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Abstract

At its strongest, Hume’s problem of induction denies the existence of any well
justified assumptionless inductive inference rule. At the weakest, it challenges
our ability to articulate and apply good inductive inference rules. This paper
examines an analysis that is closer to the latter camp. It reviews one answer
to this problem drawn from the VC theorem in statistical learning theory and
argues for its inadequacy. In particular, I show that it cannot be computed,
in general, whether we are in a situation where the Vapnik-Chervonenkis (VC)
theorem can be applied for the purpose we want it to.

Hume’s problem of induction can be analyzed in a number of different ways. At the

strongest, it denies the existence of any well justified assumptionless inductive inference

rule. At the weakest, it challenges our ability to articulate and apply good inductive

inference rules. This paper examines an analysis that is closer to the latter camp.

It reviews one answer to this problem drawing from a theorem in statistical learning

theory and argues for its inadequacy.

The particular problem of induction discussed in this paper concerns what Norton

(2014) calls a formal theory of induction, where “valid inductive inferences are distin-

guished by their conformity to universal templates” (p.673). In particular, I focus on

the template that is often called enumerative induction. An inductive argument of this

type takes observations made from a small and finite sample of cases to be indicative

of features in a large and potentially infinite population. The two hundred observed

swans are white, so all swans are white. Hume argues that the only reason we think a
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rule like this works is because we have observed it to work in the past, resulting in a

circular justification.

Nevertheless, this kind of inductive reasoning is vital to the advancement of a sci-

entific understanding of nature. Most, if not all, of our knowledge about the world is

acquired through the examination of only a limited part of the world. The scientific en-

terprise relies on the assumption that at least some of such inductive processes generate

knowledge. With this assumption in place, a weak problem of induction asks whether

we can reliably and justifiably differentiate the processes that do generate knowledge

from the ones that do not. This paper discusses this weak problem of induction in the

context of statistical learning theory.

Statistical learning theory is a form of supervised machine learning that has not

received as much philosophical attention as it deserves. In a pioneering treatment of

it, Harman and Kulkarni (2012) argue that one of the central results in statistical

learning theory – the result on Vapnik-Chervonenkis (VC) dimensions – can be seen

as providing a new kind of answer to a problem of induction by providing a principled

way of deciding if a certain procedure of enumerative induction is reliable. The current

paper aims to investigate the plausibility of their view further by connecting results

about VC dimension in statistical learning with results about NIP models in the

branch of logic called model theory. In particular, I argue that even if Harman and

Kulkarni succeed in answering the problem of induction with the VC theorem, the

problem of induction only resurfaces at a deeper level.

The paper is organized as follows: section 1 explains the relevant part of statistical

learning theory, the VC theorem, and the philosophical lessons it bears. Section 2

introduces the formal connection between this theorem and model theory and proves

the central theorem of this paper. Section 3 concludes with philosophical reflections

about the results.

1 Statistical learning theory

The kind of problems that is relevant for our discussion of VC dimensions is often

referred to as classification problems that are irreducibly stochastic. In a classification

problem, each individual is designated by its k-many features such that it occupies

somewhere along a k-dimensional feature space, χ. The goal is to use this information

to classify potentially infinitely many such individuals into finitely many classes. To

2



1. STATISTICAL LEARNING THEORY

give an example, consider making diagnoses of people according to their test results

from the k tests they have taken. The algorithm we are looking for needs to condense

the k-dimensional information matrix into a single diagnosis: sick or not. The algorithm

can be seen as a function f : χ → {0, 1}, where 1 means sick and 0 means not. For

reasons of simplicity, I will follow the common practice and only consider cases of

binary classification.

By “irreducibly stochastic”, I mean that the target function f cannot be solved

analytically. This might be because the underlying process is itself stochastic – it is

possible for two people with exact same measures on all tests to nevertheless differ

in health condition – or because the measurements we take have ineliminable random

errors. This means that even the best possible f will make some error, and so the

fact that a hypothesis makes errors in its predictions does not in itself count against

that hypothesis. Instead, a more reasonable goal to strive towards is to have a known,

preferably tight, bound on the error rate of our chosen hypothesis.

What makes this form of statistical learning “supervised learning” is the fact that

the error bound of a hypothesis is estimated using data points whose true classes are

known. Throughout this paper, I will use D to denote such a dataset. D can have any

cardinality, but the interesting cases are all such that D is of finite size. Recall that

the feature (or attribute) space χ denotes the space of all possible individuals that D

could have sampled, so that D ⊂ χ. I understand a hypothesis to be a function h :

χ→ {0, 1}. A set of hypotheses H is a set composed of individual hypotheses. Usually,

the hypotheses are grouped together because they share some common features, such

as all being linear functions with real numbers as parameters. This observation will

become more relevant later.

One obvious way of choosing a good hypothesis from H is to choose the one that

performs the best on D. I will follow Harman and Kulkarni (2012) and call this method

enumerative induction, for it bears some key similarities with Hume’s description of the

observation of swans. This method is inductive because it has the ampliative feature of

assuming that the chosen hypothesis will keep performing well on individuals outside

of D. The question we are interested in is: how do we know this? What justifies the

claim that the hypothesis performs well on D will perform well outside of D too? The

answer that will be examined in this section and throughout the rest of the paper is

that we know this claim to be true when we are in a situation where H has finite VC

dimension, and the VC-theorem justifies this claim.
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To define the error rate of a hypothesis, recall the “ideal function” f mentioned

in the introduction. Recall also that f classifies individuals from χ into {0, 1}, and

f is imperfect. Nevertheless, since the process from χ to the classes is irreducibly

stochastic, f is as good as we can hope for. Therefore, f will serve as our standard for

the purpose of calculating the error rate of a hypothesis. Note that the hypotheses we

are assessing are all from H, our hypothesis set, but f need not be in H.

Suppose D is of size N , and x1, . . . , xN ∈ D. For each h ∈ H and i ∈ [1, N ],

consider the random variable Xi : χN → {0, 1} defined by

Xi

(
h(x1, . . . , xN)

)
=

1 if h(xi) 6= f(xi),

0 otherwise.
(1)

Intuitively, Xi = 1 if the hypothesis we are evaluating, h, gives a different (and hence

wrong) verdict on xi than the target function f , and 0 otherwise. Assume X1, . . . , XN

are independent, which is to say that making a mistake on one data point does not

make it more or less likely for h to make a mistake on another one. This is typical if

D is obtained through random sampling. Further assume X1, . . . , XN are identically

distributed, which means that for any Xi and Xj in the sequence, EXi = EXj. This

allows the error “rate” of h across multiple data points to be meaningfully computed.

Let X = 1
N

(
∑N

i=1Xi), which is the measured mean error, and µ = EX, which is

the expected mean error. I will follow Abu-Mostafa et al. (2012) in calling the former

the in-data error, or Ein, and the latter out-data error, or Eout. To flesh out the

relationship between these two values more clearly, we define

Ein(h) = X =
1

N

N∑
i=1

Jh(xi) 6= f(xi)K (2)

Eout(h) = µ = PN(h(x) 6= f(x)) (3)

Intuitively, the in-data error is the evidence we have about the performance of h, and

the out-data error is the expectation that h will hold up to its performance. The

amplification comes in when we claim that Eout is not very different from Ein. I will

call the difference between Ein and Eout the generalization error.

For any single hypothesis, and for any error tolerance ε > 0, Hoeffding (1963, p.16)

proved a result called the Hoeffding inequality (see also Lin and Bai 2010, p. 70, and
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Pons 2013, p. 205), which states that, under the assumption that the error rate for

each data point is independent and identically distributed, we have (in the notations

introduced above)

PN(|Ein(h)− Eout(h)| ≥ ε) ≤ 2e−2ε
2N (4)

This inequation says that the probability of having a large generalization error in the

assessment of a single hypothesis is bounded by 2e−2Nε
2
, which is a function of the size

of the dataset, N , and the error tolerance ε.

Once we establish a bound in the case of a single hypothesis, we can get a similar

bound for finitely many such hypotheses. The reason we cannot simply apply the Ho-

effding inequality to our preferred hypothesis is that it requires us to pick a hypothesis

before we compute its error rate from the data. This will not help us if we need to use

data to do the picking. Instead, we need to make sure any hypothesis we pick out will

have low enough generalization error, before we can trust the method (of enumerative

induction) we use to pick.

Since we assume that the error rate of one hypothesis is independent of another,

the probability of any of the finitely many hypotheses we are considering having a large

generalization error is just going to be the union of the probability of each one of them

does. In symbolic form, suppose there are 1 ≤ M < ∞ many hypotheses in H, then

we have

P(max
h∈H
|Ein(h)− Eout(h)| ≥ ε) = P(∃h ∈ H|Ein(h)− Eout(h)| ≥ ε) ≤ 2Me−2ε

2N (5)

While this bound may seem “loose”, it serves our purpose when we have a reasonably

small M or a reasonably large N .

This simple calculation becomes tricky, however, when H contains infinitely many

hypotheses. If we replace M with infinity, then the upper bound stops being a bound,

because 2Me−2ε
2N grows to infinity as M does. This is where the VC dimension of H

comes to play.

To understand the role of VC dimensions, define

H(x1, · · · ,xN) = {(h(x1), · · · , h(xN)) | h ∈ H} (6)

which is the set of all verdicts given by H on dataset D. If some hypotheses agree

with each other on the classification of every data point, then their verdicts would be

represented by the same tuple. This means that the cardinality of the set of verdicts
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may be much smaller if H is very homogeneous. Moreover, different datasets of the

same cardinality may elicit more or fewer different verdicts from H. Define

mH(N) = max
x1,··· ,xN∈χ

|H(x1, · · · ,xN)| (7)

as the max number of different verdicts H can generate from any dataset of cardinality

N .

If all possible classifications of D have been represented in H(x1, · · · ,xN), then we

have mH(N) = 2N . When this happens, we say that the hypothesis set H shatters

the dataset D. Define the VC dimension of H to be the maximum N such that

mH(N) = 2N . In other words, it is the maximum number N such that there exists a

dataset D of size N that is shattered by H. If mH(N) = 2N holds for all N , then we

say the VC dimension is infinite. Let’s call a hypothesis set H VC-learnable if it has

finite VC dimension.

Very roughly, the VC dimension of a hypothesis set tracks the maximum number of

hypotheses that are still distinguishable from each other with respect to their verdicts

on data. This means that, if we consider any more hypotheses, some of them will

always agree with some others on all of the classifications they give to all possible

data points, and so if one has low generalization error, the others will, too. The VC

generalization bound is given as follows (Abu-Mostafa et al., 2012, p.53)

PNJ
(
Eout(h)− Ein(h)

)
≤
√

8

N
ln

4mH(2N)

δ
K ≥ 1− δ (8)

where δ is the uncertainty tolerance. If H has an infinite VC dimension, then no such

upper bound can be found. Notice that, holding everything else equal, increasing N

brings the right-hand side down, which means that increasing data size allows us to

make a better estimate of Eout with the same uncertainty tolerance. One can further

show that

lim
N→∞

PN(max
h∈H
|Ein(h)− Eout(h)| = 0) > 1− δ (9)

for all δ > 0. This means that, when H is either finite or has finite VC dimension, we

can justifiably claim enumerative induction to be a reliable process that can pick out

a good hypothesis from H.

What makes this theorem especially powerful is not just that it shows how the

error rates converge in the limit, but also that the convergence is uniform. What is
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practically useful for statisticians is not so much that, if we have infinite data, we can

figure out the true error rate of our hypothesis, but that, as soon as we know how many

data points we have and the VC dimension of H, we know precisely how confident we

should be of our estimation of the error rate.

In what sense does this theorem answer a problem of induction? According to the

analysis in Harman and Kulkarni (2012), this theorem defines precise conditions (i.e.,

ones where H has finite VC dimension) under which a particular inductive method

(i.e., supervised learning in classification problems) is reliable. To the extent that we

are concerned with the “easy” problem – the practical problem – of induction, the VC

theorem does seem to provide a kind of answer we are looking for. In the next section,

I challenge the applicability of this answer. In particular, I show that we can never

know in general if we are in a situation where the above answer is applicable.

2 Finiteness of VC dimensions is uncomputable

A preliminary observation about the finiteness requirement is that we do not have

a good grasp of what it means. What is the difference between these two sets of

hypotheses such that one has finite VC dimension and the other does not? To put

this point more concretely, we know that polynomial functions with arbitrarily high

degrees have finite VC dimension, whereas the set of formulas with the sine function

has infinite VC dimension. What is the difference between them? If we have a problem

that can be reasonably formulated as polynomials or with a sine function, do we have

good principled reasons why we should formulate it in one way rather than another?

Surprisingly, model theory in logic might help shed light on this question. It turns

out that the concept of NIP theories corresponds to the class of hypothesis sets with

finite VC dimensions. A theorem provably equivalent to the VC theorem was in-

dependently proved by the model theorist Shelah about these NIP theories and the

corresponding NIP models. This connection was first recognized by Laskowski (1992).

Interestingly, with the real numbers as their underlying domains, models with the usual

plus and multiplication signs are NIP , whereas adding the sine curve makes them not

NIP . This suggests that we can ask the same questions we would like to ask about our

statistical hypothesis sets in model theory, which has a richer structure that is better

understood independently.

In the previous section we discussed how the idea of “distinguishable hypotheses”
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is important for the VC theorem. If a hypothesis set has finite VC dimension, we

can think of it as having finitely many distinguishable hypotheses, even if it in fact

has infinitely many. Intuitively speaking, if our dataset is “large enough” that not

every combination of verdicts is representable with our hypotheses, then we can talk

about which hypothesis is truly better than its competitors, as opposed to accidentally

matching the specific data points. Having finite VC dimension ensures that there exist

finite datasets that are “large enough”. If a hypothesis set has finite VC dimension,

let us call the set VC-learnable.

The corresponding concept in model theory relies on the same idea of distinguisha-

bility. Intuitively, if a formula is NIP – has the not-independent property – then there

exists a natural number n such that no set larger than that number can be defined using

this formula. A model is NIP just in case all of its formulas are (a formal definition

is presented in Appendix A; for more formal details, see Simon, 2015).

We can then treat each hypothesis set as a formula defined on some domain.

Laskowski (1992) shows that a hypothesis set is VC-learnable just in case the cor-

responding formula is NIP . What makes this correspondence especially useful is that

model theorists have devoted a lot of efforts into determining which model is NIP .

Once we know of a model that it’s NIP , we also know that any hypothesis sets for-

mulated using the language and domain of this model are VC-learnable.

For example, there is a group of models called o-minimal, which roughly means that

all the definable subsets of the domain are finite unions of simple topological shapes

like intervals and boxes. It suffices for our purposes to note that all o-minimal models

are NIP (van den Dries, 1998, p. 90). As it happens, the real numbers with just

addition and multiplication are o-minimal (van den Dries, 1998, p. 37). This means

that any hypothesis set consisted of addition, multiplication, and the real numbers

are going to have finite VC dimension. Similarly, the real numbers with addition,

multiplication, and exponentiation is also o-minimal (Wilkie, 1996). This means that

all sets of polynomials are VC-learnable.

As alluded to already, the real numbers with the sine function added are not NIP .

This is roughly because, with the sine function, we can define copies of the integers using

the set {x ∈ R : sin(x) = 0}, which allows us to define all of second-order arithmetic,

and second-order arithmetic allows coding of arbitrary finite sets. As expected, this

is reflected in statistical learning theory by the fact that the set of sine functions has

infinite VC dimension, and so is not VC-learnable.
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Another important observation from model theoretic investigations on NIP theory

is that there seem to be no easy test for when an expansion of the real numbers is NIP .

Although the relationship between the NIP property and properties like o-minimal and

stable (a set of structures that are not o-minimal but are NIP ) is well-researched and

understood, there is no uniform way of telling where exactly a model lies (see, e.g.,

Miller, 20051).

The statistical learning community echoes this difficulty with the observation that

“it is not possible to obtain the analytic estimates of the VC dimension in most cases”

(Shao et al., 2000; also see Vapnik et al., 1994). Recall that the VC dimension decides

how big a dataset is “big enough”. If the view is that enumerative induction is a

reliable method when we are confident (i.e., low δ) that its assessment of hypotheses

generalizes (i.e., low ε) and the VC theorem is supposed to guarantee this, then our

inability to analytically solve the VC dimension of a given hypothesis set seems deeply

handicapping.

To make the matter worse, it turns out that even knowing when we do have finite

VC dimension is not a straightforward task, as witnessed by the following theorem,

whose proof is given in Appendix A

Theorem 1. The set {ϕ(x, y) : ϕ(x, y) is NIP}, where ϕ(x, y) is formulated in the

language of arithmetic with addition and multiplication, is not decidable. In particular,

this set computes ∅(2), the second Turing jump of the empty set.

What this theorem tells us is that, in general, there is no effective procedure we can

follow that can tell us, for any 2-place formula ϕ(x, y), if it’s NIP . With Laskowski’s

result, this means that we cannot compute, in general, if a given hypothesis set is

VC-learnable either.

The specific way in which the set of all NIP formulas is uncomputable is significant

also. For some time now, philosophers who study knowledge and learning from a formal

perspective have placed a lot of emphasis on learning in the limit. Kelly (1996, p.52),

for example, argues that the concept of knowledge (as opposed to, say, mere belief)

implies that the method of generating such beliefs is stable in the limit. He then argues

that the best way to formalize the notion of “stability in the limit” is to understand

it as computable in the limit. Relatedly, a venerable tradition of formal learning

1Technically, Miller is interested in dichotomy theorems which establish either that an expansion
of the reals is o-minimal or that it defines second-order arithmetic. As mentioned before, the former
suffices for being NIP , and the latter suffices for being not NIP .
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theory following Gold (1967) has explored extensively the conditions under which a

noncomputable sequence may or may not be approximated by a computable sequence

making only finitely many mistakes (cf. Osherson et al., 1986; Jain et al., 1999). From

this perspective, it seems we might still be able to claim knowledge of what is or isn’t

knowable if we can compute the set of NIP formulas in the limit. Unfortunately, this

latter task cannot be accomplished. This is because that, in order for a sequence to

be approximable in the limit by another sequence, it cannot be harder than the first

Turing jump of the sequence used to approximate it (Soare, 1987, p.57; see also Kelly,

1996, p.280). This means that something that is at least as hard as the second Turing

jump cannot be approximated by a computable sequence.

To recapitulate the dialectic so far: an easy problem of induction asks us to identify

and then justify the conditions under which a given ampliative method is reliable. The

VC theorem gives one answer: supervised statistical learning from data is reliable just

in case the hypothesis set has finite VC dimension. However, it turns out that we

cannot, in general, decide if a hypothesis set is VC-learnable.

Can we judge our H on a case-by-case basis? Once we fix an H, we can usually tell

if it has finite VC dimension, and we can develop methods of empirically estimating its

VC dimension using multiple datasets with varying sizes. However, this seems to just

push the same problem to a deeper level. The problem that a method “sometimes is

reliable, sometimes isn’t”, is solved by specifying a condition under which it always is

reliable. But the problem that the condition “sometimes occurs, sometimes doesn’t”

seems to have no simple solution. In fact, the above theorem says that the latter

problem has no solution.

3 Conclusion

A reasonable conclusion to draw from the discussions we’ve had so far, I think, is

that the VC theorem still does not give us the kind of robust reliability we need to

answer a question with some scope of philosophical generality. As is typical of answers

people give to problems of induction, as soon as a rule is formulated, a question arises

concerning its applicability. Similarly, what started out as a concern over the robustness

of the method of enumerative induction turns into a concern over the robustness of

the identifiable condition (i.e., the VC-learnable condition) under which enumerative

induction is justified to be reliable.
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A related question concerns the distinction, if there is one, between the cases where

H has infinite VC dimension and cases where it has a VC dimension so large that it’s

impractical for us to make use of it. There is a sense in which the case of an infinite

VC dimension fails in principle, whereas the case of a very large VC dimension only

fails in practice. However, it is often impossible to analytically solve the VC dimension

of a hypothesis set even if we do know that it’s VC-learnable. Together with the result

that we cannot test if a case is VC-learnable in principle, it seems to suggest that any

information we might gain from the distinction between failing in principle and failing

in practice will not be very informative, since we often can’t tell which case we are in.

The philosophical difficulties discussed above raise an interesting question of how

the practitioners view the same obstacle. Perhaps the way out is to accept a ‘piecemeal’

solution after all. It seems that when the VC dimension is small, we can often know

both that it is finite, and that it is small. Theorists have also developed ways of

estimating VC dimension using multiple datasets (see, e.g., Vapnik et al., 1994 and

Shao et al., 2000). It seems that, as it often happens, philosophical problems are much

more manageable when we do not look for principled solutions.
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Appendix A

This appendix presents the proof of Theorem 1. I will follow the definition of NIP

formulas given by Simon (2015) as follows (with notations changed to match preceding

text)

Let ϕ(x; y) be a partitioned formula. We say that a set A of |x|-tuples is

shattered by ϕ(x; y) if we can find a family (bI : I ⊆ A) of |y|-tuples such

that

M |= ϕ(a; bI)⇐⇒ a ∈ I, for all a ∈ A

A formula ϕ(x; y) is NIP if no infinite set of |x|-tuples is shattered by it.
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Following notations from Soare (1987), let We to be the domain of the e-th partial

recursive function and Fin = {e : We < ω}.

Lemma Given e, define the following formula in the language of arithmetic

θe(x, y) =∃l > x ∃ enumeration c1, . . . c2l , first 2l elements of We

∧ ∃|σ| = l with y = cσ ∧ σ(x) = 1

Then e ∈ Fin iff θe is NIP .

Proof. (⇒) Suppose e ∈ Fin. The claim is: there is finite number N such that

|We| ≤ 2N , and for all n, if a set A with cardinality n is shattered by θe, then n ≤ N .

In particular, we show that the claim holds for N being the size of We. For the

sake of contradiction, suppose there is A, with size n, shattered by θe, and n > N .

Let A = {a1, . . . , an}, {bI : I ⊂ {a1, . . . , an}}, such that θe(ai, bI) iff ai ∈ I.

Without loss of generality, let an ≥ n − 1, and I = {an}. Then an ∈ I, and

θe(an, bI). This means that ∃l > an ≥ n − 1 with the first 2l many elements of We

enumerated. Recall that the reductio hypothesis states n > N . This means that

|We| ≥ 2l > 2n−1 ≥ 2N . This contradicts the original assumption that |We| ≤ 2N .

(⇐) To show the contrapositive of this direction, suppose e /∈ Fin, |We| = ω. The

claim is: θe is IP . Namely, ∀N ∃n ≥ N , with some set A of cardinality n that is

shattered by θe.

Take an arbitrary n ≥ N . Let A = {0, . . . , n − 1}. Let bσ’s be the first 2n

elements of We, as σ ranges over finite strings of length n. Since σ is a string, we say

a ∈ σ ⇔ σ(a) = 1.

We need to show that θe(a, bσ)⇔ σ(a) = 1.

The left to right direction is trivial, since it is part of θe(a, bσ) to state that σ(a) = 1.

To show the right to left direction, note that since |We| = ω, there definitely exists

an initial segment of 2n many elements of We, and n > a for all a ∈ A. This satisfies

the first conjunct. To satisfy the second conjunct of θe, recall that we defined our

enumeration to be such that |σ| = n with σ being identified with every number ≤ 2n.

This means that an enumeration of c1 . . . c2n includes all cσ with |σ| = n. Define

bσ = cσ, and we are guaranteed that bσ is in the enumeration, and |σ| = n. Finally,

the last conjunct of θe is satisfied by supposition.
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Theorem. The set {ϕ(x, y) : ϕ(x, y) is NIP}, where ϕ(x, y) is formulated in the

language of arithmetic with addition and multiplication, is not decidable. In particular,

this set computes ∅(2), the second Turing jump of the empty set.

Proof. Suppose not, then for any formula ϕ(x, y), we can decide if it’s NIP . This

means that, for any e, we can decide if θe(x, y) as defined in the lemma above is NIP .

By lemma, θe(x, y) is NIP just in case e ∈ Fin. If we could decide the former, we

would be able to decide the set Fin. But by Soare (1987, p.66, Theorem 3.2), Fin

is Σ2-complete, and so computes ∅(2), the second Turing jump of the empty set, and

hence is not computable.
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