A PHILOSOPHER LOOKS AT NON-COMMUTATIVE GEOMETRY

NICK HUGGETT

This paper introduces some basic ideas and formalism of physics in non-commutative
geometry. It is a draft (written back in 2011) of a chapter of Out of Nowhere, a book on
quantum gravity that I am co-authoring with Christian Wiithrich." Although it has long
been suggested that quantizing gravity — imposing canonical commutations in some way —
will lead to the coordinate commutation relations of non-commutative geometry, there is
no known formal requirement that this be so. Nevertheless, such relations do show up in
theories of quantum gravity, for instance as the result of a possible Planck scale non-locality
in the interactions of the D-branes of string theory.

However, our book project has moved on somewhat, leaving this work behind. I am
making this draft available because various people have started to get interested in the
topic, and I wanted to share some of what I have managed to learn, in case it is useful.
Since completing it I have had the opportunity to talk with physicists in the field, and
have learned more and developed my thinking further.” One day (hopefully soon) I plan
to return to this work, and update it (and correct some infelicities); while I am willing to
stand by this version, I would certainly appreciate any feedback.

I wrote the following to convey the basic ideas without assuming a substantial technical
background: it should be accessible to general philosophers of physics, or anyone with a
grasp of linear algebra, differential geometry, and the action principle. To that end §1
outlines the formal ideas in an easy going, conceptual way, with a minimum of formalism;
this treatment is repeated with more technical detail and precision (and assuming more
background) in the Appendix (§4), for those wanting a deeper understanding of the subject
matter. Even this treatment is of course nothing more than a survey of some basic concepts.

§2 uses the material of §1 to argue that the subject matter of non-commutative geometry
is less than full spatial, so that physical space would have to be a derived structure if the
geometry of fundamental physics (of quantum gravity, for instance) were non-commutative.
§3 then asks how such a ‘non-commutative field theory’ should be interpreted if not as a
theory of spacetime physics. In particular, I explain how space may be derived, illumi-
nating (I claim) the ‘emergence’ of space from the non-spatial; in particular, I identify an
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interpretational ansatz that must be appended to the theory in order to identify spatial
structures.

My goals are thus three-fold: first to introduce the basic formal and conceptual ideas of
non-commutative geometry, and second to raise and address some philosophical questions
about it. Third, more generally to illuminate the point that deriving spacetime from a more
fundamental theory requires discovering new modes of ‘physically salient’ derivation. This
idea is raised in Huggett and Wiithrich (2013); the ansatz of Chaichian et al, identifying
structures defined in terms of non-commutative objects as structures of commutative space,
and discussed below is an example. The empirical success of a theory of non-commutative
geometry would be evidence for the theory and the ansatz.

1. A PEDESTRIAN OUTLINE OF NON-COMMUTATIVE GEOMETRY

Consider a manifold of points, p, for instance the (2-dimensional) plane or cylinder.
Defined on them are the scalar fields, differentiable functions that assign a real number to
each point: the set of such functions is known as C*°. To understand the following, it is
important to distinguish between such fields, which are functions over all space, from their
values at a point: the former are complete ‘configurations’ of individual point-values. The
usual notation for fields, e.g. ¥(x), tempts a conflation here, as the argument could be read
as a particular value; but it instead indicates that we have a function over (co-ordinatized)
points. Since that is understood, we might leave out the argument, and just denote the
field (the function, the configuration) as W. With respect to the set C'*°, the fields are its
elements, and their identities depend on the point-values (two fields are the same field, iff
all their point values agree).

Two scalar fields, ¢ and ¥ € C°°, can be multiplied together in an obvious way to obtain
a third, y € C'*° — the value of y at any point p, is just the ordinary product of the values
of ¢ and ¢ at p: x(p) = é(p) - ¥(p). Such ‘pointwise’ multiplication of fields is in fact so
obvious as to almost be invisible: how could there be an alternative? Well, we shall see
that there are alternative rules for multiplying fields, and they may even be more physical
than pointwise multiplication (what that means is a major topic of this chapter).

Because ordinary multiplication is ‘commutative’, a-b = b-a, so is pointwise multiplica-
tion for elements of C'*°: ¢ -1 = 1) - ¢. Nonetheless, the algebra of C*° contains a great deal
of information about the space on which the fields live. For instance, other fields can be
decomposed into a weighted sum of periodic waves (their Fourier decomposition): in the
plane such waves can have any wavelength, so they are uncountable; while on a cylinder
the waves must complete a whole number of periods around the circumference (to avoid
jumps), and so are countable. Knowing whether wave decompositions are countable or
uncountable tells you about the topology of space.?

3You might wonder where pointwise multiplication is involved in this picture, for it seems that one is
adding not multiplying: for instance, a field might decompose as >, an - xn where the xn are the waves
of different periods, and a,, the weight of each in the decomposition. Well, first the algebra does have
addition as well as multiplication; but we don’t emphasize this, because addition remains commutative in
what follows. Second, there is a hidden pointwise field multiplication in the decomposition, because the
weights are themselves fields: ., () is the field which has the same value «,, at every point.
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In fact, the C* algebra contains all the information that we typically take to character-
ize a (bare) manifold: not its metrical, distance properties (or even its affine, straightness
properties), but all the weaker, ‘differential’ structure, including the topology.* In short,
there is a representation theorem, that states the logical equivalence of a manifold’s topol-
ogy and differential structure, and its C*° algebra.

It’s worth emphasizing the strength of this point, by reflecting on what is meant by an
‘algebra’: nothing but a pattern of relations — a structure — with respect to some abstract
operations. One might, for instance fully characterize an algebra by saying that there are
two elements, {a,b}, and an operation o, such that aoa =bob=band aocb=boa=a
(and specifying that the operation is associative). What the elements are is not relevant,
neither is the meaning of o; all that matters is how many elements, and what function on
pairs of elements o is. Of course, an algebra can have different concrete representations:
concretely, a might be represented by the set of true propositions, and b by the set of false
propositions, in which case o is represented by the boolean not-biconditional connective.
But there are other representations: addition mod-2 for instance (and perhaps a could be
represented by the presence of a 30kg hemisphere of uranium 235, b by the absence, and
o by the operation of putting together — the critical mass of U?3® is 52kg!). These are
different representations of a single algebra, which captures their common structure.

And the same point applies to the representation theorem. It is not relevant that the
concrete elements of C'°° are fields over the manifold, all that need be specified are their
relations with respect to a binary operation. However, the scalar fields on a particular
manifold define a specific C*° algebra, and, according to the representation theorem, no
other manifold has scalar fields with the same algebra. The point is that the algebra does
all the work: there is nothing smuggled in about the manifold simply because we realize
the algebra with fields over it.

Moreover, the standard framework of differential geometry — the mathematics of classical
spacetime theories — can be developed in parallel, in an algebraic form. For instance, the
operation of differentiation is characterized (in part) by the Leibniz, or product rule:

d{f(x) - g(x dg(z df(x

In ordinary differential geometry, derivatives simply are functions from scalar fields to
scalar fields, that respect the Leibniz rule (and a couple of other conditions). But that
characterization is essentially algebraic: derivatives, V, are functions that map C* to
itself (‘automorphisms’), and satisfy the Leibniz law: for any ¢, € C*®, V(¢ - ¢) =
¢-Vip+Ve-1p. But derivatives are identified with vector fields (indicating the direction in
which the derivative is taken), which in turn allow the definition of covector fields, tensors,
metric, and all the machinery of differential geometry (including fibre bundles over the
manifold): all of which can be taken over, and expressed in purely algebraic terms. Indeed,
the power of the frame work was exploited in (Geroch (1972)), which demonstrated that
GR could be recapitulated in terms of the C'*° algebra.

4See the Appendix for a more precise statement.
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Because standard geometries can thus be given an equivalent formulation in terms of a
commutative geometry, they are also ‘commutative geometries’. Writing, in the usual way,
[0, 0] = ¢ -1 — 1) - ¢, we have [¢, 9] = 0. For a mathematician, always looking to expand
the frontiers of Platonic heaven, such a situation leads inevitably to the question of what
would happen if the algebra was replaced by some kind of non-commutative algebra, in
which fields do not commute: [¢, )] # 0.

Of course, in that case we do not have a representation of the algebra by scalar fields over
a manifold, and pointwise multiplication: because pointwise multiplication is commutative.
But do we still have algebraic versions of geometric objects? To what extent? It’s easy
to see that much geometric structure remains in algebraic form: for instance, the Leibniz
law still makes perfect sense when fields do not commute®, so automorphisms on the non-
commutative algebra that satisfy the law, are identified as derivatives. And so on in parallel
for all the familiar objects.

For example, in the simple case of the ordinary plane, the two co-ordinates commute,
[z,y] = 0, and hence so do all fields that are a product of zs and ys: [z™y", mm,y"/] =0.
(And hence so do all fields that are a weighted sum of such products: such polynomials
in z and y are a very large class of differentiable functions.) One way to specify a non-
commutative geometry is to take two base elements, & and ¢, specify [Z,y] = i6 for some
constant, and take the algebra of polynomials, which is known as Rg. For instance, because
we have 29 = 0+ ¢, it is easy to verify that [22,§] = 229 —§42 = i0(1+32) # 0. Moreover,
derivatives satisfying the Leibniz law have the algebraic form V,¢ = 07 1[¢,ij] (it’s easy
to check, for instance, that V,& = 1 and V,y = 0). The example is explained in more
detail in the appendix. Obviously, because the algebra is non-commutative, but we still
have geometrical structure (if expressed algebraically), one speaks of a ‘non-commutative
geometry’.

All of this might be of only abstract interest, if it weren’t the case that the framework of
modern physics, also survives the transition to non-commutativity. The geometry and cal-
culus involved, we have already seen, can be given algebraic form, and survive. Specifically,
the Lagrangian that characterizes any theory, can be fully rendered in algebraic terms, even
in the non-commutative case: so we have physics in a non-commutative geometry, specifi-
cally, ‘non-commutative field theory’ (though note carefully that it is the geometry that the
fields ‘inhabit’ that is non-commutative, as the fields themselves have not been quantized
at this stage). Moreover, other important pillars of modern physics, especially Noether’s
Theorem, also survive (it only requires that the algebra be associative): hence the central
importance of conserved currents remains. (And gauge fields also exist, though importantly
the distinction between ‘internal’ gauge symmetries, and ‘external’ spatial symmetries is
blurred.)

And so we have a promising model of how spacetime might emerge from a theory of
non-spatial degrees of freedom. On the one hand, prima facie we have no spatial degrees
of freedom: no point-valued fields, but instead the state-values are simply elements of the
algebra Rg. While on the other, the theory apparently contains enough structure that one

5Once we specify the order of multiplication.
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successfully might connect it (in some kind of limit) with familiar physics, in a classical,
phenomenal, spacetime. Of course, the situation raises many questions: how should the
theory be interpreted? Is the algebra strictly abstract, or is there some non-spatial concrete
representation? Does that distinction make sense? Is there, after all, a different spatial
representation? If so, does that mean we have a theory of a classical spacetime after all?
How, formally, are spatiotemporal quantities derived? Are such derivations ‘physically
salient’; in the sense we have discussed? These are the questions to which the rest of the
chapter is addressed.

2. (How) 1s NCG ‘NON-SPATIAL’?

Having seen some of the basic ideas of NCG we turn to the question of the emergence
of spacetime in the theory. In fact, to keep our feet on firm ground formally speaking, we
will continue to focus on the case in which only spatial dimensions are non-commuting,
and ask what that means.% (Let me note that in this section we consider classical NCG;
we turn to the quantum version below.)

The first point is the rather obvious one that NCG — specifically, #-space (Rg) — is
not non-spatial in the fullest sense. After all, the basic quantities of the theory — the
non-commuting coordinates, the 4’s — are intended to somehow represent familiar spatial
quantities. (Coordinates aren’t the most basic kind of spatial quantities, but they are
functions of more basic measurable quantities; we can give the coordinates of a point in
terms of its distance and angle relative to a physical something.) So on the one hand, NCG
does not exemplify the purest kind of emergence that we are looking for, a theory in which
no elements are spatial in any way. On the other, since one can see where to start to find
space in the theory, NCG is a useful warm up to purer examples of emergence. But more
than that, non-commutivity makes NCG profoundly different from the ordinary conception
of geometry — hence its algebraic formulation. Thus space in the ordinary conception is
emergent, even if the formulation of NCG shows the way to the spatial. However one
wants to think about space, we are all agreed that there is an important, perplexing
gap between commutative and non-commutative ‘geometries’: so, without making any
substantive claims, let us use the word in the ordinary, commutative sense.

The starting point for the interpretive work here will be the algebraic theory presented:
we will take it that it somehow captures the structure, ontology and (given a lagrangian)
laws of a world, and ask how best to think about such a world, especially in relation to
the way we think about space (in the ordinary sense, remember) and spatial theories of
the world. There is an interesting antecedent of this work, which is worth noting, based
on the fact that one can formulate commutative geometries algebraically, as we saw in the
previous section.

John Earman (Earman (1989), §9.9) proposed using such a formulation to advance
the substantivalist-antisubstantivalist debate in the foundations of spacetime.” (Broadly,

6Non—commu‘cing time seems to lead to pathological theories. See Huggett et al. (2012) for a discussion.
"Note that Earman’s presentation neglects to mention that the representation theorems require that an
(algebraic) metric be given.
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substantivalists takes the manifold to have ‘independent reality’; one alternative is the view
that the manifold merely represents the spatial relations of matter.) In particular, he was
considering the various issues that come up because of symmetries that allow the contents
of spacetime to be ‘rearranged’ without any observable difference: Leibniz argued that God
could not choose between this universe and its 180° rotation in absolute space; Einstein
worried that the symmetries of GTR would lead to indeterminism (the ‘hole argument’).
Formally, such symmetries are realised by ‘diffeomorphisms’, nice maps of the manifold onto
itself, which say how a world should be rearranged in spacetime. But an Einstein algebra
fixes a spacetime only up to diffeomorphism, so it seems that the symmetric situations get
the very same algebraic descriptions — Earman suggested that an interpretation that takes
the algebra as fundamental would thus avoid such problems (specifically, Einstein’s).

But what is the interpretation of such a theory? Earman described it as substantival
‘at a deeper level’; but if substantivalism is something like the doctrine of the reality of
spacetime points this is a perplexing remark. In the algebraic formulation spacetime points
can be thought of as sets of fields: specifically, a point p is a ‘maximal ideal’ (in the Weyl
representation of the algebra discussed just below, this is the set of functions that vanish at
p). So points are not at a ‘deep’ level at all, but arise from something deeper, the elements
of the algebra. Indeed, that claim is the stated conclusion of the work (Geroch (1972))
which Earman takes as a starting point. I suspect that what Earman had in mind was
not really substantivalism in that sense, but rather the view that in such a formulation
the geometrical structure of spacetime was given independently of the spatial relations of
material systems — not so much substantivalism, as anti-relationism. After all, it is fixed
instead by the algebraic structure of the fields, including the algebraic metric, in the way
described.

I shall have more to say about the interpretation of such a theory below; let’s just
note that the case in front of us takes matters one step further, not just to an algebraic
formulation, but to a non-commutative one. For now I want to discuss an important
reformulation of NCG — in terms of a commutative space!

It turns out that there is a map, the ‘Weyl transformation’, from the 6-space field algebra,
R4, to that of smooth functions on a commutative space R? (and vice versa) — figure (1).%
This fact greatly facilitates extracting the physical consequences of the theory because the
usual methods of the calculus (and hence of standard field theory, including QFT) can
then be applied. Not surprisingly, as we shall see, one of the main ways of exploring the
empirical consequences of a NCFT are through its Weyl transform. I will not give details
of the transformation, but rather just give some of the more important features, the first of
which is that # — x (and similarly for the other coordinates); there are some more details
in the technical section, but for a clear, concise but more complete account of the map see
(Szabo (2003)).

8Here we continue to assume flat, infinite space, but the claim also holds for more complex cases. We
also restrict attention to fields that vanish smoothly at infinity (so that the ‘physicists fundamental theorem
of the calculus’ reads [ dz df(z)/dz = 0). This restriction is a common but notable assumption in physics:
on the one hand it is justified locally by the assumption that arbitrarily distant differences are irrelevant;
on the other hand it raises questions about the universality of physical theories.
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FIGURE 1. A schematic to help keep track of the moves being made. First,
we consider the algebraic formulation of differential geometry, based on
the algebra of smooth fields, C°°; this we generalize to a formulation in
terms of a non-commutative ‘fields’ algebra Rg (or more generally, as in
the technical appendix, A); the elements of this algebra can be mapped
back into commutative fields, by the Weyl transform — with multiplication
according to a non-commutative product, the ‘Moyal star’.

Given this equivalence, one may wonder whether NCG isn’t, after all, a theory of per-
fectly ordinary space, and hence one from which space cannot emerge. However, if we
look a little closer at the Weyl transformation, we shall see that such a conclusion would
be too hasty. For we haven’t yet addressed the fact that while Rg is non-commutative,
the smooth fields on space commute with respect to ordinary (pointwise) multiplication:
¢(z) - () = P(z) - ¢(x). Therefore, to preserve the algebra, products of Weyl transforms
are not formed using ordinary multiplication, but using a new ‘multiplication operation’
known as the ‘Moyal star product’:

oo

() (@) x () = ¢z) - (@) + ) ()" 0" - 077 0s, - 00 b(@) - Oy - 05, ().
n=1 ’

Clearly the x-product contains new terms in addition to ordinary multiplication. (2) is given

here for completeness: the details aren’t really important for the non-technical reader. One

just needs to observe that the new terms form an (infinite) sum of derivatives with respect

to the coordinates, weighted by the elements of 6. For instance,

(3) iyﬁx*y:xy—l—%ﬁmy#xy.

That is, the Weyl transform of &g is x x y, not the ordinary product of the commuting
coordinates, but their Moyal product. The very same point holds for the other elements
of Rg — the Weyl transforms have the algebraic relations of Rg with respect to Moyal
multiplication. Hence equation (2) allows the computation of the transform of any element
of the algebra, since all are sums of products of the coordinates.

We can use (3) to verify the relevant commutator in the Weyl transform:

4) 2yl =axy—yxa =y —yo+ (5)67 — ()0 = 0",

by the antisymmetry of %Y. Thus commuting coordinates do indeed have the algebra of
the non-commutative theory, with respect to the Moyal product.

So working in the Weyl transformed theory involves multiplying physical quantities, not
in the usual way, but with the x-product: an area is x x y not z - y; fields given as series
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expansions of the z’s are to be understood in terms of expansions using the x-product
(for instance, exponentials); and terms in the equations of motion involve x-multiplication.
In other words, for every physical purpose, the x-product is the relevant operation, and
ordinary multiplication is only relevant insofar as it is involved in the definition (2) of ‘real’
multiplication. In yet other words, the physical facts don’t care about the commutivity
of space, and it is thus natural to see it just as a convenient way of representing, the real
non-commutative nature of space.

To sharpen this point up, note that among the predictions of NCG is the violation of
Lorentz invariance (e.g., Carroll et al. (2001); Anisimov et al. (2001)); again, 6% is an
invariant area, so such violations are to be expected. Now, the commutative spacetime in
which our Weyl transformed theory lives is just Minkowski spacetime. But the Lorentz
invariance of a theory simply means that it can be formulated in terms of Minkowski
geometry alone. Put the other way around, the violation of Lorentz invariance by the Weyl
transform of NCFT means that it cannot be formulated in terms of Minkowski geometry
alone; of course that’s because the x-product involves invariant areas, which cannot be
defined in terms of Minkowski geometry.” Thus, despite its formulation in Minkowski
spacetime, NCG is not properly thought of as describing physics of that spacetime, since
the physics of NCG simply doesn’t care about the commutative geometry in the right way.
One of the clear lessons of the development of relativity (and spacetime theories more
generally) is that geometric structure should respect the laws.

It may sound paradoxical that a theory can at once be formulated in a geometry but
not be a theory of physics in that geometry, but it is not; Minkowski spacetime merely
gives a way of formally representing NCG, in conjunction with additional, non-fundamental
structure. In that case, we should start with the algebraic formulation when interpreting
the theory, to avoid confusing merely representational structure from the real commitments
of the theory.

It’s worth stressing at this point that elements of the algebra are represented by functions
over the commuting space, ¢(z) — the value at any point, or over some proper subspace
does not correspond to anything in the algebraic formulation, so to anything fundamental.
Normally we think of the value of a field at a given point as conveying some physical
meaning, such as the electric field strength, but in the Weyl transform, this is not the
case: again, only the full function corresponds to anything fundamental. Obviously this
situation presents a puzzle, for most familiar physical quantities are associated with points
and finite regions. We turn to this puzzle below.

The Weyl transform of a NCFT is formally a ‘representation’ of it, in the sense of
consisting of objects faithfully obeying the algebra of the NCFT. So from now on I will
generally talk of the ‘Weyl representation’ of a NCF'T instead of its ‘Weyl transform’. 1
have avoided this use up to now to avoid equivocation in the argument just given: that
the Weyl transform is a formal representation of Rg is a mathematical result, but that
it is mothing but such a representation, and not a faithful image of the theory’s ontology

9For a detailed exploration of this issue see Chaichian et al. (2004).
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(because it introduces a non-fundamental, commuting spacetime) is something argued for
by the preceding.

(Parenthetically I would add that even if my argument failed, NCG would still be inter-
esting to our current project. Even if the Weyl transform was plausible as a fundamental
formulation, it would still be the case that the algebraic formulation was a coherent, inter-
esting theory without standard space. So it would still be well-worth studying to see what
it shows about emergence. Because of non-commutivity, it is a richer subject of investiga-
tion than the commutative algebras discussed by Earman — and even they are interesting
to consider.)

Finally, I want to note that there is another technique, using a commutative field theory,
that can be used to extract predictions from NCFT (indeed, this is the method used in the
papers cited above showing violations of Lorentz invariance). This technique is based on
the Seiberg-Witten correspondence, between non-commutative gauge theories into ordinary
gauge theories (Seiberg and Witten (1999), §3). I will not discuss this map at length because
it is not one that preserves full physical equivalence; some solutions that are non-singular
on one side are singular on the other. For example, see (Douglas and Nekrasov (2001),
§I1.D.5 and §III.D). Thus the correspondence allows one to derive perturbative physics,
but cannot be relied on non-perturbatively.'®

3. INTERPRETATION

The work on understanding NCG, and how (commutative) space ‘emerges’ from it will
proceed in two directions. First, we will work ‘down’, asking what kind of world, what
kind of ontology, could be described by the formalism. Second, we will work ‘up’ from
the theory to phenomena, investigating the ‘empirical content’ of the theory, how spatial
phenomena are derived from it, how they are represented within the theory. The first kind
of work focusses on what a non-spatial metaphysics might be like, to get clear on the two
sides of the relation; the second kind addresses the relation of ‘emergence’ between the two
sides.

3.1. Ontology. In Book IV, Chapter 1 of his Physics Aristotle offers the view that ex-
istence requires being somewhere: everything that is, has a place. (He is setting up the
question, attributed to Zeno, of where places are, if they exist.) This idea is intuitive:
the world seems fundamentally spatial, and it starts to capture the idea that ‘real’ things
can be interacted with, by traveling to them. If one accepts such a view of existence,
then it becomes impossible to take the algebraic formulation of the theory as giving an
ontology for the world, because it does away with space as a fundamental object. (Ok,
in principle one could allow Aristotle non-commutative or emergent spaces, but let’s say
that’s against the intuition.) But of course, since you are reading this book, you know
better: philosophers are more likely to take a logical view of existence, perhaps adopting
Quine’s view that to be is just to be the value of quantifier variables in a true theory. At
any rate, it is unlikely that you will reject the algebraic formulation out of hand because

10Thanks to Michael R. Douglas for some discussion of this point.
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of a view of existence. On the other hand, space seemingly provides a very useful handle
for investigating ontology, insofar as individuals can be separately localized, and the parts
of space give a way of distinguishing parts of individuals. (Of course, even non-relativistic
quantum non-locality makes this road to ontology treacherous at best.) Or again, physical
reality is often tied to causal connectedness, which in turn is most readily understood in
terms of effects propagating in space. So despite our metaphysical sophistication it is still
puzzling to know where to start in talking about the ontology of a theory like NCG, in
which the familiar spatial handles are missing. What, then is there? How can we discern
a coherent ontology from the theory?

Related to the idea that ties existence to space, is the idea that comprehension requires
the spatial. In the introduction we addressed Maudlin’s concern that theories without
fundamental spatiotemporal quantities could not be connected to experiments, which im-
mediately concern local beables. But a vaguer objection that only spatiotemporal theories
can be properly ‘understood’ perhaps remains; useful predictions might be possible, but
otherwise a theory can only be an instrument, not comprehendible by us. Kant had a view
like this of course, which influenced Maxwell in the construction of electromagnetism; and
such claims were made by Schrodinger in his arguments with Heisenberg. See (de Regt
(2001)) for some history of the topic. But, like the spatial view of ontology, it does not
pose any obstacles here. First, one can make the same kind of move to logic as before.
Suppose a theory is algebraic rather than geometric, then it may not give a ‘picture’ that is
easily visualized by the human mind, but it still can provide understanding in the sense of
systematizing the connections between different parts of nature; between the quantum and
gravitational realms, ideally. That is, our ability to understand formal systems that aren’t
spatial does give us the ability to understand non-spatial physical systems. Second, there
is a sense of ‘understanding’ that indicates facility with a theory rather than seeing the
bigger picture. For instance, (de Regt (2001)) develops Feynman’s view that understanding
a formalism is a matter of seeing what the solution to a problem will be without having
to compute it explicitly. But as de Regt points out, while our geometric intuitions are a
fruitful resource for ‘seeing solutions’, they need not be the only one; again, familiarity
with an algebra also allows one to anticipate when algebraic relations hold without explicit
calculation. (Moreover, if a theory turned out to be ‘incomprehensible’ in this second sense
of facility of use, that wouldn’t seem to be a barrier to the kind of comprehension we’re
seeking here — the ‘what kind of world’ sort.)

Since we are considering a theory that replaces differential geometry with algebra it
will be useful to bear in mind the kind of interpretational moves made in the former case.
There are two main questions at stake: to what extent, if any, are the points of a differential
manifold real, physical objects, akin to material systems? What aspects of spatiotemporal
structure, such as topological and geometrical relations, are fundamental (capable, for
instance, of providing ‘deep’ explanations)? Especially following the (re-)introduction of
the ‘hole argument’ (Earman and Norton (1987)), the locus of philosophical debate was
on the first question: the ‘manifold substantivalist’, who holds the points to be physically
real, is faced with versions of Leibniz’s shift arguments, in which one imagines the material
content of the universe rearranged in spacetime. Earman and Norton’s argument makes
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the point especially sharp in theories with dynamical geometries, such as GTR, since then
the problem of indeterminism can (arguably) be added to that of underdetermination.
One kind of response to such arguments is of course to play with the identity conditions
of spacetime points, so that points before and after rearrangement can’t be identified
by anything but their contents, and hence things are in fact just as they started (e.g.,
Butterfield (1989)).

For better and worse, the hole argument has rather played itself out in recent years,
and interest has turned to the second question. The idea of ‘dynamical interpretations’
of spacetime theories is that certain spatiotemporal structures (particularly affine and
metrical ones) are not fundamental, but merely represent, say, the symmetries of the laws
of material systems; hence ‘real” explanations (of time dilation, for instance) are in terms
of how systems behave according to physical laws, not geometry (for instance, (Brown
(2005)); I discuss such interpretations in (Huggett (2009)).

In the formalism of NCG, instead of points and their relations, we have elements of an
algebra and their relations; this observation suggests that the elements could be thought
of, metaphysically, along the lines of points. To pursue this idea more concretely let’s
take the algebra to be Rg ‘Algebraic substantivalism’ then attributes to the elements of
Rg the same kind of ‘physical reality’ that manifold substantivalism attributes to points.
To be a little more careful, just as the latter view takes mathematical points to represent,
more-or-less literally, physical points, so algebraic substantivalism takes the elements of the
mathematical algebra to represent, more-or-less literally, physical objects, which we shall
continue to call ‘fields’. (Though these are algebraic, not spatial objects; their connection to
‘fields’ in the ordinary sense is through the Weyl representation, or their place in algebraic
geometry. Elsewhere in the chapter, where the distinction is not important, we also call the
elements of the mathematical algebra ‘fields’.) To be clear, the mathematical representation
of the NCG is not itself something physical, but, according to substantivalism, what it
represents is.

The idea that the points of a mathematical spacetime manifold could represent points of
physical spacetime seems to be a natural one; at least philosophers (including Newton and
Leibniz) have taken it (or something like it) to be a view worth defending or disputing. I
have observed (in myself and others) that applying parallel reasoning in the parallel case of
NCG is feels less natural. However, as far as I can tell the only differences between the two
cases lies in the non-spatiality of the fields. But that is no reason to reify in one case and not
the other: as far as existence goes, we have already rejected spatiality as a condition. And
while non-spatiality makes the fields less immediately connected to objects of experience,
we shall see below how (quantum) NCG does connect with experience. In other words,
however manifold substantivalism views points, algebraic substantivalism views elements
of the algebra; understand one and you understand the other.

I don’t intend here to defend any interpretation of NCG, but rather to lay out some
options. For example, suppose one has a NCF'T of a scalar field: suppose that the dynamical
object of the theory is a scalar field, as in electromagnetism one has a theory of an anti-
symmetric tensor field. (For instance, suppose the physics is given by (36).) For want of
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a better term, call this a ‘material field’, to distinguish it from the fields of the algebraic
geometry (though it is only ‘material’ in the same sense that the electromagnetic is).
Then, the (algebraic) fields correspond to the possible states of the material field, and can
be interpreted to be such. This move is reminiscent of the anti-substantivalist proposal
that points are merely possible locations, not physical objects themselves; the typical
response to this suggestion is that it simply introduces new entities with all the troubling
features of points, and so the difference is too small to generate a truly distinct view in
the interpretation of spacetime theories. But I will note that in scalar NCFT things are
potentially more promising in that no new possibilia are proposed, because the material
field already possesses the possible states; the only addition is the algebraic relations of the
states. Of course one might say that locations are also possible states of spacetime objects,
but in that case there is the option of taking relative positions to capture locations. There
seems to be no corresponding move for the states of a non-commutative scalar field.'!

On the other hand, the suggestion does require that the theory contain a scalar field
(since elements of T\’,g are scalar), so what is to be said about theories of tensor or gauge
fields (as defined in the technical appendix)? Such objects can generally be used to define
a scalar (through contraction say), so perhaps one would be willing to take the fields to be
possible states of that. (Things would presumably be more complicated if the field algebra
were other than Rg, say that of matrix-valued fields.)

Another option for interpretation is suggested by (?, Bain (Unpublished)) in the similar
context of the Einstein algebra formulation of GTR. In that case (too) diffeomorphisms
correspond to automorphisms of the algebra, and so Leibniz shifts have an algebraic coun-
terpart: there are maps of the algebra onto itself that preserve the algebra, and hence
the geometry. As Earman (Earman (1989), 193) points out, there are two distinct issues
raised by such shiftiness: first, there are problems associated with underdetermination —
why should god create this world rather than that? How can we tell which world do we
live in? And so on. Second, in GTR, there is the problem of indeterminism: there are
diffeomorphic universes that agree up to a given Cauchy surface, but diverge after (and
since they are diffeomorphic both are allowed by the Einstein field equations). Earman is
dismissive of the first problem as an unavoidable consequence of non-categoricity. Deter-
minism he claims is essentially a doctrine about ordinary spacetime theories, and that the
proper way to pose it for an algebraic formulation is in terms of the classes of spacetime
representations; for any two algebraic models whose representations, restricted to t < T
are the same, then are they the same set of representations. Given the representation the-
orems about Einstein algebras, the answer is ‘yes’. Bain, following (Rynasiewicz (1992)),
is unconvinced by this response. He proposes that the fields only have identities in virtue
of their algebraic relations to one another — a version of ‘structuralism’, since the fields
become bare relata for the essential, algebraic, content of the theory. In this case, since
the structure is preserved by automorphisms, such shifts make no difference; the analogy
to similar moves in the hole argument — or in response to other issues arising from shifts

H(Dieks (2001)) proposes an approach along these lines for spacetime in ordinary QFT, in which points
are identified with sets of local observables, themselves taken as possible properties of systems.
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— should be clear. One even (in principle) could go a step further, and treat the elements
of the algebra as purely formal, not representing any physical ‘fields’, even with weakened
identity conditions. (Bain seems pulled in this direction, but I am not sure whether he
would fully embrace it.) What would be left would be pure structure.

It seems that all of these structuralist moves could be applied in the interpretation of
NCG; except, one could argue that determinism is an issue, despite Earman’s comments, if
time commutes with the spatial dimensions, as we have assumed. (Le., do algebraic worlds
that agree up to a time agree after?)

Algebraic substantivalism and structuralism, and the idea that fields are states of a scalar
field focus on the ontology of the elements of the algebra, as similar views concern the status
of points in standard spacetime theories, but perhaps one could also attempt a ‘dynamical’
interpretation of NCF'T. Such a view would take the ‘material’ non-commuting field as the
fundamental thing, and view the algebra (certainly the algebraic relations, but potentially
also its elements) as merely representing something about its equations of motion. How
such a view might be developed, how plausible it might be, and how it might relate to the
others described here, are questions that will have to be addressed at a later time.

3.2. Finding Spacetime. The Weyl transformation provides a way of extracting empir-
ical consequences from NCFT (in what follows I will assume familiarity with the basics of
quantum field theory (QFT), as covered in §?7 of our Primer). First, one can take the
equations of motion for a classical field theory in ordinary commuting space, and rewrite
them replacing all ordinary multiplication with Moyal star multiplication: the result is the
equations of motion for a NCFT expressed in its Weyl representation. (More precisely, as
discussed in the technical section, one rewrites the action in this way.) One obtains a more
complex, but otherwise formally standard field theory — though of course non-commutation
of the coordinates undermines a straight-forward interpretation. Then standard methods
allow one to formulate a ‘second quantized’ version, a non-commutative QFT; in particular,
the machinery of the path integral formalism can be brought to bear. Finally, those stan-
dard methods allow the derivation of empirical results, especially probabilities for particles
to scatter off one another in different ways — scattering ‘cross-sections’.

As we discussed in the Primer, a scattering cross-section gives, for fixed incoming parti-
cles, the probability density for finding other given particles outgoing at given angles (and
energies). We argued there that one can reasonably take a spacetime as given in terms
of the spatiotemporal predictions of a QFT. Moreover, although a QFT ought to have
other spatiotemporal predictions (concerning bound states, for instance) cross sections do
constitute a sufficiently central and rich collection of such predictions to be taken to give
spacetime.

In particular, consider a world in which the cross-sections of a NCF'T turn out to be
correct. To understand the place of phenomenal space in such a NCFT it therefore makes
good sense to focus on these cross-sections; there are other empirical aspects, and other
ways in which space can be found, but cross-sections exemplify both perfectly. So I will
proceed (and indeed speak) as if to understand the meaning of cross-sections in NCFT is
to understand phenomenal spacetime — more could be said, but we expect it to be more
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of the same, and not to add to the central issue. That is, understanding the place of
cross-sections in NCFT is to understand the place of familiar space in the theory — how it
emerges. This question has been addressed by Chaichian, Demichev and Presnajder in a
very interesting paper (Chaichian et al. (2000), 8); what follows is based on their analysis,
though it suggests a somewhat different solution.

The problem of finding scattering cross-sections can be further reduced to the calcula-
tion of ‘2-point functions’: squared, these represent the probability that, left to itself, a
quantum at z in space and time would be ‘found’ at y, the simplest kind of ‘scattering’.!?
These, along with interaction terms, are the ingredients of the Feynman method for cal-
culating cross-sections, so they can be taken as giving the empirical spatial content of a
QFT — and hence of NCFT. The 2-point functions make the problem of giving a spatial
interpretation very clear, for they are functions of z and y, coordinates in phenomenal,
commuting spacetime — and so have no immediate significance in NCFT, in which the
coordinates cannot be ordinary number-valued, since they don’t commute! That is, finally,
the question of the meaning of phenomenal cross-sections — so of space —in NCFT narrows
to the question of the significance of the commuting coordinate arguments of the 2-point
functions.

Let’s take a closer look at the 2-point functions: as we discussed in the Primer, these
are the vacuum state expectation values of a product of field operators — equation (77).
In the quantization of NCFT it is the Weyl transforms that are second quantized — I will
denote the transforms ¢y (z) and the corresponding quantum operators qgw(x), so that
the corresponding 2-point function, Gy (z1,x2), can be written

(5) Gw (1, 2) = (0w (21)dw (x2)[0).
In the path integral formalism, such quantities are given by field integrals over the classical
fields, weighted by the action:

(6) — / Déw dw (21)w (wz) - € " 2E@w @) bw (@)

This expression makes the interpretational issue very clear, for the dependence on the field
at 1 and xg is explicit in the (functional) integral. But the value of the Weyl transform
at a point has no fundamental meaning — only the field configuration over the whole space
represents anything in the algebraic formulation, namely an element of the algebra. So
the same is true of the 2-point function: it can have some significance as a function over
R% x R%, but its point-values do not. But its point-values are exactly what we would like
to take as scattering amplitudes, the empirical content of the theory.

A first response would be to more-or-less ignore this situation. One simply takes the
coordinates in the Weyl representation to correspond to phenomenal coordinates — the
ones by which we label points of phenomenal space. However, while this approach might
be expected to produce decent predictions over distances above greater than the v/@s, it

12Saying what ‘found’ means in such contexts is to propose a solution to the measurement problem,
something we are trying to sidestep as far as possible.
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is conceptually incoherent. At first glance it looks as if it simply throws away the non-
commutative spacetime and views the theory as one with unusual equations of motion; if
the coordinates are just those of phenomenal commuting space, then we just have a QFT in
that space with a standard lagrangian modified by use of the Moyal star. In other words,
it looks as if the field simply does not live in a non-commutative space at all, and the
question of emergence is moot. But that cannot be quite right, if one investigates a little
more carefully, because the Moyal product in the action means — as we saw — that the laws
don’t properly respect the geometry of the commutative spacetime: 6% is a non-invariant
area; physical quantities are x-multiplied, so co-ordinates don’t commute; Lorentz violation
and spacelike correlations are to be expected. The fundamental theory doesn’t really live
in the commutative spacetime.

The second response is that based on the work of Chaichian et al, and is one in which
we can (finally!) get a handle on emergent spacetime. To keep things simple, we work
in three spatial dimensions, which means that only two can be non-commutative (since
non-commutative dimensions can always be organized in pairs), so we can pick coordinates
in which the field algebra is defined by a single parameter, 6:

i i=1,7=2
(7) [, 2] =
0 i,j=3.

We will focus on the two non-commuting dimensions and so work in the plane.

As we saw, because of this non-commutivity, the Weyl field operators do not have the
usual interpretation as localized quantities, but that doesn’t mean that the same is true
for other operators in the theory. Indeed, we should expect that some other observables
do represent phenomenal quantities.'® So let’s make a guess: any non-commutivity is of
order 60, so if we smear the Weyl fields over that scale, we can get commutative fields
that should describe physics above that scale — physics insensitive to the non-commutivity.
More specifically, let’s propose that the following (which simply smears the fields over a
gaussian) maps Weyl fields into commuting fields living in phenomenal spacetime (i.e.,
fields describing scattering phenomena):

—(z—x")2/6

(8) op(z) = / (o) 1

This proposal is a ‘guess’, a hypothetical part of the theory, subject to testing, and
potentially to replacement by some other ansatz; but it is based on the most natural
way of relating non-commuting and commuting space. (Note too that the form of the

13Leaving open, for now that they don’t represent exactly in the usual way, via expectation values or
the eigenvector-eigenvalue link: perhaps, for instance, only expectation values in a certain sector of the
statespace can be thought to correspond to phenomenal spacetime quantities. That doesn’t seem to be the
case in the proposal pursued here.

14Technically, these fields are the ‘normal’ symbols of the non-commuting fields.
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smearing is the simplest, rotationally invariant form one can have.) But we can take the z-
arguments of these ‘new’ fields to be those of phenomenal space: z’ is the coordinate of the
space in which the Weyl transforms live. That is, (8) can be read as a map from points of
phenomenal space and Weyl field configurations (the integral means that the map depends
on the full configuration) into the reals: x x ¢y (2') — R. Thus it is part of the proposal
here that the point-values of ¢p(x) have physical meaning: the value of a phenomenal field
at that phenomenal point. It is this understanding that solves the problem raised in this
section — we will attempt to rationalize it further below.

But given (8) and the interpretation of ¢p(x), the 2-point function for the phenomenal
fields is given by the path integral prescription:

(9) GP(:EDJ"Z) = <0’§5P($1)Q§P(IE2)|O>
(10) = / Déw ¢p(x1)pp(xs) - € T TLGw (@) dw (@)

which is simply the smeared version of the Weyl 2-point function:

—(z—z))?/0  —(xz—2})?/0
(11) = /d2$’1d2x'2€ ﬂgl V€ 7r92 Gp(x), ).

Note that it is at this point that I diverge from Chaichian et al’s proposal. Their idea
is that the action in the path integral should be rewritten in terms of the phenomenal
field ¢p. Their approach amounts to treating the phenomenal field as the true degrees
of freedom. Instead, what I suggest is that we treat the Weyl fields as the true degrees
of freedom, as we should if we take the non-commuting spacetime seriously: we simply
recognize that the canonical degrees of freedom are not those we experience as phenomenal
fields — those are represented by ¢p. Again, that hypothesis (in conjunction with the rest
of the theory) is testable, and links the fundamental theory to experiment.

One could certainly complain at this point that the theoretical meaning of the phenom-
enal field is unclear — the ¢p(x) can formally be defined according to (8), but can we get
a clearer insight into their place in the theory? In particular, do the phenomenal zs have
an interpretation in the theory, since they are not the non-commuting coordinates? Since
they label points of phenomenal space, an answer will illuminate how phenomenal space
is found in a NCFT. Chaichian et al suggest an answer (Chaichian et al. (2000), 8): they
note that the phenomenal fields are equal to the expectation values of the non-commuting
fields in so-called ‘coherent’ states, |€,)':

12) o) = e e

In the Weyl representation, a coherent state can be thought of as an isotropic state, centered
on a point, x; the xs can be taken as their quantum numbers. Then (12) shows how the

158 pecifically, |€,) = exp (z1 + iz2)a’|0)
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point-values of the phenomenal field can also be understood as labelled by coherent states,
taking the point in phenomenal space to be the corresponding quantum number.'6

It is interesting to see how the phenomenal fields can be found in the theory, but unfortu-
nately their significance is not particularly clear. In a field theory, the ‘degrees of freedom’
of the system — the physical magnitudes that characterize it — are the magnitudes of the
field at each point: for each x we have a separate value ¢(z), constrained just by the laws
of motion. Quantum mechanically then we get a quantum operator for each point of the
field, the quantum degrees of freedom. One could think of something like the collection of
expectation values for the set of field degrees of freedom — a distinct operator ¢(z) at each
point x — for a given, particular state vector, as giving the classical field configuration. But
in (12) the picture is reversed. The phenomenal fields are classical field configurations in
phenomenal space, but they are understood as the expectation values for a single operator,
for a set of state vectors. This must be the case because, at the root of the whole issue
here, in the Weyl representation a field at a point has no physical significance, so there are
only operators corresponding to full field configurations; all that could label phenomenal
point-valued fields are states. But this situation undermines the usual understanding of a
quantum system in which the statevector represents the state and operators yield the val-
ues of different magnitudes in that state; here the operator seems to represent the physical
state, and a set of (coherent) states yield the values of the field at different points. If this
identification is taken as revealing something deep about the ontology of the theory, instead
of an interesting numerical correspondence, then some serious questions of interpretation
of QFT arise.

More generally, Maudlin (2007) questions the feasibility of ‘deriving’ classical spacetime
from some non-spacetime theory (he has in mind deriving 3-space from 3N-configuration
space, but the point generalizes). At the heart of his concern is that even if a formal deriva-
tion can be found, involving a mathematical correspondence between classical spacetime
structures and structures defined in terms of a (more) fundamental non-spatiotemporal the-
ory, it does not follow that the classical spacetime just is the more fundamental structure.
Mathematical correspondences are too cheap: for instance, many systems are described
by simple harmonic oscillator equations, but it would be a mistake to conclude that they
were physically indistinguishable just because of this formal correspondence. According to
Maudlin, for a reductive account, a formal derivation must also be ‘physically salient’. 1
take this to mean that the derivation must veridically track the way in which fundamen-
tal structures ‘combine’ to physically constitute derivative ones. For instance, in ideal gas
theory the formal definitions of ‘temperature’ as mean kinetic energy and ‘pressure’ as mo-
mentum transfer track the corresponding phenomenal thermodynamical quantities: kinetic
energy is transferred between the molecules of the gas to liquid in a thermometer causing
its expansion; and the pressure on the side of a vessel is due to the molecules contained
colliding with it. The problem with a fundamental theory without spacetime is that our
notions of what kinds of derivation track in this way are spatiotemporal notions, relying on

16Chaichian et al approach things from the other direction. They propose that the phenomenal fields
should be labelled by the coherent states, and then conclude that they should be smeared according to (8).
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colocation and dynamical interaction (of gas molecules with thermometers or vessel walls,
say), for instance. But such familiar notions cannot apply if the physics involved is not, by
supposition, itself spatiotemporal. So we face two problems: first, what new notions might
apply? And second, even if we have a proposal, on what grounds can we conclude that we
are correct?

If the analysis of this paper is correct, then non-commutative geometry is a nice example
of this situation: the fundamental structure is algebraic, not a commutative geometry,
and so concepts like ‘spatial location’ are not primitives of the theory. Rather, spatial
structure is derived. In particular, we have discussed the proposal that it be recovered
via Chaichian’s ansatz, which I have also argued is not entailed by the theory, but an
additional postulate. More precisely, it is an interpretational postulate, specifying how
algebraic objects can ‘combine’ to physically constitute classical spatial structures — a
novel proposed non-spatiotemporal conception of which derivations are physically salient
in the theory. Thus the first problem can has been addressed in this case. (As in most
cases, there is enough spatiotemporal structure in the underlying theory — which is after
all a deformation of a commutative geometry — to find clues about how to reconstruct
spacetime.)

As for the second problem, Huggett and Wiithrich (2013) proposes that such postulates,
concerning how more fundamental structures compose to constitute less fundamental ones,
are justified a posteriori, not a priori. (The paper briefly discusses NCFT and with other
examples of theories without spacetime, along the lines found in this paper: identifying
what spatiotemporal features are lost in each case, and explaining how they may be de-
rived.) That is, how the fundamental gives rise to the less fundamental is not a matter of
metaphysical necessity, but of physical contingency, and so is something that can only be
discovered empirically, with the theory itself. For instance, if a theory of non-commutative
geometry was empirically successful (in the usual ways, especially in making novel predic-
tions that cannot be accounted for in any other known way) then both the theory and
Chaichian’s interpretational ansatz would be confirmed. That is, ultimately we justified
in believing a derivation to be physically salient in the same way that any other scientific
belief is justified: through successful confrontation with the data. No more is possible, but
then it never is.

Thus, in addition to introducing NCFT and raising some specific interpretational ques-
tions, this paper presents it specifically as an example of derived or ‘emergent’ space, in or-
der to illustrate and address Maudlin’s challenge. There is a gap between non-commutative
and commutative geometries, which can be formally filled by Chaichian’s ansatz; but if
this strategy were empirically successful then we would have scientific grounds to further
believe that the derivation is physically salient, that the ansatz is a veridical statement of
physical composition. The hope is that working through the example makes that claim
plausible, or at least intelligible.”

170f course it is logically possible to deny it, but I would say (a) that the historical record contains
examples of similar changes in the concept of physical salience, and (b) that such a denial would collapse
into a general antirealism, which is not my target here — rather the issue is whether there are special reasons
to dispute the physical salience of derivations of spacetime.
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4. APPENDIX: TECHNICAL DETAILS

This final section is an appendix to the preceding, filling out some of the technical
notions in a little more detail, giving an overview of the key concepts. Of course, for a
more complete introduction the reader should consult the various surveys that I have cited,
which the following digests.

NCG can be understood via a two-stage abstraction and generalization of standard dif-
ferential geometry (with which the reader is assumed to be familiar): first one formulates
an algebraic version of differential geometry; then one generalizes from that commutative
algebra to non-commutative algebras. (See Figure 1). We will look at a particular realiza-
tion of such an algebra; because work at a high level of abstraction risks losing contact with
concrete physics, we will also examine how this realization can be used to derive physical
consequences.

The starting point for the discussion is a differential manifold (representing space, not
time) and the collection of smooth scalar fields on it: let X be the space, and C§ the
smooth fields on X. CF forms an algebra with respect to pointwise multiplication, and
a representation theorem shows that if any two spaces agree on their C'° algebras, then
they are the same manifold up to diffeomorphism: C¥ = C¢ = X ~ X' 18 Thus we can
abstractly characterize the space by the algebra — the question is how other elements of
differential geometry can also be captured algebraically.

Next, in developing differential geometry, smooth maps between manifolds, v : X7 — Xo,
play a central role. It is straight-forward to understand their algebraic representation.
Such a map defines a pull-back map between fields: v*(f)(z) = f(y(z)). If v maps the
manifold onto itself, such a pull-back is a homomorphism of C§, since it preserves the
algebra: v*(f - g) = v*(f) - v*(g). Diffeomorphisms are invertible smooth maps, so they
are represented by invertible homomorphisms — automorphisms — of C¥.

In a moment we will return to the algebraic representation of differential geometry, but
first note that CY is an abelian algebra: for any two fields, [¢(x), ¢ (z)] = 0. NCFT arises
when one generalizes to a non-abelian algebra of ‘fields’, A. We can continue to develop a
‘geometry’ without reference to a manifold by importing the algebraic representations into
the new context; non-commutative ‘smooth maps’ are homomorphisms of A, while ‘diffeo-
morphisms’ are its automorphisms. Of particular interest are the ‘internal’ automorphisms
associated with any element g € A: a — g 'ag, for all a € A.

Our main example in this chapter is the algebra R%, defined as follows: let there be an
even number, d, of elements ¢ which fail to commute,

(13) (@4, 49) = it

where 6% is an (antisymmetric) real-valued matrix. Rg is the algebra of linear combinations

18With a little more care and clarity. We assume that the topology is fixed, which can be achieved
by giving the algebra of bounded-continuous fields (under certain assumptions). Then C°°-isomorphism
implies that X and X’ will have the same differential structure — though they will not in general agree on
any additional structures they may happen to be endowed with.
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of products of these elements — scalar ‘fields’ expressed as power series of the &’s. Consider,
for example, the internal automorphism — ‘diffeomorphism’ of Rg — implemented by

(14) g=1+i0;;¢'q7;

0;; is the inverse of 69 (090, = 5;-), and the €’s are d (real) infinitesimal parameters (this
time, ordinary commutative ones). A couple of lines of algebra shows that

(15) it 3+ e

Thus, if we identify the #’s as ‘co-ordinates’, then we have a non-commutative analogue
of C¥ (at least those fields that can be expressed as power series), in which 1 + Hijeii“j
implements ‘translations’ by a constant vector €’. That said, for the purposes of this pre-
sentation it is best if the reader thinks of the formalism being presented as algebraic: in
the first place, so doing puts off tricky questions about how familiar space enters the pic-
ture (something addressed at length in the main text); in the second, I argue above for an
algebraic interpretation, so it will help if the reader understands the algebraic formulation.
Thinking about the theory algebraically is further complicated by the use of spatial lan-
guage to describe algebraic notions: for instance, elements of A are called ‘fields’ without
reference to any scalar functions on a manifold, and automorphisms are called ‘diffeomor-
phisms’ . The reader is encouraged at this point to keep focussed on the algebraic meaning
of these terms — and others soon to be introduced — licensed by the abstraction described.
Above all, let us postpone serious discussion of how anything like a differential manifold
appears!

To continue our development of NCG, let us return to differential geometry; after scalar
fields, the next item to consider is the set of vector fields of the manifold, 7'(X). These
can be understood as generators of diffeomorphisms (more exactly, of pull-backs on scalar
fields associated with diffeomorphisms): f — f+eV(f) for V € T(X). (Intuitively, vectors
map scalar fields into their derivatives in a given direction at each point.) Leibniz’s law,

V(fg) =V (f)g+ fV(g), quickly follows:

(16) fg — fg+eV(fg)
(17) also  fg — (F+eV()(g+eVig))
(18) thus  fg+eV(fg) = fg+e(V(fg+ fV(g)+O(e).

((17) follows because the transformation is a diffeomorphism, which preserves the algebra,
as we discussed above.) Thus in the algebraic formulation the role of vector fields is
played by operators satisfying the Leibniz law: derivations, Der(A). A simple commutator
identity tells us that [ab,c] = a[b,c] + [a,c]b, so any commutator with an element of the
field algebra is an ‘internal’ derivation:

(19) Ve(a) = [a, ] (a,c€ A).
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We therefore have the interesting result that (unlike commutative field theory) elements of
the field algebra generate infinitesimal transformations. For instance, defining a + §za =
(1 —ied)a(l + iex) = a + ie[a, ] + O(€*), we obtain

(20) dza = iefa, 7] (= ieVz(a)).

Or again, derivatives with respect to coordinates generate translations along the axes:
a — a + €'0;a. Comparing with the internal translation automorphism on Rg given above
(14), we see:

(21) a — a+éeda

(22) = (1 — ieieiji*j)a(l + iéieij.%'j)
(23) = a+€'la,ifijil] + O(e?).

So in RY

(24) 0; = [-,i0;;27].19

It is easy to see that 0,37 = 7. Then, as in familiar differential geometry, we can express
general vector fields as ‘column vectors’ of coefficients. Moreover, if we assume that all
spatial derivatives are of this form — i.e., that these are covariant derivatives — we effectively
endow Rg with a ‘flat’ non-commutative geometry.

All the results that we have obtained so far (and others to be obtained) are collected in
the following table, which is presented to summarize the overall scheme.

1950mewhat confusingly, authors often switch between this notation and writing the same expression as
[, 0;] In practice it does not matter for many purposes since [[-, 4], [-, B]] = [, [4, B]]. The same applies to
covariant derivatives.
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Commutative Non-Commut-
ative
Diff ’tial Geometry < Field Algebra — Field Algebra e.g., Rg
e Manifold, X C¥ Non-Abelian, A (4%, 27] = i6¥
e v: X — X, () () Hom(A) Hom(RY)
= f(v(2))
e Diffeomorphism Invertible Aut(A) — esp. T i 4 =
a— g lag g=1+10;;¢37
e Tangent vector f—=f+eV(f) = Der(A) — esp. dia = [a,0;;37)
fields, V € T(X) Leibniz law Ve(a) = [a, ]

e Vector bundle, I'(F'), module over M, module over A e.g. Fock space
F=RxX c

o V;, A, Fy, L,
[, S .

To do familiar physics we will need other geometric objects, especially ‘internal’, in ad-
dition to tangent, vector fields. These represent fields with gauge symmetries: for instance,
imposing local U(1) symmetry on a complex scalar field, ¢(z), produces an action in which
¢(x) represents a charged field coupled to the electro-magnetic field. In general then we
need vector bundles, F' = R x X, where R is a vector space (here we assume a trivial
topology for the bundle).

To represent F' algebraically we consider I'(F'), the set of sections of F' (i.e., smooth
maps from the points of X to R). Now, if I multiply a section by a scalar field I get
another section. In algebraic terms, I'(F') is a ‘module’ over C§: it is just like a vector
space over CY except that CY is a commutative ring not a field. (CF is not a field like
the real numbers, because functions with zeroes don’t have inverses.) This notion can be
immediately generalized to a non-abelian algebra: in NCG a vector bundle is any module
over A (which is certainly a ring because it is non-commutative). As an example: a change
of coordinates in Rg turns A% into a canonical form in which all elements are zero except
for 2 x 2 antisymmetric matrices along the diagonal — the d non-commuting coordinates
are transformed into d/2 pairs of mutually non-commuting coordinates, which commute
with all other coordinates. (Hence there have to be an even number of non-commuting
dimensions.) Formally, the only non-trivial commutation relations are:

(25) 92,97 =i6,, r=1,...,d/2.

Thus the new coordinates form pairs satisfying a raising-lowering operator algebra, and so
have a representation on a Fock space. Other elements of Rg are sums of products of the
coordinates, so they all act on the Fock space — which is thus a module over Rg. So one
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kind of matter field in NCFT is represented by the given Fock space (other fields can be
represented by other modules over Rg).

In both the abelian and non-abelian cases we take vector bundles to be modules over
the field algebras. But that similarity masks a crucial difference that helps explain the
power and significance of non-commutation. Because C§ is commutative, it can only have
1-dimensional representations; it simply multiplies sections (pointwise) for instance. If we
want to consider non-trivial transformations of sections — as we do when we consider gauge
transformations — we have to introduce new internal operations on I'(F'). But because A
is non-commutative, it has modules with representations that are not 1-dimensional — it
can already have the desired gauge group algebra! For instance, in Rg, the translations
discussed above are operators on the Fock module — in general, the distinction between
spatial and internal transformations and symmetries is erased.

This point is central to the framework, and explains a number of its features, though
we will not dwell on it. I would however direct the attention of those who work on the
interpretation of gauge theory to this feature of NCG. The fact that the distinction can
be erased in this way suggests that — in some ways at least — there is a real distinction to
draw. Those who see argue for little or no distinction in the familiar case of commutative
spacetime would do well to consider NCG (for instance, those who view general covariance
as a gauge symmetry) — though I offer no conclusions here.

In the remainder of this appendix I will sketch, even more briefly than the foregoing,
how QFT can be developed within NCG; naturally the references cover the material more
fully. To develop physically realistic QFT we need to give the non-commutative analogue
of geometry on a vector bundle — on the module already introduced. First there is the
connection, a map from section-vector field pairs into sections, satisfying a version of the
Leibniz Law:

(26) V:I'(F)xT(X) = T(F)
such that
(27) Vv(fy) =V + [Vv(y) foral V € T(X), f € CF,v € T(F).*°

The connection can always be expressed in terms of coordinate derivatives and a vector
potential, A (globally if the bundle’s topology is trivial, but at least locally):

(28) Vv (y) = VY0 + Ay = ViVyr.

Finally, the curvature tensor is the commutator of a pair of derivatives: Fj; = [V;, V;]. If

201 emphasize here that we are discussing a connection on an ‘internal’ vector bundle, not on the tangent
bundle. We continue to focus on flat space, in which the covariant derivative components are just coordinate
derivatives.
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the vector potential has no internal indices, so its components are numbers, then [4;, A;] =
0 (assuming the numbers are commuting), and

(29)  Fij = [0+ Ai, 05 + Aj] = (05, 0] + [0i, Aj] + [As, 0] + [Ai, Aj] = 0;Aj — 0 A;.

Physically, the sections of F represent matter fields, while the vector potential and curvature
tensor represent a gauge field: for instance, the electromagnetic vector potential and field.
In electromagnetism the components are indeed numbers, and (29) indeed gives the field.
Thus we have the ingredients needed to write down a lagrangian density, £, for the free
gauge field and its coupling to other fields, in particular the elements of T'(F').

All these features are straight-forward to translate into NCFT. Since the vector bundle
is replaced by a module M, and vector fields by derivations, the ‘connection’ is a map

(30) V: M x Der(A) — M
such that
(31) Vy(am) = V(a)m + aVy (m) for all V € Der(A),a € A,;m e M.2!

The connection can again be expressed in ‘components’

(32) Vv (m) = V(8; + Aj)m = ViV;m,

where the A; take on values in A. The ‘curvature tensor’ is defined the same way, but
now since the algebra is non-Abelian, even if the ‘vector potential’ has no internal indices,
[A4;, Aj] # 0. That is, unlike commutative field theory, in NCFT the gauge fields are
automatically non-commutative. Thus

(33) Fij = [81 + Ai, 6j + AJ] = &AJ — @Az + [Al, Aj],

and the field has terms quadratic in the potential. Since the field appears in the ‘la-
grangian’, it will automatically have additional terms compared to the commutative case;
more specifically there can be no free field, because there will necessarily be self-interactions.

To proceed further, we need to say a little more about the Weyl transform, introduced
in the main text. This is a bijection between the elements of Rg and C'*° functions that fall
off rapidly at infinity, which allows standard analysis to be used to perform computations
in NCFT (and more, as I discuss in §3.2). Naturally, to respect non-commutivity, field
multiplication is no longer represented by ordinary multiplication but by the ‘Moyal star’,
defined in (2). To preserve the algebra, the coordinate derivatives we found above (24) map

21Because A is non-commutative, elements of the algebra can act either to the left or right of the module.
To keep the presentation minimal I just give expressions for a left module, though they are easily modified
to obtain the corresponding expressions for a right module.
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to ordinary partial derivatives. Since we consider fields that vanish at infinity [ d"zd;¢ = 0,
so integration in NCFT can be represented by a trace, Tr:

34 Tr 0;a = Tr a,iﬁifﬁj = iTr(ab;;37 — 60;;47a) = 0,
( J J J

since the trace is cyclic.

With this ‘integral’ in hand, an ‘action’, .S, can be derived from a lagrangian density. The
value of this observation — what makes this framework useful for physics — is that the usual
framework for least action physics applies in NCFT because the derivation of the Euler-
Lagrange equations and Noether theorem and the like do not depend on commutivity!??

Moreover, the Weyl transform gives a way to turn commutative field theories into mean-
ingful non-commutative ones: take a commutative action and replace all multiplication
with Moyal star multiplication — the Weyl transformation maps it into a NCFT action,
minimizing it leads to an equation of motion of the Weyl transforms of physical NCFT so-
lutions.? (Following Szabo (2003), 17-9) consider, for instance, a (commutative) massive
scalar field with a ¢*(z) interaction, whose lagrangian density is

m2
(35) £ = @)+ e (0@) + Y (0)*
m2
(36) o S06()*00(a) + () x 0() + (x) x 0(z) * 6(a) x 0(a).

First, note an important property of star-product integration. From (2): [ dda f(z) %
g(z) = [diaf(x) - g(x) + terms of the form:

(37) 0 gizdz  ginin / A% 0,0, ... 0, f(x) - 0;0;, . .. D), 9(x).

Focusing on the ¢ and j contributions, we integrate by parts twice (remembering surface
terms vanish),

(38) = 09... [d%0;...f(x)-0i...g9(z)
(39) = 0. [dd 0;...f(x)-0;...9(x)
(40) = —09... [dix 0;... f(x)-0;...9(z),

where we have relabeled i <+ j, and then used the antisymmetry of ¢*/. Thus (37) = (40) =
—(37), so all expressions of that form vanish. Hence

(41) [t s egta) = [ e fia) - g(o).

That is, in an integral over products it makes no difference whether Moyal or ordinary
multiplication is used. Hence the free terms in the lagrangian density make no difference

22\We won’t show this in general, but the reader might like minimize the following action to obtain the
equations of motion: S = Tr{g"/2- 8¢ - d;¢ + V(¢)}, with ¢ € R§. (Hint: first show that the product
rule, Tr(f - 8;9) = —Tr(g - 0; f) follows from (19) and (34).)

23Note that the infinitesimal line elements of the integral are to be multiplied in the usual way, since the
integral symbol, including them, is Weyl transformed to the trace, as we discussed above.
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to action — since it involves an integral over space. In particular, in perturbative non-
commutative QFT the free field is unchanged: the propagator is as for the corresponding
commutative theory. The difference comes in the interacting terms, so in the form of the
vertices of the theory. To see how a little more clearly it is helpful to work in terms of
Fourier transforms of the fields. In that case we can rewrite the Moyal star (2) as:

(42) flx)xglz) = f(2) (0)05,3; o)
d d )
() - /?27:312((127:{;22 F(k1)g(ky — ky) e 2F10h2ethoe

(where k10ky = Hijk‘likigj). This form of the product can be used, with a little work, to
show that

4 d 4 i
@) dx)x o) xd(x) x o(x) = (]| / (‘;W";‘g) e( Tzt ke o= Kacy kabh,
a=1

where all terms are understood to be inside the four momentum integrals. In this form we
can read off that in perturbative QFT vertex terms will pick up a momentum-dependent
phase. (The second exponent: the first produces a momentum conserving delta-function
on spacetime integration.) This produces the effects of the non-commutative space.

Or, to give another example, a commutative field with a U (1) symmetry has a lagrangian

-1
4¢2

which becomes on ‘Weyl quantization’

(45) FWFW + Z@'Yﬂ(au - iAu)¢ - m@"lﬁ

-1 - . -

@me s« FHY - ith s AH(Op1p — 1A, * ) — mab * 1.

(Remembering that F),, has an extra term, given in (33).) For a discussion of the Feynman
rules that follow from this lagrangian, and their consequences, see (Hayakawa (1999)).

(46)
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