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We now proceed to take the final step in our journey towards modal homotopy
type theory. Analytic philosophers have put modal logic to extensive use in their
exploration of so-called alethic, epistemic, doxastic, deontological, temporal and
other modalities. These modalities typically qualify ways in which a proposition
may be said to be true, as with, for example,

• It is necessarily the case that...

• It is known to be the case that...

• It is obligatory that...

• It will be the case that...

The relevant logical calculus is shaped by, and in turn shapes, reflection on what
is imagined to be the philosophical content of these concepts. So philosophers
might consider the differences, if any, between physical, metaphysical and logical
necessity and possibility. Such discussions will often involve consideration of
what has played the role of semantics for these logics, in particular, possible
world semantics. For instance, “P is necessarily the case” might be taken to
mean “P holds in every metaphysically possible world.”

Kripke had given a warning concerning his introduction of possible worlds:
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The apparatus of possible worlds has (I hope) been very useful as
far as the set-theoretic model-theory of quantified modal logic is
concerned, but has encouraged philosophical pseudoproblems and
misleading pictures. (Kripke 1980, p. 48)

All the same, many have decided to overlook his concerns, encouraged by the ex-
ample of David Lewis (1986). While not every metaphysician has adopted such
a concretely realist attitude towards these worlds as Lewis, numerous criticisms
even of their instrumental usage have been launched from a range of positions,
from the Wittgensteinian to the constructive empiricist. For Hacker (2010),
Wittgenstein rightly understood necessary truths as merely the expressions of
the normativity of rules, rules of grammar, of mathematics or whatever: “Neces-
sary propositions exhibit neither factual or super-factual (‘meta-physical’) nor
ideational (psychological) truths, but rather conceptual connections.” (p. 20).
Hacker maintains that there are no possible worlds beyond our actual world.
For van Fraassen (2002), philosophers toying with these possible worlds are en-
gaged in a palid imitation of science, where speculative claims are made without
any form of check beyond the supposed coherence of the account offered: “The
world we live in is a precious thing; the world of the philosophers is well lost for
love of it.” (p. 18).1

But even if one has sympathy for complaints of this kind, it is worth observ-
ing that computer scientists have latched onto modal logic and run with it. They
do this both by taking up the modalities of the philosophers and putting them
to different uses, for instance, temporal logic in model-checking and epistemic
logic in multi-agent systems, and also by devising new modalities of their own.
So, in regard to the latter, modalities have been defined to represent security
levels and computational resources, and more generally, what they term effects
and coeffects, relating to features of the context in which programs are executed
beyond mere input-output pairings.

Computers scientists are also inventive technically. Where philosophers are
still largely working exclusively with propositional modal logics (K, S4, S5,
etc.), first-order extensions and Kripke models for semantics, computer scientists
employ sub-structural logics, coalgebra, labelled transition systems, descriptive
frames and bisimulations, where these topics are often given a category theoretic
treatment.

With fewer tools at their disposal, the task of philosophers looking to en-
gineer a useful form of first-order modal logic is not made easy by the lack
of clear-cut conceptual constraints placed upon them. Kishida makes just this
point in his contribution to Categories for the working philosopher (Landry
2017).

Modal logicians have devoted the overwhelming majority of their
inquiries to propositional modal logic and achieved a great advance-
ment. In contrast, the subfield of quantified modal logic has been
arguably much less successful. Philosophical logicians–most notably
Carnap, Kripke, and David Lewis–have proposed semantics for quan-
tified modal logic; but frameworks seem to keep ramifying rather
than to converge. This is probably because building a system and

1Elsewhere he writes, “However plausibly the story begins, the golden road to philosophy
which possible-world ontologies promise, leads nowhere.” (van Fraassen 1989, p. 93)
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semantics of quantified modal logic involves too many choices of tech-
nical and conceptual parameters, and perhaps because the field is
lacking in a good methodology for tackling these choices in a unifying
manner. The remainder of this chapter illustrates how the essential
use of category theory helps this situation, both mathematically and
philosophically. (Kishida 2017, p. 192)

He then goes on to provide there a rich account of first-order modal logic.
What I shall be working towards in this chapter, on the other hand, is the more
ambitious target of a modal version of homotopy type theory, naturally still in
a category theory-guided way.

We begin by tracing a path which can help us understand why modalities
are often conceived in terms of variation over some collection, often construed
by philosophers to be a set of worlds. One key finding, however, is that it is
not this variation as such that matters, but rather the properties possessed by
adjoint operators arising from such variation. These properties are encountered
in a broader range of situations, and are now forming the basis of a powerful new
approach to modal type theory, mentioned in the final section of this chapter.
I believe that computational trinitarianism is pointing us very strongly in this
direction.

As for the expected payoff, modal type theories are already being deployed
in computer science. Furthermore, as we will see in the next chapter, they can
also make good sense of developments in current geometry. Linear dependent
type theories are now being developed, and are expected to provide a syntax for
the forms of monoidal category used in quantum physics (Schreiber 2014).

As for philosophy, for analytic metaphysics, modal HoTT can help us to
think through options on modal counterparts profitably. It also offers a range
of novel lines of investigation, such as a way to think beyond modal propositions
to elements of modal types, such as ‘necessary steps’ and ‘possible outcomes’.
But in view of the type theory-inferentialism relationship that has been noted
at points through this book, we might also expect to make common cause with
inferentialist perspectives on modality, in particular what Robert Brandom de-
notes as the Kant-Sellars thesis about modality :

...in being able to use nonmodal, empirical descriptive vocabulary,
one already know how to do everything one needs to know how to
do in order to deploy modal vocabulary, which according can be
understood as making explicit structural features that are always
already implicit in what one does in describing. (Brandom 2015, p.
143)

The uses of nonmodal vocabulary being made explicit by modal language include
those where one describes how the state of something would be under certain
kinds of variation of its current situation. As we shall now see, such variation
plays a key role in forming modalities for type theory.

1 Modalities as monads
First let us consider the alethic modalities:
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• It is necessarily the case that...

• It is possibly the case that...

Modal operators such as these are often considered to possess certain structural
features irrespective of the nature of the associated proposition. For example,
a standard reading of possibility admits the following implications:

• p implies possibly p.

• Possibly possibly p implies possibly p.

When symbolised as entailments p ` ♦p and ♦♦p ` p, a category theorist will
immediately be put in mind of a key construction known as a monad. A similar
analysis of necessity indicates the dual concept, a comonad.

To understand modalities from a type theoretic perspective we will need to
make sense of monads and comonads and of how they arise within the context
of category theory, but let us ease our way into this material by looking at a
simple case. So consider the situation in which there is a type of dogs and a
type of people, and where each dog is owned by precisely one person. Then the
mapping

owner : Dog → Person,

allows any property of people to be transported to a property of dogs, for in-
stance,

Being French 7→ Being owned by a French person.

We may say that taking properties of People as elements of 2People, the ‘owner’
function induces a mapping

owner∗ : 2Person → 2Dog,

from being a kind of person to being owned by that kind of person.
Now we may order these domains of properties as partially order sets, where

the ordering corresponds to inclusion, for instance, ‘pug’ is included in ‘toy
dog’, and ‘being French’ is included in ‘being European’. However we cannot
necessarily invert this mapping to send a property of dogs, say, ‘being a pug’,
to a property of people. Indeed, there is no reason that being a certain kind of
dog should correspond to being owned by a certain kind of person.

We may try
Pug 7→ Owning some pug,

but then the composite results in

Pug 7→ Owning some pug 7→ Owned by someone who owns a pug.

However, people may own more than one breed of dog. A poodle who shares a
home with a pug will count as a dog owned by someone who owns a pug.

Since this doesn’t work, let’s try

Pug 7→ Owning only pugs,
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however this leads to

Pug 7→ Owning only pugs 7→ Owned by someone owning only pugs.

Yet again this is not an inverse, not all pugs being owned by single breed owners.
The pug sharing its home with a poodle is a case in point.

Despite the failure to find an inverse, in some sense my suggestions were the
best approximations to one. Too loose an approximation first time; too constric-
tive an approximation second time. But even though only approximations to
inverses, we can show that these mappings between dog and people properties
may be used to make inferences. Say we have two people, D and P , trying to
establish a relationship between their fields, where D, the dog expert, can only
think in terms of dogs and their properties, and P , the people expert, can only
think in terms of people and their properties. Entailments for one expert may
be translated to entailments for the other. For instance, when P establishes
that being French implies being European, D can know that being owned by
a French person entails being owned by a European. And when D establishes
that all pugs are toy dogs, then P knows that an owner of only pugs is an owner
of only toy dogs, and similarly for ‘only’ replaced by ‘some’. So their inference
patterns are in this sense reflected in the other’s.

But we might ask for more. Even though there is no process to translate
properties of concern to each other faithfully across the divide, the experts are
still able to establish jointly a relationship between a dog property and a person
property. Let’s say thatD chooses the property pug and P chooses being French.
D starts listing names of dogs which are pugs. P doesn’t understand anything
about these matters, but what appears to him are the results of the owner
function, that is, a series of people’s names, which are in fact the owners of a
pug. Now P might check to see if each such owner is French. Then they will
jointly assert or deny the following claims.

• D: All pugs are owned by a French person (whatever such a thing is).

• P : Any person who owns a pug (whatever that is) is French.

A similar analysis works for the other mapping:

• D: All dogs owned by a French person (whatever such a thing is) are pugs.

• P : A French person owns only (if any dog at all) pugs (whatever they
are).

What we have here is an adjoint triple,
∑
owner a owner∗ a

∏
owner, acting

between the partially ordered set of dog properties and the partially ordered
set of people properties. To make contact with the opening comments of this
chapter on the properties of modal operators, we now need to look more closely
at the result of composing pairs of adjoints. As we have seen, taking a predicate
of dogs and applying the left adjoint followed by the owner∗ mapping yields an
endomap on Dog properties:

Pug 7→ Owning some pug 7→ Owned by someone who owns a pug.
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Certainly, in a world where all dogs are owned by some person, if a dog is a pug,
then it is owned by someone who owns a pug. However, the opposite condition
does not hold since people may own more than one breed of dog. On the other
hand, iteration of the construction is idempotent in the sense that ‘being owned
by someone who owns a dog which is owned by someone who owns a pug’
is equivalent to ‘being owned by someone who owns a pug’. Structurally the
resemblance to possibility is clear. Being owned by someone who owns a pug is
being construed as though you ‘might have been a pug’. So ‘owned by someone
who owns’ resembles the possibility operator, both being monads. This is the
best D can do in having P help him to establish a consequence of possession of
a dog property. P has information concerning a weaker property. If you learn
via P that a particular dog is co-owned with a pug, there’s still a chance it may
be a pug.

Similarly we can form a dual version where we begin with the right adjoint.
In our case, for example, we can tell a similar story about the comonad on the
category of properties of dogs, generated by the right adjoint of owner∗:

Pug 7→ Owning only pugs 7→ Owned by someone owning only pugs.

Again, not all pugs are owned by single breed owners, so we have an implication
from ‘being owned by someone who owns only pugs’ to ‘being a pug’, but not in
the other direction. On the other hand, ‘being owned by someone who owns only
pugs’ is equivalent to ‘being owned by the owner of a dog owned by someone who
owns only pugs.’ Evidently, this operation is acting like necessity. If you and
all your co-owned fellow dogs are pugs, then you’re ‘necessarily’ a pug. Now,
‘owned by someone who owns only’ is seen to resemble necessity as a comonad.
Again, P is doing their best to provide information from which D can look
to conclude possession of a property. D may learn via P consequences of a
specific dog being one of a group of dogs all of which are pugs. P can provide
information about a stronger property.

In sum, the these constructions applied to our pug case are:

• ♦owner : Pug 7→ Owning some pug 7→ Owned by someone who owns a pug.

• 2owner : Pug 7→ Owning only pugs 7→ Owned by someone owning only pugs

We have equivalents of

• P → ♦P

• 2P → P.

As we saw above, we also have equivalents of

• ♦♦P → ♦P

• 2P → 22P.

Now recall from the first chapter where I mentioned that partially ordered
sets can be considered as categories enriched in truth values. Unsurprisingly
then, adjoint triples are commonly encountered operating between ordinary cat-
egories, where they also generate monads and comonads. As we should expect

6



with central category theoretic constructions, monads appear throughout math-
ematics. Let’s take a look at how these arise. For instance, consider a set, S,
along with the associated set, M(S), of finite strings of elements of S. Then
there are two natural mappings:

• i : S → M(S), which sends an element s ∈ S to the string of length one,
〈s〉.

• m : M(M(S)) → M(S), which sends a string of strings of elements of S
to the concatenated string, e.g., m : 〈〈pqr〉〈st〉〈uvw〉〉 7→ 〈pqrstuvw〉.

Notice thatM is behaving very much like ♦, as is made apparent by representing
propositions as objects and entailments as arrows: p→ ♦p and ♦♦p→ p.

This data forms a monad since we have a category, here the category of
sets, Set, an endofunctor from the category to itself, here M , with a unit,
iS : S → M(S), and a multiplication, mS : M(M(S)) → M(S), for each S in
Set, satisfying a number of equations. In this case of strings of elements of a
set, some of these equations concern obvious properties of concatenation with
singleton strings. Other equations tell us that concatenating strings of strings
of strings of elements, it does not matter whether we begin concatenating at the
inner or the outer layer.2

All monads on a category, C, come from a composition of two adjoint functors
between C and some other category D, the left adjoint followed by the right.
In general this composition occurs in several different ways, in the sense that
non-equivalent choices of D are possible. In the case of our strings of elements,
M may be taken as the composite of a pair of adjoint functors between the
category of sets and the category of monoids, a monoid being a set equipped
with an associative binary operation and a unit for this operation. The left
adjoint is the free functor which sends a set to the monoid it freely generates,
the identity element being the empty string. The right adjoint is the forgetful
functor, which sends a monoid to its underlying set.3

It seems then as though familiar modal operators such as ‘possibly’, behaving
as they do like a monad, should equally arise from an adjunction. Let’s now
show this by returning to our dog scenario, but where before I used the owner
map, I now work with a different map. The constructions I detailed above
concerning dog ownership work for any map between sets, and so in particular
for the terminal map (Dog → 1). Induced mappings must send dog properties
to properties of 1. Now, ‘properties’ of 1 are just propositions. The equivalent
of the owner∗ map is a map which sends a proposition, P , to the property of
dogs – any dog if P is true, no dog if P is false. Then attempts at inverses
to this mapping, left and right adjoints, would send a property of dogs such
as ‘being a pug’ to the familiar constructions of quantified statements: ‘Some
dog is a pug’ and ‘All dogs are pugs’. Here we have recovered the dependent
sum and dependent product of the chapter 2. Since this is a special case of a
construction for general functions, f , we often call the left and right adjoints
dependent sum,

∑
f , and dependent product,

∏
f , as well.

Now the step to the possible worlds of modal logic is simple to make. One
common philosophical interpretation of necessarily and possibly is in terms of

2We pay less attention to this extra structure in the logical case since we generally take an
arrow between propositions to represent entailment, rather than a specific entailment.

3So-called algebras for this monad are monoids.
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a collection of possible worlds of which our actual world is just one element.
So let W be the type of all possible worlds. Any specific choice of W may be
taken as specifying what is to be understood as a possible world. Under this
interpretation, a proposition that depends on W is necessarily true if it is true
in all possible worlds, and possibly true if it is true in some possible world.

Note, however, that these dependent sum and dependent product operations
change the dependence fromW to non-dependence, or dependence on 1 or ∗. In
other words, if a proposition P (w) depends on w : W , so that it may be true in
some worlds and false in others, then ∃WP and ∀WP no longer depend on W .
But the idea of a necessity and a possibility modality is to send a proposition
in some context to a proposition in the same context so that they may be
compared. We should be able to say for instance that 2P implies P and so on.
Thus we need to make ∃WP and ∀WP into propositions that again depend on
W even if they now depend trivially on W .

One of the very pleasant features of a topos, H, is that, if you take any of its
objects, say, A, then the so-called slice category H/A is also a topos. The slice
category has as objects, maps in the topos f : B → A. A morphism in the slice
topos to another object g : C → A is a map h : B → C, such that f = g ◦h, the
triangle commutes. A parallel statement also holds true for (∞, 1)-toposes, the
categories which model HoTT. Now the equivalent in type theory of the object
f : B → A in H/A is the dependent type x : A ` B(x) : Type. Working in a
context is equivalent to working in the associated slice of a topos. The empty
context corresponds to the object 1, and H/1 ' H.

Restricting ourselves still to propositions, we need to make ∃WP and ∀WP
which belong to the empty context into propositions that again depend on W ,
even if they now depend trivially onW . This process is ‘context extension’ back
from the absolute context 1 to W . The composite monad and comonad are as
follows:

(♦
W
a 2
W

) :=
((
W ∗ ◦ ∃

w : W

)
a
(
W ∗ ◦ ∀

w : W

))
: H/W −→ H/W ,

taking H/W for the moment as the category of world-dependent propositions,
with implications as arrows. With this, if p ∈ H/W is a proposition about terms
w of W (a W -dependent type) then

• ♦
W
p(w) is true at any w precisely if ∃

w : W
p(w) is true, hence if it is the case

that p(w) is true for some w;

• 2
W
p(w) is true at any w precisely if ∀

w : W
p(w) is true, hence if p(w) holds

for all w.

It may appear to be the case that the further operation provided by applying
W ∗ is unneccesary, but it is crucial for a proper modal HoTT treatment.

Thus we are given one syntactic formalization of the informal meaning of
necessity and possibility. The natural semantics for these base change oper-
ations is a generalization of the simple traditional possible worlds semantics
of propositional necessity and possibility modalities. Notice that we arrived
at these constructions without the usual device of using negation. In classical
modal logic, the operators are interdefinable as ¬2p = ♦¬p. Here, however,
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we defined them independently. Moreover, with this formalization, the modal
operator ♦W is left adjoint to 2W and hence together form an adjoint modality.
Indeed, when an adjoint triple is used to form a pair of modalities in this way,
they are always in turn adjoint to one another, expressing their ‘opposition’:

♦p(w)→ q(w)⇔ p(w)→ 2q(w).

In words, if the possibility of property p entails that q holds at this world, then
were p to hold at this world then q would necessarily be the case. Choosing
q equal to p, we see that a proposition sits between the images of the two
operators:

• necessarily true, true, possibly true

following the pattern of

• everywhere, here, somewhere.

The modal adjoints additionally furnish us with an equivalent for Axiom(B)
from standard modal logic:

Hom(♦p(w),♦p(w)) ∼= Hom(p(w),2♦p(w)).

Also we have (5)

Hom(♦♦p(w),♦p(w)) ∼= Hom(♦p(w),2♦p(w)).

This is evidently an S5 form of modal type theory.
A general property of adjoints is that they preserve certain kinds of categor-

ical structure. Left adjoints preserve sums (and colimits in general), while right
adjoints preserves products (and limits in general). Examples of this preserva-
tion are that

• possibly p or q ↔ possibly p or possibly q

• necessarily p and q ↔ necessarily p and necessarily q

While base change-adjunctions are essentially unique and not free to choose,
there is a genuine choice in the above given by the choice of context W . This is
reflected in the subscripts of ♦W and 2W above. It is the choice of this W that
gives different kinds of possibility and necessity. More generally there is in fact
not just a choice of a context, but of a morphism of contexts, reflecting what is
often called accessibility of possible worlds.

This construction resembles the dog-owner case better if we consider an
equivalence relation on Worlds, represented by a surjection, W → V . Now,
necessarily P holds at a world, w, if P holds at all worlds related to w, that
is all worlds with the same image in V as w. With our axiomatization via
base change, it is immediate to consider the relative case where instead of base
change to a unit type W → 1 one considers base change along any surjection
ω : W −→ V .

(∃ω a ω∗ a ∀ω) : H/W

∀
w : ω−1(−)−→

ω∗←−−→
∃w : ω−1(−)

H/V .
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Then we set

(♦
ω
a 2
ω

) :=

((
ω∗ ◦ ∃

w : ω−1(−)

)
a
(
ω∗ ◦ ∀

w : ω−1(−)

))
: H/W −→ H/W .

Since here ω is a surjection, then it provides an equivalence relation on W ,
where w1 ∼ w2 is given by ω(w1) = ω(w2). In traditional possible worlds
semantics such equivalence relation is called an accessibility relation between
possible worlds. Now

• ♦ωp is true at w ∈W iff it is true at at least one w̃ in the same equivalence
class of w;

• 2ωp is true at w ∈W iff it is true at all w̃ in the same equivalence classes
of w.

We still find ourselves dealing with an S5 kind of modal type theory. In a later
section we move away from symmetrically accessible worlds.

Now, even though we have achieved a successful encoding of S5 modalities
within a dependent type theory by relying on a type of worlds, there is still
much to be taken from this construction by those who refuse to countenance
what they take to be such metaphysical fantasies as possible worlds. The fact
that I could begin my account with variation over dogs should indicate to us
that what is really at stake is variation broadly construed. A type of worlds
can be taken to play the role of a generic domain of variation, rather as the
probability theorist employs the notion of a sample space, Ω, as a domain for
their random variables.

Consider, for A a type and B a property of that type, how we mark the
difference between the following:

• This A is B.

• This A is necessarily B (by virtue of being A).

Using famous examples from Nelson Goodman’s 1955 book Fact, fiction, and
forecast, let us contrast

• This coin in my pocket is silver.

• This emerald is necessarily green.

Where I might look at a gem, e, which I know to be an emerald, and observe
that it is green, this would only warrant ,

• This emerald is green.

• ` p : Green(e)

If, on the other hand, I have a witness to a universal statement

• ` f :
∏
x:EmeraldGreen(x),

then I can apply this function to my gem, e, to construct f(e) : Green(e).
We can see why the language of necessity is invoked from our analysis of

modality above. Consider the necessity operator corresponding to the type A
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through its map to 1. When applied to a dependent type x : A ` B(x) : Type
it produces x : A ` 2AB(x) := A∗

∏
x:AB(x). Now an element of a type is just

a map from 1 to that type. For instance, a particular element, a, of the type A
corresponds to a map a : 1 → A. This map will generate three maps between
all types, H, and all A-dependent types, H/A, in particular the map a∗ which
sends an A-dependent type, B, to the type in the fibre over a, or B(a).

Evaluating our type2AB(x) at a in this way results in2AB(a) =
∏
x:AB(x).

In other words, in the case of the emerald above, when we found f guarantee-
ing the greenness of all emeralds, f :

∏
x:EmeraldGreen(x), it transpires that

it is at the same time an element of the equivalent type 2EmeraldGreen(e), a
type which may be said to represent the necessity of e’s greenness. We see then
that one’s entitlement to add ‘necessarily ’ to a claim about the possession of
some property of an individual in a type depends on the derivation one has of
the element witnessing its truth, as displayed in the syntactical form of that
element.

However, it can’t just be a question of a true universal statement playing
this role. For example, we might also have the universal truth:

• All the coins in my pocket now are silver.

Of course, in a sense, necessity is present here too. If all the coins in my pocket
are silver, then a choice of such a coin must result in a silver one.4 On the other
hand, there’s evidently a difference that Goodman was pointing out with this
example in that there seems to be no modal element in this case, in the following
sense. I’ve only taken a look at some of the coins that will ever be in my pocket,
those which happen to be there now. By tomorrow I may have acquired some
copper coins. Indeed, give me a copper coin and I could place such a coin there
right now. By contrast, I cannot possibly discover or synthesize a non-green
emerald.

But note that we have a necessity operator for every type. When we assess a
judgement for its necessity, we must decide what is a relevant ‘natural’ range of
variation. For my coins, a range time-limited to the moment seems unnatural.
Then again, I might purchase some trousers and after a time seal up their
pockets never to carry any more coins. The coins ever in my pocket may then all
happen to be silver. Even so, there seems to be a difference between a type such
as Emerald and one such as Coin ever in this pocket, so that we are unlikely to
use the latter as a domain. The former has been of human concern for centuries,
certainly since the time of the ancient Egyptians; the latter was cooked up for
a philosophical puzzle, and we expect that no language will contain a word
for such a type. Furthermore, the truth of ‘This emerald is green’ is known
to be due to the structural properties it shares with all emeralds. We have
discovered that it is the chromium-infused beryl (Be3Al2(SiO3)6) composition
which begins to explain its greenness.5

Goodman (1955) presented inductive logicians with a range of challenges in
making sense of the difference between law-like regularities and ones that happen
to occur. The logical empiricists he was addressing were nervous of modal talk,

4A point also noted by Brandom (2015, p. 162).
5If you’re from North America, infusion by vanadium also counts. Note also that we are

ignoring the fact that colour is used in counting such Beryl gems as emeralds, making this
statement analytic.
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and so hoped to rely merely on syntactical features. Instead, along with the
inferentialist, we can say that much rests on the web of inferential relations to
which specific types belong, which dictates what we expect to change and what
remain the same as conditions vary over a range. These expectations, naturally
enough, change over time. We have a very different understanding today of
what kind of measures could lead to a gem changing its colour compared to
the expectations of a seventeenth century alchemist. But at any moment, any
user of language in its primary function of empirical description will possess
“the practical capacity to associate with materially good inferences ranges of
counterfactual robustness” to speak in Brandom’s terms (2015, p. 160). It is
this capacity that underpins our use of modal vocabulary.

In sum, our modal vocabularly provides us with the means to make explicit
our commitments to the behaviour of entities according to their types. The use
of a specific type of worlds to construct modal operators is a means to portray
a most general form of variation. Let’s see now how such variation applies not
only to dependent propositions but to dependent types in general.

2 Towards modal HoTT

2.1 General types
In the section above, I have denoted the expression ‘it is necessarily the case
that’ as 2 and applied it directly to propositions as a form of type. In view of
HoTT’s understanding that propositions are simply a kind of type, those types
at the bottom of the n-type hierarchy, we should expect there to be a modal
form of the full hierarchy. In other words, we should look to form 2A for any
type A.

But before proceeding along these lines, let’s reflect on our options. In
the philosophical literature it is not uncommon to hear of modalities as being
expressions which qualify the truth of judgments (Garson 2018). Since in the
constructive type theory tradition, the judgment ` P true for a proposition P
became ` p : P in HoTT, what should we make of ` P necessarily true? We
can’t apply an operator to the ‘p : P ’ part itself, but we might think to modify
the nature of the judgment, perhaps to something like `nec p : P . Alternatively,
as we were led to do earlier, we modify the symbols for the types, ` p : 2P .

As we will see, these two choices may be reconciled. Judgment in another
stricter domain can be reflected back within the original domain where it will
count as having constructed an element of a modified type. For now, however,
let us continue with the second of these strategies.

In the previous section we saw propositions depending on a type of worlds.
It is perfectly possible then to apply the modal monad and comonad to any
such world-dependent types. Indeed, consider the kinds of category taken as
models of HoTT, namely, elementary (∞, 1)-toposes. For H an (∞, 1)-topos
and f : X → Y an arrow in H, then we have seen that base change induces an
adjoint triple between slices:

(
∑
f

a f∗ a
∏
f

) : H/X

f!→
f∗←→
f∗

H/Y
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The monad and comonad generated by these maps act on the whole slice (∞, 1)-
topos, H/X, that is, on all types dependent on X.

Returning to dependence on a type of worlds, so X = W , a set, and Y = V ,
the equivalence classes of accessible worlds, now consider a world-dependent
type B(w), which we take as a set for clarity. Then ♦WB(w) is the collection
of 〈w′, b〉, with w′ accessible to w and b : B(w′). A possible B at a world is an
actual B at some related world. Meanwhile, 2WB(w) is the collection of maps
which for each world, w′, accessible to w, select an element of the respective type
B(w′). So a necessary B at a world is a selection of a B from each accessible
world.

There is a natural map B(w) → ♦WB(w), which sends b : B(w) to 〈w, b〉 :
♦WB(w), and one from 2WB(w) → B(w), which evaluates the map w′ 7→
b(w′) : B(w′) at world w as b(w). While still being a monad and comonad, re-
spectively, ♦W and 2W as defined above are no longer idempotent. Consider the
case where all worlds are mutually accessible, that is, V = 1. Then ♦W♦WB(w)
is composed of elements 〈w′, 〈w′′, b〉〉, with b ∈ B(w′′). Of course there is a pro-
jection from this to 〈w′′, b〉, so that we have a natural map ♦W♦WB(w) →
♦WB(w). We can similarly find a natural map 2WB(w)→ 2W2WB(w).

Let us now put these constructions to use to provide a setting in which
an old chestnut of a puzzle makes sense. A standard example of the perils of
substitution runs as follows:

• It is necessarily the case that 8 > 7.

• The number of planets is 8.

• It is necessarily the case that the number of planets > 7.

For simplicity we keep with the case where all worlds are accessible to one
another.

We have, of course, that 7 and 8 are elements of N. But we need a world-
dependent version of these numbers. So let us form the trivially world-dependent
W ∗N, which provides a copy of N at every world. Versions of our numbers,
the constants 7(w) and 8(w), are then elements of this world-dependent type
W ∗N 'W×N. Now we can compare these numbers with ‘the number of planets
in w’, also an element of the type W ∗N.

Since 8 > 7 is true, 8(w) > 7(w) is a true proposition at all worlds, hence
2W (8(w) > 7(w))(w) is constantly true. This is our version of the ‘Necessitation
rule’ that a theorem in the empty context is necessarily true. If we like, we may
‘actualise’ this result by evaluation at the actual world, a : 1→W . Such a map
induces a map a∗ : H/W → H, where a∗2WB(w) is equal to

∏
W B(w).

We also have that ‘the number of planets(a) = 8(a) : N’. So we may derive
the truth of ‘(the number of planets(w) > 7(w))(a)’ but not that of 2W (the
number of planets(w) > 7(w))(a). What appears to confuse people in the
puzzle is that when m(w) is not a constant function in W ∗N then it is not equal
to the constant function (m(a))(w).

Now returning to non-constant world-dependent types, we may wonder whether
in general there is any comparability between worlds. If a type is formed by a
map from a set B to W , that is, as dependent type w : W ` B(w) : Type, then
there are no associated means to identify elements of different worlds. On the
other hand, as we saw with the natural numbers, we can form a world-dependent
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type by base change from a type existing in the empty context. So we might
have a general type A, then form theW -dependent typeW×A, the dependency
represented by the first projection to W . Here, of course, an element 〈w, a〉 in
one world corresponds to the counterpart element in another world, 〈w′, a〉.

We might then form a subtype, P , of such a constant type. This will come
equipped with its projections to A and to W . If for some a in A, W × {a} ⊆
P , then we have a section in 2WP , represented by f(w) = a. To illustrate
this, consider that the range of foodstuffs is constant across worlds, or let’s
say here situations. In each situation a recipe for a beef stew is to be given,
the ingredients for each recipe coming from that fixed range. Then presumably
beef will be an ingredient in each case, whereas potatoes may be left out on
occasion. So beef is a necessary ingredient of a beef stew, whereas potatoes are
not. Elements of A here are acting as rigid designators in the sense Kripke gives
the term in Naming and Necessity :

Let’s call something a rigid designator if in every possible world it
designates the same object, a nonrigid or accidental designator if
that is not the case. (Kripke 1980, p. 48)

The rigid designator ‘Nixon’ in Kripke’s famous examples is acting like ‘beef’
to pick out the same entity in each world in which it exists. An element of a
type may also be considered as a function to the type from the unit type,
Nixon : 1 → Person. So then W ∗Nixon(w) : W ∗Person(w), and may be
an element of P (w), our subtype of W ∗Person(w). ‘The person who won the
United States presidential election of 1970(w)’ is also an element of P (w), but
it is not in the image of W ∗. As such it is nonrigid in Kripke’s sense. We see
both transworld identity (Kripke) and counterparts (Lewis) at play.6

Of course, one may question such accounts. Does it make any sense to postu-
late a set of world-transcending people, Person, with which to form W ∗Person
or even the subtype of those people that exist in their worlds? Can we sen-
sibly compare this world to a neighbouring possible world? In a very close
world to this one, nobody like me exists. Or the fertilised egg that became me
here might have divided to produce monozygotic twins. Nevertheless there’s
something structurally interesting happening here concerning ways of relating
elements between fibres of maps. Let’s illustrate this by leaving behind these
speculative worlds and confining ourselves to something occurring in our own
familiar world.

Let’s consider modalities generated by a simple surjective mapping, the map
from the type of animals to the type of species, the one which assigns to each
animal its species. Then take the dependent type of x : Animal ` Leg(x) : Type.
Then an element of ©Leg(x) is any leg of a conspecific of x, and an element of
2Leg(x) is a description of a leg possessed by each conspecific of x. In terms of
a dog called Fido, a ‘possible leg’ for Fido is any dog’s leg, while a ‘necessary
leg’ is an assignment of a leg to each dog. For the latter, we could take, for
instance, ‘the last leg to have left the ground’, or ‘the right foreleg’.

Then Legs(Fido) → ©specLegs(Fido) is just the injection of Fido’s legs
into all dogs’ legs. This is relevant to the discussion in philosophy as to whether

6These resources should suffice to represent what is studied in so-called two-dimensional
semantics. This concerns use of actuality or indexicals, as with “It is possible for everything
that is actually red to be shiny,” to be rendered perhaps as “There is some world, b, in which
everything that is red in this actual world, a, is shiny there in b.”

14



possible objects are counted as pertaining to a world. Fido’s possible legs pertain
to him even if they make reference to other dogs’ legs. Similarly, we have a type
of possible entities of a kind at a world, members of which make reference to
entities of that kind in another world. But we see here that we must maintain
type discipline. An element of ©WA(a) lives in a in a sense, but as an element
of a specific possible type not as an element of A(a). For instance, when A is
a type of concrete objects, an element of ©WA(a) has no place in the world a.
It has a possible place at a, but this makes reference to the place in the world
in which the corresponding element actually lives.

In general, there won’t be a map from an animal-dependent type to its 2

version. Think of the dependent type x : Animal ` Offspring(x) : Type. My
indicating one of an animal’s offspring gives me no means to pick out an offspring
of a conspecific. Indeed, this type may well be empty. So which types do allow a
map to the 2 version? Which are necessary? Well, certainly those types pulled
back from ones dependent over species. A standard is being provided to allow
comparison across conspecifics.

We can see this as follows. Given the map spec : Animal → Species, we
have

• s : Species ` BodyPart(s)

• ` front right leg: BodyPart(Dog)

• x : Animal ` spec∗BodyPart(x)

We now have a map from spec∗BodyPart(x) to 2specspec
∗BodyPart(x). Given

an element in spec∗BodyPart(Fido), such as Fido’s front right leg, we can name
a similar body part for Fido’s conspecifics, that is, we can form an element of
2specspec

∗BodyPart(Fido).7
An element generated in such a way might be said to refer to an essential

characteristic of a dog. If I point to the front right leg of a dog and show you
another dog, you will probably choose the same leg. It might be holding this
paw in the air, so you could have chosen the left rear leg of the second dog who
is cocking this now at a lamp post, but it does seem that the same element of
the body plan is the most reasonable choice.

This quality of being able to transfer between the fibres of a map is prevalent
throughout mathematics. Indeed, there’s a direct route from the simple con-
siderations we have just covered to the topics of connections on fibre bundles
and of solutions to (formally integrable) partial differential equations. As I will
mention briefly in the following chapter, these latter equations may be seen as
recipes which dictate how behaviour carries over to infinitesimally neighbouring
points.

As a technical aside: the algebras for the possibility monad, types for which
there is a W -dependent map ©WB → B, coincide with the coalgebras for the
necessity comonad, with corresponding map B → 2WB, and are such that
there is a natural map

∑
W B →

∏
W B. Given an element b : B(w′) from some

world, we must generate a function f : w 7→ f(w) : B(w), such that f picks out
7Note that we are assuming that we are dealing with a world in which no animal has lost

a leg. Alternatively, we might speak of Patch having lost his front right leg, there being an
expectation that such a thing should be present.

15



the original element, that is, f(w′) = b. In other words, we must know how to
continue the function given its value at a single world.

Before ending this section I should say a word on the homotopical aspect
of modal HoTT. Until this point in the chapter we have only considered types
which are propositions or sets depending on sets. But we may climb the hier-
archy and apply the constructions above to the case where our types depend
not on a set, but on a group. As in the last chapter, we find that for a type A
acted on by a group, G, then

∑
∗:BGA(∗) is a type with structure that of the

action groupoid. Now we can base change (or context extend) back to a BG-
dependent type by applying the trivial action of the group. Similarly we can
form the dependent product, which in this case is composed of the ‘fixed points’
of the action, those elements of the set left unchanged by all elements of the
group. So 2BG sends a G-action to the trivial action of G on fixed points. Then
there’s a map from the latter to the original G-set, the inclusion, corresponding
to the map 2A → A. The ‘necessity’ here translates to invariance under the
group action.

In the relative case, the map BG1 → BG2, induced by a group homomor-
phism G1 → G2, provides an adjoint triple between G1-actions and G2-actions,
the outer adjoints corresponding to induced and coinduced actions (see, for in-
stance, Greenlees and May (1995)). It is remarkable to see how the simple ideas
we have proposed for presenting modal type theory are intimately related to
cutting-edge research in equivariant homotopy theory.

2.2 First-order modal logic and Barcan
The form of modal HoTT we have developed should give us a first indication of
what to make of one of the thorniest issues in first-order modal logic, the Barcan
formulas. These are named after Ruth Barcan who sought to compare formulas
of the form©∃xP (x) and ∃©P (x), designating claims concerning the possible
existence of a P and the existence of a possible P . It is perhaps clear why one
might wish to resist the forward Barcan inference since it seems to propose that
there possibly being something with a property entails that there is something
which possibly possesses the property. How can a mere possibility of existence
be enough to entail existence?

Here we will need to be careful again with the typing discipline. If the
modalities apply to the slice over worlds W , then there is a problem in trying
to make them interact with quantification over a world-dependent type. Say
we have a world-dependent type w : W ` B(w) : Type, and then some further
property w : W, b : B(w) ` P (w, b) : Prop, then we may quantify over B,
thereby removing it from the context, and then be able to apply the modal
operators. But in this case it won’t make sense to apply the modal operators
first – they can only apply to the bare context W . The only way this reversal
could take place is if B is not really W dependent, so that the context is W,B.
Then we could apply modalities to return to the W,B context, and so apply
quantifiers to land in dependency over W .

If we have the constant world-dependent type W ×B, derived from a plain
type B, then I might have a dependent proposition

w : W,x : B ` P (w, x) : Prop
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Then w : W ` ∃x:BP (w, x) : Prop, so w : W ` ©W∃x:BP (w, x) : Prop, in
which elements at a world a, will be (w, (b, p)), p witnessing that b is P in
world w. Treating the context now as symmetric, we can also form w : W,x :
B ` ©WB(w, x) : Prop and w : W ` ∃x:B ©W B(w, x) : Prop. Here I’m not
quantifying over things in my world, but rather over world-independent B. I’m
saying that some B turning out to have P when it appears in some world is
the same as some world containing a B which is P , and these are evidently the
same claim.

In general, however, the type B may genuinely depend on World. Then we
haven’t a means to exchange as above. But say I have as above w : W,x : B(w) `
P (w, x) : Prop. Then I can form ©W

∑
x:B(w) P (w, x), the world-dependent

(constant) type containing all possible Bs which are P . Evaluated at my world
a, this is

∑
w:W

∑
x:B(w) P (w, x). I can also form

∑
(w,x):

∑
w:W B(w) P (w, x).

Then a version of the Barcan formulas amounts to the equivalence of taking
dependent sum in one or two stages.

(©W

∑
x:B(w)

P (w, x))(a) '
∑
w:W

∑
x:B(w)

P (w, x) '
∑

(w,x):
∑

w:W B(w)

P (w, x)

The second equivalence is just the rebracketing of the three-part terms in pairs:
(w, (b, p))↔ ((w, b), p). We might say:

• At this world, there’s possibly a B which is P .

• There is a possible B which is P .

This solution goes in some respect along the lines of Timothy Williamson (2013)
to allow quantification over possible things. However, we arrive at this solution
maintaining strict typing discipline, and certainly not allowing untyped quan-
tification over ‘everything’.

2.3 Contexts and counterfactuals
Of the many philosophers who do not go along with the Barcan formula, let
us briefly consider an account by Hayaki (2003), who claims that there is no
proper sense in which merely possible entities exist.

All apparent references to non-actual objects are circumlocutions
either for de dicto statements about ways the world might have been,
or for de re statements about ways that actual objects might have
been, or for some combination of both. (2003, p. 150)

Since for her possible objects do not exist in our world, she needs to make sense
of what appear to be truths we can utter about possible objects. Consider the
following pair of propositions relating to the example she discusses:

I could have had an elder brother who was a banker. He could have
been a concert pianist if he had practised harder.

It appears to be the case here that we are referring to a non-existent being, an
elder brother, to say counterfactual things about him. If we restrict ourselves
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to worlds arranged on an equal footing, it certainly sounds as though we are
treating this possible man de re.

However Hayaki explains the situation through nested trees, where the first
sentence presents a level 1 world, and the second a level 2 world. Our world
might have gone differently with my parents having another son whose career
was in banking. Then in that level 1 world, of the object that is that man it
can be said that he might have had a different profession. Hayaki considers this
better motivated version of her imagined brother as inhabiting a level 2 world.

What I want to take from this construction is the idea that there’s a structure
to the variability of possibility that goes beyond variation over a set. Hayaki
talks in terms of stories and their continuation. Let’s follow her in this by
considering winding back the story to a time before her birth but after her
parents met, and then winding forward again with their two children and career
choices. Leaving aside whether there would be a ‘she’ if her parents had had a
child before her, we can spin out two tales from the assumption of that child’s
birth and hers, according to the two choices of profession. Then, once we have a
branch with a banker brother, we can speak of his possibly being a pianist since
we need only wind that branch back to a point where career decisions are being
made. But rather than this informal talk of stories and continuations, let’s see
if they can be included with the formalism of the modal calculus we have been
developing.

In this chapter we have been considering the type of worlds as the space of
variation for our modal considerations, but given the role of contexts in HoTT as
providing the typed variables for terms and further types, we might see whether
contexts themselves could act as way to formulate worlds. We can see this idea
of winding back through history in terms of deconstructing the type of worlds.
Indeed, recall Ranta’s idea from Chap. 2 that a context is like a narrative,
where we build up a series of assertions, any one of which may depend upon
previously introduced terms.

A man enters a saloon. He is whistling Yankie Doodle. A woman
enters the same saloon, holding the hand of her child. It is his wife.

As before, think of a work of fiction introducing the reader to things, people
and places, describing their features, their actions etc. Then possible worlds
relative to what has been stated so far are ways of continuing: new kinds of
thing may be introduced, or new examples of existing kinds, and identities may
be formed, such as when we find out that Oliver Twist’s kindly gentleman is in
fact his grandfather. And so on. Necessity then describes what must happen,
and possibility what may happen. So for our story we could ask

Might the child be the man’s daughter? Might she call out to him?
Must they all be in the same room?

These are all questions about ways the story may or will continue. We may also
wonder whether the story could have gone differently

Might he have been humming rather than whistling? Might he have
whistled a symphony? Might the woman have held the child in her
arms?
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Now formally, recall that a context has the form:

Γ = x0 : A0, x1 : A1(x0), x2 : A2(x0, x1), . . . xn : An(x0, . . . , xn−1).

In view of the pleasant category-theoretic setting of HoTT, any such context
corresponds itself to an object, the iterated dependent sum of the context. Let
W represent the iterated sum, and Wi the stages of the construction of W , then
the maps we considered earlier

H/W

−→
←−−→ H

now factor through the successive stages of the construction of the context:

H/W

−→
←−−→ · · ·

−→
←−−→ H/W2

−→
←−−→ H/W1

−→
←−−→ H

Still there are different ways as to how to take this idea further.
There is such a vast store in our shared context that it seems that a story

can go almost anywhere its author wishes. Continuing our Western, an elephant
escapes from the box car in which it is travels with the circus and tramples all in
the saloon underfoot. Or, a tornado rips through the town and takes the child
somewhere over the rainbow. Instead, one might imagine a more controlled
setting of what can occur next, where paths fan out according to circumscribed
choices, as we find with computations paths in computer science or, in a more
extreme form, with the collection of real numbers for the intuitionist. Ranta
(1991) began the exploration of these themes from the perspective of dependent
type theory. Like the real numbers formed from all possible infinite decimal
expansions, here we can conceive of the specification of a collection of worlds
which are all possible ‘complete’ extensions of a context Γ.

Worlds appear as total infinite extensions of finitely representable
approximations of them. Moreover, all we can say about a world is
on the basis of some finite approximation of it, and hence at the same
time about indefinitely many worlds extending that approximation.
(Ranta 1991, p. 79)

Where the real numbers enjoy the property that we are simply making the
choice of a digit from a fixed set at each turn, in the case of narratives we could
think to make a circumscribed story by selecting some characters out of a list
of possibilities, specifying some of their possible properties, specifying possible
relations between them, specifying possible actions that one character does to
another and some consequences of these actions, and so on.

This context-based formulation may give us a way to think about the nature
of counterfactuals such as

• Had I taken an aspirin this morning, I wouldn’t have a headache now.

To make sense of the truth of such counterfactual statements, David Lewis
famously invoked the notion of a ‘closest’ possible world in which the antecedent
holds. Here we don’t have a metric on our space of worlds, but in that we see
the collection of contexts as forming a tree, where an extension shifts along a
branch, then one could imagine some kind of minimal stripping back of context
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to leave out that part which conflicts with the antecedent of the counterfactual,
before building up to a context where it holds. Then contexts whose shared
initial stage is longer will count as closer in something like a tree metric.

But we don’t want to count all extensions from the common initial stage as
equally close. In the case of my headache, specifying a world by turning back to
this morning, asserting that I do take an aspirin, but also that I hit my head on a
low ceiling, so that I do in that case have a headache, this should count as being
at a further distance than a situation where things continued as similarly as
possible. We might then want to think harder about the dependency structure
of a context. Although a context is given in general as

Γ = x0 : A0, x1 : A1(x0), x2 : A2(x0, x1), . . . xn : An(x0, . . . , xn−1),

A2, say, might only really depend on only one of its predecessors. The direct
dependency graph between types in a context is a directed acyclic graph, or a
DAG. These are famous for expressing the dependency structure of Bayesian
networks, a way of representing probability distributions based on causal de-
pendencies. They were developed greatly by Judea Pearl, and described in his
book Causality (Pearl 2009), where one thing he uses them for is counterfactual
reasoning. One minimally modifies the network compatibly with the counterfac-
tual information. We could similarly imagine minimal modifications of context
here.

With the idea of branching histories we have come very close to the variants
of temporal logic known as computational tree logics. Let us now see if we can
develop a temporal type theory.

3 Temporal type theory
The philosophical logic literature makes play of the similarity between tempo-
ral modalities and those of necessity and possibility, although now with two
pairs, oriented according to the time direction. For example, corresponding to
possibility, for φ a proposition, we have

• Fφ is ‘φ will be true at some future time’;

• Pφ is ‘φ was true at some past time’.

Just as with classical treatments of modal logic where possibility and necessity
are interdefinable, logicians then look to form dual modalities of F and P as
follows:

• The dual of F is G, so Gφ = ¬F¬φ. This means that we read Gφ as ‘at
no future time is φ not true’, i.e., φ is always going to be true. (G is for
‘Going’.)

• The dual of P is written H, whence Hφ = ¬P¬φ and Hφ interprets as ‘φ
has always been true’. (H is for ‘Has’.)

In view of the fact that we could construct the dual modalities possibly-necessarily
without negation, we should expect a similar treatment to be feasible here.
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When in the treatment of possible worlds we used the existence of a map
f : W → V , we were understanding worlds in the same preimage of f as related
or accessible to one another. But another way to view an equivalence relation,
and indeed a binary relation more generally, is as a subcollection of the cartesian
product of the collection of worlds with itself. So

R ↪→W 2,

is the collection of related pairs of worlds. Naturally from R we have two
projections, p, q to W , to the first and second members of these pairs. We could
then, instead of deploying the map f , generate our modal operations on the
slice over W using

∑
p q
∗ for ‘possibly’ and

∏
p q
∗ for ‘necessarily’. When we

are dealing with an equivalence relation R, switching p and q in these operations
won’t lead to anything new. It is worth exploring then what would result from
a more general relation.

Temporal logicians have long debated the relevant advantages of instant-
based and interval-based approaches. Some have also considered hybrid ap-
proaches (Balbiani et al. 2011). As we shall see, the analysis of this section
suggests that working with intervals and instants together in the form of some-
thing like what is called an internal category allows for a natural treatment via
adjunctions. Indeed, intervals may be construed as given by pairs of instants
marking their boundary, and so as

Interval ↪→ Instant2,

where the first instant precedes the second. So consider a category H, and an
internal relation given by b, e : Time1 ⇒ Time0. Here we understand elements
of Time1 as time intervals, and b and e as marking their beginning and end
points. Now each arrow, b and e, generates an adjoint triple, e.g.,

∑
b a b∗ a

∏
b,

formed of dependent sum, base change, dependent product, going between the
slices H/T ime1 and H/T ime0.

Then along with the monads and comonads generated by composition within
a triple, we can also construct some across the triples. Specifically, we find two
adjunctions,

∑
b e
∗ a

∏
e b
∗ and

∑
e b
∗ a

∏
b e
∗. Then we have isomorphisms

such as

Hom(
∑
b

e∗C(t), D(t)) = Hom(e∗C(t), b∗D(t)) = Hom(C(t),
∏
e

b∗D(t)).

Now consider for the moment that C and D are propositions depending on time
instants. Then

∑
b e
∗C(t) will contain all instances of intervals beginning at

time t where C is true at the end. If this type is inhabited it means “there is
some interval beginning now and such that C is true at its end”, that is, FC,
or C will be the case. On the other hand,

∏
e b
∗D(t) means “for all intervals

ending at t, D is true at their beginning”, that is, HD, or D has always been the
case. Hence our adjunction is F a H. Similarly, interchanging b and e, we find
P a G. Note that we did not have to assume the classical principle Gφ = ¬F¬φ
and Hφ = ¬P¬φ.

Since we have monads and comonads, we can consider the various units and
counits

21



• φ→ GPφ: “What is, will always have been.”

• PGφ→ φ: “What came to be always so, is.”

• φ→ HFφ: “What is, has always been to come.”

• FHφ→ φ: “What always will have been, is.”

As before, in the setting of dependent type theory, we do not need to restrict
to propositions, but can treat the temporal operators on general time-dependent
types. So if People(t) is the type of people alive at t, FPeople(t) is the type
of people alive at a point in the future of t, and GPeople(t) is a function from
future times to people alive at that time. For instance, an element of this latter
time is ‘The oldest person alive(t)’, assuming humanity continues.

We can then think of adding other features, such as insisting that Time be
an internal category, and so requiring there to be a composition between any
two intervals, the end of one matching the beginning of the other. We may also
choose to impose additional structure, such as that the internal category be an
internal poset, or a linear order. Let’s consider here Time as a category, where
we have in addition to the two projections from pairs of intervals that adjoin,
p, q : Time1×Time0 Time1 → Time1, a composition c : Time1×Time0 Time1 →
Time1. This allows us to express more subtle temporal expressions. We could
define a property of time instants that a lightning strike happen at that moment,
t : Time0 ` L(t) : Type. Then we could characterise the property of an interval
that it contains a lightning strike as

∑
c(ep)

∗L(t) (note ep = bq).
We can also represent since and until. ‘φ has been true since a time when

ψ was true’, denoted φSψ in the literature, is represented as:

φSψ := Σe(b
∗ψ ×Πc(ep)

∗φ).

That is, there is an interval ending now such that ψ was true at its beginning
and φ was true at all points inside it. Similarly, ‘φ will be true until a time
when ψ is true’ is

φUψ := Σb(e
∗ψ ×Πc(ep)

∗φ).

To be precise, this last type is such that any inhabitant of it tells us that there
is an interval beginning now such that φ holds at each of its points, and ψ holds
at the end. Of course, φ may continue to hold after the end of this interval. We
could easily express variants where φ no longer holds after ψ first occurs, or to
allow the use of ‘until’ in the sense where the condition ψ may never happen.

There is also the instant interval map, i : Time0 → Time1, which enables us
to send a property of intervals, P (t1, t2), to a property of times by seeing whether
that property holds of the relevant instant interval, P ′(t) := P ([t, t]). Note that
this is different from the evaluation of a varying quantity at some moment.
Say we have t : Time0 ` f(t) : R, then of course f(a) : R at some moment,
a : Time0, and we may then form a proposition concerning this instantaneous
value. So we should agree with the following:

Instantaneous events are represented by time intervals and should be
distinguished from instantaneous holding of fluents, which are eval-
uated at time points. Formally, the point a should be distinguished
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from the interval [a, a] and the truths in these should not necessarily
imply each other. (Balbiani et al. 2011, p. 32)

Note that one of the consequences of taking Time as an internal category
is that the future includes the present, so that φ could be true now and at no
other instant but we would have that Fφ is true when we may imagine that it is
supposed to say “φ will be true at some Future time”. Similarly, we would have
that φUψ holds now if ψ and φ both hold now (in general, as defined above
it requires φ to still hold at the instant when ψ becomes true). If we wish to
change these consequences, we could let Time1 collect the <-intervals instead
of the ≤-ones. In other words, we could take Time to be a semicategory. While
this accords with standard practice, the original alternative has been proposed:

The most common practice in temporal logic is to regard time as
an irreflexive ordering, so that “henceforth”, meaning “at all future
times”, does not refer to the present moment. On the other hand, the
Greek philosopher Diodorus proposed that the necessary be identi-
fied with that which is now and will always be the case. This suggests
a temporal interpretation of 2 that is naturally formalised by using
reflexive orderings. (Goldblatt 1992, p. 44)

On the other hand, some temporal logicians look to represent both forms of
‘henceforth’.

There are many other decisions to be made in modelling Time: linear ver-
sus branching, discrete versus continuous, dense or not dense, bounded or un-
bounded, deterministic or undeterministic, and so on. Computer scientists have
formulated various calculi to represent these choices. For instance, branching
behaviour is captured in CLT ∗, a computational tree logic. This calculus allows
for quantification between branches as well as along branches, so that one might
say of a given state ‘It is always going to be that the machine will reach the
state’, or ‘It is possibly going to be that henceforth the machine is in the state.’
Such tree logics are used in chip design and verification, as is explained well in
Halpern et al. (2001). A type-theoretic version should be easy to formulate,
and could very well be useful here.

With some ideas on a temporal type theory in place let us see if we can make
sense of one of Bede Rundle’s counterexamples to ‘and ’ being treated as mere
conjunction from Chap. 2:

• Alice used to lie in the sun and play cards.

For this proposition to be true, it appears that we need several inhabitants in
the dependent sum of past intervals during which Alice lies in the sun and which
contain subintervals in which she plays cards. We need the terminal points of
the intervals to mark the beginnings and ends of the activities. Individuation
of playing and lying-in-the-sun activities as events will then rely on a number
of things, including their timing:

...a necessary condition for the identity of events is that they take
place over exactly the same period of time. (Davidson 2001, p. 124)

So we have a map from Activity to Time1, which generates the dependent type
of activities lasting over an interval, i : Time1 ` Activity(i), and we must only
have identity of activities as occurring in the same fibre.
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It would appear that we are fast approaching the material on event nuclei
from chapter 2. Recall from there that an event nucleus is composed of a
preparatory activity, culminating in an achievement, resulting in a change of
state. This neatly matches our set-up. If an event nucleus takes place over an
interval, some subdivision of it into two adjoining subintervals and the instant,
or, perhaps better, momentary interval, where they abut, corresponds to the
timing of its parts. So “He reached for the switch and lit up the room”, covers
the preparatory motion to the switch, culminating in its being flipped, resulting
in light shining there. Such an event nucleus would be an element of the following
type:

∑
i:Time1

∑
(j,k):c∗(i)

reach-switch(j)× light-room(k)× flip-switch([ej, bk]),

where much remains to be specified about these components as activities, achieve-
ments and changes of state.

Variations are possible. Perhaps one would like the achievement to take
place in an instant rather than a brief interval. Linguists have wrestled with
such choices informally:

...theories differ as to whether they take intervals as the basic tem-
poral primitive, and regard events as durative, or whether they take
instants as primitive and intervals as composite. Under the first
view, a Vendlerian Activity like running would be represented as a
transition, with a temporal and spatial extent. Under the second
view, an Activity would be regarded as a progressive fluent, or prop-
erty of a state, with the states that it characterizes being accessed
via instantaneous incipitative events of beginning running and aban-
doned via terminative events of stopping running. (Vendler and his
followers seem equivocal between these two interpretations.) Under
the latter interpretation, the instantaneous incipitative and termina-
tive events themselves correspond to Vendlerian Achievements, as-
sociated with further changes in fluents corresponding to consequent
states, such as running and having stopped running. Vendlerian Ac-
complishments like running to the bus stop are then the composition
of an Activity of running with the goal of being at the bus stop, the
terminative Achievement of stopping running and the culminative
achievement of reaching the bus stop, which in turn initiates its own
consequent state of being at the bus stop. (Steedman 2012, p. 110)

There is plenty to do here, including making comparisons to other related
approaches to temporal types, for instance, the book length treatment (Schultz
and Spivak 2017). Something we might do to put their relative power to the
test is to take up the challenge to represent complex pieces of script. Balbiani
et al. (2011) propose the following examples:

• Ever since he met her for the first time, he could not stop thinking about
her and kept calling her several times every night until she would give him
a brush-off, and then after being silent for a while he would phone again.
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• At the exact moment in which the train passes over the sensor, the rail
crossing bar starts to close; the bar will start to open again a while after
the train passes over the second sensor.

I think I have shown that the ingredients are available to represent such state-
ments, and others such as the one from Chap. 2

• It took me two days to learn to play the Minute Waltz in 60 seconds for
more than an hour.

But now I want to turn to a very recent effort to place modal type theory in a
powerful general framework.

4 Mode theory
I will end this chapter with a brief discussion of a very interesting body of work
which is currently unfolding. Recall the discussion in section 2 above, where
I offered two options as to how to modify ` p : P with a modality. The one
that we went on to use was ` p : 2P ; the other was to tag the turnstile sign
`nec p : P . Let us see now if we can make sense of this latter approach.

The idea here is that we have different arenas in which reasoning can take
place. In these arenas different rules may apply as to the inferences permissible
there. Then even though these inference rules vary, it is possible for communi-
cation to take place, or rather representation of another’s reasoning in one’s own
terms, as we saw in the discussion of how the dog and person experts communi-
cate in the first section. Something along these lines was suggested by Haskell
Curry, as Fairtlough and Mendler explain:

Curry’s proposal was to take©φ as the statement “in some stronger
(outer) theory, φ holds”. As examples of such nested systems of
reasoning (with two levels) he suggested Mathematics as the inner
and Physics as the outer system, or Physics as the inner system and
Biology as the Outer. In both examples the outer system is more
encompassing than the inner system where reasoning follows a more
rigid notion of truth and deduction. The modality ©, which Curry
conceived of as a modality of possibility, is a way of reflecting the
relaxed, outer notion of truth within the inner system. (Fairtlough
and Mendler 2002, p. 66)

We can illustrate this account in terms of the real suggestions of mathemat-
ical physicists Jaffe and Quinn (1993), who, alarmed at the lack of rigour they
saw to be intruding into their field, proposed to have less rigorous physicist-style
arguments for a mathematical result marked as ‘theoretical’. We might say that
if physicists have argued something to their own satisfaction, and mathemati-
cians have not decided either way, then the latter should say that it is possibly
the case. Similarly with roles reversed, if the mathematicians has proved a re-
sult for the physicist, or the physicist for the biologist, it should be marked as
necessarily true.

Fairtlough and Mendler continue in their article by examining whether in-
ference in the outer system might be represented by operators of the form

©L
Kφ ≡ K ⊃ (φ ∧ L),
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where we think of K as expressing additional resources for reasoning in that sys-
tem, and where we do not to establish φ if we can show that L holds. Reasoners
in the outer system have advantages over those in the inner system. They have
more resources to deploy and they may find a condition obtains meaning that
no further work towards the original conjecture is needed.

Now, of course there’s a question of what is meant by speaking of the same
proposition in different systems. To the extent that one takes the meaning of a
proposition to be determined in part by the inference rules present, taking one
across verbatim to another setting should alter its meaning. Indeed, this is so
– a correct formalism needs to mark this. There may be instances where one
category of inference is a subcategory of another, and it is easy there to slip into
the practice of coercing the members of the subcategory to count as members
of the full category, rather as one coerces a rational number to count as a real
number. However, the general situation requires marking of translation between
settings.

Very recent work8 is pursuing this line of thinking in terms of a modal type
theory in which a theory of the relevant modes provides one level of syntax on
which can be built the reasoning pertaining to that mode. The deepest level of
syntax specifies modes, associated to each of which is a class of types. Arrows
between modes, say, α : p→ q, correspond to adjunctions between these classes
of types. Then we may have sequents of the following form, Ap `α Bq.

In a sense we have already seen this mediation between arenas of inference
when we took up the triple adjunction between slices,

(
∑
f

a f∗ a
∏
f

) : H/X

f!→
f∗←→
f∗

H/Y.

The modes here are variation over X and variation over Y . They generate a pair
of left and right adjoint couples, otherwise known as geometric morphisms. Now
Licata et al. generalise this situation so as to take as the basic entity a single
geometric morphism, that is an adjoint pair, between any two (∞, 1)-toposes,
with no requirement that they be slices of a common (∞, 1)-topos. Then there
may be multiple such mode morphisms between the various modes. Previous
attempts had restricted to a partial order of modes, so at most one adjunction
between any pair of modes.

This project has a very expressive scope and is looking to provide a syntacti-
cal framework for a wide range of modal type theories, including modal HoTT.
The slogan here is that, where HoTT itself is the internal language of (∞, 1)-
toposes, modal HoTT is the internal language for collections of (∞, 1)-toposes
related by geometric morphisms. This is making sense of a range of previous
attempts, and fits smoothly with the relevant mathematics. Harper’s compu-
tational trinitarianism has become homotopical trinitarianism (Shulman 2018).
As yet, there is no syntactical formulation which picks out those modal type the-
ories which are only to be understood as describing the passage between slices.
Modes which involve variation over a type make up only a portion of all mode
theories, even if we can use such variation in devising models for modal theories,
such as when Awodey and Kishida (2012) employ sheaf models to demonstrate

8See Licata and Shulman (2016), Licata et al. (2017).
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their completeness for first-order modal logic. We will see examples of spatial
modalities which are not to be construed as variation over types in the following
chapter.

Integrating dependent type theory, and more generally HoTT, with the ad-
junctions generating the monads of computational effects and comonads of coef-
fects will allow enormous expressiveness, both in computer science and natural
language semantics. Already pragmatic aspects of speech are being represented
in terms of extensions of simple type theories by monads:

Side effects are to programming languages what pragmatics are to
natural languages: they both study how expressions interact with
the worlds of their users. It might then come as no surprise that phe-
nomena such as anaphora, presupposition, deixis and conventional
implicature yield a monadic description. (Marsik and Amblard 2016,
p. 259)9

If, as I argued in Chap. 2, natural language relies on constructions in dependent
type theory, we should expect impressive achievements from its integration with
monadic and comonadic adjunctions. We should be able to use this formalism
to make common cause with Brandom’s pragmatic expressivism.

Reading this latest work of Licata et al., there may also be opportunities
to revisit Charles Peirce’s gamma system of existential graphs. Peirce thought
very highly of his work on these graphs. The alpha system corresponds to a
propositional logic, while the beta system corresponds to a kind of first-order
logic. These systems have been translated into a category theoretic framework
by Brady and Trimble (2000a, 2000b). We see varieties of this diagrammatic rea-
soning calculus deployed elsewhere (Melliès and Zeilberger 2016). The gamma
system is generally interpreted as Peirce’s attempt to formulate a modal logic.
The system was far from finished, and had gone through various phases by the
time he discussed a late version in (Peirce 1906). Assertions of propositions on
coloured sheets, chosen by Peirce in accordance with heraldic tinctures (jules,
azure, argent, etc.), four tinctures per class (possibility - Color, intention - Fur,
actuality - Metal) correspond to the modes of declaration. Given his success in
independently formulating propositional and modal logic in ways that are only
recently being recognised, perhaps it would not be such a surprise if Peirce was
on the right track with his gamma system.

On that note we end the discussion of what a general modal HoTT should
look like, and turn now to put one particular version to use in a formulation of
modern geometry.
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