Probing spacetime with a holographic relation between spacetime and entanglement

Rasmus Jaksland
Norwegian University of Science and Technology

Abstract

This paper introduces and examines the prospects of the recent research in a holographic relation between entanglement and spacetime pioneered by Mark van Raamsdonk and collaborators. Their thesis is that entanglement in a holographic quantum state is crucial for connectivity in its spacetime dual. Utilizing this relation, the paper develops a thought experiment that promises to probe the nature of spacetime by monitoring the behavior of a spacetime when all entanglement is removed between local degrees of freedom in its dual quantum state. The thought experiment indicates that all of spacetime disappears, when all entanglement is removed between local degrees of freedom in the dual quantum state. This may be indicative that spacetime emerges from the entanglement between underlying quantum degrees of freedom. However, rather than pursuing the thought experiment in further detail, the credibility of the relation between spacetime and entanglement in this zero entanglement limit is questioned. The energy of a quantum system generally increases when all entanglement is removed between subsystems, and so does the energy of its spacetime dual. If a system is subdivided into an infinite number of subsystems and all entanglement between them is removed, then the energy of the quantum system and the energy of its spacetime dual are at risk of diverging. While this is a prima facie worry for the thought experiment, it does not constitute a conclusive refutation.
1 Introduction

A promising recent idea on the scene of quantum gravity research is the proposal pioneered by Mark van Raamsdonk (2010; 2011) and collaborators that spacetime – and even gravity – is a geometrical representation of entanglement. The proposal has its origin in the AdS/CFT correspondence (Maldacena, 1999); a conjectured duality between theories with gravity and quantum theories without gravity. According to van Raamsdonk’s proposal, the spacetime and spacetime dynamics that account for gravitation can be represented by the entanglement (and dynamics of entanglement) in conformal quantum field theories without gravity. Gravity is a geometrical representation of some physics that has an alternative and empirically equivalent representation as entanglement in a quantum field theory.

An enticing prospect of this is that the dual representation in terms of entanglement could perhaps be used as a theoretical probe of the nature of spacetime. Such an idea is alluded to but never further developed by van Raamsdonk when he in passing writes: “By removing all the entanglement (which, for the case of a continuum CFT, costs an infinite amount of energy), the dual spacetime disappears entirely!” (Van Raamsdonk, 2016, p. 23). According to this speculation, spacetime is not robust but something that can be removed entirely; something that could be taken to suggest that spacetime is non-fundamental.

Taking inspiration from van Raamsdonk’s speculation, this paper seeks to develop in detail the thought experiment where spacetime is monitored when all entanglement is removed between local degrees of freedom in the dual CFT representation. It is found that there is some merit to van Raamsdonk’s speculation, but that an energy divergence in the limit where all entanglement is removed – mentioned but never discussed by van Raamsdonk – threatens the validity of the scheme behind the speculation such that it cannot be trusted.

The outline is as following: Section 2 introduces the AdS/CFT correspondence and gives the example of the duality between the maximally extended AdS-Schwarzschild black hole and the thermofield double state. Section 3 then presents van Raamsdonk’s argument that entanglement in the thermofield double state is closely related to connectivity in the dual spacetime. After generalizing to arbitrary holographic quantum states – quantum states with a spacetime dual – in section 4, section 5 follows the argumentation through to the limit where all entanglement between all local degrees of freedom are removed. With some qualification, the picture emerging is that suggested by van Raamsdonk: all of bulk spacetime seems to disappear in this limit. The relation between spacetime and entanglement can be employed as a theoretical probe of the nature of spacetime. Rather than developing this thought experiment further, section 6 will undertake a qualitative investigation of the behavior of energy in the limit where all entanglement is removed. It will be argued that the energy density as well as the total energy risks diverging in this limit. The final section discusses how this affects the validity of the thought experiment developed in section 5 and concludes that while the potentially diverging energy raises questions about the validity of this thought...
experiment, it does not, in its current form, constitute a conclusive refutation.

Before we proceed a few notational and terminological remarks are in place. In accord with the convention of the field, the speed of light, Planck’s constant, and Boltzmann’s constant will be set to unity while dependence on Newton’s constant, G_N, will be kept explicit. On the terminological side, a remark about spacetime is in order. Since we will primarily encounter spacetime via co-dimension two surfaces, we will mean by spacetime the real structure that makes such surfaces possible and which in particular is the origin of the area of such surfaces. When the area of such surfaces reduces it is assumed to be because some of spacetime disappears. Formally, the change of the areas of surfaces are induced by changes of the metric field. Since changes of spacetime are assumed to be the origin of such changes of area, the metric must as a consequence encode spacetime. Spacetime thereby becomes closely related to the metric field – something that accords well with usual wisdom – since the area of the surfaces in question are given in terms of the metric field. Spacetime encodes certain geometrical facts about the system that are shared by all the dynamical fields. To qualify when spacetime has disappeared, the notion of spacetime connectivity will be appealed to in the following. Two regions of spacetime are connected if a light signal travelling from one region can intersect a light signal travelling from the other region. Two regions are disconnected if it is not possible to send two such light signals. Two regions become disconnected, if it were possible but no longer is possible to send a light signal from one region that intersects with a light signal send from the other region. Such disconnection will be taken as evidence that the spacetime connecting the two regions has disappeared. We will proceed on this premise.

2 AdS/CFT correspondence

Ever since its discovery, the AdS/CFT correspondence has intrigued researchers of quantum gravity. The correspondence has its origin in string theory and conjectures that certain types of closed string theories in asymptotically anti-de Sitter (AdS) spacetime are dual to certain non-gravitational conformal field theories (CFT) defined on a fixed spacetime background identical to the asymptotic boundary of the dual AdS spacetime. In particular, the two sides of the duality are conjectured to be empirically equivalent, but different ways to represent the same physical system. Thus, observables on the CFT side correspond to observables on the AdS side, though the interpretation of the observables on each side of the duality is often different. A notable exception is the

\[A = \int d^d \sigma \sqrt{\text{det}(g_{\mu \nu})} \]

where $g_{\mu \nu}$ is the induced metric on the surface whose area is evaluated.

\footnote{More precisely, the areas in question are given by the area functional:}

\footnote{See Butterfield et al. (2016) for an introduction to the AdS/CFT correspondence and some conceptual aspects thereof.}

\footnote{See for instance de Haro (2017) for a more detailed account of the notion of duality in the context of the AdS/CFT correspondence.}
energy of a CFT state that corresponds to the energy of its dual spacetime; a result that will be put to use in section 6.

While originally conceived in the context of string theory, the AdS/CFT correspondence reduces in a certain limit 4 to a duality between particular conformal field theories in d dimensions and classical asymptotically AdS spacetimes 5 in $(d + 1)$ dimensions whose gravitational dynamics are described by Einstein’s field equations. One example of such a duality between a CFT state and a classical spacetime is the duality between the maximally extended AdS-Schwarzschild black hole and the thermofield double state (Maldacena, 2003). The maximally extended AdS-Schwarzschild black hole is a particular solution to Einstein’s field equations in the presence of a negative cosmological constant consisting of two identical regions, such that from either region the spacetime looks like a AdS-Schwarzschild black hole.

Figure 1: a) Penrose diagram of the eternal black hole with an implicit $d−1$ dimensional sphere over each point that scales as r^2. Regions I and II cover regions that lie outside ($r > r_h$) the black hole covered by region IV. Region III is a white hole. b) Depiction of two spacelike slices of the eternal black hole ($T = 0$ and T equals a positive constant) with one angular coordinate restored.

As seen in figure 1, a light signal from the region denoted I can intersect a signal from region II. The spacetime is a connected spacetime according to the terminology

4Closed string theory may be approximated by Einstein gravity in the limit where both the string coupling and string length is small such that the super string theory may be approximated by supergravity. See Callan et al. (1987) and Huggett and Vistarini (2015).

5More precisely, the spacetime dual is Einstein gravity on $\text{AdS}_{d+1} \times Y$ where Y is some compact space that ensures a consistent embedding into string theory. However, the compact space and the embedding into string theory will not play any role in the following.
introduced above. However, the light signals can only intersect inside the black hole thereby precluding any causal connection between the two exterior regions I and II. The two regions are causally disconnected. Seen from region I, region II lies behind the black hole horizon \((r = r_h \text{ in figure 1})\) and \textit{vice versa}. As such, this interior can be conceived as an Einstein-Rosen bridge (a wormhole if it is emphasized that there is no way out once in; it is still a black hole). Adopting the usual terminology, we will subsequently refer to the maximally extended AdS-Schwarzschild black hole as the eternal black hole.

The two identical regions I and II have identical asymptotic boundaries – denoted \(A\) and \(B\) in figure 1 – with spacetime \(\mathbb{R} \otimes S^{d-1}\). These are also causally disconnected. The CFT dual to the eternal black hole must, in accordance with the general result of the AdS/CFT correspondence, be defined on a spacetime identical to this asymptotic boundary, \(A \cup B\). Thus, the full quantum system is comprised of two identical quantum subsystems, \(Q_A\) and \(Q_B\), each defined on a fixed background spacetime \(\mathbb{R} \otimes S^{d-1}\).

The Hilbert space of states of the full quantum system, \(\mathcal{H}\), can be decomposed as a product of two Hilbert spaces, \(\mathcal{H}_A\) and \(\mathcal{H}_B\), that are associated with the two subsystems, \(Q_A\) and \(Q_B\). \(\mathcal{H}_A\) and \(\mathcal{H}_B\) may be spanned by an orthogonal basis consisting of (again identical) energy eigenstates \(\{|E^A_i\rangle\}\) and \(\{|E^B_i\rangle\}\). The thermofield double state, \(|\Psi\rangle \in \mathcal{H}\), that is the CFT state dual to the eternal black hole, can then be expressed as

\[
|\Psi\rangle = \frac{1}{\sqrt{Z(\beta)}} \sum_i e^{-\beta E_i/2} \left(|E^A_i\rangle \otimes |E^B_i\rangle \right)
\]

where \(\beta\) is the inverse temperature of one of the subsystems and \(Z = \sum_i e^{-\beta E_i}\).

3 Entanglement and the Eternal Black Holes

The thermofield double state is a particular state, \(|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B\), in which we can find the quantum system comprised of the subsystems \(Q_A\) and \(Q_B\). Interestingly, the expression of the thermofield double state, eq. (2), in terms of energy eigenstates explicitly unveils the local degrees of freedom of the two subsystems to be entangled through the weighted sum over states \(\sum_i e^{-\beta E_i/2} \left(|E^A_i\rangle \otimes |E^B_i\rangle \right)\).

6 The name 'eternal black hole' has its origin in the curious property of the maximally extended AdS-Schwarzschild black hole that it can be in an equilibrium with its own Hawking radiation. This is possible because the maximally extended AdS-Schwarzschild black hole is asymptotically global AdS and light rays may travel to the boundary of global AdS and back again in finite time.

7 Note that for the eternal black hole this is not a contiguous spacetime but instead a spacetime that consists of two disjoint copies of the same spacetime.

8 Since they are identical, the inverse temperature is the same in both subsystems.

9 A number of authors have recently questioned this duality between the thermofield double state and the eternal black hole (Avery and Chowdhury, 2013; Marolf and Wall, 2013; Mathur, 2014). When considering van Raamsdonk’s conclusion drawn from this duality, it is therefore relevant to keep in mind that the duality remains disputed. However, even if this duality turns out to be false, it does not disprove the proposed relation between spacetime and entanglement, though it does to some degree compromise the presented qualitative argument and therefore some of the intuitive appeal of the proposal.
For comparison, consider a special state in the Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$:

$$|\Phi\rangle = |E^A_0\rangle \otimes |E^B_0\rangle$$

(3)

where $|E^A_0\rangle$ is the ground (vacuum) state of \mathcal{H}_A and similarly for $|E^B_0\rangle$. Manifestly, $|\Phi\rangle$ is the product of two pure states and does not contain entanglement between the degrees of freedom in Q_A and Q_B.\(^{10}\) In this state, therefore, the two systems are completely uncorrelated. Notably, the thermofield double state, $|\Psi\rangle$, is identical to $|\Phi\rangle$ in the limit where the inverse temperature, β, of the subsystems goes to infinity, i.e. the limit where the temperature goes to zero\(^{11}\)

$$|\Psi\rangle \overset{\beta \rightarrow \infty}{=} |\Phi\rangle.$$

(4)

Since the local degrees of freedom in Q_A and Q_B are highly entangled in $|\Psi\rangle$ and since they are not entangled at all in $|\Phi\rangle$, it is evident how the inverse temperature, β, controls the entanglement between these degrees of freedom in the two subsystems.

What van Raamsdonk (2010) suggests is that a first indication of the relation between entanglement and spacetime may be obtained from the differences between the spacetime dual of a product state like Φ and an entangled state like Ψ. The state Φ where there is no entanglement between Q_A and Q_B consists of the tensor product of two identical pure states; more specifically a product of the identical vacuum states of the subsystems. Assuming that a pure state is dual to some spacetime, then the product of two pure states is dual to the product of two such spacetimes. Thus, the spacetime dual of the product state $|\Phi\rangle$ consists of the product of two completely uncorrelated spacetimes. It seems, therefore, reasonable to suppose that these two spacetimes are disconnected, i.e. no light signal travelling from one spacetime can intersect a light signal travelling from the other. As already argued, the spacetime dual of the thermofield double state, where Q_A and Q_B are entangled, is a connected spacetime. Thus, for the thermofield double state, entanglement between Q_A and Q_B is a necessary condition for connectivity between A and B in the dual spacetime; the entanglement between the quantum subsystems gives rise to the spacetime that connects the regions I and II in the spacetime dual.

That spacetime connectivity is related to entanglement in the dual thermofield double state sits well with the Bekenstein-Hawking formula that relates the entropy of a black hole, S_{BH}, with its horizon area, Area_{BH} (Bekenstein, 1973)

$$S_{BH} = \frac{\text{Area}_{BH}}{4G}.$$

(5)

The duality between the eternal black hole and the thermofield double state entails that the black hole entropy – regardless of its origin on the AdS side – is equal to the entanglement entropy of one of the subsystems in the thermofield double state (Emparan, 2006). With this relation, it is possible to monitor the horizon area as seen from the

\(^{10}\)This is just one state in a class of product states in $\mathcal{H}_A \otimes \mathcal{H}_B$.

\(^{11}\)This follows, since the system only occupies the ground state when the temperature goes to zero; as can be seen from the reduced density of state $\rho_A = \frac{1}{Z(\beta)} \sum_i e^{-\beta E_i} |E^A_i\rangle \langle E^A_i|$, if one notes that the energy eigenvalue is non-zero for all energy eigenstates other than the vacuum state.
exterior on either side of the eternal black hole, when entanglement between Q_A and Q_B is removed in the dual thermofield double state. As entanglement is removed (i.e. when β is increased), the entanglement entropy decreases and so does the horizon area following eq. (5). Note that when the horizon area decreases, the black hole (and the white hole) gets smaller in the sense that the spacetime singularity comes closer to the horizon.

$$T = 0 \quad \beta \to \infty$$

$$T = \text{const}^+ \quad \beta \to \infty$$

Figure 2: Depiction of the behavior of the spatial slices $T = 0$ and T equals a constant of the eternal black hole when $\beta \to \infty$ in the dual quantum state $|\Psi\rangle$.

In the limit where all entanglement is removed between Q_A and Q_B^{12} (i.e. where $\beta \to \infty$), the entanglement entropy goes to zero and so does the horizon area.13 This limit is depicted in figure 2 for the spatial surfaces $T = 0$ and T equal to a positive constant. As seen, the spacetime regions I and II share no boundary for $T \neq 0$ when $\beta \to \infty$, and for $T = 0$ they share a single point; spacetime pinches. More precisely, the singularity comes closer and closer to the horizon as entanglement is removed in the dual quantum state such that in the zero entanglement limit the spacetime singularity coincides with the horizon. Thus, the entire horizon becomes singular as depicted in figure 3 and in particular the spacetime becomes singular in the single point that is shared by the two regions I and II.

This does not exactly reproduce the initial assumption that the product of two pure states – such as $|E_0\rangle \otimes |E_0\rangle$ – are dual to two completely disconnected spacetimes. They remain connected by a singularity whose geometrical interpretation is uncertain. Even if the singularity remains, it seems reasonable to suppose that no light signal can cross it. This lends support to van Raamsdonk who concludes: “In this example, clas-
Figure 3: Depiction of the eternal black hole in the limit where all entanglement is removed between Q_A and Q_B in the dual quantum state Ψ. In this limit, the horizon and the spacetime singularity coincides.

4 Beyond the Eternal Black Hole

While conceived in the context of the duality between the eternal black hole and the thermofield double state, the relation between entanglement and spacetime connectivity generalises to any quantum state with a classical spacetime dual.\(^{14}\)

Consider a quantum state $|\Psi\rangle$ with a classical spacetime dual M_Ψ (see figure 4). As required by the AdS/CFT correspondence, $|\Psi\rangle$ is a state in the Hilbert space for a CFT defined on a spacetime identical to the asymptotic boundary of M_Ψ which we denote ∂M_Ψ. For terminological purposes we denote the interior of the spacetime, $M_\Psi \setminus \partial M_\Psi$, the bulk. To construct the Hilbert space, one must define on a spatial slice of ∂M_Ψ which will be denoted $\Sigma_{\partial M_\Psi}$. We then have $|\Psi\rangle \in \mathcal{H}_{\Sigma_{\partial M_\Psi}}$. We will suppose that M_Ψ is such that any point on $\Sigma_{\partial M_\Psi}$ is connected to any other point on $\Sigma_{\partial M_\Psi}$, that is, it is possible to send light signals through the bulk from any two point on $\Sigma_{\partial M_\Psi}$ such that they intersect. Now, divide $\Sigma_{\partial M_\Psi}$ into two regions B and \overline{B}, such that $B \cup \overline{B} = \Sigma_{\partial M_\Psi}$. By assumption, B and \overline{B} are connected through the bulk. Since a CFT is a local quantum field theory,

\(^{14}\)For a more detailed account of this generalization see Van Raamsdonk (2011); Faulkner et al. (2014); Lashkari et al. (2014); Swingle and Van Raamsdonk (2014).
there are specific degrees of freedom associated with specific spatial regions. We can therefore regard the full quantum system as composed of two subsystems, Q_B and $Q_{\overline{B}}$, associated with the two spatially separated regions B and \overline{B}. As a consequence, the Hilbert space of the full system can be decomposed as a tensor product of the Hilbert spaces of Q_B and $Q_{\overline{B}}$:

$$\mathcal{H}_{\Sigma_{\partial M_\Psi}} = \mathcal{H}_B \otimes \mathcal{H}_{\overline{B}}$$ (6)

$|\Psi\rangle$ can therefore be expressed as a sum over products of states $|\psi_i^B\rangle \in \mathcal{H}_B$ and $|\psi_i^{\overline{B}}\rangle \in \mathcal{H}_{\overline{B}}$.

Some complications are involved in making such a decomposition in a gauge invariant way and leads naively to an unphysical gauge fixing dependence of the entanglement entropy (Casini et al., 2014). These complications will not be considered here, but see Delcamp et al. (2016) and references therein for various (proposed) resolutions of this problem.
This will generally not be a product state, i.e. a product of a state in \mathcal{H}_B and one in $\mathcal{H}_\overline{B}$. Thus, the local degrees of freedom in Q_B and $Q_{\overline{B}}$ will generally be entangled. Again, assume that a product state

$$|\Phi\rangle = \left(\sum_i c_i |\psi_i^B\rangle \right) \otimes \left(\sum_j d_j |\psi_j^{\overline{B}}\rangle \right)$$

is dual to two disconnected spacetimes. One then obtains the result that entanglement between Q_B and $Q_{\overline{B}}$ in $|\Psi\rangle$ is a necessary condition for the dual spacetime M_Ψ to be a connected spacetime. The duality between the thermofield double state and the eternal black hole is just a particular example of this.

One may monitor this more closely but this time using a holographic relation due to Ryu and Takayanagi (2006) that is similar to the Bekenstein-Hawking formula but which applies to general quantum states with a classical spacetime dual. This Ryu-Takayanagi formula reads

$$S_B = \frac{\text{Area}(\tilde{B})}{4G}$$

S_B is the entanglement entropy of subsystem Q_B defined as: $S_B = -\rho_B \log(\rho_B)$. Here ρ_B is the reduced density matrix for the subsystem Q_B obtained from $|\Psi\rangle$ by tracing out the degrees of freedom in $Q_{\overline{B}}$: $\rho_B = \text{tr}_{\overline{B}}(|\Psi\rangle \langle \Psi|)$. In eq. (9), $\text{Area}(\tilde{B})$ is the smallest area bulk surface, \tilde{B}, that divides region B from \overline{B}, i.e. B from the rest of $\Sigma_{\partial M_\Psi}$ (see figure 4). The black hole horizon in the eternal black hole is exactly such a surface, though this is not immediately obvious (Ryu and Takayanagi, 2006, Section IV). From the Ryu-Takayanagi formula it follows that changing the entanglement between Q_B and $Q_{\overline{B}}$ changes the area of the smallest surface that divides the two corresponding regions in the spacetime dual. Reducing the entanglement between Q_B and $Q_{\overline{B}}$ removes some of the spacetime connecting B and \overline{B} in the spacetime dual.

When $|\Psi\rangle \to |\Phi\rangle$, the state of the full quantum system becomes a product of two pure states such that there is no entanglement between the local degrees of freedom in Q_B and $Q_{\overline{B}}$. Thus, in this limit the entanglement entropy, S_B, goes to zero and so does the area of \tilde{B} according to the Ryu-Takayanagi formula. More explicitly stated, in this limit the bulk metric changes such that the minimal area dividing the two asymptotic regions B and \overline{B} in the spacetime goes to zero; the spacetime dual of the quantum state pinches when $|\Psi\rangle \to |\Phi\rangle$. For the spatial surface $\Sigma_{\partial M_\Psi}$, figure 5 depicts the limit where all entanglement is removed between Q_B and $Q_{\overline{B}}$. Again, in the limit where all entanglement is removed between the quantum subsystems, the two regions B and \overline{B} still share a single singular point that has no clear interpretation. But as before, even if the singularity remains, it seems reasonable to suppose that no light signal can cross it. Thus, removing all entanglement between Q_B
Figure 5: Depiction of the behavior of the spatial slice $\Sigma_{\partial M}$ when all entanglement is removed between Q_B and $Q_{\overline{B}}$. Note that the quantum state is defined on a fixed spacetime identical to the asymptotic boundary of the spacetime dual. Thus, the change in \overline{B} is solely due to changes in the bulk metric despite the appearance to the contrary.

and $Q_{\overline{B}}$ disconnects B and \overline{B} in the spacetime dual. The bulk spacetime connecting these regions has disappeared.

It is important to note that only bulk spacetime can be removed by changes of entanglement in the dual quantum state; this despite the appearance to the contrary in figure 5. The quantum system is defined on a fixed spacetime background, the asymptotic boundary of the dual spacetime, and this asymptotic boundary can consequently not be altered by a change in the quantum system: for instance the change from one quantum state to another. More precisely, the metric induced on the asymptotic boundary will remain the same, but the bulk metric can still change as the result of changes of the state of the quantum system. This is precisely what happens, when all entanglement is removed between Q_B and $Q_{\overline{B}}$. It is the bulk spacetime connecting these two asymptotic regions that disappears.

Further support for the disappearance of the connecting spacetime is found in an argument from the mutual information\footnote{Schematically, the mutual information, $I(A, B)$, can be defined as $I(A, B) = S(A) + S(B) - S(A \cup B)$ where $S(M)$ is the entanglement entropy between a region M and the rest of the system (Van Raamsdonk, 2010).} between a point in B and one in \overline{B} which implies that the geodesic distance in the dual spacetime between any two such points goes to infinity when the entanglement between Q_B and $Q_{\overline{B}}$ goes to zero (Wolf et al., 2008). As summarised by van Raamsdonk, “the two regions of spacetime pull apart and pinch off from each other” (Van Raamsdonk, 2010, 2327). In other words, the conclusion from section 3 extends even to spacetimes with a contiguous boundary.

5 A Theoretical Probe of Spacetime

Usually, only subdivisions of the full quantum system into two subsystems are studied in the literature. However, nothing prevents the subdivision of the full system into more
than two subsystems or equivalently the subdivision of subsystems into subsystems of
the subsystems. Nothing prevents us from removing entanglement between more and
eventually all local degrees of freedom as suggested in van Raamsdonk’s speculation. If
the full system is a local quantum field theory such that it may be divided into two
subsystems, one may as well divide it into three subsystems; there is nothing special
about subdividing a quantum system in two as opposed to three or any other number.
Thus, any subdivision of a local CFT is legitimate under the condition that the sub-
systems together comprise the full system. It is such further subdivision that will be
investigated in the following and eventually lead to the thought experiment implicit in
van Raamsdonk’s speculation.

As an example, consider the further subdivision of \(B \) into \(C \) and \(\overline{C} \) and \(B \) into \(D \) and \(\overline{D} \). The Hilbert space of the full system then decomposes into a tensor product of the
Hilbert spaces of each of the four subsystems

\[
\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_{\overline{C}} \otimes \mathcal{H}_D \otimes \mathcal{H}_{\overline{D}}. \tag{10}
\]

Generally, a state of the full system, \(|\Psi\rangle \in \mathcal{H} \), is not a product of pure states of the
subsystems. Rather, the local degrees of freedom in these subsystems are entangled.
When all entanglement is removed between \(Q_B \) and \(Q_{\overline{B}} \), one finds

\[
|\Psi\rangle \rightarrow |\Phi\rangle = \left| \psi^{B} \right\rangle \otimes \left| \psi^{\overline{B}} \right\rangle \tag{11}
\]

where \(\left| \psi^{B} \right\rangle \in \mathcal{H}_C \otimes \mathcal{H}_{\overline{C}} \) and \(\left| \psi^{\overline{B}} \right\rangle \in \mathcal{H}_D \otimes \mathcal{H}_{\overline{D}} \). In this limit, the subsystems \(Q_C \) and \(Q_{\overline{C}} \)
remain entangled and so do \(Q_D \) and \(Q_{\overline{D}} \). Following the same procedure, entanglement
may again be removed between these subsystems. This takes the full system into a state

\[
|\Phi\rangle \rightarrow |\Omega\rangle = \left| \psi^{C} \right\rangle \otimes \left| \psi^{\overline{C}} \right\rangle \otimes \left| \psi^{D} \right\rangle \otimes \left| \psi^{\overline{D}} \right\rangle \tag{12}
\]

where \(\left| \psi^{C} \right\rangle \in \mathcal{H}_C \) etc. Thus, \(|\Omega\rangle \) is a product of pure states of the four subsystems.

Again, using the Ryu-Takayanagi formula one can monitor what happens to the dual
spacetime in the limit \(|\Psi\rangle \rightarrow |\Omega\rangle \). When all entanglement is removed between the
subsystems \(Q_C, Q_{\overline{C}}, Q_D \) and \(Q_{\overline{D}} \), it follows that the area of the smallest bulk surfaces
dividing boundary regions \(C, \overline{C}, D \) and \(\overline{D} \) goes to zero. For a spatial slice of the dual
spacetime, this was depicted in figure 5 for the limit \(|\Psi\rangle \rightarrow |\Phi\rangle \). Having thus removed
all entanglement between \(Q_B \) and \(Q_{\overline{B}} \), only the bulk surface dividing \(C \) from \(\overline{C}, \overline{C} \), and
the surface dividing \(D \) from \(D, \overline{D} \), is non-zero. Taking the further limit \(|\Phi\rangle \rightarrow |\Omega\rangle \), the
area of the surfaces \(\overline{C} \) and \(\overline{D} \) goes to zero. This is depicted in figure 6 for the same
spatial surface as in figure 5.

As the figure suggests, the four regions pinch off each other and become disconnected
assuming again that no signal can traverse the their shared singular point. Furthermore,
they pull apart such that any point on one of the four boundary regions is infinitely far
away from a point on one of the other regions (despite the appearance to the contrary
for points close to the center of figure 6). It seems, therefore, that one can disconnect
any number of spacetime boundary regions of an initially connected spacetime simply by removing all entanglement between the quantum subsystems each living on these boundary regions and thus remove more and more of bulk spacetime. This opens the perspective for a thought experiment where the subdivision and entanglement removal is continued and the resulting change of spacetime dual is monitored using the Ryu-Takayanagi formula.

Consider subdiving $\Sigma_{\partial M}$ into i subregion. Since, as assumed, any point on $\Sigma_{\partial M}$ is connected through the bulk to any other point on $\Sigma_{\partial M}$, it follows that all the i subregions are connected as well. The Hilbert space of states of the full system is given by the tensor product of the Hilbert space of each subsystem:

$$H_L = \otimes_i H_i.$$ \hspace{1cm} (13)

Generally, the quantum systems associated with the i subregions will be entangled, but having defined the quantum subsystems in terms of respective Hilbert spaces, one can remove entanglement between the subsystems until none of the subsystems are entangled, i.e. the full system is a product of pure states of the individual Hilbert spaces H_i.

According to the Ryu-Takayanagi formula and the reasoning above, when entanglement is removed between regions in the CFT then the area of the surfaces dividing these regions in the spacetime dual goes to zero; the regions pinch and pull apart. When all entanglement is removed between these subsystems, the state the full system $|\Theta\rangle$ is a product state of states $|\psi^i\rangle \in H_i$:

$$|\Theta\rangle = \otimes_i |\psi^i\rangle.$$ \hspace{1cm} (14)

When all entanglement is removed – when $|\Psi\rangle \rightarrow |\Theta\rangle$ – each subsystem state $|\psi^i\rangle$ is dual to a spacetime where no signal send from one of these spacetimes can intersect a signal send from any of the other. The bulk spacetime connecting the i boundary regions has disappeared such they each is now disconnected from the rest. Re-entangling the quantum subsystems, this bulk spacetime will re-emerge and the spacetime duals of
the quantum subsystems will reconnect. Increasing i, that is the number of subregions, more and more of bulk spacetime will disappear when the entanglement between the dual quantum states is removed. Taking the limit $i \to \infty$ and removing all entanglement between these subsystems, we find ourselves in the situation considered by van Raamsdonk where all entanglement (between local degrees of freedom) is removed. In this limit, all of bulk spacetime seems to disappear in good accordance with van Raamsdonk’s speculation. However, it is worth repeating that the boundary spacetime remains unchanged and that it is therefore not all of the dual spacetime that disappears in this limit; it is, as stated above, only the bulk spacetime that disappears. This calls for a slight moderation of van Raamsdonk’s speculation that simply asserts that “the dual spacetime disappears entirely” when all entanglement is removed.

Even with this qualification, the thought experiment where all entanglement is removed still suggests that bulk spacetime may be non-fundamental. At least, bulk spacetime can be removed entirely and reinstated via manipulations of the entanglement in the dual quantum state. Might this suggest that bulk spacetime is emerging from the entanglement structure of some underlying quantum degrees of freedom living in one fewer dimensions?\(^{17}\) Perhaps it is the entanglement of these quantum degrees of freedom on the fixed boundary spacetime that manifest themselves as the dynamical bulk spacetime? It seems that the thought experiment where all entanglement is removed indicates how the relation between entanglement and spacetime provides us with a theoretical handle which may be utilized as a theoretical probe of the deep nature of spacetime.

6 Energy in the Zero Entanglement Limit

Rather than developing the thought experiment in further detail and explore its implications for the nature of spacetime, the remainder of this paper will take on a qualitative investigation of this limit where all entanglement is removed and employ this in a preliminary assessment of the validity of the thought experiment as a means to uncover the deep nature of spacetime. It is found that the grounds for the thought experiment and therefore van Raamsdonk’s speculation are questionable.

In the thought experiment, only details about entanglement are explicit, however, other properties of the quantum system can be derived. A point of interest is how the energy of the quantum system behaves as entanglement is removed between spatially separated subsystems and how this change in energy is manifest is the spacetime dual. The energy-momentum tensor, T^μ_ν, for a quantum field theory in Minkowski background is defined in terms of the conserved Noether current under spacetime translations. Thus, it satisfies

$$\partial_\mu T^\mu_\nu = 0$$

\(^{17}\)If bulk spacetime emerges from the entanglement structure, then this qualifies as emergent gravity of type II according to the taxonomy of Linnemann and Visser (2018) where gravity emerges from microstructure which is not just obtained from quantizing or discretizing gravity.
Our primary interest here shall be the time-time component of this tensor – the conserved current under time translations – which is equal to the Hamiltonian density\(^{18}\) of the quantum field theory. From eq. (15) it follows that the time-time component only depends on the spacial coordinates, \(\vec{x}\). For a quantum state, \(|\Psi\rangle\), the expectation value of the Hamiltonian density gives the energy density, \(\epsilon_{\Psi}(\vec{x})\), i.e.

\[
\langle \Psi | T^{tt}(\vec{x}) | \Psi \rangle = \epsilon_{\Psi}(\vec{x})
\]

(16)

The total energy, \(E\), of the quantum state may then be obtained as

\[
E = \int d^{d-1}x \epsilon_{\Psi}(\vec{x}).
\]

(17)

This total energy is the one obtained in standard quantum mechanics from the expectation value of the Hamiltonian. The ground state of a system is the state with the lowest total energy.

This definition of energy, however, faces complications in spacetimes where there is no timelike Killing vector. Essentially, the problem consists in the choice of vacuum. In spacetimes with a timelike Killing vector, the time direction may be changed by Lorentz transformations but the vacuum state and the particle number operator remain the same under such transformations; every intertial observer will agree on what is the vacuum state, the number of particles and therefore the energy of the system. In spacetimes without a timelike Killing vector, the vacuum state and number operator will change under Lorentz transformations and inertial observers will therefore not agree on what is the vacuum state and the number of particles. This issue can be ignored below since AdS spacetime do have a timelike Killing vector at the asymptotic boundary.\(^{19}\) Thus, we can suppose that the state \(|\Psi\rangle\) is defined on a spacetime background with a timelike Killing vector for which it is straightforward to generalize the definition of the energy momentum tensor given above for Minkowski spacetime. Consequently, the boundary of the dual spacetime, \(\partial \mathcal{M}_\Psi\), also features a timelike Killing vector since this boundary – according to the AdS/CFT correspondence – is identical to the spacetime on which the quantum state is defined.

As stated in section 2, it is a general result of the AdS/CFT correspondence that the energy of the CFT state corresponds to the energy of the dual spacetime. The energy of a spacetime should here be interpreted as some quasilocal energy momentum tensor, since any local operator depending only on the metric and its first order derivatives must vanish in a generally covariant theory. In asymptotically AdS spacetime, one such quasilocal energy momentum tensor may be defined in terms of the metric induced on boundary of the spacetime.\(^{20}\) This energy momentum tensor is equal to the expectation

\[^{18}\text{This is the operator, } H, \text{ related to the Hamiltonian by } H = \int d^d x H.\]
\[^{19}\text{This regardless of whether we consider the universal covering of global AdS or the Poincaré patch of AdS.}\]
\[^{20}\text{The quasilocal spacetime energy momentum tensor is defined as}\]

\[
T_{\text{Grav}}^{\mu \nu} = \frac{2}{\sqrt{-\gamma}} \frac{\delta S_{\text{grav}}}{\delta g_{\mu \nu}}
\]

(18)
value of the energy momentum tensor of the dual quantum state (Balasubramanian and Kraus, 1999). One very crude indication of this correspondence comes from the fact that this energy momentum tensor of the spacetime diverges if the boundary on which the metric is induced is taken to infinity. This corresponds to the UV divergence of the energy momentum tensor in quantum field theory, i.e. to the well known divergent vacuum energy in quantum field theory.

These energy considerations become important since the Ryu-Takayanagi formula holds only for quantum states with a classical spacetime dual. The derivation of the formula assumes a saddle point approximation of the string partition function which is only valid when the string length is much smaller than the curvature radius. More precisely, the AdS side may be approximated by Einstein gravity since the Einstein-Hilbert action (plus additional fields) appears as the first order approximation in the string length (low energy) of type IIB string theory (Callan et al., 1987; Huggett and Vistarini, 2015). However, at large energies the spacetime will become strongly curved and one therefore has to include higher order terms in the string length to the Ryu-Takayanagi formula. At large enough energies, the approximation of the AdS side assumed in the thought experiment of section 5 therefore breaks down. Precisely how large the energies have to be before the corrections to the Ryu-Takayanagi formula becomes relevant depends on the string length. However, if one of the components of the AdS energy momentum tensor, $T_{\text{AdS}}^{\mu\nu}$, diverges at all points in spacetime, then the curvature becomes so strong that the Ryu-Takayanagi formula is invalid regardless of the string length.

The matching between the quasilocal energy momentum tensor in the spacetime and the expectation value of the energy momentum tensor in the dual quantum system entails that if the energy density diverges in a quantum state even after renormalization, then so does the renormalized time-time component of the energy momentum tensor, T_{AdS}^{tt}, in the dual spacetime. This in turn implies that the Ryu-Takayanagi formula cannot be used to monitor the dual spacetime of the quantum state if the energy density of the quantum state diverges.

In his speculation, van Raamsdonk observes that removing all entanglement from the quantum system “costs an infinite amount of energy.” One may therefore worry whether this qualification already nested in van Raamsdonk’s speculation itself invalidates the Ryu-Takayanagi formula on which the speculation is based. Arguably, however, adding an infinite amount of energy only entails that the total energy diverges. And this may

where $\gamma_{\mu\nu}$ is the induced metric on the boundary and S_{grav} is the gravitational action here considered as a functional of $\gamma_{\mu\nu}$. In asymptotically flat spacetimes, this energy momentum tensor agrees with the ADM energy (Arnowitt et al., 1959) when $\gamma_{\mu\nu}$ is at spatial infinity (Brown and York, 1993).

21 According to the AdS/CFT correspondence, $T_{\text{AdS}}^{\mu\nu}$ is equal to the expectation value of the CFT energy-momentum tensor:

$$\langle T_{\text{CFT}}^{\mu\nu} \rangle = \frac{2}{\sqrt{-\gamma}} \frac{\delta S_{\text{CFT}}}{\delta \gamma_{\mu\nu}}$$

(19)

where $\gamma_{\mu\nu}$ is the metric $S_3 \times \mathbb{R}$ for global AdS and $\mathbb{R}^{1,3}$ for the Poincaré patch of AdS.

22 Analogously to quantum field theory, the divergences of the spacetime energy momentum tensor may be removed by adding local counterterms to the action (Balasubramanian and Kraus, 1999; Skenderis, 2001).
be the case even if the energy density remains finite; something that at least leaves it an open question whether the Ryu-Takayanagi formula is valid. To settle whether also the energy density diverges would involve the evaluation of the limit:

$$\lim_{i \to \infty} \left(\langle \Theta | T^{\mu \nu}(\vec{x}) | \Theta \rangle \right) = \epsilon_\Psi(\vec{x})$$

(20)

where again $| \Theta \rangle = \otimes_i | \psi^i \rangle$ and $| \psi^i \rangle$ is a state of the Hilbert space associated with the subsystem i. The problem is that it is generally difficult to find an expression a quantum state in terms of states of spatial subsystems. Especially since we are interested to monitor the dual spacetime as we take the limit $| \Psi \rangle \to | \Theta_{i \to \infty} \rangle$, i.e. when we remove all entanglement between all local degrees of freedom. As a consequence, we need an expression of the full quantum state in terms of the states of the spatial subsystems with an explicit parameter controlling the entanglement between the subsystems. Despite these problem with a quantitative assessment of the behaviour of the energy density in the limit where all entanglement is removed, the following will nevertheless attempt at such an assessment, though via a more qualitative route.

Initially, one may consider what happens to the energy of the full system when entanglement is removed between two subsystems? Based on the thermofield double state, one could think that the total energy of the system decreases when entanglement is removed. After all, entanglement was removed from the thermofield double state by decreasing the temperature (increasing the inverse temperature); ultimately, in the zero entanglement limit, this resulted in the product of the vacuum states $| E_A^0 \rangle$ and $| E_B^0 \rangle$.

However, despite being a enticing conclusion, it is generally not the case that the ground state of a full quantum system is a product of pure states of the subsystems; let alone a product of the ground states of the subsystems. As a toy model, consider the coupled linear harmonic oscillator consisting of two harmonic oscillators with the same mass, m, and spring constant, $k_0 \geq 0$, interacting by a harmonic two particle potential with coupling constant, $\kappa \geq 0$ (see figure 7). The Hamiltonian for the system takes the form

$$H = \frac{1}{2} [p_1^2 + p_2^2 + k_0 (x_1^2 + x_2^2) + \kappa (x_1 - x_2)^2]$$

(21)

where p_1 and p_2 are the momentum of the oscillators and x_1 and x_2 are the positions.

Figure 7: Two coupled harmonic oscillators.

The Hilbert space for this coupled system, \mathcal{H}_{HO}, can be decomposed as a tensor product of Hilbert spaces of each oscillator, $\mathcal{H}_{HO} = \mathcal{H}_1 \otimes \mathcal{H}_2$; the oscillators form subsystems
that together comprise the whole system. The entanglement entropy quantifying the entanglement between the two subsystems 1 and 2 for the ground state of the coupled system is (Srednicki, 1993)

\[
S_0 = - \log \left(1 - \zeta^2 \right) - \frac{\zeta^2}{1 - \zeta^2} \log \left(\zeta^2 \right)
\]

where

\[
\zeta = \frac{(k_0 + 2\kappa)^\frac{1}{4} - (k_0)^\frac{1}{4}}{(k_0 + 2\kappa)^\frac{1}{4} + (k_0)^\frac{1}{4}}
\]

such that \(0 \leq \zeta \leq 1\).

If and only if this entropy vanishes is the ground state a product state, i.e. a product of pure states of the two oscillators. As seen from the expression of \(S_0\), this obtains only when \(\zeta = 0\) which in turn is the case only when \(\kappa = 0\). If the full system is such that \(\kappa > 0\), then there is entanglement between the subsystems 1 and 2 in the ground state of the coupled system. Thus, for fixed \(\kappa > 0\), removing all entanglement between the two subsystems will take the coupled system out of its ground state and therefore increase the energy of the coupled system.

While this is merely a toy model, the relation between the coupled harmonic oscillator and free field theory is indicative that the conclusion could generalize. This is corroborated by the fact that the same result is implied by the Unruh effect (Unruh, 1976). A quantum state on Minkowski spacetime, \(|\Psi\rangle_M\), can be expressed in terms of entangled energy eigenstates of the Rindler Hamiltonian, \(|E_i\rangle_R^L\),

\[
|\Psi\rangle_M = \frac{1}{\sqrt{Z}} \sum_i e^{-\lambda E_i} |E_i\rangle_R^L \otimes |E_i\rangle_R^R
\]

where \(L\) and \(R\) denote states of the two subsystems consisting of the right and left Rindler wedge respectively. Among these states are the Minkowski vacuum, \(|0\rangle_M\), which obtains for \(\lambda = \pi\). Thus, we see that the Minkowski vacuum is an entangled state when expressed in terms states on Rindler spacetime. From the similarity to the thermofield double state, it follows that the amount of entanglement between the two subsystems defined on their respective Rindler wedges disappears when \(\lambda\) goes to infinity. The resulting state, \(|0\rangle_R^L \otimes |0\rangle_R^R\), is the Fulling-Rindler vacuum which has been shown to have a higher total energy than the Minkowski vacuum state (Parentani, 1993). Thus, removing entanglement increases the total energy.

Generally, in the ground state of a field theory, the local degrees of freedom will be entangled and removing this entanglement will take the system out of the ground state. This becomes very important in the limit where all entanglement is removed from a holographic CFT state. A general continuum field theory – a field theory not defined on a lattice – has an infinite number of local degrees of freedom in any finite volume (Huggett and Weingard, 1994). If disentangling each local degree of freedom from the rest of the system increases the energy, then the total energy risks diverging in the limit where all entanglement between local degrees of freedom is removed. Further, since there
is a infinite number of degrees of freedom in any finite volume of the CFT, the energy density also risks diverging. The argument takes the following schematic form:

P1 Disentangling each local degree of freedom from the rest of the system increases the energy.

P2 There is a infinite number of local degrees of freedom in any finite volume of a CFT.

P3 If there is an infinite number of energy increments in any finite volume, then the energy density diverges everywhere.

C The energy density diverges everywhere when all local degrees of freedom are disentangled.

Thus, the limit considered in section 5 is one where the CFT tends to a state whose total energy and energy density seems to approach infinity. Notice that this is not merely an artefact of the well known divergence of the total energy in continuum quantum field theories. It is the renormalized energy – the energy with respect to vacuum – that increases when entanglement is removed.

An objection may be that the above examples imply that adding as well as removing entanglement will take a system out of its ground state. Thus, for a system not in the ground state one cannot prima facie determine whether one will increase or decrease the energy of the system by removing entanglement. This, however, does nothing to refute the threat of energy divergence in the limit where all entanglement is removed. It may be that the system is initially in a state such that removing entanglement between particular subsystems will decrease the energy of the system. But as more entanglement is removed, the system will at some point increase its energy again since the ground state is an entangled state between the subsystem and the rest of the system. The only exception is if the system initially is in a state of higher energy than the zero entanglement limit. However, if the energy in the zero entanglement limit is divergent, then so is the energy for a state with even higher energy.

Thus, the offered qualitative argument indicates that the energy density on the CFT side, and consequently the energy density on the AdS side, diverges when all entanglement is removed between all local degrees of freedom in the quantum system. This is therefore a limit where the Ryu-Takayanagi formula is invalid and can consequently not be used to monitor the behaviour of the dual spacetime in this limit. This puts significant pressure on van Raamsdonk’s speculation and the thought experiment developed above. If the reasoning is sound and the energy density of the CFT state diverges when all entanglement is removed, then the physics is not under sufficient control for the thought experiment to be trusted.

One could try and argue that the conclusion of section 5 can be established without the justification provided by the Ryu-Takayanagi formula. If a state with no entanglement between the local degrees of freedom is dual to a collection of disconnected spacetimes
– one for each local degree of freedom – then an initially entangled state where all entanglement is then removed should have that same spacetime dual. However, this assumption is also contestable in the high energy limit as we simply do not know what to expect of the dual spacetime in this regime; if there is such a spacetime dual at all.

An indication to this is implied by a more careful use of the Ryu-Takayanagi formula. From the formula it follows that when the entanglement between two contiguous regions in a CFT tends to zero, then so does the minimal bulk surface connecting the two regions in the spacetime dual. However, as depicted in figure 5, when this limit is taken, the two emerging bulk regions will still be connected by a bulk singularity; though this singularity has no evident geometrical interpretation. In terms of the duality, the bulk singularity corresponds to the entangling surface separating the two subsystems on the CFT side. Every further subdivision into subsystems will introduce another entangling surface between that subsystem and the rest of the system. Removing all entanglement over this surface adds another bulk singularity. When entanglement is removed in this way for the infinite number of local degrees of freedom separated from the rest of the system by entangling surfaces, the spacetime dual fills up with bulk singularities compromising the picture of this spacetime as a classical spacetime.23

7 Discussion

The Ryu-Takayanagi formula serves as the foundation of an apparently profound relation between entanglement – an inherently quantum mechanical phenomenon – and spacetime, i.e. the gravitational field. The relation prescribes that gravity, ordinarily accounted for by the dynamics of spacetime, can just as well be described by the entanglement structure of CFT states on fixed spacetimes; these two accounts represent the same physics. In section 5 it was suggested that this relation could serve as a theoretical probe of the deep nature of spacetime beyond our current experimental capabilities. This probe utilizes the rather well understood framework of conformal field theories and a translation manual which has the Ryu-Takayanagi formula at its core to examine spacetime in the regime where all entanglement is removed between local degrees of freedom in the dual quantum system. Emerging from this thought experiment was the idea that bulk spacetime would disappear entirely when all entanglement is removed between local degrees of freedom in the dual quantum state; in accord with a passing speculation by van Raamsdonk. This was taken to suggest that bulk spacetime is non-fundamental and perhaps emergent from entanglement. However, the qualitative argument of section 6 raised the issue that the zero entanglement limit in is a regime of high and most probably divergent energy density of the quantum system and dual spacetime alike. The validity of the Ryu-Takayanagi formula in the zero entanglement limit is therefore questionable and consequently the foundation of the developed theoretical probe of spacetime, and

23Again, if the Ryu-Takayanagi formula is not valid in this limit, it is most precise simply to insist that one has no resources to assess what spacetime – if any – is dual to a quantum state when all entanglement is removed.
with it van Raamsdonk’s speculation, is cast into doubt.

In their qualitative form, however, the remarks about energy do not refute this theoretical probe. It may be that the energy turns out to be adequately well behaved in this limit despite the indications to the contrary or it may be that these are special cases where the Ryu-Takayanagi formula is valid beyond its usual domain. Indeed, one could take the remarks about energy in section 6 to be a confirmation that the thought experiment of section 5 does indeed probe the deep nature of spacetime in the sense that it unveils the high energy limit usually regarded as the regime of quantum gravity. Furthermore, even if the Ryu-Takayanagi formula should receive corrections in the zero entanglement limit, the thought experiment may still be of utility in providing a picture of the leading order behavior of spacetime in quantum gravity.

These remarks signify the need for a more rigorous and quantitative study of the zero entanglement limit. This, however, is easier said than done. It is in general complicated to write up the full state in terms of states in spatially separated subsystems and further difficulties arise if one wants to monitor what happens when entanglement is removed between the two subsystems. The thermofield double state is a notable exception; here the two subsystems are easily separated and the amount of entanglement between the two subsystems could be controlled by the inverse temperature \(\beta \). One might therefore suppose that some analogous parameter would control the entanglement between \(Q_B \) and \(Q_{\overline{B}} \) such that \(|\Psi\rangle \) goes to the product state \(|\Phi\rangle \) for a particular limit of this parameter. For a quantum state on Minkowski spacetime, such a division into subsystems can be obtained using energy eigenstates of the Rindler Hamiltonian as in eq. (24). However, this is not a trivial construction! Furthermore, the developed thought experiment relies on a continued subdivision until every local degree of freedom is its own subsystem. One may remove entanglement in eq. (24) by sending the temperature of the Rindler spacetimes to zero (the Minkowski vacuum has Rindler temperature \(\frac{1}{\pi} \)). However, to further remove entanglement between local degrees of freedom requires a way to subdivide the Rindler spacetime into spatially separated subsystems and then express the Rindler-Fulling vacuum in terms of states of these subsystems. Eventually obtaining the zero entanglement limit in this way is presumably only viable if some iterative procedure can be developed. Until these difficulties are overcome, the jury will in principle remain out regarding the validity of the theoretical probe of the deep nature of spacetime developed here. However, the preliminary assessment based on the qualitative argument of section 6 suggests that the developed thought experiment and consequently van Raamsdonk’s speculation cannot be trusted.

Acknowledgements

I would like to express my gratitude to J. Brian Pitts, Niels Linnemann and Bjarke Nielsen for their valuable feedback on and helpful discussion of earlier drafts of this paper. I also send my thanks for constructing comments to the participants in the Geneva Symmetry Group seminar and to the audiences at the fifth annual meeting in the Nordic Network for Philosophy of Science and the 19th UK and European conference on foundations of physics where earlier versions of this paper was presented.

21
References

