translatable and I explore the con-

ditions under which they are co-extensive with the standard Bayesian

interpretation. Finally, I argue that the solutions to the interpretive

problem support the claim that there is pervasive pragmatic encroach-

ment on whether a given Bayesian probability assignment is rational.1

1This paper is forthcoming in Philosophy of Science. Thanks to audiences at NTU,
University of Wisconsin–Madison, and the 2016 meeting for the Philosophy of Science
Association. Thanks, in particular, to Kenny Easwaran, Malcolm Forster, Elliott Sober,
Jan Sprenger, Mike Titelbaum, and the referees for Philosophy of Science.
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1 Introduction

Bayesianism is one of the most influential contemporary frameworks for sta-

tistical inference, but from a philosophical point of view Bayesian inference

faces several di�culties. One particularly serious problem is that statisti-

cians who use Bayesian methods often assign non-zero probabilities over sets

of hypotheses that they know are false; yet, as I show in the next section

of the paper, this practice is inconsistent with the interpretation of prob-

ability that is standardly assumed by Bayesians. Thus there is a tension

between the standard Bayesian interpretation of probability and the way the

Bayesian framework is often applied, which I will refer to as the “interpretive

problem.”

2

Although the problem is primarily interpretive and philosophical, it also

has practical consequences. According to most Bayesians, probability dis-

tributions ought to incorporate relevant background information – indeed,

the fact that Bayesians can do this in a principled way is often touted as a

major advantage that Bayesianism has over rival statistical frameworks, such

as frequentism. However, in cases where the standard Bayesian interpreta-

tion of probability fails, it’s unclear how background information should be

taken into account in a principled way. Probably in part for this reason, so-

called “default priors” that do not even attempt to take into account relevant

background information have gained prominence in recent years. But default

priors have their own problems (De Heide and Grunwald, 2018). Hence, solv-

ing the interpretive problem is not just philosophically interesting; it is also

of some practical importance.

I will argue that the only satisfactory solutions to the problem involve

reinterpreting what it means to assign a probability to a hypothesis. Accord-

2The problem has been noted in the past, e.g. by Box (1980), Bernardo and Smith
(1994), Forster and Sober (1994), Forster (1995), Key et al. (1999), Sha↵er (2001),
Sprenger (2009), Gelman and Shalizi (2013), Walker (2013), and Sprenger (2017) – indeed,
Sprenger calls the problem the “scandal of Bayesianism”– but in general the seriousness
of the issue seems to be under-appreciated.
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ing to one solution (originally proposed by Sprenger (2017)), probabilities are

interpreted counterfactually; according to a second solution, probabilities are

interpreted as what I will refer to as “verisimilitude probabilities.” Much of

the paper will be concerned with exploring the features of these two interpre-

tations. In particular, I will argue that the verisimilitude and counterfactual

interpretations have the same nice features that the standard interpretation

has, but that they have the added benefit of being sensible and useful in

situations in which the standard interpretation is not. In particular, the

verisimilitude and counterfactual interpretations of probability enable us to

incorporate background information in probability distributions in a princi-

pled manner, even when all the hypotheses under consideration are known to

be false. I will also show that the two interpretations are inter-translatable

and that they are therefore – in an intuitive sense – equivalent, and I will

explore the relationship between the verisimilitude and counterfactual inter-

pretations, on the one hand, and the standard interpretation on the other.

Although the interpretive problem arises in applied statistics, both the

verisimilitude interpretation and the counterfactual interpretation of prob-

ability are interesting from an epistemological point of view. In particular,

both interpretations have the feature that whether a given Bayesian proba-

bility distribution is rational is partly influenced by pragmatic factors. As I

argue in Section 10, there are good reasons for suspecting that all solutions

of the interpretive problem will have this feature. Thus, I argue, there is an

interesting – and unavoidable – form of pragmatic encroachment in Bayesian

inference.

2 An Abstract Characterization of the Inter-

pretive Problem

The purpose of this section is go give a brief introduction to the fundamentals

of Bayesian statistical inference and to provide an abstract characterization
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of the interpretive problem; in the next section, I show how the problem

arises in practice.

The basic objects of study in Bayesian statistical inference are statistical

models. Given a set of candidate hypotheses indexed by a parameter, ✓ in ⇥,

and given some particular context in which the possible observations or out-

comes are x1, x2, etc. in X, and given a corpus of background knowledge or

background assumptions K, a statistical model is a set of conditional proba-

bility (density) distributions,

3 pK(x|✓), that jointly specify the probability of

each possible x in X given each possible ✓ in ⇥. Given a statistical model or

a set of statistical models, Bayesians do inference by following a three-step

procedure:

In the first step, a probability is assigned to each ✓ 2 ⇥; these probabilities

are supposed to be assigned before looking at the data and are therefore

known as “prior” probabilities. If there are multiple candidate statistical

models, then all of the models must be assigned prior probabilities as well.

The requirement that the numbers assigned to parameters be probabilities

rather than just arbitrary real numbers means that the assignment must

satisfy the following constraints:

Standard probability axioms Suppose ⇥ indexes a set of hy-

potheses {✓1, ✓2, . . . , ✓n} considered by some agent, and let K

represent a corpus of background knowledge. Then the distribu-

tion pK over ⇥ satisfies the probability axioms if and only if:

1S. pK(_✓i) = 1, whenever K entails that at least one

hypothesis in the disjunction of hypotheses indexed by

_✓i is true.
2S. pK(✓i) � 0 for all ✓i in ⇥.

3From now on, I will for simplicity simply use “probability” although in practice prob-
ability densities are more common.
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3S. pK(
W

✓i) =

P
pK(✓i), whenever K entails that at

most one of the hypotheses in the disjunction of hy-

potheses indexed by _✓i is true.

Bayesians divide over how, exactly, pK should be interpreted. Subjec-

tive Bayesians interpret pK as the degrees of belief of some particular agent

and K as that particular agent’s background knowledge, whereas objective

Bayesians typically interpret pK as representing a logical degree of support

and K as representing a collection of “objective” background information (or

intersubjectively shared background knowledge). For our purposes, the dif-

ferences between subjective and objective Bayesians will not be important.

The more important fact, from our point of view, is that both subjective

and objective Bayesians agree that p(✓) represents a probability that the

hypothesis indexed by ✓ is true.

In the second step of Bayesian inference, data x are collected and the

“likelihood” of each hypothesis is calculated. The likelihood of ✓ is the prob-

ability that ✓ assigns to the data, pK(x|✓).
In the third and final step, the posterior probability of each parameter and

each statistical model is calculated by combining the prior and the likelihood

of each hypothesis using Bayes’s theorem, pK(✓|x) = pK(x|✓) ⇤ pK(✓)/pK(x).
In what follows, I will refer to the above three-step procedure as “standard

Bayesian inference.” Although I think each of the three steps of standard

Bayesian inference faces di�culties, in this paper I will focus on the first step.

What I will refer to as the “interpretive problem” arises whenever scientists

assign non-zero probabilities to hypotheses that they know to be false. In

such situations, they will, in fact, be violating the probability axioms.

To see why, let’s suppose, for simplicity (but without loss of generality),

that the parameter ✓ can take a finite number of possible values ✓1, ✓2, . . .,

✓m. Now suppose we know that each of the hypotheses under consideration

is false, i.e. K entails that ✓i is false, for each i. Then K entails that ¬✓i
is true, for each i. 1S then implies that we must – on pain of violating the

5



probability axioms – assign a probability of 1 to ¬✓i. Finally, axioms 2S and

3S jointly entail that we must must assign a probability of 0 to ✓i for every

i. Hence, if we nonetheless assign non-zero numbers to the various possible

values of ✓, we will be violating the standard probability axioms.

4

In the next section, I will argue that scientists often know that all of the

hypotheses they consider are false.

3 The Interpretive Problem in Practice

Scientists are often interested in studying the functional relationship be-

tween multiple quantities. Statisticians call this type of problem “regression

analysis.” An example of a regression problem that is of obvious practical

importance

5
concerns the relationship between minimal pressure and maxi-

mal windspeed in tropical storms. Let X represent the minimal pressure of

some storm and let Y represent the maximal windspeed of the storm; then

we would like to know the true functional dependence of Y on X. This rela-

tionship is unknown and probably quite complex. However, various idealized

assumptions (see Kna↵ and Zehr (2007)) justify the following model:

Y = ↵(1010�X)

n
+ ✏ (3.1)

Here, ✏, n, and ↵ are all parameters that must be estimated from the

data.

6
Each triple of values for ↵, ✏, and n picks out a given hypothesis

about the true relationship between X and Y . Importantly, the fact that the

4A referee points out that one way to undercut this argument is to insist that the
probability distribution should only be based on some proper subset of K. This is correct,
but then the question arises of which proper subpart of K it is legitimate to use. The
verisimilitude and counterfactual interpretations that I o↵er later in the paper provide
principled answers to this question.

5Discussed, for example, by Choi et al. (2016).
6Strictly speaking, ✏ itself is not a parameter; it is an error term, which in general will

have an associated parameter d that will need to be estimated. I will gloss over those
nuances here.
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model is based on idealized assumptions (i.e. assumptions that are known to

be violated in practice—indeed physically impossible) implies that the model

in fact is known to be false. That is, the true relationship between Y and X

does not belong to the class of hypotheses picked out by the parameters in

the model. Hence, every hypothesis picked out by any triple of values for ↵,

n, and ✏ is also known to be false, even before any evidence is collected.

It’s worth emphasizing that this example is by no means unrepresentative.

It is almost invariably the case in regression problems that the hypotheses

under consideration will be restricted to very simple functional relationships,

such as the set of lines, parabolas, exponentials, etc. Most functional relation-

ships in the world cannot realistically be expected to belong to one of these

sets of simple functional relationships, and indeed the choice of functional

class is usually justified on the basis of highly idealized scientific assump-

tions, if it is justified at all. Hence, scientists will generally know that all the

functional relationships they consider are false. By the argument at the end

of the preceding section, the probability axioms imply that scientists ought

to assign a probability of 0 to all of their hypotheses. But that is of course

not what they do, and for good reason because in the Bayesian framework

assigning a hypothesis a probability of 0 is tantamount to excluding it from

further consideration. If scientists were to assign a probability of 0 to all

functional relationships they know to be false, they would in e↵ect rule out

all of their hypotheses from the get-go.

Bayesian phylogenetics is an example of another major area of statistical

inference where scientists generally know that the hypotheses they consider

are false. Phylogeneticists in both biology and linguistics use trees to rep-

resent family relationships between species or between languages. In both

cases, the trees investigated omit known relationships and introduce false

idealizations (see, e.g. O’Malley et al. (2010), Heggarty et al. (2010), and

Velasco (2012)). For example, a tree phylogeny for a language family is

premised on the (false) idea that languages bifurcate instantaneously and

7



are forever separated thereafter. Again, if Bayesian phylogeneticists took se-

riously the standard probability axioms, then they would have to assign all

of their hypotheses a prior probability of 0. But that is not what they do.

The widespread practice of assigning non-zero prior probabilities to hy-

potheses that are obviously false is what leads to the interpretive problem,

which may be phrased in the form of a question: what does it mean to assign

a model or hypothesis that is known to be false a non-zero probability?

4 Unsuccessful Solutions to the Interpretive

Problem

One response to the interpretive problem that initially strikes many philoso-

phers as attractive is to try to change the algebra over which the probability

function p ranges. For example, some might be tempted to consider the al-

gebra generated by the associated propositions, <✓i is the best hypothesis>,

for each ✓i, or something similar. The idea is that even if ✓i must be assigned

a probability of 0 (because it is known to be false), the standard probability

axioms allow us to assign <✓i is the best hypothesis> a non-zero probability.

However, this proposal faces several di�culties. The most immediate

problem is the fact that scientists do not, in fact, consider hypotheses of

the form <✓i is the best hypothesis>. And for good reason, as we will soon

see. The problem is that whereas a parameter ✓ in a statistical model will

index a set of probability distributions each of which entails probabilities

for the various possible observations, an expression such as <✓i is the best

hypothesis> does not. For example, in the example in Section 3, ↵ = 1

picks out a particular class of hypotheses that make probabilistic predictions

about the possible observations;

7
but a proposition such as <↵ = 1 is the

best hypothesis> is not part of any statistical model and does not make any

probabilistic predictions.

7In fact, each value of ↵ picks out a class of hypotheses that is itself a statistical model.
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To see the problem from a di↵erent perspective, consider Bayes’s formula:

pK(✓|x) =
pK(x|✓) ⇤ pK(✓)

pK(x)
(4.1)

Clearly, the likelihood and the prior have to range over the same set

of hypotheses in order for Bayes’s formula to be applicable. If we change

the algebra of hypotheses so that we instead assign probabilities to proposi-

tions of the form <✓i is the best hypothesis>, then we may assign non-zero

prior probabilities to our hypotheses without violating the probability ax-

ioms. However, now the likelihoods will be of the form pK(x| <✓i is the best

hypothesis>), but <✓i is the best hypothesis> does not entail any proba-

bilistic prediction for x, so it’s hard to see how we are to come up with a

principled estimate for pK(x| <✓i is the best hypothesis>).

8

There is another, related, reason why we cannot just change the algebra

over which the probability distribution ranges. The problem is that in replac-

ing ✓i with <✓i is the best hypothesis>, important evidential relationships

between the hypotheses and evidence will generally be lost. An important

special case is parameter estimation with exchangeable evidence,

9
where a

theorem due to de Finetti

10
shows that there will be a probability model

such that the parameters of the model render the evidence conditionally in-

8A similar solution has recently been proposed in the statistics literature. Walker (2013)
suggests that in cases where no hypothesis in the model indexed by ✓ is true, we ought
to construe the goal of Bayesian analysis as finding the hypothesis ✓

⇤ that minimizes
statistical divergence from the true data-generating distribution (a similar proposal is
adopted by Bissiri et al. (2016)). Hence the prior distribution ranges over the possible
values of ✓⇤. There is a problem, however: the parameter ✓

⇤ and the parameter ✓ range
over distinct hypotheses; ✓ ranges over hypotheses in a statistical model whereas ✓⇤ ranges
over hypotheses of the following form, where S is a statistical divergence and g is the truth:
✓

⇤ = min
✓2⇥ S(✓, g). Hence the likelihood, which Walker derives from the statistical

model, is of the form p(x|✓), whereas the prior is of the form p(✓⇤). But p(x|✓) and
p(✓⇤) cannot be combined using Bayes’s formula since they range over di↵erent sets of
hypotheses. To be fair, Walker (2013) is sensitive to the problem.

9Roughly speaking, evidence is exchangeable if the probability of receiving any given
sequence of evidence is not dependent on the order in which the evidence is received

10Proven in a more general form by Hewitt and Savage (1955).
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dependent. Hence, when the evidence is exchangeable, statisticians have an

imperative to construct models that render the evidence conditionally in-

dependent. But <✓i is the best hypothesis> will in general not render the

evidence conditionally independent whenever ✓i does.

As a concrete example, consider coin tossing. Coin tosses are clearly

exchangeable (e.g. “Heads, Tails, Heads” is as probable as “Heads, Heads,

Tails”), so de Finetti’s theorem implies that there exists a model with a pa-

rameter that renders the coin tosses conditionally independent. In fact, there

is a well known model that does this, namely the model that posits a param-

eter, Bias, that represents the coin’s underlying propensity to land Heads.

Each possible bias of the coin renders all future coin tosses conditionally in-

dependent.

11
The coin bias model is therefore an adequate statistical model

for coin tossing in the sense that it captures the conditional independence

relations between evidence and hypotheses that de Finetti’s theorem says it’s

possible to capture. However, note that there is no reason to think that a

proposition like <Bias = 0.3 is the best value for the coin’s propensity> will

likewise render the coin tosses conditionally independent. Hence, we cannot

simply replace the Bias parameter with a di↵erent parameter without risk-

ing losing important relationships that hold between the evidence and the

hypotheses.

The same points holds more generally: statisticians (rationally) prefer

hypotheses that (1) entail probabilities for the possible evidence and (2)

have suitably informative connections with the evidence. But a proposition

such as <✓i is the best hypothesis> will generally not satisfy either (1) or

(2). And that is probably why such hypotheses do not occur in statistical

practice.

Hence, avoiding the interpretive problem by changing the algebra over

11For example,

p(Heads on second toss|Bias = 0.3&Tails on first toss) = p(Heads on second toss|Bias = 0.3).
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which p ranges is not a workable solution to the interpretive problem. Other

ways of avoiding the interpretive problem also fail to deliver. For exam-

ple, Morey et al. (2013) assert that “...scientific models, including statistical

models, are neither true nor false” (p. 71). They then recommend assigning

odds rather than probabilities to models because a “Bayesian who employs

odds is silent on whether or not she is in possession of the true model, and,

in fact, need not acknowledge the existence of a true model at all” (p. 71).

It is, however, unclear how using odds rather than probabilities is supposed

to avoid the interpretive problem. And it is not clear how refusing to assign

truth values to models avoids the problem either. What does it mean to say

that your odds are 5 to 1 in a model that is neither true nor false as against

another model that is also neither true nor false? The interpretive problem

seems to be just as severe here as before.

We have to face the interpretive problem head on, and if we are to face

interpretive problem head on, then we have to face up to the fact that it

really is an interpretive problem—the problem is that the standard proba-

bility axioms do not fit with how the Bayesian machinery is often applied

in practice. To solve the problem, it follows that we will have to come up

with a di↵erent interpretation of the Bayesian framework. For the remain-

der of the paper, I will consider two solutions to the interpretive problem.

One solution involves interpreting conditional probabilities counterfactually

rather than indicatively, while the other interpretation involves interpreting

probabilities as what I will refer to as a “verisimilitude probabilities.” As

we will see, each interpretation necessitates a new version of the probability

axioms.

5 Verisimilitude Probabilities

In cases where all the hypotheses under consideration are known to be false,

the goal of Bayesian inference cannot reasonably be construed as discovering
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the hypothesis that most probably is true. A natural proposal is that the

goal in such cases changes to discovering which hypothesis is – in some sense

– closest to the truth. Indeed, scientific realists have long held that the real

(achievable) goal of inference is closeness to the truth rather than truth itself.

The idea that the goal of inference is to identify the ✓ that is closest

to the truth leads to a natural reinterpretation of probability. Instead of

interpreting pK(✓) as the probability that ✓ is true, we interpret pK(✓) as the

probability that ✓ is closest to the truth out of the hypotheses in ⇥. I will

call this interpretation of probability the “verisimilitude interpretation.”

The reader may wonder how the verisimilitude interpretation di↵ers from

the earlier rejected suggestion of changing the algebra of hypotheses. Does

the verisimilitude interpretation not just say that we ought to assign prob-

abilities to propositions of the form <✓ is closest to the truth> rather than

to ✓ itself? The answer is no. According to the verisimilitude interpretation,

pK(✓) is a probability that is assigned to ✓ itself, not to <✓ is closest to the

truth>. Thus, according to the verisimilitude interpretation:

pK(✓) = the probability that ✓ is closest to the truth out of the

hypotheses in ⇥.

In other words, according to the the verisimilitude interpretation, a prob-

ability assignment to ✓ represents a complex epistemic attitude taken towards

✓; it does not represent a simple attitude taken towards a complex proposi-

tion.

12
This is important, because as we saw in the previous section, avoiding

the interpretive problem by changing the algebra of propositions does not

work.

So far the discussion of the verisimilitude interpretation has proceeded

on an informal and intuitive level. To make the verisimilitude interpretation

precise, more needs to be said about verisimilitude. The study of verisimil-

itude was initiated by Popper (1963) and has by now accumulated a large

12
Cf. the point made by Moss (2018), although the the lesson drawn here is di↵erent.
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literature.

13
The most influential contemporary approach in the study of

verisimilitude – known in the literature as the “similarity approach” – un-

derstands verisimilitude as a particular kind of approximation. To say that

something is a good approximation of something else is to say that the two

things are similar in some relevant respect. Thus, to say that a hypothe-

sis is close to the truth is to say that the hypothesis is similar to the true

hypothesis.

This idea can be formalized if we suppose that there is a (context-appropriate

14
)

verisimilitude measure, v, that ranks hypotheses by how similar they are to

the true hypothesis. If we presume that such functions are available, we can

say that ✓1 is closer to the truth than ✓2 if and only if v(✓1) > v(✓2). Here, we

can be quite liberal in what we count as a “verisimilitude measure,” though

as a minimal requirement it is reasonable to suppose that v be maximized

by the true hypothesis, if the true hypothesis is one of the hypotheses un-

der consideration. Later in the paper I will suggest a simple verisimilitude

measure that makes sense in the earlier example concerning the relationship

between windspeed and pressure.

Given a measure of verisimilitude, v, I will use pvK with a v superscript

to indicate that the intended interpretation of pvK is the verisimilitude inter-

pretation with measure v. That is:

pvK(✓) = the probability that ✓ maximizes v.

Note that the verisimilitude interpretation is consistent with either a sub-

jective or objective Bayesian philosophy. On a subjective Bayesian reading,

13See Niiniluoto (1998) for a survey. Some of this literature has dealt with relationships
between verisimilitude and Bayesianism (e.g. Rosenkrantz (1980), Niiniluoto (1986), Ni-
iniluoto (1987), Festa (1993), Cevolani et al. (2010) and Oddie (ming)). However, no one
in the verisimilitude literature has – to my knowledge – discussed the interpretive problem
for Bayesian statistical inference.

14In general I agree with Northcott (2013) that there is little reason to assume a priori
that there will be a single distance measure that appropriately measures approximate
truth in all contexts.
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pvK(✓) would be interpreted as some particular agent’s epistemic state, K as

that agent’s background knowledge, and v as the agent’s preferred verisimil-

itude measure. On an objective reading, pvK(✓) would instead be interpreted

as expressing a logical probability, K as some objectively shared background

knowledge, and v as a verisimilitude measure that is “objectively proper”

given the purpose at hand.

Moving from the standard interpretation of probability to the verisimili-

tude interpretation necessitates a suitable change in the probability axioms.

Here is the verisimilitude version of the probability axioms:

Verisimilitude Probability Axioms Suppose ⇥ indexes a set

of hypotheses {✓1, ✓2, . . . , ✓n}, let v be a verisimilitude measure

defined over the hypotheses indexed by ⇥, and let K be a corpus

of background knowledge. Then a distribution p over ⇥ satisfies

the verisimilitude probability axioms with respect to v if and only

if:

1V. pvK(_✓i) = 1, whenever K entails that at least one

hypothesis in the disjunction of hypotheses indexed by

_✓i maximizes v.

2V. pvK(✓i) � 0 for all ✓i in ⇥.

3V. pvK(
W

✓i) =
P

pvK(✓i), whenever K entails that at

most one of the hypotheses in the disjunction of hy-

potheses indexed by _✓i maximizes v.

It is clear that by adopting the verisimilitude probability axioms we avoid

the interpretive problem, because the fact that K entails that all the hy-

potheses under consideration are false does not mean that K will entail that

none of the hypotheses under consideration will be closest to the truth. On

the contrary, under commonly satisfied conditions, e.g. when the hypothesis

space is closed and bounded and v is continuous, then one of the hypotheses

will be mathematically guaranteed to maximize v.
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Note that, on the verisimilitude interpretation, the probability assigned

to a hypothesis is relative to a given way of measuring verisimilitude. Con-

sequently, in contrast to what is the case in standard Bayesian analysis, the

verisimilitude prior probability of a hypothesis does not simply reflect back-

ground information. Instead, on the verisimilitude interpretation, the prior

probability distribution is fundamentally goal-relative; its functional role in

statistical analysis is to assign less weight to hypotheses that are likely to

be further from the truth, given one’s background knowledge and given the

verisimilitude measure of interest.

6 The Verisimilitude Interpretation in Prac-

tice

The main purpose of this section is to illustrate, through an example, the

abstract remarks made at the end of the previous section. More precisely,

the goal is to show how it’s possible to combine background information

with a verisimilitude measure in a principled manner in order to derive ra-

tional constraints on verisimilitude probability distributions in a way that is

very analogous to how background information leads to rational constraints

on standard probability distributions. Thus, verisimilitude prior probability

functions can play a role in inference that is very similar to the role played

by standard prior probability functions in standard Bayesian inference. On

the other hand, the example will also serve to show how pragmatic factors

may influence what the rational constraints on the prior probability function

turn out to be, and will thereby prepare the way for the argument in Section

10.

In order to get a sense of how this will work, it is helpful to first look at

a simple example of how background knowledge can be incorporated in the

prior distribution in a simple case where there is no interpretive problem.

Suppose we are estimating the mass of a small cup of water, and suppose

15



we model the outcome of the measurement as a likelihood function pK(x|m),

where x is the outcome of the measurement and m is a possible value of the

cup’s mass. The traditional frequentist (non-Bayesian) way of estimating

the value of m would be to take as our best estimate the value of m that

maximizes the probability of x—this is the maximum likelihood estimate.

From a Bayesian point of view, maximum likelihood estimation is clearly

suboptimal in this case because it fails to take into account background

knowledge that we have about the reasonable masses of cups of water.

In particular we know that m cannot be any negative value (the mass of

an object cannot be a negative number). Furthermore, we know that a small

cup of water will not weigh more than, say, 1kg. Therefore, at a minimum,

our background knowledge entails that m lies somewhere in the interval [0, 1].

The standard probability axioms, 1S-3S, then entail that we ought to assign

every value of m that lies outside of this interval a probability of 0. From

a Bayesian point of view, this prior probability function can be expected to

improve upon maximum likelihood estimation because it restricts the anal-

ysis to an area of the parameter space that is consistent with background

knowledge. I will ague that verisimilitude probability distributions can play

a similar role in cases where we face the interpretive problem.

Consider again the example concerning the relationship between baro-

metric pressure (X) and maximum windspeed (Y ). Let’s use f to denote

the true (unknown) functional dependency of Y on X. Now, suppose one of

the things we know about the relationship between barometric pressure and

windspeed is that changes in maximum windspeed are relatively insensitive

to changes in barometric pressure, and suppose we also know the amount of

maximal windspeed associated with the minimal pressure of interest.

So far, this is background knowledge about the actual, unknown function

relating barometric pressure and windspeed. What consequences does this

background knowledge about f have for inferences about the hypothesis set

actually under consideration? To simplify the example somewhat, suppose

16



True%curve%
v(L)%=%max%distance%

Figure 1: A measure of closeness to the truth

that rather than the hypotheses in (3.1), the set of hypotheses we are consid-

ering consists of lines. Suppose, moreover, that we know that f is not a line.

Can we use our background knowledge about f to discriminate between the

various false lines in a principled way? The answer is yes, but how our back-

ground knowledge a↵ects the inferences we are entitled to make will depend

on how we measure verisimilitude.

Suppose that our ultimate goal is to build a structure that will be able

to withstand strong winds.

15
In that case, it is important that the maximal

error we make when we estimate windspeed be as small as possible. In other

words, Figure 1 is a natural measure of closeness to the truth given our goal;

this is not to say that this is an appropriate way to measure closeness to the

truth given other goals.

Mathematically, the verisimilitude of some straight line L is given by

the formula vMax(L) = �Maxx2[a,b]|t(x)� L(x)|, where [a, b] is the range of

relevant pressures. Given that we use v to measure verisimilitude, and given

15I thank A for suggesting this example to me.
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that we have restricted the analysis to the class of lines, the more immediate

goal is to identify lines that are close to the truth according to v.

It is in fact easy to show that, under the given conditions, some (identifi-

able) lines will be further from the truth than others, given the way verisimil-

itude is measured and given our background knowledge—in particular, our

background knowledge entails that certain lines that have a particularly steep

slope cannot possibly be closest to the truth.

16

Hence, the verisimilitude axioms, 1V-3V, entail that such lines ought to

be assigned a probability of 0.

However, crucially, if closeness to the truth is measured in a di↵erent

way, we do not necessarily get the same rational requirements on the prior

distribution. Suppose, for example, that we are instead very concerned with

the minimal rather than maximal distance of each line from the truth. That

is, we use wMin(L) = �Minx2[a,b]|t(x)� L(x)| to measure the verisimilitude

of each line (see Figure 2).

According to w, any line that intersects f will be maximally close to the

truth, and so our goal now is to identify the lines that intersect f . Clearly,

lines that have a very steep slope will stand a better chance of intersecting f

than lines that do not, and thus if we use w to measure verisimilitude, then

it is rational to use a prior distribution that assigns more probability to lines

that have a steep slope than to lines that have a more gradual slope; this

is opposite of the result we get when we use the verisimilitude measure in

16For reasons of space, I have not included a complete demonstration of this fact, but
here is a sketch: our background knowledge that changes in maximum windspeed are
relatively insensitive to variations in barometric pressure may be formalized as knowledge
that the derivative of f is bounded by some known interval, (a, b). Suppose, moreover,
that the range of relevant pressures is contained in some known interval (x1, x2), and that
we know that f(x1) = w. Then it is possible to show that if L⇤(x) = ↵x + � is a line
such that L

⇤(x1) > w and ↵ > b, then there is another line L

1(x) = ↵

1
x + �

1 such that
L

1(x1) < w and ↵

1 2 (a, b) such that L

1 is closer to the truth than L

⇤, according to
the verisimilitude measure v(L) = �Max

x2(x1,x2)|f(x) � L(x)|. The upshot is that our
background knowledge entails that L⇤ cannot possibly be closest to the truth. L⇤ should
therefore be assigned a probability of 0.
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Figure 2: A di↵erent measure of closeness to the truth

Figure 1.

In general, how background knowledge interacts with a given measure

of verisimilitude in order to induce rational requirements on the prior dis-

tribution is a subtle and complex question. My goal in this section is not,

however, to demonstrate in full generality how to best translate background

information into reasonable requirements on prior distributions over sets of

known false hypotheses. My goal is rather to show how, in principle, back-

ground knowledge can be used to discriminate between multiple false hy-

potheses, provided we have a verisimilitude measure. As we have seen, the

way verisimilitude is measured plays a crucial role in shaping the rational

constraints on the prior; moreover, we have also seen that the way verisimil-

itude ought to be measured is reasonably influenced by the goals that we

have.

It is worth emphasizing, once again, that regardless of how verisimili-

tude is measured, the prior probability distribution ranges over exactly the

same set of hypotheses—in this case, the set of lines. The set of hypotheses

does not change when we change the verisimilitude measure; rather, on the

19



verisimilitude interpretation, it is the probability function pvK that changes.

According to standard Bayesianism, the probability one should assign to any

particular hypothesis is independent of one’s goals, but this is no longer true

for verisimilitude probabilities. Instead, the verisimilitude probability that it

is rational to assign to a hypothesis is in part influenced by how verisimilitude

is measured.

7 The Counterfactual Interpretation of Prob-

ability

The verisimilitude interpretation has the feature that the prior probability

distribution incorporates not just background information, but also what one

hopes to accomplish, formalized by way of a verisimilitude measure. Con-

sequently, the verisimilitude probability that it is rational to assign to a

hypothesis will be influenced by how verisimilitude is measured, which in

turn will generally be influenced by pragmatic factors. In a very recent pa-

per, Jan Sprenger (2017) proposes an alternative solution the interpretive

problem. Sprenger’s solution also involves reinterpreting the probability ax-

ioms, but he o↵ers a reinterpretation that appears to be quite di↵erent from

the verisimilitude interpretation. However, as we will soon see, given certain

plausible assumptions, the verisimilitude solution and Sprenger’s solution

share many features in common and are even formally inter-translatable.

Sprenger’s suggestion is that the probability of a false hypothesis can

sensibly be interpreted as a counterfactual probability (or, more specifically,

a counterfactual degree of belief. However, the counterfactual interpretation,

like the verisimilitude interpretation, is consistent with either an objective

or subjective reading). More precisely, suppose ⇥ is a set of hypotheses,

all of which are known to be false. Then any probability assigned to some

particular ✓i should be construed as the probability that ✓i is true conditional

on the (false) supposition that one of the hypotheses in ⇥ is true. In other
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words, the probability of ✓i is really the counterfactual conditional probability

pK(✓i|⇥), where the condition ⇥ is construed as the (false) claim that one of

the hypotheses in ⇥ is true.

Note that pK(✓i|⇥) cannot simply be replaced with pK(⇥ ! ✓i), i.e.

with a probability distribution defined over counterfactual propositions—the

discussion on p. 9 applies equally here. ✓i picks out a hypothesis in a scientific

and statistical model that makes probabilistic predictions, but ⇥ ! ✓i does

not.

17

In order for the counterfactual interpretation to be a rigorous alterna-

tive semantics for Bayesian inference, something more substantive needs to

be said about how we are supposed to understand and evaluate counterfac-

tual probabilities. Unfortunately, Sprenger does not o↵er us any guidance.

However, a natural thought is that counterfactual probabilities should be

evaluated in a way that is analogous to the way counterfactual conditionals

are evaluated. According to (a simplified version of) the standard analysis of

counterfactuals due to Lewis (1973), evaluating a counterfactual such as “If

A were the case, then B would be the case,” involves considering the closest

possible world in which A is true, and then checking whether B is true in that

world. Crucially, Lewis’s analysis depends on a ranking of possible worlds,

where worlds are ranked by how similar they are to the actual world.

Presumably counterfactual probabilities should be assessed in a similar

manner. It is not hard to imagine very strange and fanciful possible worlds

in which pressure and windspeed are linearly related, but presumably most

of those possible worlds are not interesting or relevant. As is the case in the

counterfactual analysis of conditionals, it is presumably the closest possible

worlds that are the interesting ones. But which possible worlds are those?

To answer this question, we need to be able to rank worlds in terms of their

closeness or similarity to the actual world. Suppose we have such a similarity

17In addition, replacing p

K

(✓
i

|⇥) with p

K

(⇥ ! ✓

i

) might run us into triviality result
problems.
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measure, s. Then we can define the counterfactual probability of ✓i given s,

psK(✓i|⇥), where psK must obey the following constraints:

Counterfactual probability axioms Suppose ⇥ indexes a set

of hypotheses {✓1, ✓2, . . . , ✓n}, let s be a similarity measure de-

fined over the set of possible worlds, and let K represent a corpus

of background knowledge. Then a distribution p over ⇥ satisfies

the probability axioms with respect to s if and only if:

1V. psK(_✓i|⇥) = 1, whenever K entails that one of the

hypotheses in the disjunction _✓i is true in the closest

world (according to s) in which ⇥ is true.

2V. psK(✓i|⇥) � 0 for all ✓i in ⇥.

3V. psK(
W

✓i|⇥) =

P
pvK(✓i|⇥), wheneverK entails that

at most one of the hypotheses in the disjunction of

hypotheses indexed by _✓i is true in the closest world

(according to s) in which ⇥ is true.

The counterfactual interpretation, like the verisimilitude interpretation,

solves the interpretive problem, because the fact that K entails that ✓i is

false does not mean that K entails that ✓i is false in the closest possible

world in which ⇥ is true. Hence, the counterfactual interpretation allows us

to assign non-zero probabilities to hypotheses that we know are false (in the

actual world).

It’s clear that the counterfactual interpretation has the same broad fea-

tures as the verisimilitude interpretation. In particular, on the counterfactual

interpretation understood in the above Lewisian way, every probability as-

signment becomes relative to the way similarity between worlds is measured.

Moreover, there are many ways of measuring similarity between worlds, but

the way in which similarity between worlds should be measured is presum-

ably relative to the features of the world that are relevant, and what features
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are relevant is in part determined by the goals of the analysis. Indeed, in

the next section we will see that the counterfactual and verisimilitude frame-

works are plausibly inter-translatable, so that if verisimilitude probabilities

are goal-relative, then so are counterfactual probabilities.

8 Relationship Between the Verisimilitude and

Counterfactual Interpretations

At this point, we apparently have two viable reinterpretations of the Bayesian

framework, both of which solve the interpretive problem. Many philosophers

will be tempted to ask which of the two solutions is the better one. My

contention is that neither solution is better than the other, and that in fact

there is a sense in which the two solutions are equivalent.

Indeed, note that, in general, any similarity ranking of possible worlds

straightforwardly induces a natural verisimilitude ranking of hypotheses, and

vice versa. More precisely, suppose we are given a similarity ranking function,

s, on worlds such that s(w↵) � s(w1) � s(w2) � . . ., where w↵ is the actual

world. Then we can define a verisimilitude ranking on hypotheses as follows:

suppose w is the closest world in which H is true and w0
is the closest world

in which H 0
is true, then v(H) � v(H 0

) if and only if s(w) � s(w0
).

18

Conversely, any verisimilitude ranking induces an ordering over possible

worlds. Suppose v(H0) � v(H1) � v(H2) � . . . is a verisimilitude ranking

of hypotheses, and for any hypothesis H, let SH denote the set of worlds in

which H is true. Then we can define an ordering of possible worlds in the

following way: suppose H is the hypothesis with the highest verisimilitude

such that that w 2 SH and suppose H 0
is the hypothesis with the highest

verisimilitude such that w0 2 S 0
H , then we define s such that s(w) � s(w0

) if

and only if v(H) � v(H)

0
.

18Hilpinen (1976) uses a similar approach to define a specific verisimilitude measure.
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According to the verisimilitude interpretation, agents have to evaluate

which hypothesis is plausibly closest to the truth out of the hypotheses under

consideration. According to the counterfactual interpretation, agents must

instead evaluate which hypothesis is plausibly true in the closest possible

world in which one of the hypotheses under consideration is true—in other

words, they must evaluate what the closest possible world is plausibly like.

Since any verisimilitude ranking may be translated into a ranking of worlds,

and vice versa, it’s now clear that these two tasks are really one and the same.

That is, if s is the similarity ranking that is induced by the verisimilitude

ranking v, then a hypothesis, H, will be closest to the truth according to v

if and only if H is also true in the world that is closest to the actual world,

according to s. Figuring out how probable it is that H is closest to the truth

according to v is therefore equivalent to figuring out how probable it is that

H is true in the closest possible world according to s.

None of the above should really be that surprising since a similar fact

is true of standard Bayesianism. There is a well known duality between

propositions and possible worlds: a proposition may be construed as a set

of possible worlds, and a possible world may be construed as a conjunction

of propositions. Hence, an agent who has a degree of belief in a certain

proposition may be regarded as implicitly having a degree of belief that

the actual world is in a certain set of possible worlds, and vice versa. The

correspondence between verisimilitude rankings and possible worlds rankings

shown in this section demonstrates that the same is true of counterfactual and

verisimilitude probabilities: any counterfactual probability may be regarded

as an implicit verisimilitude probability, and vice versa.

Thus, although they may appear di↵erent, the verisimilitude interpreta-

tion and the counterfactual interpretation of probability are, in a sense, two

sides of the same coin. This means that if there is pragmatic encroachment in

the verisimilitude framework, there will also be pragmatic encroachment in

the counterfactual framework. In particular, if the reader agrees that the ex-
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ample in Section 6 plausibly shows that verisimilitude rankings are sometimes

goal-relative, then the same example will also show that rankings of worlds

are sometimes goal-relative, since the verisimilitude ranking may simply be

translated into a ranking of possible worlds using the recipe provided in this

section. It follows that the rational status of counterfactual probabilities will

in general be goal-relative.

9 Relationship Between the Verisimilitude,

Counterfactual, and Standard Interpreta-

tions

The preceding section investigated how the counterfactual and verisimilitude

interpretations of probability relate to each other. But how do either of these

interpretations relate to the standard interpretation? Recall that cccording to

the standard interpretation, pK(H) is the probability that H is true, relative

to background knowledge K. Ideally, the verisimilitude and counterfactual

interpretations should both be generalizations of the standard interpretation,

so that both are extensionally equivalent to the standard interpretation in

cases where the standard interpretation is applicable; i.e. in cases where K

entails that one of the hypotheses under consideration is true. Is that the

case?

19

The answer is that it depends on characteristics of the verisimilitude and

counterfactual similarity measures. Let’s first consider the verisimilitude in-

terpretation. Let’s call the true – but unknown – hypothesis t. Suppose v is

such that it has a unique maximum over the set of hypotheses under consid-

eration, and that the unique maximum is t. According to the verisimilitude

interpretation, pvK(H) is the probability that H is a maximum of v, relative

to K, which, under the conditions specified, means that pvK(H) is the prob-

19I thank C for pressing me on this issue.
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ability that H = Ht (since Ht is the only maximum of v); in other words,

pvK(H) is simply the probability that H is true, relative to K. Thus we have

pvK(H) = pK(H). Hence, the verisimilitude interpretation is extensionally

equivalent to the standard interpretation under the specified conditions in

the sense that the the verisimilitude and standard probability distributions

assign the same probabilities to all hypotheses. However, if v has several

maxima or if the truth is not among the maxima of v, then clearly pv(H)

will not necessarily equal pK(H). Hence, the verisimilitude interpretation

is extensionally equivalent to the standard interpretation just in case the

following conditions are met: (1) v has a unique maximum over the set of

hypotheses, (2) that unique maximum is the truth.

Now let’s consider the counterfactual interpretation of probability. Sup-

pose the similarity ranking over possible worlds satisfies the following con-

ditions: (1) there is a unique world that is closest to the actual world, (2)

the actual world is closest to itself. Then, by essentially the same reason-

ing as above, it follows that we will have psK(H) = pK(H). Hence, the

counterfactual interpretation is extensionally equivalent to the standard in-

terpretation just in case one of the hypotheses under consideration is true

and the similarity ranking over possible worlds satisfies the constraint known

in the counterfactuals literature as strong centering.

10 Pragmatic Encroachment in Bayesian in-

ference

I have argued that the only adequate solutions to the interpretive prob-

lem in Bayesian statistical inference involve reinterpreting probability, and I

have proposed two candidate reinterpretations. Both the counterfactual and

verisimilitude interpretation have the following two important features: (1)

they both depend on a ranking over some sort of object (either hypotheses

or possible worlds), (2) the ranking that it is rational for an agent to have
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is influenced by pragmatic factors, such as what the agent’s goals are. The

upshot is that whether a given probability assignment (i.e. verisimilitude or

counterfactual probability) is rational is influenced by pragmatic factors.

Of course, the standard Bayesian interpretation also allows for pragmatic

factors to play a role. According to standard Bayesian decision theory, we

ought to have both a probability function and a utility function; any prag-

matic factor – such as what we are interested in – should be relegated to

the utility function. This neat separation between the purely epistemic and

the pragmatic fails in cases where we face the interpretive problem. In those

cases, I have argued that pragmatic factors should directly influence the

probability function, not just the utility function.

The reader may wonder whether there are other potential solutions to

the interpretive problem that would avoid having features (1) and (2). In

Section 4, I argued that any solution to the interpretive problem needs to

o↵er a reinterpretation of the probability axioms. A moment’s reflection

should make it clear that any re-interpretation that allows us to assign a

non-zero probability to a known false hypothesis needs to involve a ranking

of some sort: if H1 and H2 are both known to be false, and yet we assign a

higher probability to H1 than to H2, there must be some sense in which H1 is

“better” thanH2. The remaining question, then, is whether there is a ranking

of hypotheses (or other objects—of course, any ranking must implicitly be

a ranking of the hypotheses, since we are ultimately assigning probabilities

to the hypotheses) that can plausibly count as “objectively correct.” Here,

thinking about concrete examples – such as the example in Section 6 – should

convince us that the answer is “no.” Anyone who disagrees will have to

explain why, say, the way you rank various lines in the example in Section

6 should be independent of your interests. Hence, my conjecture is that all

adequate solutions to the interpretive problem will have features (1) and (2).

By combining the above considerations with a reasonable bridge premise,

the following argument may now be formulated:
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P1: All satisfactory solutions to the interpretive problem involve

reinterpreting what it means to assign a probability to a hypoth-

esis.

P2: Any satisfactory reinterpretation that solves the interpretive

problem will have the following two features: (1) it will depend

on a ranking over some sort of object, (2) whether a given ranking

is rational will in part be determined by pragmatic factors.

P3: If P1 and P2, then whether a given Bayesian probability

distribution is rational will, in general, partly be determined by

pragmatic factors.

C: Whether a given Bayesian probability distribution is rational

will, in general, partly be determined by pragmatic factors.

The upshot of this argument is that there is an important – and hitherto

unnoticed – kind of pragmatic encroachment on Bayesian inference.

In recent years, there has been much debate over whether there is some-

times “pragmatic encroachment” on the epistemic, i.e. whether pragmatic

factors can sometimes influence whether an agent, for instance, knows whether

a proposition is true.

20
As Mark Schroeder (2017) point outs, it seems to be

almost universally agreed among participants of this debate that although

there may be pragmatic encroachment on knowledge or rational (full) be-

lief, there is no pragmatic encroachment on Bayesian probability functions.

Prominent experts on Bayesian statistical theory agree, including adherents

of the subjective (Lindley, 1972, p. 71) and objective (Jaynes, 2003, p. 19)

schools of Bayesianism. However, despite this theoretical consensus, in prac-

tice Bayesian statisticians tend to use di↵erent prior probability distributions

20See e.g. Stanley (2005), Fantl and McGrath (2002), Ross and Schroeder (2014), Rubin
(2015), or Roeber (2016)
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depending on what they are interested in.

21
The arguments in this paper par-

tially undermine the theoretical consensus and lend a justification of statisti-

cal practice. Whereas it may be true that there is no pragmatic encroachment

on standard Bayesian probability functions, there is – and ought to be – sig-

nificant pragmatic encroachment on both counterfactual and verisimilitude

probabilities, and those are the types of probability distributions that are

frequently (implicitly) used in statistical practice.

11 Conclusion

This paper has mainly been concerned with the implications of the inter-

pretive problem for our interpretation of the prior probability distributions

that are used in Bayesian statistical practice. I have not said anything about

the likelihood, but in fact the interpretive problem arguably has even greater

implications for how we are to interpret, and use, the likelihood function and

associated principles such as the Law of Likelihood and Conditionalization.

In particular, although I will not argue this here, the counterfactual and

verisimilitude interpretations open the door to the possibility that it may

sometimes be rational to use an evidential measure other than the likelihood

and an updating procedure other than Conditionalization. This is because

the standard arguments for Conditionalization turn out to depend crucially

on the standard interpretation of probability. Thus, although this paper has

been concerned with showing that we sometimes need to change the stan-

dard Bayesian semantics, once we have a new semantics, it becomes apparent

that we may sometimes be justified in also changing the standard Bayesian

syntax.

21I thank a referee for pointing this out.
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