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1 Introduction

Predicting the future behavior of complex dynamical systems with the help of nonlinear

models is an important part of scientific practice. However, making predictions from

nonlinear models is often affected by severe uncertainties. In recent years, there has been

an extensive debate about the epistemic limitations of model-based predictions not only

in the philosophy of science, but also within the scientific community.1

1See for instance a recent special issue of Science on prediction and the limits of pre-

dictability in current science (Jasny and Stone, 2017).
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In an important contribution to this debate, Frigg et al. (2014) have made the claim

that uncertainty about the true dynamical structure of a nonlinear model seriously

debilitates our ability to make decision-relevant predictions.2 In analogy to the

well-known Butterfly Effect, Frigg et al. introduce the Hawkmoth Effect, which arises

from a sensitive dependence on structural model error (SME). Just as the Butterfly

Effect describes the limitations that initial condition uncertainty imposes on the

predictive power of nonlinear models, the Hawkmoth Effect highlights the supposedly

disastrous consequences that small errors in a model’s structure can have for making

predictions from that model. However, the authors say little about the scope of their

argument. In certain passages, they seem to claim that our current modeling practices

offer no effective countermeasures against the Hawkmoth Effect. More specifically, they

think that ensemble modeling approaches provide no remedy against SME. In this paper,

we challenge this claim. We argue that Frigg et al. ignore the numerous tools of modern

statistics for the handling of model uncertainty, and thus overstate the epistemic

consequences of SME in general. We do concede, however, that their argument points at

serious limitations in the context of climate science. These limitations arise due to

specific properties of climate models and the ensembles used in climate science.

Ultimately, our contribution aims at continuing Frigg et al.’s train of thought by

investigating the scope of their argument from the perspective of modeling practice.

We begin, in the next section, by explaining the three steps of the argument by which

Frigg et al. support their claims. The first step, to which the majority of their paper is

devoted, involves the presentation of an example that illustrates the consequences of

SME for prediction. The example shows that the probability distribution derived from a

2See also Bradley et al. (2014), Frigg et al. (013a), Frigg et al. (013b).
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model with only a small structural error can differ drastically from the probability

distribution that would have been obtained using the true dynamical equations. This

difference is the result of the Hawkmoth Effect. In the second step, Frigg et al. generalize

their example. To this end, they refer to a couple of mathematical theorems in order to

show that structural stability cannot be taken for granted in most nonlinear models. In a

third and final step, they claim that there is currently no method that can mitigate

against the Hawkmoth Effect, and that no such method is likely to be developed. As a

consequence of this, they argue that the burden of proof should be shifted. The default

assumption should be that nonlinear models are structurally unstable and, hence,

susceptible to the Hawkmoth Effect. Those who intend to use a nonlinear model for

predictive purposes must prove that their model is structurally stable. If they fail to do

so, probabilistic predictions derived from the model must be seen as genuinely unreliable.

Section three provides a discussion of Frigg et al.’s argument. We highlight the fact

that a crucial part of the argument implicitly relies on the assumption that, in face of

their limited knowledge of the true structure of a system, modelers rely on what the

authors call the closeness-to-goodness link, i.e. the notion that a model whose structure

is close enough to the true structure of system, will produce good enough predictions.

We believe that this assumption—that modelers rely on closeness-to-goodness—is not

generally true. In many domains where models are used for prediction,

closeness-to-goodness is rarely seen as a sufficient criterion for deciding that predictions

derived from a nonlinear model are likely to be “good enough”. We show that even if

there is a strong correlation between nonlinearity and structural instability there are

effective strategies against the impact of SME that are currently applied in scientific

practice. In fact, there are a number of approaches that can guard against the potential

3



consequences of SME. We present three of these approaches: Bayesian Model Averaging

(BMA), bootstrap model averaging, and the Super Learner. All these approaches

operate under the rationale that making a prediction from an ensemble of models offers

the best protection against SME. While Frigg et al. anticipate this objection, we explain

why their reasons for doing so are unfounded by highlighting relevant insights from the

statistical literature. We also briefly discuss examples of model averaging in scientific

practice. The first two examples, from wildlife ecology and microbiology, illustrate the

use of BMA to handle and deal with uncertainties about model structure. The third and

fourth examples demonstrate the applicability of bootstrap model averaging in studies of

equipment degradation and of the association between mortality and air pollution. Our

aim is to explore cases where the Hawkmoth effect can be brought under control, thereby

showing that there are domains where a constructive solution is available. Consequently,

the severity of the Hawkmoth effect depends on the domain one is looking at. The

problem is hard in some domains, while it can be efficiently dealt with in other cases.

Section four focuses on the discussion of SME in the context of climate modeling. We

show that Frigg et al.’s argument has special relevance in climate science. In climate

science, the complexity and size of climate models makes them less accessible to

ensemble approaches, and the number of models used in an ensemble has to be small due

to limitations in computational power.

We conclude that Frigg et al. have overstated the epistemic consequences of SME in

general. While SME is an important source of uncertainty that needs careful attention

from practicing scientists, it does not always debilitate our ability to make informative

predictions of dynamical systems. In many contexts, commonly used modeling practices

can help to identify structural errors and well-established statistical methods allow
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scientists to take measures against the impact of model uncertainty. The mere existence

of such tools indicates the awareness that scientists have of the implications of structural

uncertainties. However, limitations in computational power make these tools not equally

applicable in all disciplines. Frigg et al.’s skeptical conclusion needs to be taken seriously

in domains where models are large and ensembles are small. Climate science is such a

domain.

2 The Hawkmoth Effect

Frigg et al. introduce the Hawkmoth Effect by analogy to the well-known Butterfly

Effect. The Butterfly Effect describes the limitations that small errors in the initial

conditions of nonlinear models impose on their predictive power.3 Similarly, the

Hawkmoth Effect describes the consequences that small errors in the structure of a

nonlinear model can have for predictions derived from that model. The effect arises not

because of initial condition error, but rather because of a model’s sensitive dependence

on structural model error (SME).

The main point of Frigg et al.’s analysis is to show that the Hawkmoth Effect

seriously debilitates our ability to make decision-relevant predictions from nonlinear

dynamical models. We can mitigate against the Butterfly Effect by applying a

probability distribution to the set of initial conditions. Instead of evolving one point in

the state space, the dynamics of the model can then be used to evolve a probability

distribution of initial conditions. The Butterfly Effect then tells you that the longer you

project into the future, the more your distribution will spread out. Or, in other words,

3See Lorenz (1972).
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system sates that are initially close together in the state space can move far apart under

nonlinear dynamics. The Hawkmoth Effect cannot be dealt with in the same way,

because SME does not lead to a spreading of a probability distribution of states over

time, but to an incorrect evolution of the probability distribution itself. A model with

even a small SME can produce probabilities for outcome states that differ significantly

from the true probabilities. This means that, if a nonlinear model has only the slightest

SME, then, according to Frigg. et al., its ability to produce decision-relevant

probabilities is lost entirely.4

For the purpose of illustration, Frigg et al. invite their readers to imagine two

variations of Laplace’s all-knowing demon: the freshman apprentice and the senior

apprentice. In contrast the demon himself, who has precise knowledge of the initial

conditions and the exact dynamical equations of any given system, the apprentices fall

short of their master’s absolute epistemic capacities. The senior apprentice shares all the

capacities of the demon with the exception of observational omniscience; she has only

incomplete and imprecise information about initial conditions. This limits her predictive

power. Because of the Butterfly Effect, according to which arbitrarily small errors in the

initial conditions can lead to significantly different future states, the senior apprentice is

not able to make precise point predictions. She mitigates against the Butterfly Effect by

making probabilistic forecasts. She puts a probability distribution over his initial

conditions in order to account for his uncertainty regarding the latter. She then uses the

dynamical equations to evolve the distribution in time. Her result is a probabilistic

prediction that tells her the future state of his system up to a certain degree of precision.

4Readers familiar with Frigg et al.’s article may prefer to proceed to the next section

at this point.
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The freshman apprentice, in addition to imperfect knowledge of initial conditions,

also suffers from imperfect dynamical knowledge. In other words, the equations of his

model are affected by SME. This means that the equations at his disposal are

structurally different from the equations of the demon, which describe the real dynamics

of the system (Frigg et al., 2014, p. 35). It is important to note that what Frigg et al.

have in mind here is not simple parameter error, where the parameters in the model are

such that they do not correctly align with the true values. SME refers directly to a

difference in the mathematical structure of the equations due to missing or superfluous

nonlinear terms. In order to compensate for his ignorance, the freshman apprentice

makes an assumption that allegedly allows him to use his model for predictive purposes

despite its structural deficiencies. He assumes the existence of the closeness-to-goodness

link: if the model is close enough to the true equations, than it will accurately predict

the system’s future behavior. In order to quantify closeness to the true equations and

goodness of predictions, Frigg et al. introduce two metrics. Closeness to the true

equations is measured in terms of maximal one-step-error, and goodness of prediction is

measured in terms of the relative entropy between the true and the predicted probability

distribution. If the difference in entropy between the two distributions is small enough

then the prediction can be seen as accurate (Frigg et al., 2014, pp. 35-36).

The goal of their demon-apprentice thought experiment is to make the situation in

which real-world modelers find themselves in explicit. Like the freshmen apprentice, in

many practical tasks modelers are confronted with both initial condition uncertainty and

SME. But while initial condition uncertainty can be dealt with by the use of

probabilistic methods, the limitations imposed by SME cannot be handled by applying

the closeness-to-goodness link. The simple reason for this, as Frigg et al. argue, is that
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the closeness-to-goodness link does not hold in general. The upshot of their argument is

to show that arbitrarily small errors in the structure of the dynamical equations of a

nonlinear model lead to arbitrarily big errors in the predictions derived from those

equations. Although the structure of the equations used in the model might differ from

the true equations only to a small degree, and although the error introduced in each step

of the prediction can be arbitrarily small, the difference between the true probability

distribution and the distribution produced by the model after certain time, can turn out

to be maximal. Hence, the closeness-to-goodness link does not hold.

Frigg et al.’s argument has the following structure. In a first step they present a case

study of a generic nonlinear model and show that, for this example, the

closeness-to-goodness link does not hold. Their example is a model of a fish population

in a pond, the true equation for which is given by:

Nt+1 = (1− ε)4Nt(1−Nt) + ε
16

5
(Nt(1− 2N2

t +N3
t )). (1)

Only the demon and his senior apprentice have access to this equation. The freshman

apprentice tries to predict the fish population with the help of the logistic map, modeling

the number of fish at a time point t+ 1 with the following equation:

Nt+1 = 4Nt(1−Nt).
5 (2)

5In their example, instead of the absolute number of fish, the authors use the ratio

of the number of fish per cubic meter and the maximum number of fish that can be

accommodated in one cubic meter. That number always lies in the interval between 0 and

1. See Frigg et al. (2014, p. 36).
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This model has SME but when ε in equation (1) is small the graph of the true equation

is almost indistinguishable from that of the model. This means that, according to the

closeness-to-goodness link, the logistic map should predict the population of the fish

pond in the future well enough. However, it turns out that after a certain point in time

the probability distribution derived from the model differs significantly from the real

distribution (see p. 38, Figure 2 in Frigg et al., 2014). What is more, before this point of

failure the model seems to be well-behaved. Its predictions are close to the fish pond’s

true population. This is where the Hawkmoth Effect’s ugliness comes from. The failure

of the closeness-to-goodness link is not immediately visible, but kicks in abruptly at an

indeterminable point in the future. The model’s usability for predictive purposes is

destroyed.

In the second step of their argument, the authors generalize the results suggested by

their case study. To this end, they refer to mathematical theorems in order to show that

the Hawkmoth Effect is a generic character of models that do not have a mathematical

property of dynamic systems called structural stability. Roughly speaking, a dynamic

system has structural stability if small changes in its equations have very little effect on

the behavior of its trajectories. In other words, structural stability means that similar

models with identical initial conditions will make similar predictions in the future. Their

generalization shows that structural instability is not an idiosyncratic property of the

logistic map and of their sample case, but that it applies to a very large class of

nonlinear systems.

In order to justify the claim that structural instability is a generic phenomenon of

differential equations, the authors refer to a mathematical theorem by Palis and Smale

(1970), according to which a nonlinear flow is structurally stable if and only if it satisfies

9



Axiom A and the so-called strong transversality condition. Axiom A and the strong

transversality condition are abstract properties of mathematical objects, the former

requiring that a system is uniformly hyperbolic and the latter requiring that stable and

unstable manifolds must intersect transversely at every point. Certain mathematical

objects have been shown to have these properties: isomorphisms on smooth manifolds

(Mañé, 1987) and flows (Hayashi, 1997). However, for a large number of nonlinear

systems, the two conditions are not satisfied. Furthermore, Smale (1966) has shown that

the set of structurally stable systems is open but not dense. Over all, these

mathematical results suggest that the vast majority nonlinear systems lack the property

of structural stability.6

In a third step, the authors tie these abstract findings back to the epistemic

consequences drawn from their case study. The closeness-to-goodness link only holds if

the true dynamics of a system are structurally stable. Only in this case can a model with

an equation close to the truth lead to accurate predictions. And, since a large number of

nonlinear systems are not structurally stable, the closeness-to-goodness link may not be

presupposed by default. As a consequence, the authors demand that the burden of proof

should be shifted. The default assumption should be that nonlinear models lack

structural stability and that whoever intends to use a nonlinear model for predictive

purposes must prove that their model is structurally stable. It is only in this case that

the Hawkmoth Effect does not come into play. Otherwise, small errors in the structure of

the model will lead to the catastrophic consequences that the authors describe in their

case study.7

6All the mentioned papers are cited in Frigg et al. (2014, p. 47).
7We have to admit at this point, that the mathematics of these stability proofs are
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In the following, we present a critique of Frigg et al.’s conclusions based on

considerations concerning the handling of SME in scientific practice. Frigg et al. argue

that this impact places a burden on modelers to prove that their models are structurally

stable and, hence, do not fall prey to the consequences of SME. We do not contend that

it is the responsibility of scientists to show that their predictions are not susceptible to

the Hawkmoth Effect, or that the consequences of failing to do so can be critical. We do,

however, contend with the idea that guaranteeing structural stability offers the only

protection against the Hawkmoth Effect. We argue that even if there exists a strong

correlation between nonlinearity and structural instability, there are efficient strategies

against the impact of SME, which are actually applied in current scientific practice.

beyond our mathematical capacities and we are unable to judge their validity to its

full extent. It is important to note, however, that one of the authors admitted in

oral communication that the mathematics used in their claim to generality are intri-

cate. Even for many theoretical physicists, the meaning of these abstract results for

physical systems is apparently not straightforward (See Roman Frigg’s talk at Center

for Advanced Studies in Munich in November 2013. https://itunes.apple.com/ch/

podcast/chaos-beyond-butterfly-effect/id741597015?i=1000236728753&mt=2, re-

trieved November 28, 2017). However, we not put into question the fact that the logistic

map used in Frigg et. al.’s example, as well as most nonlinear models in current modelling

practice fall under the scope of these theorems and that the theorems are relevant for the

present context.
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3 Handling Model Uncertainty in Practice

3.1 Overemphasizing closeness-to-goodness

Frigg et. al.’s mathematical considerations about structural stability lead to the

conclusion that—in absence of a proof to the contrary—it must be assumed that a given

set of nonlinear differential equations is structurally unstable. Hence the

closeness-to-goodness link cannot be established and probabilistic predictions based on

models containing nonlinear differential equations may fall prey to the Hawkmoth Effect.

The epistemic conclusions Frigg et al. draw from their analysis are quite drastic. In their

own words: “Many operational probability forecasts are therefore unreliable as a guide

to rational action if interpreted as providing the probability of various outcomes” (Frigg

et al., 2014, p. 57).

In Frigg et al.’s example case, the freshman apprentice represents the situation in

which real-world modelers find themselves: modelers have imperfect knowledge of a

system’s true dynamics and cannot identify the true initial conditions, but they believe

that they can make informative predictions with models that are close-to-good. The idea

behind the closeness-to-goodness link is, to repeat, “the maxim that a model that is

close enough to the truth will produce predictions that are close enough to what actually

happens to be good enough for a certain predictive task” (Frigg et al., 2014, p. 35). The

authors’ analogy suggests that assuming closeness-to-goodness is the best that modelers

can do, i.e. they choose models whose structure is close to the true dynamical structure

of the system under scrutiny. However, real-world modelers often also consider other

aspects of a model before they decide that its predictions are likely to be “good enough”

for a certain predictive task.
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Unlike Frigg et al.’s freshman apprentice, who only works with a single model, real

world modelers frequently look to a comparison with different models for hints about the

impact of minimal changes in the equations on the dynamics of the system. One way to

asses the extent to which structural errors influence predictions is a procedure called a

sensitivity analysis. A scientist performing a sensitivity analysis of her predictions of the

fish population in the pond would compare the freshman apprentice’s model with other

potential models. She might do this quantitatively, with Monte Carlo methods or within

a formal Bayesian framework. Or she might perform a simple ad hoc analysis of the

impact that adding or removing structural components from the model has on her

predictions. These approaches vary in their procedures but have the same underlying

idea with respect to exploring model uncertainty: to critically examine and compare the

predictions of models with different structures and to discover structural features of the

model that have a critical influence on predictions. The standards and procedure for

sensitivity analysis vary greatly between different fields. Saltelli et al. (2008) give an

excellent general guide to sensitivity analysis.

A second criterion for goodness used in practice is the comparison of a model’s

predictions with observed data. A structural difference between a model and the real

system’s dynamics can translate to predictions that are visibly different from observed

data. In many cases, the closeness-to-goodness link cannot be established precisely

because the structure of the chosen model contains small errors, and calibration with

observed data fails.

These practical considerations are important for scientists using models to predict

dynamic systems. In Frigg et al.’s fish pond example, the freshman apprentice chooses a

model without comparison with other models and ignoring any ways in which his chosen
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model’s predictions might deviate from observed data. The freshman apprentice

therefore constitutes an odd analogy for real-world modelers, because the latter have

plenty of statistical tools at hand that allow them to either compare their preferred

model’s performance with other, structurally different models or to calibrate their model

with past data. However, the feasibility applicability of such statistical tools as

sensitivity analysis varies greatly between different fields. Despite the fact that in many

relevant cases, structural errors can be spotted a priori by sensitivity analysis or

preliminary calibrations, it remains true that they can not always be easily detected. In

such cases, SME can have a serious impact on probabilistic predictions. Although Frigg

et al. present their argument in a generic manner without a special focus on a specific

field, and despite the fact that they formulate their epistemic conclusion in general

terms, it his hard to overlook the fact that their intended domain clearly is climate

science. In climate science, SME could indeed be a serious problem for the reasons laid

out by the authors, and, as we will discuss later, for specific circumstances that limit the

applicability of ensemble modeling approaches in climate science. These limitation are

mainly related to the complexity and size of climate models and of the generally small

number of models used in climate model ensembles. Other fields, where predictive

models are also large and and cannot be easily calibrated with past data, might suffer

from similar problems. In any case, this raises the question about the scope of Frigg et

al.’s argument: For which kinds of modeling task does it pose a serious threat to

probabilistic predictions, and what are the circumstances under which SME becomes a

tamable problem?

Frigg et al. have already been accused of overgeneralizing their case and it has been

noted that the scope of their argument is unclear. Goodwin and Winsberg (2016)
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distinguish between between a broad, provocative and a narrow, modest interpretation of

Frigg et al.’s argument. Under the broad interpretation the predictive power of all

nonlinear models is impaired by the Hawkmoth Effect. In this reading, Frigg et al.’s

argument would have the most severe implications for most scientific modeling

endeavors. In the modest interpretation, their considerations only extend to high

resolution climate predictions as they are made, as for instance in the UKCP09 modeling

project (for details see Section ... below). Goodwin and Winsberg go on to show that,

presupposing the modest interpretation, Frigg et al.’s base case involving the logistic

map generalizes to applications in climate science only along one of four possible

dimensions. Frigg et al.’s generalization merely considers, according to Goodwin and

Winsberg, the time evolution of the model. It does not consider the timescale, the way

in which probabilities are generated from the model, or the kind of prediction one hopes

to obtain from the model. Goodwin and Winsberg then conclude that Frigg et al.’s

argument from analogy fails, because the set of real-world modeling projects that are

relevantly similar to Frigg et al.’s base case on all four dimensions is small. They

allegedly show that the sort of probabilistic statements generated in the UKCP09 are

significantly different from the way probabilities are obtained in Frigg et al.’s base case.

Furthermore, they point out that even if climate models are structurally unstable, it

remains unclear what the relevant timescales would be for the instabilities to manifest

themselves (Goodwin and Winsberg, 2016, p. 1128).

We have to admit at this point that we find Goodwin and Winsberg’s objections not

particularly enlightening, and we suspect that they might be misinterpreting the

dialectical situation that Frigg et al.’s argument creates. First, it remains unclear to

what extent probabilities created in real-world modeling projects are “significantly
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different” from the probabilities in Frigg et al.’s fish pond example. Second, Frigg et al.

present the Hawkmoth Effect as a generic phenomenon, which arises as a consequence of

certain mathematical properties of nonlinear models. If the Hawkmoth Effect is real, and

if most nonlinear models are indeed unstable, the fact that the timescale of the effect is

not well understood becomes secondary. It makes things even worse. If we know that the

predictions produced by our best climate models can fail completely at some point in the

future, but we have no clues as to when that point may be, our trust in those predictions

gets even more jeopardized. Therefore, our criticism in the next section, in contrast to

Goodwin and Winsberg’s, will not such much directed against Frigg et al.’s arguments

per se. Rather, it goes against their skepticism towards the use of ensemble methods for

the handling of structural uncertainty. Thus the correct way to asses the scope of Frigg

et al.’s arguments would be to ask if and under what conditions ensemble methods

provide an effective countermeasure against the Hawkmoth Effect.

In recent years, modelers have gained access to a suite of statistical tools that can

mitigate against the impact of structural errors. In the following sections we take a look

at three methods that can be applied to guard against the impact of SME: Bayesian

model averaging, bootstrap model averaging, and the Super Learner.

3.2 Bayesian Model Averaging

Model averaging is the general term for a method that accounts for model uncertainty by

combining the results of multiple models. A basic presupposition of model averaging

rests in the acknowledgement that we usually do not know the true structure of the

system to be modeled, i.e. that we are indeed in the position of Frigg et al.’s freshman
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apprentice. But unlike Frigg et al.’s freshman apprentice, users of model averaging do

not operate under the assumption that there is a single, correct model. Instead, they

derive predictions from an ensemble of models without invoking or expecting that any

one model in the ensemble represents the real system truthfully. In may cases, the

acknowledgment of structural uncertainty is the main motivation for using ensemble

methods. One of the most well-established and generic types of model averaging is

Bayesian Model Averaging (BMA). In recent years, BMA has been increasingly used for

the handling of model uncertainty in a wide variety of fields (see Clyde and George,

2004, p. 82). Drawing on Hoeting et al.’s Bayesian Model Averaging: A Tutorial (1999),

we give a brief, generic description of the rationale behind BMA. We also describe two

applications of BMA in current scientific practice.

Suppose that we are interested in using data, denoted by D, to predict the state of a

system in the future, denoted by x. For a chosen ensemble M of models M1, ...,MK , the

probability of x given the data D can be written as a weighted average of the

probabilities under each of the models considered:

pr(x | D) =
K∑
k=1

pr(x |Mk, D)pr(Mk | D). (3)

This quantity is called the state’s posterior distribution. Another important quantity,

the posterior probability for each model Mk in our chosen ensemble, is given by

pr(Mk | D) =
pr(D|Mk)pr(Mk)

(
∑K

l=1 pr(D |Ml)pr(Ml)
, (4)
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where pr(Mk) is the prior probability that Mk is the true model, and

pr(D |Mk) =
∫
pr(D | Θk,Mk)pr(Θk |Mk)dΘk (5)

is the integrated likelihood of the model Mk with parameters Θk. pr(Θk |Mk) is the

prior density of Θk given model Mk, and pr(D | Θk,Mk) is the likelihood of the data

under the model Mk. This quantity depends critically on the choice of prior probabilities

pr(Mk), which should suitable for the modeling task at hand. Often the prior

probabilities are taken from a distribution that represents the modeler’s knowledge

about the system. Importantly, each of these mathematical expressions is conditional on

the chosen ensemble of models M . Using these quantities, we can make a prediction x̂ of

the system’s future state x, given the data D and model ensemble M , by taking a

weighted average:

x̂ =
K∑
k=1

x̂kpr(Mk | D), (6)

where x̂k is the prediction of model Mk. The weights are given by the posterior

probability of each model. The rationale behind this approach is that obtaining

predictions in this way gives better average predictive ability than making a prediction

from any single model in the chosen ensemble.

BMA is widely used in many fields of research to account for model uncertainty. We

highlight two recent examples, the first of which is from the field of microbiology.

Shankar et al. (2015) study the effects of broad band antibiotic treatment on the

gastrointestinal tract, in particular on fugal colonization. Their model captures the

responses in microbiome community and host immune response to antibiotic treatment.

BMA is applied to three separate model ensembles, one made up of different logistic
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regression models and two consisting of different linear regression models. For each

ensemble, the authors apply BMA with a prior distribution called the spike-and-slab

prior. Aside from accounting for model uncertainty, BMA helps the researchers to

examine large numbers of variable configurations and to compute effect sizes efficiently.

They use Markov-Chain Monte Carlo methods to explore a space of 10000 likely models.

Artelle et al. (2016) apply BMA in the context of wildlife ecology. The goal of their

study is to test three hypotheses regarding the causes of human-grizzly conflict. They

model the spatial and temporal variation in ecological predictors of patterns of conflict

(fluctuations in the availability of salmon, limited food supply, problem individuals,

regional population saturation). BMA is applied to predict the numbers of bears killed

in specific geographical regions. Predictions are made from two different ensembles, each

consisting of negative binomial regression models whose predictor variables are unique

combinations of salmon biomass, spring and summer temperature, spring and summer

precipitation, the total number of bears killed by hunters, and the total number of bears

killed in attacks on humans. Each regression model is used to predict the number of

grizzly bears killed in conflict. These predictions are then averaged according to the

BMA procedure.

We choose examples from two distinct domains of research in order to highlight the

fact that the feasibility of BMA approaches is highly dependent on the context. The

specific problems that arise in different contexts may vary greatly in kind and severity.

Typical issues that have to be addressed in modelling tasks of the above kind are:

time-scale (i.e. how far in the future do predictions go and how fast does predictability

decrease with time), weighting of models in the ensemble, choice of priors and, most

importantly, the number of structurally different models available. In both of the above
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examples the models are relatively simple in terms of the causal structures that they

have to represent. This makes it easy to create large ensembles (up to 10000 in the

microbiome example), and BMA methods become more efficient when the space of

structurally different models is large. In domains where model construction is expensive

and models cannot be easily multiplied the effectiveness of ensemble methods as a

remedy against SME is limited.

3.3 Frigg et al.’s objections against BMA

Frigg et al. offer a number of reasons for rejecting a Bayesian strategy against the

consequences of SME. The first objection is practical. The authors believe that “it is

unfeasible to generate predictions with an entire class of models.” (Frigg et al., 2014, p.

56). Aside from the fact that it remains unclear what they exactly mean by “unfeasible”

in this context, it certainly must be admitted that applying BMA can be computationally

challenging. Making BMA predictions involves averaging estimates from what can be a

large number of models, and involves calculating or approximating the often intractable

likelihood of each model in the ensemble. As Montgomery and Nyhan note, “[t]hese

computational difficulties led many early researchers to adopt simplifying assumptions

and techniques that made BMA analyses more tractable but required significant

trade-offs” (Montgomery and Nyhan, 2010, p. 249). However, recent theoretical and

computational advances in Bayesian analysis have improved our ability to apply BMA in

practice: “The combination of increased computing power, the development of more

analytically tractable prior specifications, and the distribution of the BMA and Bayesian

adaptive sampling (BAS) packages for [the statistical software] R have made these
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techniques far more accessible” (Montgomery and Nyhan, 2010, p. 249). These advances

have made BMA computationally accessible, and give us reason to reject Frigg et al.’s

generic complaint about the unfeasibility of ensemble approaches. Furthermore, the wide

use of multi-model approaches in current scientific practice can be considered reason

enough to suppose that the approach is indeed feasible in some specific cases.

The second objection is that “it is not clear how to circumscribe the relevant model

class. This class would contain all possible models of a target system. But the phrase all

models masks the fact that mathematically this class is not defined, and indeed it is not

clear whether it is definable at all.” (Frigg et al., 2014, p. 56). We agree. But it is

important to note that good BMA predictions can be obtained without considering an

entire class of models. For example, Markov Chain Monte Carlo (MCMC) methods can

be applied to approximate the posterior distribution of a class of models from a

representative sample of models. As Fernandez et al. demonstrate, MCMC methods

used in conjunction with BMA can lead to good predictive results without a huge

computational burden when the number of models under consideration is as large as 2.2

trillion (Fernández et al., 2001, p. 564). But also small, carefully chosen ensembles can

give accurate predictions. Madigan and Raftery (1994) have shown that applying BMA

with a small number of models chosen by Occams Window, a heuristic greedy-search

algorithm for a subset of models with relatively high posterior probabilities, provides

better predictive ability than making predictions from any plausible, single model. These

results indicate that ensemble approaches can be powerful even if the ensemble used does

not contain all possible models of the system. To be sure, the question if a chosen subset

is representative of the entire class of possible models is a difficult one, and, again, highly

context dependent. In domains where we have a few structurally homogenous models at
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hand (e.g. climate science) we have to be mindful of the possibility that the set of

available models might not be representative of the class of all possible models. This

does, however, not speak against the feasibility of BMA methods per se, but rather at

the fact that operating with ensembles with structurally diverse models is desirable if

BMA methods are used as a countermeasure against the effects of SME.

The third objection is a technical problem related to the choice of an appropriate

measure of uncertainty on the class of models. More precisely, “the relevant class of

models would be a class of functions, and function spaces do not come equipped with

measures. In fact, it is not clear how to put a measure on function spaces” (Frigg et al.,

2014, pp. 56). In the context of applying BMA in practice, this means that choosing

model priors that adequately reflect our uncertainty about the true model can be, at

best, difficult and, at worst, impossible. We admit that this is an open and

well-recognized problem in both BMA and in Bayesian frameworks more generally. Ley

and Steel (2009) have, for example, applied BMA to growth data with different priors

and found that, in some cases, prior choice critically affected the posterior probabilities.

However, this difficulty offers no reason for the general claim that BMA cannot be used

to handle structural uncertainty. Modeling a nonlinear dynamic system is a practice that

involves making a number of choices that are technically and theoretically difficult, and

that critically affect the model’s predictions. Choosing appropriate priors is no different,

and modelers can refer to the literature or to other experienced modelers for help in

making this critical decision. In practice, many users of BMA use default priors that are

commonly used in their field of study, or they assume that all models are equally likely

and apply vague priors, such as a uniform distribution. Others approach the problem

directly and derive an uncertainty measure appropriate to their particular task, based on
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expert opinions or on the characteristics of their problem (Fragoso and Neto, 2015).

Furthermore, as Gelman points out in reference to the general problem of choosing a

prior in Bayesian methods, BMA-users can evaluate the effect of their choice of prior on

their predictions: “[I]n practice one can check the dependence on prior distributions by a

sensitivity analysis: comparing posterior inferences under different reasonable choices of

prior distribution” (Gelman, 2002, 1634). Instead of forcing us to reject BMA as a

strategy against structural uncertainty, the difficulty Frigg et al. identify simply

highlights the need for carefully considered choices when applying Bayesian averaging

methods.

The fourth objection points to the fact that “we, like the Freshman, are restricted to

sampling from the set of all conceivable models, which need not contain a perfect model

even if such a thing exists.” (Frigg et al., 2014, p. 57). This means that even if we have

addressed the first three problems, it may be impossible to find an ensemble that

contains the true model. However, using an ensemble can be helpful even when all

models in the ensemble are wrong. A number of studies have shown that BMA improves

predictions even when we do not know if our ensemble contains the true model (Madigan

and Raftery 1994; Montgomery and Nyhan 2010; Fragoso and Neto 2015). Averaging

over the predictions of merely approximately correct nonlinear models is likely to be

beneficial even when none of the models is perfect. (Wasserman, 2000, p. 103).

Practicing scientists rarely aim to find a true model. Instead, they look for models that

are able to achieve a particular task. For example, in epidemiology models are often used

to predict outbreaks of common pathogens. The standard deterministic SIR

(Susceptible-Infectious-Recovered) model divides a population into three distinct groups,

those susceptible to a disease, those who can infect others with the disease and those
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who have recovered and are immune. An individual’s transition from group to group is

governed by a series of nonlinear, differential equations. Such a model vastly

oversimplifies the true dynamics of the spread of an infectious disease. Yet, models such

as the SIR model can approximate a system’s true dynamics accurately enough to be

helpful in a wide array of applications.8 Thus multi-model approaches can lead to

reliable predictions even in cases where ensembles contain only approximately true

models, i.e. models that only approximately represent the true structure of the system.

To be sure, whether we can know if the used models are approximately true depends

again on considerations that are highly dependent on context and the causal makeup of

the system under scrutiny.

These considerations show that BMA a is widely applicable and well-established

strategy for handling structural uncertainties. While its application is not without

challenges, addressing these challenges is a focus of ongoing research efforts. What is

more, BMA is just one of a growing number of ensemble-based modeling methods that

offer strategies against the consequences of SME.

3.4 Beyond Bayesian Model Averaging

Here we present two, equally plausible methods for handling the consequences of SME:

bootstrap model averaging and the Super Learner. These methods may be preferable for

some modeling tasks and offer an alternative for modelers who would rather avoid the

complexities of a Bayesian approach. Together with BMA, these and other model

8Brauer (2008) gives an excellent introduction to the use of compartmental models in

epidemiology.
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averaging methods provide the practicing scientist with a tool kit for guarding against

SME.

Bootstrap model averaging is a simple method that helps to handle structural

uncertainty. First introduced twenty years ago by Buckland et al. (1997), it approaches

model averaging from a frequentist perspective. Like BMA, bootstrap model averaging

starts with the choice of an appropriate ensemble of models. But unlike BMA, it does

not depend on a choice of prior probabilities. Instead, it makes use of data simulated by

bootstrap sampling, a procedure that generates a dataset by randomly sampling with

replacement from the original dataset. Given a chosen model ensemble, bootstrap model

averaging proceeds in the following way:

1. Create a bootstrap sample: randomly sample data with replacement until the

sample has as many elements as the original dataset.

2. Fit each model in the ensemble to the bootstrap sample.

3. Use a quantitative criteria, such as the Akaike Information Criteria (AIC), to select

the model that best fits the bootstrap sample.

The scientist repeats this procedure a large number of times, assigning weights to each

model by counting the number of times that the model was ‘best’. Predictions are made

by averaging the weighted predictions of each model in the chosen ensemble. Since its

introduction in the 1990s, this basic procedure has been advanced and adapted to suit

different modeling contexts and has been shown to outperform BMA in some contexts

(see Martin and Roberts 2006 and Roberts and Martin 2010).

A number of recent studies demonstrate bootstrap model averaging’s ability to

address the problem of SME in real-world contexts. Baraldi et al. (2013) show that
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bootstrap model averaging can improve predictions of the remaining useful lifetime of

degrading technical equipment. The authors simulate data from degrading turbine

blades operating at high temperatures, aiming at assessing whether bootstrap model

averaging can help to predict a particular kind of damage called creep growth. They find

that bootstrap approaches can reliably predict the remaining useful lifetime of degrading

equipment and, more importantly can accurately quantify the uncertainty of such

predictions.

Martin and Roberts (2006) show that bootstrap model averaging can reduce

structural model uncertainty in time series studies of the relationship between air

pollution and mortality. A common feature of using time series to explore the

association between air pollution and mortality “is that myriad modeling choices must

be made to arrive at an ‘optimal’ model” and “[t]he procedure of selecting a single ‘best’

model may ignore the model uncertainty, which is inherently involved in searching

through the set of candidate models to determine the best one” (Roberts and Martin,

2010, p. 131). They assess the performance of a bootstrap procedure on simulated data,

finding that it was more accurate than prediction from a single model (Martin and

Roberts, 2006). Notably, the bootstrap procedure performed well even when implausible

models were included in the ensemble. They also found that a more complex version of

bootstrap model averaging, involving a second layer of bootstrap sampling, performs

better than predicting from a single model, a BMA procedure and the single bootstrap

procedure (Roberts and Martin, 2010). These results show that bootstrap model

averaging is a viable method for handling the consequences of SME in practical contexts.

Another, more recent ensemble method from machine learning, the Super Learner,

offers yet another data-driven strategy against the consequences of SME. Introduced in
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2007 by van der Laan et al. (2007) and later adapted for prediction (Polley and van der

Laan, 2010; Polley et al., 2017), this method is motivated by the use of a procedure

called cross validation. In cross validation, a dataset is split into two distinct subsets

called a test set and a training set. The training set is used to fit the model and the test

set is used to evaluate the model’s ability to accurately predict new data. A slightly

more complex variation of this procedure, V-fold cross validation, is often used to select

a best model from a number of candidates. Basically, the Super Learner is a model

averaging procedure that cleverly incorporates V-fold cross validation into its choice of

weights. A scientist who applies the Super Learner proceeds as follows:

1. Split the dataset into V equally sized groups.

2. Create V training sets by leaving each of the V subsets out of the dataset. The vth

test dataset is the vth subset. The vth training dataset is the union of all remaining

subsets.

3. Fit each model to the V training datasets.

4. Use each of the V model fits to predict the corresponding test datasets.

Ultimately, this procedure is used to select the set of model weights that minimize the

cross validated risk, a quantity that estimates each model’s accuracy to out-of-sample

data. Roughly speaking, these weights reflect how accurately models in the ensemble

would predict new data. Finally, a Super Learner prediction is made exactly as in BMA

and bootstrap model averaging, by taking a weighted average of predictions from each

model in the ensemble. But this method does not involve a choice of prior and,

interestingly, does not require that the true model be in the ensemble. Theory shows
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that the Super Learner’s special way of choosing the weights ensures that,

asymptotically, the resulting prediction is as good as the prediction of any single model

in the ensemble. In the case that the true model is in the chosen ensemble, this means

that the Super Learner guarantees accurate predictions. In the case that the ensemble

does not contain the true model, the Super Learner prediction will be the best available

(van der Laan et al., 2007).

BMA, bootstrap model averaging and the Super Learner are only three of a number

of model averaging methods that can be applied to guard against structural

uncertainties. We have focused on BMA because of its wide treatment in both

theoretical and applied science. The bootstrap approach offers an equally viable

alternative for those who prefer to avoid Bayesian methods. The Super Learner is a new

method from machine learning that, while not widely applied in practice, is gaining

traction in the scientific community and has a theoretical grounding that guarantees

good results. While each of these methods is designed for modeling problems involving

observed data, the general principles behind model averaging can be applied in problems

that do not involve fitting a model to observations. In sum, model averaging does

provide an efficient and practical tool for mitigating against the impact of SME on

predictions of nonlinear dynamical systems in many relevant contexts.

4 Structural Uncertainty in Climate Science

As mentioned earlier, it is important to highlight the fact that the intended domain of

Frigg et al.’s considerations is climate science. Climate science commonly operates with

large and complex models. This means that if ensemble methods are to be used for
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prediction in climate sciences the computational burden is usually huge and the size of

the ensembles is generally quite small. However, a major advantage of the above

discussed statistical tools was precisely their ability to handle large ensembles of simple

models. So the question arises whether our optimism towards ensemble modeling

approaches as a feasible countermeasure against SME was premature. Maybe our

objection that the closeness-to-goodness link is rarely applied in real science only holds

in in fields where scientists operate with simple and highly idealized models, i.e. in cases

where they know that their models are unlikely to be truthful representations of the real

system. But in fields where models are intended to be comprehensive and realistic

representations of a complex physical system, where the computational cost of creating

models is high, and where they cannot be easily calibrated with past data,

closeness-to-goodness is often the only applicable criterion to evaluate the predictive skill

of a model. This would mean that Frigg et al.’s conclusions about the limitations of our

predictive practices imposed by SME are correct in fields that deal with large realistic

models—such as climate science—, but are exaggerated in domains where models are

idealized and simple—such as in the above mentioned examples from wild life ecology,

engineering or environmental science. Let us thus take a brief look at another

publication, where the authors apply their argument to a real modeling project in

climate science.

In their 2013 paper, Frigg, Smith and Stainforth investigate the impact of the

Hawkmoth Effect on the UKCP09 climate modeling project.9 The UKCP09 is a highly

localized model that provides high-resolution ensemble forecasts of climate during the

twenty-first century in the United Kingdom. The information provided by the UKCP09

9See also Frigg et al. (2015).
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is supposed to guide decision-making and mitigation measures that would help prevent

the impacts of climate change in the UK.

Frigg et al. (2013b) identify two assumptions made by the UKCP09: The proxy

assumption and the informativeness assumption. The proxy assumption holds that a

multi model ensemble can serve as a viable proxy for the real world, and that the effects

of structural errors of a given model can be assessed by comparing it to the ensemble.

The informativeness assumption is that a given model is informative about the real

world and that there exists a measure (the so-called discrepancy term) for the

discrepancy between the model and the real world (Frigg et al., 013b, pp. 892-893).10

The informativeness assumption is rejected by the authors based on their claims about

the impact of SME (Frigg et al., 013b, p. 894). A model can only be seen as informative

if the inference from closeness to truth to the reliability of the model outputs could be

drawn in general. But, as the argument in Frigg et al. (2014) shows, the

closeness-to-goodness link only holds under certain conditions, and not in general. The

proxy assumption is rejected based on a frequent general objection against ensemble

modeling that model ensembles only help to attenuate the impact of structural errors in

cases where the the models in the ensemble are independent. If the models in the

ensemble share a common structural error the ensemble as a whole suffers from the same

deficiencies as a single model with SME. It might turn out that the distribution

produced by the ensemble is far away from the target. Therefore the proxy assumption is

unjustified. A multi model ensemble provides no reliable measure for the distance of a

10To be precise, in Frigg et al.’s presentation, the informativeness assumption is part of

the core assumption, which also contains an assumptions about the discrepancy term. For

reasons of simplicity and relevance, we only focus on the informative assumption here.
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given model to the real system (Frigg et al., 013b, p. 895. See also Smith, 2002).

Applied to actual modeling projects such as the UKCP09 this amounts to the

attribution of complete failure: “[T]he aim of UKCP09 was to provide trustworthy

forecasts now, and this, we have argued, they fail to do” (Frigg et al., 013b, p. 896).

The UKCP09 thus serves as a paradigm case where the abstract mathematical

considerations about structural stability have immediate practical implications, insofar

as they shed skepticism on the usability of nonlinear models for predictive purposes on

highly localized scales. It has been argued elsewhere that the lack of predictive capacity

on localized scales prohibits effective adaptation measures because we simply do not

know what to adapt to. As a consequence, claims to the effect that adaption to climate

change is more feasible and cost effective than mitigation of green house gases turn out

to be ill founded (Oreskes et al., 2010). All this shows that a lot depends on the validity

of Frigg et al.’s arguments. If they are correct, this could have immediate practical

consequences for climate policy. Therefore, it is of crucial importance to understand the

scope of their argument correctly.

Recall that Frigg et al,’s main skepticism against ensemble approaches in climate

science consisted in the rejection of the proxy assumption, according to which multi

model averages can serve as a viable proxies for the real world. They believe that the

proxy assumption fails if there are common errors in the ensemble. And we have good

reasons to suspect that our current climate model ensembles do contain such common

errors (Parker 2011, cited in Frigg et al. 2013 [p. 895]; see also Knutti et al., 2010), in

particular if the number of models in an ensemble is small.

The problem of common errors in ensemble modeling is widely acknowledged in the

literature (Sexton et al., 2012, p. 2516; Parker, 2011, both cited in Frigg et al., 013b; see
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also Parker, 2014). So there is little doubt that model dependence and common biases

constitute serious problems for every ensemble modeling effort. But it is also important

to note that we observe a tendency towards the use of structurally less uniform sets of

models. A higher degree of diversity might make the interpretation and combination of

the models more difficult. “On the other hand”, as Tebaldi and Knutti (2007) note, “they

[less uniform ensembles] will probably sample a wider range of structural uncertainties in

that case, and will be reducing the concern about common biases” (Tebaldi and Knutti,

2007, 2071).11 The underlying rationale here is straightforward: The problem of common

errors can be attenuated if we use less uniform ensembles, and since the uniformity of an

ensemble is a function of its size, the larger the ensemble the more diverse it becomes.

General circulation models (GCMs) in climate science usually involve several

components of the Earth system. The four traditional components of a GCM are

atmosphere, land surface, ocean, and sea ice. In recent decades, there has been a trend

to move from traditional GCMs to more complex earth system models (ESMs) which

include further components such as land ice, biogeochemical cycles, aerosols, ecosystem

models and more.12 The tendency towards ever more complex models appears to be

continuing. For example, there have been efforts to include even simulations of

year-to-year variations in the emergence and loss of leaves by trees and other plants into

climate models (Puma et al., 2013). The transition from the commonly used HadCM3 to

the more recent state-of-the-art HadGEM1 model involved an improved representation of

clouds, water vapor and radiative properties, increased horizontal and vertical

11Emphasis added.
12For an overview of the development of climate models see Figure 1.13 in Cubasch et al.

(2013, p. 144).
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resolutions, a new gravity wave scheme, as well as the inclusion of an interactive sulphur

cycle among other things (Pope et al., 2007). Overall, we have observed a strong

tendency towards more realistic models in the past, i.e. towards models that represent

the full complexity of the climate system as comprehensively as possible.

Large and complex climate models can be highly useful to improve our understanding

of the climate system. In light of Frigg et al.’s arguments we must, however, be highly

cautions when using such models for predictive purposes. Although they might be

extremely realistic representations of the reals climate, their predictions could be

seriously flawed due to the Hawkmoth Effect, and ensemble modeling may not provide

an effective remedy, because the complexity of the models only allows us to construct

ensembles with few members. In small ensembles common structural errors are likely,

and therefore predictions from such ensembles may not significantly better than

predictions from a single model. This issue becomes even more pressing in the context of

highly localized modeling projects such as the UKCP09 where the ensemble consisted of

no more than 12 models.

The widespread efforts in the climate community to produce realistic models can in

fact be interpreted as the application of what Frigg et al. call the closeness-to-goodness

link. The effort of climate scientists to generate realistic models can indeed be seen as an

indication for their implicit belief that models which are closer to the truth produce

better predictions. And in these cases, Frigg et al.’s skeptical conclusion does in fact

hold. Their argument shows that the closeness-to-goodness link fails in gerneral due to

the lack of structural stability of nonlinear models.

The issue of model complexity in climate science is widely acknowledged. Running

comprehensive ESMs comes with high computational cost. This allows only for a limited
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number of experiments on higher resolutions, which hinders the systematic exploration

of uncertainties and studies of long-term evolutions of climate (Randall et al., 2007, p.

643). Due to the problems associated with complex models, the recent literature has

produced a handful of contributions, which seem to go against the trend to use ever

more realistic and complex climate models for predictions. To mention just one example,

Seneviratne et al. (2016) introduce a scaling approach for the prediction of local regional

extreme events. They show that temperature extremes and heavy precipitation events

robustly scale with global temperatures and accordingly with cumulative CO2 emissions

in a range of scenarios. The basic idea is to use a simplified emulated version of the

original models, in order to make the testing of hypotheses more simple and to render

uncertainties more graspable. The structural uncertainties of high-resolution-models are

recognized and circumvented by the use of the scaling approach. The scaling approach

may be seen as an attempt to produce decision-relevant predictions on the regional scale

that are not derived from the solution of structurally complex and highly realist

nonlinear models, but which rely on a few very simple causal relationships such as the

relationship between global temperature increase and cumulative CO2 emissions.

Combining Frigg et al.’s argument with our considerations about some statistical

tools for ensemble modeling, we may infer a tentative recommendation for future

modeling efforts in climate science: If we could move towards simpler models containing

few and simple causal relationships, and if these models prove to be useful for predictive

purposes (as it happens to be the case in Seneviratne et al. 2016), this might render the

above mentioned statistical tools for ensemble modeling more accessible to climate

modeling, which in the end would indeed attenuate the serious problem of SME in

climate science.
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To be sure, the use of ensemble approaches in climate science will still pose other

difficulties even if we will have simpler models at hand in the future. Finding ways to

create sufficiently large ensembles with appropriate degrees of diversity is only one of

many challenges. Another problem of interest is finding adequate weighing schemes for

climate model ensembles. As mention earlier, model interdependence of models in an

ensemble leads to the problem of common biases, which is more virulent in small

ensembles (for studies on the lack of model independence see Bishop and Abramowitz,

2013 and Jun et al., 2008). Therefore, having a quantitative measure for the

interdependence between models and ipso facto of the uniformity of an ensemble would

be highly desirable. Until very recently, the prevailing approach for ensemble-based

climate predictions has been model democracy, i.e. giving all models in the ensemble the

same weight despite the fact that there often are good reasons to believe that certain

models in an ensemble might outperform others for a given predictive task (Knutti, 2010;

for multi-model approaches in climate science see e.g. Tebaldi et al., 2004 and Weigel

et al., 2010). In a recent contribution to the debate, Knutti et al. (2017) have suggested

a weighing scheme for multi-model projects that accounts for differences in model

performance and model interdependence. The weighing scheme contains a term for the

distance metrics between individual models. The basic idea behind this approach is that

models that agree poorly with observations get less weight and models that largely

duplicate existing models also get less weight. This is in line with the model averaging

approaches discussed earlier, which also give models that agree poorly with observations

less weight.

35



5 Conclusion

6 Acknowledgements

to be added after review

36



References

Artelle, K. A., S. C. Anderson, J. D. Reynolds, A. B. Cooper, P. C. Paquet, and C. T.

Darimont (2016). Ecology of conflict: marine food supply affects human-wildlife

interactions on land. Scientific Reports 6 (1), 25936.

Baraldi, P., F. Mangili, and E. Zio (2013, April). Investigation of uncertainty treatment

capability of model-based and data-driven prognostic methods using simulated data.

Reliability Engineering & System Safety 112, 94–108.

Bishop, C. H. and G. Abramowitz (2013). Climate model dependence and the replicate

Earth paradigm. Climate Dynamics 41 (3), 885–900.

Bradley, S., R. Frigg, H. Du, and L. A. Smith (2014). Model Error and Ensemble

Forecasting: A Cautionary Tale. Scientific Explanation and Methodology of Science 1,

58–66.

Brauer, F. (2008). Compartmental model in mathematical epidemiology. In F. Brauer,

P. van den Driessche, and J. Wu (Eds.), Mathematical Epidemiology, Volume 1945, pp.

10–79. Springer.

Buckland, S. T., K. P. Burnham, and N. H. Augustin (1997, June). Model selection: An

integral part of inference. International Biometric Society 53 (2), 603–618.

Clyde, M. and E. I. George (2004). Model Uncertainty. Statist. Sci. 19 (1), 81–94.

Cubasch, U., D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, and J. G.

Winther (2013). Introduction. In T. Stocker, D. Qin, G.-K. Plattner, M. Tignor,

S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. Midgley (Eds.), Climate

37



Change 2013: The Physical Science Basis. Contribution of Working Group I to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp.

119–158. Cambridge; New York: Cambridge University Press.

Fernández, C., E. Ley, and M. F. J. Steel (2001). Model uncertainty in cross-country

growth regressions. Journal of Applied Econometrics 16 (5), 563–576.

Fragoso, T. M. and F. L. Neto (2015). Bayesian model averaging: A systematic review

and conceptual classification. pp. 1–35.

Frigg, R., S. Bradley, H. Du, and L. A. Smith (2014). Laplace’s Demon and the

Adventures of His Apprentices. Philosophy of Science 81 (1), 31–59.

Frigg, R., S. Bradley, R. L. Machete, and L. A. Smith (2013a). Probabilistic Forecasting:

Why Model Imperfection Is a Poison Pill. In H. Andersen, D. Dieks, W. J. Gonzalez,

T. Uebel, and G. Wheeler (Eds.), New Challenges to Philosophy of Science, pp.

479–491. Dordrecht: Springer Netherlands.

Frigg, R., L. A. Smith, and D. A. Stainforth (2013b). The Myopia of Imperfect Climate

Models: The Case of UKCP09. Philosophy of Science 80 (5), 886–897.

Frigg, R., L. A. Smith, and D. A. Stainforth (2015). An assessment of the foundational

assumptions in high-resolution climate projections: the case of UKCP09.

Synthese 192 (12), 3979–4008.

Gelman, A. (2002). Prior distribution. Encyclopedia of Environmetrics 3, 1634–1637.

Goodwin, W. M. and E. Winsberg (2016). Missing the Forest for the Fish: How Much

38



Does the ‘Hawkmoth Effect’Threaten the Viability of Climate Projections? Philosophy

of Science 83 (5), 1122–1132.

Hayashi, S. (1997). Connecting Invariant Manifolds and the Solution of the C1 Stability

and Ω-Stability Conjectures for Flows. Annals of Mathematics 145 (1), 81–137.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999). Bayesian model

averaging: A tutorial. Statistical Science 14 (4), 382–401.

Jasny, B. R. and R. Stone (2017). Prediction and its limits. Science 355 (6324), 468–469.

Jun, M., R. Knutti, and D. W. Nychka (2008, sep). Local eigenvalue analysis of CMIP3

climate model errors. Tellus A 60 (5), 992–1000.

Knutti, R. (2010). The end of model democracy? Climatic Change 102 (3), 395–404.

Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl (2010, dec). Challenges

in Combining Projections from Multiple Climate Models. Journal of Climate 23 (10),

2739–2758.
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