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Abstract. The causal impacts of genes and environment on any one biological trait are inextricably

entangled, and consequently it is widely accepted that it makes no sense in singleton cases to

privilege either factor for particular credit. On the other hand, at a population level it may well be

the case that one of the factors is responsible for more variation than the other. Standard meth-

odological practice in biology uses the statistical technique of analysis of variance to measure this

latter kind of causal efficacy. In this paper, I argue that:

1) analysis of variance is in fact badly suited to this role; and
2) a superior alternative definition is available that readily reconciles both the en-

tangled-singleton and the population-variation senses of causal efficacy.

Causal efficacy

Is a plant’s height due more to genes or environment? Is mutation, migration
or genetic drift a more important force in evolution? Was I delayed more by the
roadworks or by the multiple traffic lights? The idea of causal efficacy, or of
some causes being more or less important than others, is ubiquitous in biology
and indeed much else of science and everyday life. It might seem that the
notion is pretty straightforward: can we not just define the efficacy of a cause
by the quantity of effect it leads to? But it will turn out that the task is less
simple than it first appears, and moreover that the leading definition of causal
efficacy in use in biology – namely the statistical technique of analysis of
variance – is, I shall argue, an example of a method fundamentally ill suited to
its purpose.

Notice from the start that the issue here is not the venerable philosophical
project of defining causation itself. Neither is the issue related to that of
how best to infer causes from statistical data. Instead, I shall assume always
that – as is common in practical problems – all parties already agree on
what causes are present. The issue at hand is, rather, those causes’ relative
importance.
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The philosophical literature specifically on causal efficacy is relatively sparse.1

This may be in part because in some well-known contexts there does not seem to
be much of interest to say. Take a Newtonian particle, for example, and the
question of whether its acceleration is due more to gravity or to electricity. We
understand easily enough that gravity’s causal efficacy is given by the extra
acceleration its presence imparts to the particle, and likewise for electricity. There
seems to be no problem or ambiguity with this understanding, andmoreover it is
straightforward then to compare the two influences’ relative importance.

But turn now from Newtonian physics to the nature–nurture issue in biol-
ogy. Unfortunately, it quickly becomes clear that weighing up the relative
importance of genes and environment is a more complex matter than it was for
gravity and electricity. Gravity may accelerate some particle 10% more than
does electricity but can we make sense of claiming, say, that genes produced
some person’s high exam scores 10% more than did environment? The impacts
of the genetic and environmental factors are of course hopelessly interwoven
from the start and there is none of the easy separability of the physics case.
Without the right environmental input from the womb onwards, even Ein-
steinian genes will not produce high exam scores. And likewise without genes
to work on, even the best nutrients and most scholarly philosophy department
will be unable to produce any high exam scores either. Given this interde-
pendence, or more precisely that each input is insufficient to produce any final
effect without the other, at first sight it seems difficult to disentangle any causal
efficacies at all. And this indeed is precisely the professional consensus among
biologists – to speak of genes or environment having particular efficacies is, in
this context, meaningless. However, all is not completely lost since in response
to these conceptual difficulties biologists have developed instead a slightly
different understanding of causal efficacy.

The analysis of variance

Suppose a farmer wishes to maximise the heights, and hence yields, of some corn
plants. She has available a range of three different plant strains (say Cheap,
Normal and Expensive) and also a range of three different fertiliser treatments
(Green, FastGro and SuperGro). She can thus generate a total of nine different
gene-environment combinations, corresponding to each possible combination
of strain and fertiliser. Suppose finally that we plot a table of (average) plant
heights for each of these combinations, yielding the results in Table 1.

Some fertilisers achieve better results than do others; likewise so do some
plant strains. But which of the two factors, genes or environment, is the more
important? Intuitively, it is easy to grasp the following argument: given any

1 Rare discussions include those in Good (1961), Miller (1987), Sober (1988) – from which my

Newtonian particle and corn plant examples will be adapted – Sober et al. (1992), Pearl (2000) and

Spirtes et al. (2000).
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particular fertiliser, choice of genes makes only a small difference, outcomes
ranging only over 10 cm. By contrast, given any particular plant strain, choice
of environment makes a huge difference, yielding a 60-cm range of plant
heights. That is, choice of environment matters much more than choice of
genes. In this population, changing plant strains would be a bad way to
increase plant heights – much better to concentrate instead on good fertilisers
since the latter factor makes so much more difference.

This kind of argument is the essence of the alternative understanding of
causal efficacy, whereby comparison of genes and environment need no longer
be declared inevitably hopeless or meaningless. On the contrary, as we just saw,
there is a clear sense in which one of them can be deemed a stronger cause than
the other. The actual formal definition borrows from the statistical technique
of analysis of variance (‘ANOVA’).2 In this example, it would proceed first by
calculating the sum of squares (‘SS’) across the different plant strains’ marginal
averages, i.e. the sum of squares of the figures in the last column.3 Thus:

Genes SS ¼ 3½ð115� 110Þ2 þ 02 þ ð105� 110Þ2� ¼ 3ð25þ 0þ 25Þ ¼ 150

(The multiplying coefficient 3 is a function of the table being 3 · 3, but we
need not go into this detail of ANOVA here.) Similarly the formal definition
would next calculate the sum of squares across the different fertilisers’ marginal
averages, i.e. across the figures of the bottom row:

Environment SS ¼ 3½ð140� 110Þ2 þ ð110� 110Þ2 þ ð80� 110Þ2�
¼ 3ð900þ 0þ 900Þ ¼ 5400

Finally, it would then compare the two SS figures to see which factor
accounted for a greater proportion of the total variation in the population. In
this case, 5400>150, so more of the variation would be ‘explained’ by choice
of fertiliser than choice of plant strain, and thus environment be awarded a
higher causal efficacy than genes. For our purposes, the further mathematical

Table 1. Fictional data for plant heights and gene-environment combinations.

SuperGro FastGro Green MA

Expensive 145 115 85 115

Normal 140 110 80 110

Cheap 135 105 75 105

MA 140 110 80 grand mean: 110

‘MA’ stands for marginal average. For simplicity assume, both here and later in Table 3, that each

cell has equal weighting.

2 I provide only a simplified account – see Sokal et al. (1995), or any other standard textbook, for

more details. Note that our concern is not with ANOVA inference, hence the omission here of all

reference to error terms.
3 In accordance with standard usage, by ‘sum of squares’ is meant taking each figure’s deviation

from the mean, squaring that deviation, and then adding together all these squared deviations.
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details of the technique do not matter; what is important is to appreciate the
attractiveness of the intuition underpinning it.

Thus biologists, once given a range of values for each input, have a way of
defining how varying one of them can be said to have more impact on the effect
term than does varying the other. A couple of features of the technique are
noteworthy here. First, the values ANOVA yields for causal efficacies are criti-
cally dependent on choice of population. Perhaps for a different range of plant
strains (Ancient, Normal, and GM) and fertilisers (Slightly Below Average,
Average, and SlightlyAboveAverage) the results would have been very different,
indeed reversed: now we might have found that choice of genes was responsible
for more of the variation in plant height than was choice of environment. Le-
wontin (1974) demonstrates how misleading it can be to extrapolate ANOVA
results uncritically. In particular, they cannot reliably predict the outcomes of
interventions that involve levels of input outside the range of the generating
population. The second noteworthy feature is that, ANOVA does not, nor is
claimed to, explain the occurrence of singleton effects. For instance it does not tell
us which of genes and environment explained more of some individual Expen-
sive-SuperGro corn plant’s height of 145 cm. (One reason is that ANOVA takes
every cell’s score into account, yet the height of a plant in any one cell of the table
seems clearly to be causally independent of the height in any other cell.) Rather, it
only assigns responsibility for the pattern of outcomes across a particular pop-
ulation, i.e. assigns causal efficacies only at the group rather than singleton level.4

It might be worth emphasising more why ANOVA must indeed be seen as a
proxy measure of causal efficacy. Its own procedure makes explicit reference to
the distinction between independent and dependent variables, the latter being
seen as a function of the former rather than the other way round – an asym-
metry already obviously redolent, if not directly derivative, of that between
cause and effect. It also yields a measure of strength of association between two
variables. When one of these variables is taken to be the cause of the other,
such a measure is normally (indeed can hardly not be) interpreted as one of
causal efficacy – how much, or how strong, an impact does the cause variable
have on the effect variable? Thus Remington and Schork (1970: 229, my italics)
comment, for instance: ‘‘the main objective of the analysis of variance is to
assess the influence of each factor … upon some response variable.’’

To make this claim about the use of ANOVA seem plausible in the space
available here, consider the actual subjects of ANOVA study (Table 2) 5

In each case the choice of variables clearly suggests particular cause and
effect relations and so any results linking them quantitatively ought indeed to
be interpreted as (claimed) causal efficacies. I shall argue, however, that using
ANOVA in this way, although thus ubiquitous and apparently reasonable, is

4 Later I consider, but reject, a way of extending ANOVA to the singleton case.
5 These are studies chosen by standard textbooks precisely to illustrate appropriate usage. I take

them therefore also to be cases of reputable work and not unrepresentatively sloppy. The textbooks

themselves (Sokal and Rohlf 1981, 1995; Bliss 1967) contain the individual references.
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nevertheless mistaken. To demonstrate why, it will be necessary first to return
at greater length to fundamentals.

A unified account of causal efficacy

To summarise so far: in physics, it seems there are no problems or ambiguities.
In biology by contrast, at least in the case of nature-nurture, one understanding
of causal efficacy seems to render the notion meaningless. However, a more
successful second understanding of it can still be achieved, albeit only indirectly
via the technique of analysis of variance across a population. Sober (1988: 304)
concludes from this that: ‘‘there is no such thing as the way science apportions
causal responsibility; rather, we must see how different sciences understand this
problem differently.’’ But I want to reject that conclusion. My opinion, on the
contrary, is that a unified account across sciences of causal efficacy is possible,
and that the apparently divergent cases of physics and biology in fact turn out
merely to be different manifestations of a common underlying principle.

A definition

Let the efficacy of a cause C with respect to an effect E be:

EðC&W1Þ � EðC0 &W0Þ

whereW1andW0are background conditions (onwhichmore shortly), andC0 is a
baseline counterfactual level ofC. In the simplest case, C0will just be the absence

6

Table 2. Topics of actual 2-factor ANOVAs in biology.

1st independent variable

(first presumed cause)

2nd independent variable

(second presumed cause)

Dependent variable

(presumed effect)

Type of sugar treatment pH level Growth of peas

Density per container Three different strains Housefly’s developmental period

Level of thyroxin injected Sex of chick Weight at 7 weeks

Month of year 14 different varieties Degree of aphid infestation of

potato tubers

Depth Day of measurement A lake’s water temperature

Different locations Surface soil or subsoil Soil pH

Breed of cow Age of cow Butterfat percentage

Nitrogen concentration Variety of wood chips added Yield of beet roots

Length of frost-free season Amount of light Height of hemlock buds

quantity of nitrogen

fertiliser

quantity of phosphoric acid

fertiliser

yield of corn

sodium concentration potassium concentration weight of tobacco leaves

6 Strictly speaking, of course, both here and later ‘absence’ should be thought of merely as con-

venient shorthand for some alternative event, for instance for keeping a fertiliser in its container

rather than spraying it on the crop.
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of C. More generally, often it will be useful to set C0 to be at what Humphreys
(1989: 38) calls the neutral level of C. This he defines, in the case of a variable,
as ‘‘the level of the variable at which the property corresponding to that var-
iable is completely absent.’’ For instance, a neutral level of fertiliser in our
example might be one that, if added, would make no difference to the corn
plant’s height. A key point is that this neutral level is likely to depend on the
exact effect variable and the exact circumstances of interest.

The intuition behind the definition is straightforward: we are interested in the
quantity of effect forwhichC is responsible, and this is just the level of effectwithC
compared to what that level would have been without it. For example, the efficacy
of a kick of a ball is yielded by that ball’s acceleration compared to its acceleration
if it had not been kicked. Any value for the efficacy of C will be relativised both to
the levels of other causes of E (reflected in the background conditionsW) and also
to the choice ofC0. In essence, the first of these relativisations captures an efficacy’s
dependence on choice of W. For example, striking a match will cause a light if
background conditions include sufficient oxygen in the atmosphere but not
otherwise. The second relativisation captures the way in which the efficacy as-
cribed to a cause also depends on the choice of contrast class to which we compare
it. For instance, the gain from kicking a ball rather than throwing it would be
different from the gain of kicking it rather than leaving it untouched.

What is essential is that background conditions W are kept appropriately
constant across the two terms. This captures the logic of controlled experiment –
to assess the impact of introducing C in place of C0, we want in an experiment to
keep constant (as best we can) everything else causally relevant. Note though
that, strictly speaking, the W in the left-hand term is different to that in the
right-hand term, because the switch between C and C0 will in general alter
additional things in the world besides its impact on our effect of interest. It turns
out that the definition’s exact formulation also depends on a number of other
technicalities, but for our purposes we may gloss over those without loss.7

Generally, the definition is clearly redolent of the counterfactual analysis of
causation itself, first put forward in its modern form by Lewis (1973). Note that
our definition here appeals to a specific counterfactual contrast class C0, and also
that it is able to offer quantitative results. In both these respects it owes much
also to the literature on probabilistic causality. A virtue of the formulation is its
clear applicability to scientific practice, in particular the connection to con-
trolled experiment mentioned above. (This virtue is also emphasised by ma-
nipulationist versions of the counterfactual view: Woodward 2003.) For now, I
leave a fuller discussion of how the relevant counterfactuals might actually be
evaluated until Section 7. Before then I shall simply assume in my examples that
such evaluations are unproblematic, although see also footnote 11.

It might seem that the definition is so general as to be everywhere rather
obvious and therefore not particularly helpful, but this turns out not to be so.

7 Mostnotably, extensionof thedefinition toprobabilistic rather thandeterministic causation.Without

loss of generality, I shall also assume in my examples that all cause and effect terms are variables.
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Indeed later we shall find an example of actual scientific practice – namely
biologists’ use of the analysis of variance – that falls foul of it.

Absolute vs. relative causal efficacy

For particular causes C and D, often we are concerned with the following kind of
question: ‘howmuch difference did it make havingC instead of D?’, or ‘howmuch
difference did itmake havingC at level C1 instead of level C2?’ Start with the latter.
Our definition in fact already covers this case, save with respect to C0 instead of
C2. So we can immediately write that: the causal efficacy of C1 relative to C2 is:

EðC1 &W1Þ � EðC2 &W2Þ

(Let W2 here be the background conditions that hold given C2.)
Consider what the causal efficacies of C1 and C2 would be instead relative to

the neutral level C0. From before:
(1) Causal efficacy of C1 ¼ EðC1 &W1Þ � EðC0 &W0Þ
(2) Causal efficacy of C2 ¼ EðC2 &W2Þ � EðC0 &W0Þ

We see that the relative efficacy of C1 (relative, that is, to C2) can also be
obtained simply by subtracting the two ‘absolute’ efficacies:

Causal efficacy of C1 relative to C2 ¼ EðC1 &W1Þ � EðC2 &W2Þ
¼ ½EðC1 &W1Þ � EðC0 &W0Þ�
� ½EðC2 &W2Þ � EðC0 &W0Þ�

¼ ðefficacy of C1Þ � ðefficacy of C2Þ

(Analogously, the speed of one object relative to another is just given by the
difference between those two objects’ absolute speeds.)

Now turn to the case with two distinct causes C and D: ‘how much difference
did it make having C instead of D?’ Letting C0 and D0 be the neutral levels of C
and D, respectively, and W1 and W2 the appropriately defined background
conditions, this can be expressed:

EðC&W1 &D0Þ � EðD&W2 &C0Þ:8

Working through our formulas, letting W0 be the background conditions given
C0 & D0:
(1) Causal efficacy of C given the absence of D
¼ EðC&D0 &W1Þ� EðC0 &D0 &W0Þ

(2) Causal efficacy of D given the absence of C
¼ EðC&D0 &W2Þ� EðC0 &D0 &W0Þ

8 Note that we would naturally be interested only in the levels of effect given each cause, each time

calculated given the absence of the other cause. Else – had we instead calculated each time given the

other cause’s presence – the efficacy of C relative to D would just have been (for appropriate W3)

trivially zero: E(C & W3 & D)�E(D & W3 & C).
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We can now again derive a result reducing two causes’ relative efficacy just to
the difference of their absolute ones (each calculated given the other cause’s
absence). Thus:

Causal efficacy of C relative to D

¼ EðC&W1 &D0Þ � EðD&W2 &C0Þ ¼ ½EðC&W1 &D0Þ � EðC0 &W0 &D0Þ�
� ½EðD&W2 &C0Þ � EðC0 &W0 &D0Þ� ¼ ðefficacy of CÞ � ðefficacy of DÞ

It follows that whenever we are speaking of a relative causal efficacy we
could without loss equally well speak instead of the difference between two
absolute efficacies. In other words, strictly speaking the concept of relative
causal efficacy is redundant.9

An example: Holmes and Moriarty

Holmes and Watson finally confront Moriarty, Holmes draws his revolver, and
shoots him dead. How important a cause of Moriarty’s death was Holmes’s
shot? ‘Very important’ would seem to be the obvious answer. But suppose
Watson too had a revolver, and that if Holmes had not already done so then
Watson would have shot Moriarty himself. It can be argued now that Holmes’s
shot actually made no difference since whether or not he personally fires, either
way Moriarty ends up dead. So it seems there are actually two distinct
understandings of causal efficacy: according to one of them Holmes’s shot was
important, while according to the other it was not.10

Here the univocality of causal efficacy now appears doubtful again, but let us
analyse the example using the formulas we have just worked out. Label E to be
Moriarty’s death, C to be Holmes’s shot, C0 to be (some event instantiating)
the absence of Holmes’s shot, D to be Watson’s shot, and D0 to be (some event
instantiating) the absence of Watson’s shot. For convenience, let E = 1 denote
Moriarty’s death, and E = 0 his survival. Assume that in the actual world
Holmes fired but Watson did not.

Begin with the first intuition – that Holmes’s shot was indeed an important
cause of Moriarty’s death. Our formula for the efficacy of Holmes’s shot C (in
the absence of Watson’s shot) is:

EðC&W1 &D0Þ � EðC0 &W0 &D0Þ

EðC&W1 &D0Þ ¼ 1, since Moriarty dies if Holmes shoots. The right-hand
term EðC0 &W0 &D0Þ is the counterfactual of if Holmes had not shot (and

9 It also turns out that an absolute efficacy can always be re-expressed in terms of relative ones, so

perhaps one might equally argue that it is absolute efficacy that is redundant. I do not address that

issue here. The important point for our purposes is that, whichever formulation is chosen, there is

only one independent sense of causal efficacy in play.
10 This version of the story, and the suggested distinction between two senses of causal efficacy, is

taken from Sober (1988).
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neither had Watson) – in which case Moriarty would survive, of course, so
EðC0 &W0 &D0Þ ¼ 0. Therefore, according to our formula, the efficacy of
Holmes’s shot = 1� 0 = 1. In other words, Holmes’s shot was indeed a
maximally important cause.

Turn to the second intuition – that if Watson was going to shoot anyway
then Holmes’s shot, although indeed the actual cause of Moriarty’s death,
nevertheless made no difference and so in a sense was not important after all.
This second intuition can now be represented by constructing the appropriate
relative causal efficacy – what is the strength of Holmes’s shot relative to that of
Watson? Our formula for this, recall, is:

EðC&W1 &D0Þ � EðC0 &W2 &DÞ

The left-hand term again equals 1, since Moriarty dies if Holmes shoots. But
now the right-hand term is 1 too, since if Watson were to shoot then Moriarty
would still die even in the absence of Holmes’s shot. Accordingly, the efficacy
of Holmes’s shot now = 1� 1 = 0. In words, if Watson was going to shoot
anyway then Holmes’s shot indeed makes no difference.

We had two seemingly incompatible intuitions in the Holmes–Moriarty
example. I conclude that the resolution is that one of those intuitions
corresponds to the absolute efficacy of Holmes’s shot and the other to its
relative efficacy. Alternatively put, one corresponds to a counterfactual of
C0&D0 and the other to a counterfactual of C0 & D.11

11 In an analogous context, Sober (1988: 317–318) comments: ‘I therefore seem to find myself in the

paradoxical position of saying that genes can be a cause of height, even if they are judged to have zero

magnitude … causes may make no difference, but they are causes nonetheless… [But] perhaps this air

of paradox can be dispelled … it is not hard to fathom how causes can fail to be necessary for their

effects.’ He then points out that Holmes’s shot was the cause of Moriarty’s death even though

Watson’s plans meant that Holmes’s shot made no difference. But I think the ‘air of paradox’ here is

better explained as being just a conflation of absolute and relative causal efficacies. ThusHolmes’s shot

is a cause but if Watson would have shot anyway then it has zero relative efficacy (relative, that is, to

the case of Watson shooting instead). However, there would only be a real paradox if – as is not the

case – the absolute efficacy of Holmes’s shot were also assigned to be zero. Once we speak only of

absolute efficacies then we again seem to track general causation obediently.

Note though that this analysis does trade in turn on the particular counterfactual term we inserted

into the formula for absolute efficacy. In particular, in that term it is ‘held fixed’ that Watson did not

shoot. Arguably this does capture what comes naturally to our intuition when considering the efficacy

ofHolmes’s shot, but nonetheless here we are touching on deeper issues since in the wider philosophical

literature such an interpretation of the counterfactual ‘Holmes did not shoot’ would certainly be non-

standard. Lewis’s approach to evaluating counterfactuals, for instance, would normally be thought to

imply in this context that the counterfactual of ‘Holmes did not shoot’ should include thatWatson does

shoot, and hence would endorse a zero efficacy result. Indeed for just this reason Lewis had to set up his

original (1973) counterfactual definition of causation very carefully so as still to be able to endorse

Holmes’s shot as a cause in cases such as this (i.e. cases of so-called ‘early pre-emption’). An alternative

approach to the evaluation of counterfactuals is provided by the more recent literature on causal

modelling, although the particular issue of intuitions in pre-emption cases remains problematic even

there. This is not the place to pursue a topic long notorious in the causation literature generally. But a

fuller discussion of the evaluation of counterfactuals in biology does follow in the final section.
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Physics and biology revisited

Recall our example from physics of a Newtonian particle acted upon by both
gravity and electricity. What is the causal efficacy here of, say, gravity? For
C1 = the actual level of gravity, and C0 = a neutral (i.e. zero) level of gravity,
our definition yields:

EðC1 &W1Þ � EðC0 &W0Þ ¼ ðthe particle’s motion with gravityÞ
� ðthe particle’s motion with no gravityÞ

The way the example was introduced, the relative efficacy of gravity is exactly
the same as its absolute one. However, the two could have diverged if we had
adopted a different choice of counterfactual. Suppose we were comparing the
strength of gravity on Earth with that on the Moon. Then C1 would be the
Earth’s gravity as before but C2 would be some lesser but now non-zero
alternative level of gravity, corresponding to its strength on the Moon. Now
the calculation would run:

Efficacy of C1 relative to C2 ¼ EðC1 &W1Þ � EðC2 &W2Þ
¼ ðthe particle’s motion with Earth’s gravityÞ
� ðthe particle’s motion with Moon’s gravityÞ

¼ ½EðC1 &W1Þ � EðC0 &W0Þ� � ½EðC2 &W2Þ
� EðC0 &W0Þ�

¼ ½efficacy of Earth’s gravity�
� ½efficacy of Moon’s gravity�

(Here, W2 = the background conditions given C2.)
There are two different questions here: ‘how much difference does Earth’s

gravity make compared to the Moon’s gravity?’, and ‘how much difference
does Earth’s gravity make compared to no gravity at all?’ The latter is an
absolute causal efficacy and the former a relative one. The difference between
the questions is entirely down to choice of counterfactual – either Moon or
zero. Often the implicit choice of counterfactual will in fact be zero either way,
in which case the absolute and relative efficacies coincide and there will not be
even the appearance of ambiguity.

This explains why the issue seemed so unproblematic in our Newtonian case
and indeed inmany everyday examples too. But in social science, for instance, the
appropriate choice of counterfactual is often far less obvious. And as we saw,
complications also arise in biology – so return now to our example of the genetic
and environmental influences on corn plants. Suppose first we are concernedwith
the singleton case of an Expensive strain of plant treated with SuperGro fertiliser
(i.e. the top-left cell in our original Table 1).What does our formula say here?For
C1 = SuperGro (say), and C0 = the neutral (i.e. zero) level of SuperGro:
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Efficacy of C1 ¼ EðC1 &W1 � EðC0 &W0Þ

The left-hand term is the plant’s actual height of 145 cm. The right-hand term
is whatever height the plant would have reached given zero addition of Su-
perGro. The difference between the two terms would then yield the efficacy (for
the Expensive strain, in these circumstances) of SuperGro.

What of ‘environment’ more generally? Let C = all the non-genetic
input. The neutral level C0 of such a C would presumably be any
environment, such as being marooned in interstellar space, in which
the plant would not grow at all. For this choice of C0 we find that, in
the case (as in the top-left cell of Table 1) that actual environment =
SuperGro (plus actual background conditions), and actual genes =
Expensive strain:

Efficacy of environment C¼EðC&W1Þ�EðC0&W0Þ
¼ ðplant’s height with actual environment and genesÞ
�ðplant’s height with actual genes but only the

interstellar environmental input,

i.e. so that the plant died immediatelyÞ
¼ ðplant’s actual height of 145 cm)�0¼ 145 cm

Similarly for genes, let D = the plant’s actual genetic input of the Expensive
strain, and let D0 = the neutral level of genetic input, in this case either zero
genes at all or at any rate some genotype such that no plant height developed.
Then (for appropriate W2):

Efficacy of genes D ¼ EðD&W1Þ � EðD0 &W2Þ
¼ ðplant’s height with actual environment and genesÞ
� ðplant’s height with actual environment

but no genetic input)

¼ ðplant’s actual height of 145 cm)� 0 ¼ 145 cm

Therefore genes and environment each have equal absolute causal efficacies of
145 cm; both have ‘full potency’.12

Turn next to some relative efficacies, again calculated for the Expensive-
SuperGro plant from the top-left cell of Table 1. Consider again C1 =

12 It might seem paradoxical that each of the two inputs could individually be awarded ‘full’

causal efficacy since this appears to imply that their efficacy together will be more than the total

effect. So should they not, as it were, instead only have half each? But consider the two inputs’

joint strength: if C = (actual genes & environment) and C0 = the neutral levels of each, then

that joint strength = E(C & W1) � E(C0 & W0) = (plant’s actual height) – 0=145 cm again.

So no causal efficacy is ever calculated to be greater than the total effect, and there is no

paradox.
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SuperGro fertiliser, and let C2 = the average of the two alternative fertilisers,
namely FastGro and Green.13 Then (for appropriate W2):

Efficacy of SuperGro C1 relative to the FastGro/Green C2

¼ EðC1 &W1Þ � EðC2 &W2Þ ¼ 145� 0:5ð115þ 85Þ ¼ 45 cm

Verbally, choosing SuperGro rather than the alternatives made (on average)
a difference of 45 cm to the plant’s height.

The analogous calculation for the Expensive strain of genes is:

Efficacy of Expensive genes D1 relative to the Normal/Cheap genes D2

¼ EðD1 &W1Þ � EðD2 &W2Þ ¼ 145� 0:5ð140þ 135Þ ¼ 7:5 cm

Verbally, choosing Expensive genes rather than the alternatives made on
average a difference of only 7.5 cm to the plant’s height. Therefore the envi-
ronmental input’s relative efficacy in this case is much larger than the genetic
input’s.

We saw earlier that there seems to be a duality in our understanding of causal
efficacy in the biological context. On one understanding the environment is
more important than genes (in the particular population of our example), while
on the other comparing the two at all is meaningless. Our two different calcu-
lations above now capture this duality. The relative (to C2 and D2) efficacies, on
the one hand, capture the sense in which varying the environment makes more
difference than does varying the genes. The absolute efficacies (i.e. those re-
lativised to C0 and D0), on the other hand, capture the sense in which the two
inputs are equally and inseparably necessary to any plant height at all.

I conclude that therefore it is wrong to speak of there being two distinct senses
of causal efficacy in biology. Both the sense in which genes and environment are
entangled symmetrically, and the alternative sense inwhich one of themmay after
all be stronger than the other, can be adequately represented in terms of the same
basic formula. They simply correspond to different choices of counterfactual.

ANOVA and counterfactuals: a critique

Recall again Table 1, showing fictional plant heights associated with various
gene-environment combinations. Both our own formula and ANOVA agree

13 As this calculation shows, our formula for relative efficacy is readily extendable to cases of more

than one counterfactual, so long as we specify a suitable weighting across those counterfactuals.

Indeed one weakness of ANOVA, in contrast, is precisely the difficulty of flexibly altering such

weightings – instead we are always in effect constrained by the actual sample available. The entry in

each cell in an ANOVA table is the average score for the subsample of treatments composed of that

particular combination of inputs. Problems arise for full ANOVA inference if the sizes of the

different subsamples vary. While ANOVA does offer a variety of methods for accommodating such

asymmetric cases, the aim is always to allow again an equal weighting for each cell.
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that environment is the more important causal factor in this example, but this
apparent harmony conceals some fundamental difficulties. I shall discuss here
only perhaps the most glaring of them, namely ANOVA’s inflexibility with
regard to choice of counterfactual.14

As we saw, classical ANOVA is applicable only to populations as a whole.
Therefore for a proper comparison we need to be clear on how to apply our
own definition of causal efficacy also to such group cases. Consider in our
example the Expensive plant strain. For each Expensive plant, the (absolute)
efficacy is just the height of that plant, as we saw. Therefore the group
efficacy of Expensive – that is, the total extra plant height in that group
attributable to the presence of the Expensive genotype compared to no
genotype at all – is the number of individual Expensive plants in the group
multiplied by their average height. (Equivalently, the group efficacy can be
expressed as the sum of the individual efficacies.) Its value therefore depends
both on the efficacy of Expensive on each individual plant, and on the
ubiquity of Expensive plants in the population as a whole (see also Sober et
al. (1992) on this point). It follows that the group-efficacy of ‘Expensive’ is,
more strictly speaking, actually a group-efficacy of a particular distribution of
Expensive. In our example, this distribution was one-third of the total pop-
ulation of plants, equally split between each fertiliser treatment – i.e. exactly
one-third of the SuperGro-treated plants, and one-third of those treated with
each of the other two fertilisers too. A different distribution, for instance if
one-half of all plants had been Expensive and only one-quarter had been
each of the other two strains, would have resulted in a different group
efficacy.15

A similar analysis applies to relative group efficacies: again, an efficacy will
be of one distribution of a cause (or causes) relative to a different distribu-
tion. In our example, the overall average plant height for the given distri-
butions of plant strains and fertilisers was 110 cm. But suppose that, instead
of an equal one-third split between the Expensive, Normal and Cheap plant
strains (say, distribution ‘A’), we made two-thirds of the plants Expensive
and split the remaining one-third between Normal and Cheap equally. This
new distribution (B) of plant strains, thus weighted now more towards

14 A second weakness is the inappropriateness in this context of ANOVA’s concentration on

variance – rather than level – of effect, on which see Northcott (forthcoming) and also Lewontin

(1974). Others include ANOVA’s treatment of interaction effects (also not discussed here), and its

restriction to group rather than singleton cases.
15 In general (although not for the figures in our simple numerical example) we would also obtain a

different group efficacy if Expensive were proportionally more common among those plants treated

with some rather than other fertilisers, because of the possibility of interaction effects between

choice of plant strain and choice of fertiliser. For simplicity I ignore this possibility here, but one

advantage of our definition of causal efficacy is its ability to accommodate such interaction effects

straightforwardly.
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Expensive, would result in a new average plant height – say (as would follow
from the values of Table 1), 112.5 cm rather than the previous 110 cm. We
can imagine further a third distribution (C) of plant strains, this time one
whereby every plant is Expensive, and – for the given distribution of fertil-
isers – the average plant height for this third population would be 115 cm.
Thus these three different distributions of plant strain would yield average
population heights of 110, 112.5 and 115 cm. (This corresponds to the first
column of Table 3.)

We can next imagine a similar varying of the distribution of fertilisers.
For the actual distribution of plant strains (A) we saw that the actual
distribution of fertilisers (X) yields an average height of 110 cm. But sup-
pose that instead of an equal one-third split, instead a proportion 0.4 of the
plants were treated with SuperGro and 0.3 each with FastGro and Green
(distribution Y), and suppose further that this new distribution would yield
an average plant height of 113. And imagine a third distribution (Z) of
fertilisers, this time split one-half SuperGro and one-quarter each of the
other two, yielding an average height of 117.5. Using the values of Table 1,
we can in addition calculate the counterfactual average heights that would
result given each combination of these new fertiliser and plant strain
distributions (again assuming no interaction effects) – these are given in
Table 3.

So the actual population, with a one-third distribution across both plant
strains and fertilisers and with an average height of 110 cm, is represented in
the top-left cell (A-X). Entries across the top row and down the first column
represent counterfactual populations obtained, respectively, by varying the
input of one of environment or genes. The other entries represent counter-
factual populations obtained by varying both.

It is now easy to see how the relative group-efficacy of a (distribution of a)
cause is exactly analogous in form to that for an individual. For instance, what
is the relative efficacy of genes in this example? As with the singleton case, it
depends critically on which counterfactual we use for comparison (as well as on
background conditions). Given fertiliser distribution X, changing from genetic
distribution A to distribution B yields an increase in average height of 2.5 cm

Table 3. Fictional group data for plant heights and gene-environment combinations.

Fertiliser distributions (proportions

SuperGro–FastGro–Green):

X (1/3 each) Y (4-.3-.3) Z (1/2-1/4-1/4)

Plant strain distributions

(proportions Expensive–Normal–Cheap)

A (1/3 each) 110 113 117.5

B (2/3-1/6-1/6) 112.5 115.5 120

C (1-0-0) 115 118 122.5
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(112.5� 110), whereas changing from A to C yields one of 5 cm. Different
relative group efficacies for the environment can be worked out similarly: along
the top row, switching from X to Y yields an increased average height of 3 cm,
from X to Z one of 7.5 cm, and from Y to Z one of 4.5 cm. Which of ‘genes’ or
‘environment’ has the greater relative efficacy therefore varies depending on
which counterfactual (and background conditions) is chosen. There simply is
no univocal answer.

Return now to ANOVA. In contrast to our formula, it offers no such
flexibility. Rather, the causal efficacy of genes in the actual (A-X) popula-
tion is calculated and then can only ever take this one value. There is no
mechanism for it varying with choice of counterfactual; instead, classical
ANOVA simply never even incorporates the notion of a counterfactual. Its
calculations of causal efficacy are thus extremely inflexible – and unsatis-
factorily so. (See also Lewontin (1974) for extended discussion of related
complaints.)

For example, suppose that a farmer wanted to know how to increase her
plant’s average yield – for a fixed budget, should she target genes or
environment? Surely the answer would be critically dependent on what the
available alternative genetic and environmental distributions were. Starting
from the actual A-X population, if (for a given budget) the available
alternative genetic distribution were B whereas the alternative environmental
distribution were Z, then clearly she should spend her money changing to
the latter. This is because switching plant strains from A to B would only
increase average plant height by 2.5 cm, whereas switching the fertiliser
distribution from X to Z would increase it by 7.5. Suppose though, to vary
the case, that the alternative genetic distribution were actually C and the
alternative environmental one Y. Now switching genes would increase
average plant yield by 5 cm whereas switching environment only increase it
by 3, and so of course the farmer should now spend her money on the new
plant strain instead of new fertiliser. Yet other distributions of plant strain
or fertiliser would yield yet other recommendations. The key point is that
there is not necessarily any single recommendation in favour of either genes
or environment. Rather, all will depend on circumstance, i.e. on what are
the feasible alternative genetic and environmental inputs, i.e. on choice of
counterfactual.

But ANOVA could only ever inflexibly give a single recommendation one
way or the other, regardless of which counterfactuals might be salient. Its
initial calculation (for the actual A-X population) would adjudge one of
genes or environment the stronger cause, and that would be the end of
matter. Therefore, since as we have just seen either of genes or environment
may have the higher relative efficacy depending on our choice of counter-
factual, so for at least some cases ANOVA’s judgment will inevitably be
wrong.

The same applies to any intervention. In this example, it was just a farmer
who would have been ill advised always to follow ANOVA’s recommendation,
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but similar remarks apply in broader social contexts to choice of policy
intervention. The point is that ANOVA makes a one-off judgment based on
the actual range of inputs that happen to obtain in the population now,
whereas the crucial thing from an intervention point of view is the effect
relative to the salient counterfactual alternative. That is, the crucial thing is
the choice of counterfactual – precisely the issue that ANOVA ignores.16

Remedies and counterarguments

How might ANOVA be adjusted or defended as a definition of causal efficacy?
I shall survey, but reject, some suggestions.

Direct incorporation of counterfactuals

Why not, as it were, graft onto the ANOVA procedure a provision for choice
of counterfactual? The thought would be that, first we could perform an
ANOVA to calculate the efficacies of genes and environment in the actual
population (A-X), next likewise perform an ANOVA on the relevant count-
erfactual population (B-X, say), and then perhaps subtract the results of one
from the other in order to see how much difference each of genes and
environment make. That way, scores for causal efficacy would indeed vary
with choice of counterfactual, just as I have been urging.

But it would be a mistake to think that the suggested method provides any
real succour for ANOVA. First, the procedure is quite unmotivated within the
ANOVA framework, so even suggesting it is therefore already a concession to
our own approach. Second, it turns out in more complicated examples that the
exact weightings to put on each cell in the counterfactual population can be
quite an intricate calculation (Northcott forthcoming). It requires in particular
both the controlled-experiment sensibility characteristic of the counterfactual
but not ANOVA approach, and also the capacity easily to incorporate
asymmetric weightings – which is a problem for ANOVA (footnote 13). Third,
the suggestion in any case remedies just one element in a wide portfolio of
difficulties (footnote 14). Thus even on the rosiest view it could represent only a
very incomplete salvation.

16 This also leads to another, more subtle kind of inflexibility regarding counterfactuals. Changing

just one input may in principle alter any cell in the table via indirect effects. For instance, increasing

the proportion of plants that are Expensive may also alter the results for the other plant strains,

perhaps via a changed impact on the field’s overall nutrient balance or some such. Epistemically,

even when we do not know them for sure, we should be free to fill in at least our best guess as to

what these indirect effects might be. Our own formula can accommodate this straightforwardly via

the different background conditions W in each term. But ANOVA is committed to there being no

such variation, i.e. to just a single fixed table of results, and hence has no way of incorporating

indirect effects or even our best guesses about them.
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ANOVA across the meta-population

The fundamental incompatibility of the ANOVA technique with an appro-
priate incorporation of counterfactuals, also lies at the heart of the failure of
two further possible remedies. First, another response that has been suggested
to me is to perform an ANOVA on Table 3. That is, in the face of this range of
counterfactual possibilities could we not still perform an ANOVA across all of
them too, that is across the counterfactual combinations of A, B and C, and X,
Y and Z? We could then use such a ‘meta-ANOVA’ to advise us which of genes
and environment has a greater impact on plant heights, at least in this par-
ticular ‘population of populations’.

I shall criticise this proposal in a moment. Before that though, notice that
whereas above we focused on why ANOVA is unsatisfactory when comparing
different populations, now the issue would be the different one of why it is
unsatisfactory even within a given population (of populations). We can note
immediately that the putative meta-ANOVA would still yield only a univocal
answer as to which of genes and environment was the more efficacious whereas
we saw above that really this judgment should be sensitive to varying cir-
cumstance. It also turns out that this new case is equivalent – and has equiv-
alent weaknesses – to a proposal to extend ANOVA to singleton cases, so I
shall deal now with those two both together.

Extension to the singleton case

A familiar limitation of ANOVA is its applicability only to group rather than
singleton cases, but consider a possible extension of the procedure that would
remedy this. Take a single corn plant, of a particular strain and treated with a
particular fertiliser. We can imagine various possible alternative strains and
compare the plant’s actual height with those heights it would have attained had
it been one of those alternative strains. Likewise we can also imagine alter-
native fertilisers with which it might have been treated, again together with
associated hypothetical heights. The proposal is that we can formulate a table
of these various counterfactual possibilities, perform an ANOVA on that table,
and then apply the rankings of genes and environment from that ANOVA to
the actual singleton plant. In this way ANOVA could after all be applied to
singleton cases, via a particular selection of counterfactual alternatives.17

17 I see this as being precisely the suggestion put forward in Sober (1988: 309–312). An anonymous

referee disputes that reading, judging instead that what Sober was in fact proposing is to fill out the

slots in the table with actual data – thereby offering a way to evaluate singleton causal efficacies

using only actual data, much as my own scheme also does (see later). While I believe that my

reading here is the correct one, it is also true that the relevant passages are not entirely clear.

Regardless of whether or not the position discussed really is that of Sober (1988) though, of course

the critique of it in the text still stands.

269



Now return to the proposed meta-ANOVA. In our example, we began with
the A-X population. Classically, we could perform an ANOVA on the data
from that population (Table 1) in order to evaluate the causal efficacies of
genes and environment. The alternative meta-ANOVA proposes that, having
compiled the extended table ABC-XYZ of counterfactual populations
(Table 3), we perform an ANOVA on that table and then interpret the results
to be the causal efficacies of genes and environment in the original A-X pop-
ulation. This is therefore exactly analogous to the suggestion above for how to
apply ANOVA to singleton cases. The only difference is that instead of cal-
culating the efficacies for an individual plant by performing an ANOVA across
a table of counterfactual individuals (of which the actual plant is only one cell),
now we are calculating the efficacies for an individual population of plants by
performing an ANOVA across a table of counterfactual populations (of which
the actual population is only one cell).

But to see why neither proposal is satisfactory, consider a simple decision
problem. A farmer is stuck with an old greenhouse and an old strain of plant.
Her yield per plant at the moment is 4 units. Suppose that there exist two
equally expensive improvements but that she can afford only one of them. Of
course, she will choose the one that improves her yield the most, in other words
the one with the greater causal efficacy. The first alternative is to replace her old
greenhouse with a new one, which would improve the yield to 6. The second is
to leave her greenhouse alone and instead to replace her old strain of plant with
a genetically modified new strain. Doing the latter would improve her yield to
8. Which of the improvements should she spend her money on? The answer is
obvious: on the new plant strain rather than on the new greenhouse.

Our definition of causal efficacy represents this reasoning successfully. Let
C2 = the new plant strain, C1 = the old one, D2 = the new greenhouse, and
D1 = the old one. And let different Wi be the various appropriately specified
background conditions. Then, in the farmer’s initial circumstances:

ð1Þ Efficacy of the new plant strain C2 relative to the old plant strain C1

¼ EðC2 &W2 &D1Þ � EðC1 &W1 &D1Þ
¼ 8� 4 ¼ 4

ð2Þ Efficacy of the new greenhouse D2 relative to the old greenhouse D1

¼ EðD1 &W3 &C1Þ � EðD2 &W4 &C1Þ
¼ 6� 4 ¼ 2

Therefore genes make the more difference in this case, i.e. have the higher
relative efficacy, and the farmer is correctly recommended to invest in the new
plant strain rather than in the new greenhouse.

So far, so straightforward. But suppose that the full table of yields is as in
Table 4.

Our own calculations remain as stated above. But now consider what
ANOVA says. The sum of squares across the genetic MAs is zero, whereas that
across the greenhouse MAs is: 2[(6�5)2+(4�5)2]=4. Therefore ANOVA is
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forced to conclude that it is the environmental input that is the more efficacious
cause here and so must actually advise the farmer to upgrade the greenhouse
rather than the plant strain. What has gone wrong?

The problem is of course the very low yield of 2 scored by the combination of
new genes and new greenhouse due to some strongly negative interaction effect.
The key point is that this interaction effect should be irrelevant to the farmer’s
decision since by assumption she has enough money to change only one of her
inputs. That is, we are concerned only with how much difference, compared to
the original set-up, each of the new inputs makes individually. When defining
the impact of the new greenhouse we of course did this while holding constant
the other factor, i.e. the plant breed. This again is just the logic of controlled
experiment – when assessing the impact of a given cause, one tries to hold
constant all other causally relevant factors. Similarly here, when calculating the
impact of switching to a new greenhouse the one thing we surely want to avoid
is allowing the plant breed to vary too. But in effect that is just what ANOVA
does. By focusing on the sums of squares across the MAs it necessarily
incorporates information from the irrelevant bottom-right-hand cell, leading in
this case to the perverse pro-greenhouse advice.18

It is important always to keep clearly in mind exactly which causal efficacy
we are concerned with. For instance, we could imagine a whole population of
farmers, some with the new greenhouse some with the old, some with the new
plant strain some with the old, some with both, some with neither. Across this
whole population, assessment of the average impact of genes and environment
would indeed need to take into account the negative interaction effect in the
bottom-right-hand corner. But the causal efficacy across a whole population
would be a group efficacy (see previously) and not the singleton one at issue
here. Likewise, if we were concerned with the singleton problem starting from
the top-right corner then when calculating the causal efficacy for genes we
would indeed be interested in the change down to the bottom-right corner. And
similarly the efficacy of environment starting from the bottom-left corner

Table 4. Fictional data for singleton gene-environment choice.

Old greenhouse New greenhouse MA

Genes old 4 6 5

Genes new 8 2 5

MA 6 4 Grand mean: 5

18 In reality, of course, presumably no one would follow ANOVA so blindly as actually to choose

the new greenhouse here, so are we attacking merely a straw man? After all, biologists intelligently

manipulate their choice and design of experiments, and apply common sense to avoid obviously

absurd conclusions. But the telling point is the very need for such manipulations in the first place. If

in practice we are forced to trim away from strict adherence to ANOVA then it surely cannot be a

satisfactory definition of causal efficacy. For this reason perhaps, often ANOVA is not cited as such

explicitly. Yet as we saw (Table 2), implicitly it often is surely so used.
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would also want to take account of the bottom-right corner. Or perhaps we
might start from the top-left corner and be interested in the joint efficacy of
adding both the new plant breed and new greenhouse simultaneously. In all
these cases, the bottom-right corner would be relevant. But none of these cases
is our case. And for our case, the bottom-right corner is not relevant.

Summing up the preceding sections, ANOVA applied to singleton cases pays
heed to factors that are not relevant, and when applied to group cases pays no
heed to factors that are relevant. So in neither case does it calculate causal
efficacies satisfactorily.

Evaluating counterfactuals

Counterfactuals and actual data

The argument in this paper is that what we need in biology is a flexible,
context-dependent concept of causal efficacy based on comparison of the actual
level of effect with a counterfactual one. On my account indeed, the very notion
of causal efficacy makes implicit contrastive appeal to counterfactuals. How-
ever, even if all this is granted, still we must address the classic philosophical
issue of just how the relevant counterfactuals are to be evaluated.19

Obviously, by definition no direct measurement of counterfactuals is possi-
ble, so as a matter of scientific practice we are forced to seek some proxy for
them from actual data. In an experimental setting we do this by controlling as
best we can for all other causal factors and then seeing how much change in an
effect term we get when changing the cause of interest. In this way we can get
an estimate of the causal efficacy entirely from actual data. As noted, our
formula can be seen as applying the logic underlying this method to the defi-
nition of causal efficacies generally.

Such a proposal has much in common with the recent literature in causal
modelling (Spirtes et al. 2000; Pearl 2000; Woodward 2003). The under-
standing there of causal efficacy, and indeed of causation itself, is in terms of
a kind of contextualised counterfactual dependence – what would be the
impact of changing the value of this variable in these particular circum-
stances? The formal apparatus of causally interpreted directed acyclic graphs
is then developed so that the relevant counterfactuals may be evaluated via
reference to an intervention on those graphs. Such an intervention in turn
represents the changing of the level of one input. Typically it is assumed that
such an intervention in itself leaves the causal relations in a graph unaffected.
This enables the impact on any other variable of the change of the level of
one input to be traced formally as the impact of an intervention. The rele-
vance to us is that by evaluating counterfactuals with reference to interven-
tions in graphs in this way, the requisite causal sensibility is automatically

19 I am grateful to an anonymous referee for pressing me on the importance of this.
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built in, so to speak. The key is to find a real-world causal system that will
indeed remain structurally stable when we change the value of one of the
inputs. In such a system – but only in such a system – we can then read off a
causal efficacy directly as being the change in an effect variable that follows
the change in a cause variable. The kindredness to the method of controlled
experiment is obvious.

Of course, deciding exactly which real-world systems meet the appropriate
stability requirement will likely be based on some complex function of data and
background knowledge. The crucial point is that not just any actual data is
suitable, and in the case even of appropriate data not just any way of analysing
it is suitable. Rather, the notion of a causal system stable under the relevant
intervention represents a normative ideal that governs our evaluations of
counterfactuals and hence in turn our inferences of causal efficacies. In practice
the choice of the appropriate data may often be natural and obvious, arguably
as when analysing the various examples in this paper, for instance.

The above approach to evaluating counterfactuals is distinct from Lewis’s
familiar apparatus of possible worlds, which appeals instead to a similarity
metric based on nomological considerations. Nevertheless, depending on how
exactly in any one case similarity is understood, of course it is possible to
interpret a Lewisian scheme too as endorsing controlled-experiment methods
for evaluating counterfactuals (at least usually – on which see Woodward
2003). Thus in practice when it comes to evaluating counterfactuals by means
of actual data, the same procedure may be endorsed.20

ANOVA and data

Sometimes the right data might be hard to acquire. But there are two distinct
issues at play here, conceptual and epistemological, and it is not clear why a
more difficult epistemological situation should make any difference to the
conceptual question. Hence there is no reason why our definition of causal
efficacy should change just because of data difficulties.

Perhaps it might still be thought that ANOVA could be a source of useful
information for evaluating the relevant counterfactuals. But I say that whereas
the data on which ANOVA works may indeed be useful for that, the ANOVA
procedure itself is not. Maybe, in certain difficult epistemological situations,
ANOVA could even be a good substitute for our counterfactual definition? But

20 It may sometimes be that a particular counterfactual is especially vague or indeterminate. In

such a case, I agree with Sober that ‘to the degree this is so … the question of causal magnitude also

is vague and indeterminate’ (1988: 310). In the context of evaluation via a causal model, either it

would be unclear which particular causal model is the appropriate one, or else unclear which is the

salient intervention within that model. In Lewis’s scheme, likely the interpretation of the count-

erfactual’s antecedent would be unclear. Either way, the problem for our purposes is that it would

consequently in turn be left unclear exactly which, if any, proxy actual data is appropriate to

evaluating the causal efficacy.
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the argument of this paper has been carefully that it is not, or more precisely
that it is not a good substitute for the operationalisation of that definition in
terms of actual data.

Turn now to broader questions surrounding data. In practice, procedures of
data collection are often designed precisely in accordance with our normative
ideal. For instance, field trials of corn plants typically take great pains to have
many plants growing under each treatment combination (so as to minimise the
statistical impact of idiosyncratic one-off events such as a plant becoming
infested), to avoid having choice of fertiliser correlate with being on the side of
the field nearer a river or any other possibly causally relevant factor, and so on.
That is, every care is taken to ensure that background conditions are kept as
constant as possible and hence that actual data are as good a proxy as possible
for the relevant counterfactual quantities.21 In the notation of our formula,
that means keeping as similar as possible W1 and W0 (except in so far as the
change between C0 and C may itself alter W).

Like other measures in statistics, such as Pearson’s correlation coefficient,
ANOVA reflects its positivist origins in being defined only over actual data.
But on the approach advocated here our best estimates of causal efficacy are
also defined over actual data, indeed often exactly the same data as ANOVA
uses.22 For, as mentioned, when collected with appropriate care ANOVA’s
table of data is certainly suitable as raw material for the assessment of causal
efficacies – just not in the way that ANOVA does it.

Sometimes it will not be possible to read the value for the relevant count-
erfactual directly off the actual table of data but that value will nonetheless be
deemed obvious in any case, for instance that with zero oxygen and water a
plant would not have grown at all. One might speculate that ultimately the
reason the value of this counterfactual seems obvious is precisely that our

21 On our definition, to repeat the value of a causal efficacy depends not only on the actual level of

effect but also on the counterfactual level that would have obtained under particular alternative

circumstances. As now explained, our proxy here for that latter term is a second actual level of

effect. Therefore it can seem that, as Sober (1988: 318) argues, ‘‘even if causality is local, the

magnitude of causality need not be.’’ But the non-local actual term is only a proxy for a count-

erfactual one, and the latter arguably would be ‘local’ in the sense implied.
22 Still, given that our definition necessarily involves the evaluation of counterfactuals whereas

ANOVA by contrast is defined purely from actual data, is not ANOVA therefore at least preferable

on epistemological grounds? But I think this assumes an unwarrantedly pessimistic view of our

ability to evaluate the relevant counterfactuals. On the account presented here, the method of

controlled experiment – surely the gold standard of science if anything is – itself assumes the ability

to evaluate counterfactuals (see also Woodward 2003 on this point). So in this respect the proce-

dures endorsed by our definition are no different from those underpinning the paradigm successes

of physical science. Thus on pain of writing off the latter the objection is not compelling. Indeed,

one might turn the argument around. For many causal efficacies, very little new data is needed for

their calculation – often just two cells in a table, as we have seen. Even for group efficacies, in effect

the data requirement is often less than a whole table, depending on exactly which group efficacy is

being calculated. ANOVA by contrast requires the entire table of data and so is often actually

much more demanding than our own definition. The issue of data requirement would then become

another point against ANOVA.
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background knowledge is in effect itself appealing to various natural experi-
ments, e.g. that all plants in circumstances otherwise causally similar have been
observed to die when starved of oxygen and water. So even if not explicit in an
ANOVA table, the proxy actual data – now located, as it were, in background
knowledge – relevant to the evaluation of these other counterfactuals are still
just as much informed by a controlled-experiment sensibility.

What if the data on which we conduct an ANOVA are taken from totally
uncontrolled sources? For example, suppose we tracked crime rate data taken
from different countries and constructed a table across different combinations
of, say, liberality of penal code and numerical strength of policing. But
suppose also that all the while we were taking no account of other factors
likely causally relevant, e.g. local demographics regarding the number of
young males, socioeconomic conditions, gun laws, and so on. I am sceptical
that such data could provide useful information about causal efficacies,
precisely because of (in our notation) the wildly varying background condi-
tions W. (Northcott (forthcoming) demonstrates this point in rather more
detail.) Rather than trying to draw conclusions from such uncontrolled data,
our best bet would be to look for other data that better controlled for
confounds, or perhaps we might disaggregate in suitable ways the existing
data. The point is that in these circumstances ANOVA would offer no
guidance for, nor even recommendation of, such essential procedures.

Conclusion

The very notion of causal efficacy appeals to counterfactuals and consequently
represents a conceptual ideal to which we mortals stuck with actual data can
merely aspire. But this is no barren ideal. Rather, it is one that informs just
how we should collect, and then analyse, actual data. In particular, it shows us
both why ANOVA is a bad way of analysing actual data and also shows us a
better alternative way of analysing that very same data. Therefore the critique
does not rest simply on a smug appeal to counterfactuals while, as it were,
unfairly marooning ANOVA on an island of actuality.

General scientific practice reflects its agreement with our ideal via its
emphasis on controls and experiments, and moreover by its successes amply
demonstrates that ideal’s viability. Thus exaggerated epistemological scruples
should not sway us away from the counterfactual definition of causal efficacy in
biology any more than in the rest of science. Rather, the question becomes only
how best to operationalise it.
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