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Abstract

Healey recently argued that a version of the extended Wigner’s
friend Gedankenexperiment due to Masanes establishes a contradiction
between the universal applicability of unitary quantum theory and the
assumption of definite outcomes [Found. Phys. 48, 1568 (2018)]. In
this Comment, I show that Healey’s analysis is problematic and his
conclusion is not true.

In a recent paper, Healey presented a penetrating analysis of the ex-
tended Wigner’s friend Gedankenexperiment [1]. The Gedankenexperiment
aims to show that the universal applicability of unitary quantum theory is
inconsistent with the assumption that a well-conducted measurement always
has a definite physical outcome. Healey analyzed three arguments related
to the Gedankenexperiment. He argued that Brukner’s argument [2] and
Frauchiger and Renner’s argument [3] fail to derive the inconsistency, while
the argument due to Lluis Masanes [4] does establish a contradiction between
the universal applicability of unitary quantum theory and the assumption
of definite outcomes. In this Comment, I will show that Healey’s analysis of
Masanes’ argument is problematic and his conclusion is not true.

Masanes’ argument is set in the context of a Wigner’s friend variant of
the Bell experiment. In the Gedankenexperiment as formulated by Healey
[1], there are two observers Carol and Dan and two superobservers Alice and
Bob. A superobserver can undo a measurement, and the existence of such
superobservers is permitted in principle by unitary quantum theory. Each
of Alice and Bob are in their own separate laboratories, totally physically
isolated. Carol occupies her own separate laboratory, initially totally phys-
ically isolated from Alice’s, and Dan occupies his own separate laboratory,
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initially totally physically isolated from Bob’s. Carol and Dan share a EPR
pair of spin-1/2 particles, 1 and 2, in the spin singlet state:
1

V2
Dan first measures the spin of particle 2 at angles d, and then Carol measures
the spin of particle 1 at angles ¢, and then Alice undoes Carol’s measurement
and measures the spin of particle 1 at angles a, and finally Bob undoes Dan’s
measurement and measures the spin of particle 2 at angles b. To make this
possible, after performing Carol’s measurement particle 1 is transferred out
of her lab and into Alic’s lab, and after performing Dan’s measurement
particle 2 is transferred out of his lab and into Bob’s lab. Note that the
restores the states of Alice and the particles to their initial states,

Suppose each measurement result is +1 or —1, corresponding to spin up
or spin down. Then when the above situation is repeated very many times,
each time with a different EPR pair, we will build up a joint probability
distribution of results for the four outcomes in each trial, p(a,b,c,d). The
existence of a joint probability distribution then implies for the marginals:

(M1 e = 1 [1)2)- (1)

|corr(a, b) + corr(b, c) + corr(c,d) — corr(a,d)| < 2, (2)

where corr(a,b), corr(b, c), corr(c,d) and corr(a,d) are the statistical corre-
lation functions for each pair of these outcomes.

Given the time order of these measurements, we can calculate the cor-
relation functions corr(a,b), corr(c,d) and corr(a,d) according to quantum
mechanics, which are corr(a,b) = —cos(a — b), corr(c,d) = —cos(c — d),
and corr(a,d) = —cos(a — d). For example, after Dan measures the spin
of particle 2 at angles d, Carol measures the spin of particle 1 at angles c.
Then, quantum mechanics predicts that the correlation function corr(a, d)
satisfies the relation corr(a,d) = —cos(a — d). But we cannot derive the
similar relation for the correlation function corr(b, ¢), since when Bob mea-
sures the spin of particle 2 at angles b, Carol’s measurement on particle 1
has been undone and his outcome no longer exists.

Here Healey used a trick permitted by special relativity under a cer-
tain condition. He calculated the correlation function corr(b, c) in another
inertial frame, in which Carol’s measurement precedes Dan’s and Bob’s pre-
cedes Alice’s. This is possible when Alice’s and Carol’s measurements and
Bob’s and Dan’s measurements are spacelike separated, and Alice’s lab and
Carol’s lab, which are at rest relative to each other, and Bob’s lab and
Dan’s lab, which are at rest relative to each other, are in relative motion.
In this frame, since when Bob measures the spin of particle 2 at angles
b, the result of Carol’s measurement of the spin of particle 1 at angles b
has not been erased, quantum mechanics predicts that the correlation func-
tion corr(b, c) satisfies the relation corr(b,c¢) = —cos(b — ¢). Since the ex-



pectation values of the same joint measurements observed in two inertial
frames should be the same, the correlation functions such as corr(b, c) are
invariant under changes of frame. Then, in every inertial frame, we have
corr(a,b) = —cos(a — b), corr(b,c) = —cos(b — ¢), corr(c,d) = —cos(c — d),
and corr(a,d) = —cos(a — d). Thus the above inequality will become a
Bell inequality:

|E(a,b)+E(b,c)+E(c,d)—E(a,d)|32, (3)
where E(a,b) = —cos(a—b), E(b,c) = —cos(b—c), E(c,d) = —cos(c—d), and
E(a,d) = —cos(a — d). It is well known that quantum mechanics predicts

violation of a Bell inequality for certain choices of directions a, b, ¢, d. Thus
we have derived a contradiction.

Healey argued that this contradiction results from the combination of
the universal applicability of unitary quantum theory and the assumption
of definite outcomes. Thus, he concluded, “the universal applicability of
unitary quantum theory implies (with probability approaching 1) that there
is no consistent assignment of values to the (supposedly definite, physical)
outcomes of the measurements in the sequence of trials there considered.”
[1]. Healey further thought that this resuslt should make us reconsider the
extent and nature of the objectivity of measurement outcomes.

However, there is a potential loophole in Healey’s argument, which may
make it invalid. The key is to notice that we can derive the correlation
function corr(b,c) in the original inertial frame based on the known cor-
relation functions corr(a,b), corr(c,d) and corr(a,d) according to quantum
mechanics, which turns out to be not E(b, ¢) as Healey calculated, and thus
the above inequality is not violated. Let me use a simple example to
illustrate how to derive the correlation function corr(b,c) in the original
inertial frame.

Consider the case where ¢ = b and d = a. In the original inertial frame,
Dan first measures the spin of particle 2 at angles d, and then Carol measures
the spin of particle 1 at angles ¢, and then Alice undoes Carol’s measure-
ment and measures the spin of particle 1 at angles a, and finally Bob undoes
Dan’s measurement and measures the spin of particle 2 at angles b. Then,
according to quantum mechanics, when the result of Carol is +1, the con-
ditional probability of Dan’s result being +1 is sinZ(%), the conditional
probability of Alice’s result being —1 when Dan’s result is +1 is 1, and the
conditional probability of Bob’s result being +1 when Alice’s result is —1
is 0052(%4’). When the result of Carol is +1, the conditional probability
of Dan’s result being —1 is 0032(%), the conditional probability of Alice’s
result being +1 when Dan’s result is —1 is 1, and the conditional probability
of Bob’s result being +1 when Alice’s result is +1 is sin2(“T_b). Then, when
the result of Carol is 41, the total conditional probability of Bob’s result be-

ing +1 is 2sin%(%52)cos?(%52). Note that c—d = b—a when ¢ = band d = a.



Similarly, when the result of Carol is +1, the total conditional probability
of Bob’s result being —1 is 1 — 2sin? (52 b)cos (%5~ b, which is not equal to
1 in general. This already shows that the relation corr(b,c) = —cos(b — ¢),
which means that the results of Bob and Carol are always anti-correlated,
is wrong in the original inertial frame.

On the other hand, when the result of Carol is —1, the total conditional
probability of Bob’s result being —1 is 2sin?®(%;> b)cos (252), and the total
conditional probability of Bob’s result being +1 is 1 — 2sin?(%52)cos?(%52).
Then we can calculate the correlation function corr(b,c), which turns out
to be corr(b, ¢) = 4sin?(%52)cos?(%52) — 1.

It can be seen that the above inequality is not a Bell inequality and
it is not violated when using this right correlation function corr(b,c). The
l.h.s of the inequality is:

|corr(a,b) 4+ corr(b, ¢) + corr(c,d) — corr(a,d)|

= |cos(a—b)+ 4sin2(a _ b)c052(a g b) — 1 —cos(c—d) + cos(a — d)|
= \4sm2(a ; b)COSQ(a ; b) — 2cos(a — b)]
= 2|2s7jn2(a_b)cos2(a_b) —cosz(aT_b)—i—sinQ(aT_b)\ (4)
Let a = 6052(“74’), then we have:
|corr(a,b) + corr(b, ¢) + corr(e,d) — corr(a,d)] = 2]2a(l —a)—a+1—aqa]
2|1 — 202 (5)

Since 0 < a < 1, we have 2|1 — 2a?| < 2, and thus the inequality is
satisfied.

This means that when calculating the four correlation functions in the
same original inertial frame, then there will be no violation of the inequal-
ity . This result also holds true in every other inertial frame. Since the
predictions of quantum mechanics is complete in each inertial frame, this
result already indicates that the combination of the universal applicability
of unitary quantum theory and the assumption of definite outcomes does
not lead to a contadiction, and in particular, the universal applicability of
unitary quantum theory does not imply that there is no consistent assign-
ment of values to the outcomes of the measurements in the sequence of trials
considered above.

There is a deeper reason why Healey’s calculation of corr(b,c) is prob-
lematic. It is that Healey’s derivation of the relation corr(b, c¢) = —cos(b—c)
cannot go through in the non-relativistic domain. In the non-relativistic do-
main where quantum mechanics holds, the time order of spacelike separated



events is invariant under the Galileo transformations of inertial frame, and
thus we cannot derive the relation corr(b,c) = —cos(b — ¢) according to
quantum mechanics in any other inertial frame for the same reason as in
the original inertial frame (i.e. because when Bob measures the spin of par-
ticle 2 at angles b, Carol’s measurement on particle 1 has been undone and
his outcome no longer exists). However, one should be able to derive the
correlation function corr(b,c) in the non-relativistic domain. The correla-
tion functions in (non-relativistic) quantum mechanics should not depend
on special relativity after all. This is just what I did above, in which the
correlation function corr(b,c) is derived in the non-relativistic domain in
the original inertial frame, without resorting to anything beyond quantum
mechanics.

Certainly, there is still a question left, namely why the correlation func-
tion corr(b,c) is not invariant under changes of frame in the relativistic
domain. In my view, this is indeed a deep puzzle. In order to solve the puz-
zle, it seems that one must admit that unitary quantum theory and special
relativity are incompatible [5-7]. This is not completely beyond expecta-
tions. As Pusey noted [4], the Frauchiger and Renner’s argument based on
Hardy’s paradox is essentially the same as the argument given by Masanes
based on the Bell inequality. But the former, which does not resort to spe-
cial relativity, does not lead to a puzzle, as Healey showed, while the latter,
if resorting to special relativity, will lead to the above puzzle. Thus it seems
that the origin of the puzzle must be special relativity. Since a further dis-
cussion of how to solve the puzzle is beyond the scope of this Comment, we
stop here.
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