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In their article on singularities and black holes in the Stanford Encyclopedia of Philos-
ophy, Peter Bokulich and Erik Curiel raise a series of important philosophical questions
regarding black holes, including the following:

“Black holes appear to be crucial for our understanding of the relationship
between matter and spacetime. . . . when matter forms a black hole, it is
transformed into a purely gravitational entity. When a black hole evapo-
rates, spacetime curvature is transformed into ordinary matter. Thus black
holes offer an important arena for investigating the ontology of spacetime
and ordinary objects.” [1]

This paper aims to address these issues in the context of string theoretic models of black
holes, with the aim of illuminating the ontological unification of gravity and matter, and
the interpretation of cosmological models, within string theory. §1 will describe the central
concepts of the theory: the fungibility of matter and geometry, and the reduction of gravity
and supergravity. The ‘standard’ interpretation presented draws on that implicit in the
thinking of many (but not all) string theorists, though made more explicit and systematic
than usual. §2 will explain how to construct a stringy black hole, and some of its features,
including evaporation. §3 will critically examine the assumptions behind such modeling,
and their bearing on Curiel and Bokulich’s ontological questions.

1. Strings and Superstrings

1.1. Spacetime in string theory: fungibility of geometry and matter. [7] explained
the derivation of the Einstein Field Equations – the ‘emergence’ of general relativity – in
string theory. Since this story is central to the points of this paper we must review it, but
with emphasis on the conceptual picture, and without the technical details found in that
paper (or the sources from which it is drawn, e.g. [13]).

The starting point for classical string theory is the Nambu-Goto action, which tells
us to extremize the worldsheet spacetime area of a string in a d-dimensional Minkowski
background (figure 1). So doing leads to a relativistic wave equation, with either Neumann
(momentum conserving) or Dirichelet (position conserving) boundary conditions at the end
points.
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Figure 1. An open string in target space – if the timelike edges are iden-

tified then it becomes a closed string.

So how do we expect this 2-dimensional object to behave? One’s mind turns to Hooke’s

law, but that is uncongenial to relativity – Lorentz contraction should not change the

tension in a string. What Hooke’s law tells us more generally is that a string will minimize

its length: again, not relativistically invariant, but close – the relativistic statement is that

a string will minimize its spacetime area. Thus the simplest classical, relativistic string

action is proportional to the invariant area S = �T
R

dA. Explicitly, dA =
p�g ·dXµdX⌫ ,

or transforming into string coordinates, we obtain the famous Nabu-Goto action:
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T is the tension in the string (though you can’t immediately see this from the form of the

action); it makes clear that the string does not satisfy Hooke’s law, because it is an invariant

constant. The action also shows that all that matters is the total length of the string, not

how parts might be stretched relative to one another – again un-Hooke-like behaviour. So,
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Figure 1. A closed string in spacetime. The trajectory is described by an
embedding function from worldsheet coordinates to spacetime coordinates:
(σ, τ)→ Xµ.

However, the Nambu-Goto formulation is infelicitous for quantization, so one shifts to the
classically equivalent Polyakov action, given below in (1). So doing introduces an ‘auxiliary’
Lorentzian metric hαβ on the string worldsheet, distinct from the metric ‘induced’ on the
world sheet by the Minkowski metric of background spacetime. (The subscripts range over
the two coordinates σ and τ on the worldsheet.) Indeed, minimizing the Polyakov action
requires only that the auxiliary metric agree with the causal structure of the background
spacetime, and so the theory has ‘Weyl symmetry’ with respect to hαβ: hαβ → eΩ(σ,τ)hαβ
for any smooth real function Ω(σ, τ). Thus there is no physical significance to the auxiliary
metric beyond the causal structure it ascribes to the string, which in turn must agree with
that of the background spacetime in a classical solution. This symmetry will have profound
implications later.

On canonical quantization the classical wave solutions become quanta on the string, in
the way familiar from quantum field theory (QFT), and when grouped into states of equal
energy form representations of SO(1, d− 1), just like relativistic particles in d-dimensional
spacetime. Hence particles are reinterpreted as strings in the appropriate representation,
with rest mass associated with the vibrational energy of the string – at length scales
at which the string is indistinguishable from a point. By this mechanism string theory
promises to unify the different fundamental particles: they are nothing but different modes
of a single underlying object, the string, and hence fungible if the state of the string
changes. In particular, the spectrum of the closed bosonic string contains the massless
spin-2 representation that characterizes the graviton, the quantum of the metric field;
these modes/particles are therefore in particular fungible with those of other fields. That
said, several points should be made.

First, we are yet to identify quanta of the corresponding quantum fields as strings, since
creation and annihilation of quanta would then require creation and annihilation of strings,
about which nothing has yet been said. Modes on a string can be created and annihilated,
but that does not change the number of strings, just the kind of particle that a string
represents. Second, while massless spin-2 fields lead almost inevitably to general relativity
(at least classically, e.g., [11, §18.1]) one does need further grounds to identify this mode
as the quantum of a gravitational field in the fullest sense; we need to see that it relates
dynamically to other fields in the appropriate way. Third, the bosonic string is completely
incapable of reproducing the mass spectrum of the standard model; again, more structure
must added. All three points will be developed later.
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Progressing further requires shifting to a path integral approach, in which each path con-
tributes an amplitude equal to the exponential of its action. Wick rotating the worldsheet
coordinates τ → iτ to give the auxiliary metric hαβ a Euclidean signature, the Polyakov
path integral is given by ([13, §3.2]):

(1)

∫

paths
DXDh exp

{ −1

4πα′

∫

M
dσdτ h1/2hαβgµν∂αX

µ∂βX
ν
}
,

where the ‘Regge slope’ α′ is the characteristic string length squared, M is a specified
worldsheet, and (for now) gµν = ηµν , the background Minkowski metric. The path integral
is taken over all embeddings Xµ and all auxiliary metrics hαβ.

The path integral is also over all topologically distinct worldsheets: for the closed string,
tori of all possible genera, with N open holes representing in/out strings at temporal
infinity. The topological holes in the tori are produced by strings splitting/joining: for
instance, figure 1 is a simple torus with N = 2, representing a single incoming string
splitting into two strings, which then recombine into a single outgoing string. The tori
therefore represent a perturbative sum of Feynman diagrams, in analogy with those for
QFT (indeed under the identification of quanta with string modes, QFT diagrams are
understood as approximations to stringy diagrams).

Therefore they assume the existence of a theory in which strings can be created and
annihilated, or at least a theory in which Fock-like string states are a reasonable approx-
imation (in some sector). (In)famously, this theory – ‘M-theory’ – is not known, and so
string theory as we are discussing it is inherently perturbative.1 However, once one ac-
cepts this perturbative understanding – and without it there is no string theory – then
the identification of strings with the quanta of QFT is complete: any field state (in the
Fock representation, a superposition of different numbers of quanta) is fundamentally a
state of many strings (a superposition of different numbers of strings, each in the mode
corresponding to the quantum of the field). Thus all fields are unified, composed of strings,
differing only in their modes, and fungible if the many strings change mode.

We now have all the conceptual ingredients needed to understand the origin of GR in
string theory. (i) First note that that string scattering could take place in a non-vacuum
state, namely in a background of strings: some fixed number of strings, or some finite
superposition of different numbers of strings, or in a ‘coherent state’ of strings. Fock space
coherent states can be defined in various ways (see [3, §8.2-3]), but for our purposes, two
conceptions are salient: first, such states are maximally classical, simultaneously minimiz-
ing the uncertainty in the canonical variables; second, they involve a superposition of every
number of field quantum (and so are not finite superpositions).2

So, what if string scattering occurs in a background coherent state of strings (a superpo-
sition of every number of strings) all in the same mode? Well, since quanta are identified

1A bosonic string field theory, with a 3-point interaction exists (e.g., [17]), but is no longer viewed as a
promising candidate for M-theory.

2Note that ‘coherence’ in this sense comes from optics, and is not the opposite of ‘decoherence’ in the
usual sense of that term.
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with strings, such a background corresponds to a coherent state of a QFT; and this in turn
corresponds to a classical state of that field. So not too surprisingly, the strings scatter
exactly as if they were in the presence of a classical field – that found in the classical limit
of the quantum field corresponding to the common string mode. In short, one can study
the dynamics of strings in coherent state backgrounds by simply inserting the appropriate
classical field into the Polyakov action in the path integral. These are called ‘background’
fields, but for the reasons just given they are taken to represent particular multi-string
states, not anything extrinsic to the theory.

In particular, a background coherent state of stringy gravitons (i.e., a coherent superpo-
sition of strings, each in a massless spin-2 mode) introduces a factor in the path integral
(1) of exactly the same form as the (exponentiated) Polyakov action, but with spacetime
tensor γµν . Thus the path integral has the same form, but with gµν = ηµν + γµν instead of
gµν = ηµν . But that is exactly as if we had taken gµν to be curved rather than flat in the
first place – the effect of the coherent stringy graviton background is exactly as if the strings
propagate in a curved spacetime background. In other words, stringy gravitons contribute
to spacetime geometry, just as they ought to. [4, §3.4.1] is the earliest presentation of this
point of which we are aware.

(ii) Second, a path integral like (1) with a general curved metric is known as a ‘non-
linear sigma model’; broadly, it describes a fieldXµ living on a 2-dimensional spacetime (the
string worldsheet) with variable interaction gµν(Xµ). The crucial result for our purposes is
that this quantum theory will only retain the Weyl invariance of the classical action – as it
must do in order to avoid a pathological ‘anomaly’ – if the background metric gµν and any
other background fields satisfy the Einstein field equation (to lowest order in α′ ). For (1),
in which there is only a background metric field, the result is the free field equation R = 0;
in general, with additional background fields, the full non-linear equation is entailed.

It’s worth stressing this point. The split gµν = ηµν +γµν is reminiscent of the split made
in linearizing gravity ([11, §18.1]), but no assumption that γµν is small is made here, and
it is certainly not the case that the condition of Weyl invariance just leads to the linear
equation for γµν . (The result does depend on an expansion in powers of α′, which must
be small: but α′ � 1 means that the radius of curvature is large compared to the string
length, something close to the Planck length.) The result gives full general relativity (GR),
not just linearized gravity.

Another possible misconception occurs if one applies a naive reading of gµν as describing
the geometry of a literal classical spacetime. Formally that is correct, but we saw that
physically it describes a background of strings in a coherent state, not a classical spacetime.
So Weyl invariance imposes a condition, not on classical spacetime, but on possible coherent
states of strings: when in graviton modes they must have a GR spacetime as a classical
limit, completing the identification of massless spin-2 modes as quanta of the gravitational
field.

One may point out that the curved metric nevertheless contains a part not corresponding
to a stringy contribution: gµν = ηµν + γµν , and only the second term denotes a coherent
state. For the purposes of this paper, we can just accept this point: in what follows
we are discussing cosmological models built from strings in a flat background of given
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topology. (Especially, this picture admits a ’background dependence’ of the theory that
many resist on first-principle grounds, but background independence is not a concern of this
paper.) However, the picture can be resisted for perturbative string theory: for instance,
consideration of dualities suggests that there is no fact of the matter about the background
(or ‘target space’) metric and topology (e.g., [19, 10, 6]). Moreover, the split of gµν into
background and stringy parts is not unique, and so arguably there is no physical significance
to the choice of a flat background metric ([12]).

To summarize: avoiding a Weyl anomaly requires that background fields, including the
metric, satisfy the Einstein field equations to lowest order in perturbation theory. Phys-
ically however, the background does not comprise classical fields in a classical spacetime:
rather strings in appropriate modes form coherent states of effective QFTs, which in turn
form effective classical fields. So the underlying ontology of the background fields, includ-
ing the metric, is a multi-string state. And since the quanta of different fields, including
the metric, are nothing but different string modes, they are fungible, so that gravity is on
the same footing with any other force.

1.2. Supergravity: stringy fermions, gauge fields, and p-branes. The string the-
oretic model of a black hole that we will discuss requires more than the bosonic theory
discussed so far, as it involves ‘supersymmetric’ strings. Since the world contains fermions
one must extend string theory: as bosons arise from spatial modes, fermions arise from
vibrations in ‘anti-commuting directions’. A full discussion is well beyond the scope of this
paper so we will only sketch points necessary for our stringy black hole. The most im-
portant point is that the recovery of GR from string theory just described applies mutatis
mutandis to superstring theory.

In very general terms, supersymmetric (SUSY) string theory is developed as for the
bosonic string. First introduce an action that adds fermionic degrees of freedom ψµ(σ, τ, )
(a Majorana spinor) to the bosonic ones Xµ(σ, τ, ):

(2)

∫

paths
DXDh exp

{ −1

4πα′

∫

M
dσdτ h1/2hαβgµν(∂αX

µ∂βX
ν − iψ†µρα∂βψν)

}
,

where ρα are worldsheet Dirac matrices. ([4, §4.1]) discusses this action, and shows that it
possesses classical supersymmetry. Because they are antisymmetric, there are new endpoint
boundary conditions for the fermionic degrees of freedom – not Neumann and Dirichlet,
but Ramond or Neveu-Schwarz – and correspondingly new modes. When one canonically
quantizes as before, one’s choice of boundary conditions produces a particular spectrum of
bosons and fermions. Because of the underlying SUSY these are paired (in addition to [4,
§4.2], [20, chapters 14-6] contains an approachable introduction to this topic): each mode
is fungible with its ‘superpartner’, under a symmetry of the theory.

Proceeding exactly as before, the bosonic modes correspond to field quanta, but now of
gauge fields. Coherent states of strings in the same mode thus have effective descriptions
as classical gauge potentials, Aµ, Aµν , Aλµν , and so on. And of course to avoid the Weyl
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anomaly, with the metric these mutually satisfy the appropriate Einstein field equations,
and hence because of their supersymmetry form models of classical ‘supergravity’.

The question arises of the sources of these fields. (n− 1)-dimensional bodies can couple

‘electrically’ to an n-form gauge field. (E.g., a point body couples as Aµ
dxµ(τ)

dτ – the
dimension of the body determines whether it has enough indices to ‘eat’ those on the
field.) Similarly, d − n − 3 dimensional objects with couple ‘magnetically’ (since they
have ‘eat’ the indices on the Hodge dual). So the presence of gauge fields speaks for the
presence of multidimensional objects, known as ‘p-branes’. A discussion of their nature in
the conceptual framework laid out here will have to wait for another occasion (they are
typically thought of in terms of some stable ‘solitonic’ multi-string state). For now note
that they also ground Dirichlet boundary conditions in string theory: if the end of a string
is constrained to move within a p-brane, then it is fixed with respect to the remaining
d− 1− p spatial dimensions. A p-brane to which open strings can attach is thus known as
a Dp-brane.

Pulling this together, one of the choices of boundary condition leads to ‘type IIB’ super-
string theory, which contains a a 2-form gauge field Bµν . So, for example in 10 spacetime
dimensions, D1-branes couple electrically and D-5 branes magnetically to Bµν , and so
may be present in a supergravity limit of type IIB superstring theory. In our model, a
construction of these branes forms the interior of the black hole.

2. A Stringy Black Hole

In this section we sketch a realization of these ideas, a stringy black hole. In the final
section this will help us address some of the ontological questions raised about the relation
between geometry and matter by black holes, according to string theory. Our model is
physically unrealistic (at least for our universe), but it is simple yet exhibits the principles
behind more realistic examples (hence it is popular in pedagogical presentations, e.g. [2]
and [20, chapter 22]). The origin of this type of construction is [15]; the specific approach
discussed was proposed in [5].

We work in type IIB theory with its D1- and D5-branes, and suppose a background
spacetime topology of R5×S1×T 4 with coordinates (x0, . . . x4, x5, x6, . . . x9), respectively.
We are interested in the black hole appearing in the 5-dimensional spacetime described
by (x0, . . . x4) with topology R5, and stipulate that the remaining compact dimensions are
‘small’. However, the circumference C of the circular S1 x5 dimension is much larger than
that of the toroidal T 4 (x6, . . . x9) dimensions. The effect of this stipulation is that the
minimum wavelength on the torus is much shorter than on the circle, so that the energy
cost of excitations on the torus is much greater, and effectively any momentum in the
compactified dimensions will be on the circle. Then the internal momentum of the black
hole will be a scalar quantity P = hN/C, where N is the wavenumber on S1.

At the origin of the uncompactified space, (x1, . . . x4) = (0, 0, 0, 0), are located (a) Q1 D1-
branes wrapped around S1, (b) Q5 D5-branes wrapped around S1×T 4, and (c) momentum
P (in the x0–x5-plane, as just discussed); see figure 2. As we saw, the Dp-branes couple
to the Bµν gauge field of the theory (whose stringy nature we again emphasize), while P
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Figure 2. A stringy black hole: the background spacetime has a topology
R5 × S1 × T 4 – time is not shown, and of space S1, two dimensions of R4

and one of T 4 are pictured. At a point of R4 are located D1-branes around
S1 and D5-branes around S1 × T 4. If the string interaction is ‘turned on’,
a spatial horizon forms around the branes in R5, and gravitons are radiated.

is a source for the metric field gµν (likewise). Because the field equations hold for such
background fields (to avoid the Weyl anomaly) the spacetime geometry can be computed,
yielding a model of supergravity possessing a horizon in the four spatial dimensions of R5,
around the origin, as shown in figure 2.

The next step is to apply the technique of ‘dimensional reduction’ based on the work of
Kaluza and Klein (see [8]); essential in string theory in order to determine the projection
of the higher dimensional physics into the large dimensions that we directly observe. In
short, gauge fields project into gauge fields, and so does the metric: from the point of view
of the large dimensions, the geometry of the compact dimensions acts as if there was a new
gauge field – the basis of the Kaluza-Klein scheme to ‘geometrize’ gauge fields. The upshot
in our model is that the R5 description of the solution is a Reissner-Nordström black hole
with three point charges Q1, Q5, and P , and mass equal to its internal energy, located at
the origin.

The point of constructing such models was to compare their Boltzmann entropy, cal-
culated by counting the number of microstates of such an assembly of branes, with their
Bekenstein-Hawking entropy, calculated for the dimensionally reduced supergravity black
hole. The calculation is described in the references given, but the significance of the models
is that these entropies agree, in some sense providing a ‘novel’ prediction of string theory.
It should be noted however that the key element in this result is that the system is in a
Bogomol’nyi-Prasad-Sommerfield (BPS) state of superstrings. These arise in SUSY be-
cause of the special symmetries ([2, §3.2] gives a simple illustration), but have the features
that (a) they are energetically stable because of a selection rule, and (b) varying poten-
tial terms does not cause any splitting of energy levels. Because of (b) the number of
microstates would be the same if the strings were non-interacting, a scenario in which the
number of states is understood and computable: the Boltzmann entropy is the same when
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the interaction is ‘turned on’. But because of (a) the black hole in the effective super-
gravity model is ‘extremal’, unable to Hawking radiate any further, though not completely
evaporated away.3

However, as [18] explains, one can perturbatively model a near-extremal black hole, and
verify that its Boltzmann and Bekenstein-Hawking entropies agree as well. Most significant
for our discussion, there is a channel by which branes can radiate gravitons into R5. That
is, if ΦI (I = 7, 8, 9, 10) represents a quantum of D1-brane vibration in the T 4 directions,
and hIJ a graviton polarized in the T 4 dimensions propogating in R5, then the following
interaction exists:

(3) ΦI ΦJ

hIJ 

That is, the model has a mechanism for the black hole to radiate mass away; moreover,
the energy cross-section of this radiation agrees with that computed semi-classically for
Hawking radiation. Such an interaction thus provides a specific instance of how the fun-
gibility of string modes, especially those of matter and geometry, play out in dynamical
processes. We will discuss it in the following reflections on the lessons to be drawn from
the interpretation and model laid out so far.

3. Implications for the Nature of Spacetime and Matter

The primary goal of this paper is explicate the §1 ‘standard’ interpretation of classical
spacetime and matter according to string theory, and investigate it in the black hole model
of §2: realizing the general account in the specific case will highlight some of the insights
and issues of the interpretation. Within the scope of this paper, we will aim to highlight
some salient points.

(1) First, the interpretation applies to the stringy black hole. Weyl symmetry leads
to GR and classical supergravity, and with the brane construction on the matter
side of the field equations, there is a horizon in the spacetime geometry. In turn,
that geometry is an effective description of a multi-string coherent state (and not
a fundamental, classical geometry).

Given a reductive account of spacetime structure, it is important to ask how the
derived structure – the metric gµν – has empirical significance. When explained in
§1 the empirical bite came through the role of gµν in determining scattering ampli-
tudes: it appears in the path integral (1,2) and so different values lead to different
cross-sections. Ultimately string scattering is observed as particle scattering, and so
it is through observed particle cross-sections that the stringy metric has empirical
content. The extension to cosmological models like the black holes demonstrates

3An earlier program due to Susskind, on which he reflects in [16], approached the same problem by
adiabaticity; that slowly lowering the string interaction to zero would not change the state counting. This
method is more general, allowing the Boltzmann entropy to be calculated for a range of realistic, non-
extremal black holes, but is less reliable because it doesn’t have the BPS guarantee that the density of
states is constant.
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further significance: astronomical observations of spacetime structure are taken to
be low-resolution observations of fundamental stringy fields. These points show
that one has to be cautious with the claim that string theory has no empirical con-
sequences: it does predict the observation of GR including observable objects like
black holes, and it does have predictions for QFT scattering (although a stringy
realization of the standard model would be needed to derive specific predictions).
String theory does have empirical consequences, and its concepts empirical signifi-
cance. What it lacks (so far) are specific novel predications, testable using current
technologies.

(2) But how cogent is the interpretation? The most questionable point concerns the
existence (at least approximately) of suitable coherent states of strings: string
theory as developed is inherently perturbative, and the possibility of such states is
postulated in a unknown exact theory. That is no argument against the picture,
and indeed once the basic framework of perturbative string theory is accepted, it is
a small step to coherent states; but the point does emphasize how the interpretation
is speculative (like string theory itself).

But supposing that coherent string states exist, and indeed that they have an
effective description as coherent states of quanta, one must ask about the classical
limit: as a general quaestion about QFT, do coherent states adequately explain the
observed behaviors of classical fields? There is remarkably little discussion of this
question in the literature ([14] is a significant exception), but one question in the
present case is whether graviton coherent states remain coherent long enough to
model cosmological scenarios? States will retain their coherence, and classical-like
behaviour, only if their equations of motion are linear; so graviton coherent states
will certainly lose their coherence, because of the non-linearity of the field equations.
But on what time scales should we expect to see non-classical, quantum behaviour
as a result? This is a general question about a canonically quantized metric, and
addressed by [9] for a Schwarzschild black hole using the Wheeler-DeWitt frame-
work: they find the dispersion time to be 1073 × (mass in solar masses)3 seconds,
for a black hole with initial uncertainty of the order of Planck length. This is a
comforting 56 orders of magnitude greater than the age of the universe (and of the
order of the Hawking radiation time) for a solar mass black hole! In short (even
if this is a substantial over-estimate), there is reason to suppose that the quantum
state of spacetime will have an effective classical description for periods long enough
for cosmology – as the interpretation does. (A similar set of questions can be asked
about Dp-branes: what kind of field-theoretic object could they be from both the
string and classical perspectives?)

(3) We can – finally – directly address the question raised by Bokulich and Curiel
regarding the relation between matter and physical geometry. According to the
standard interpretation the ‘conversion’ of classical matter to geometry, and the
reconversion of geometry back to matter in the form of quantum radiation is ul-
timately a transition between different multi-string states. In the first case from
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coherent states of strings in a matter mode to coherent states of strings in a gravi-
ton mode; in the latter, back from coherent states of stringy gravitons to stringy
matter quanta.

Once again, with only perturbative string theory in hand one does not have a
full theory of how these transitions occur. However, the mechanism (3) provides a
model for what may occur; namely excitations of the branes at the center of the
black hole decay into stringy quanta in the exterior. True, the specific quanta are
themselves gravitons, but presumably other channels to matter quanta are possible.
Moreover the emitted gravitons are not in a coherent state, so do not contribute to
the classical geometry; when gravity is unified with other forces in a QFT approach
like string theory, not only do matter and geometry become fungible, there will be
states that lie between them – graviton states that are not coherent.

Lastly, it is worth noting the implications of the model for the question of space-
time singularities, something also raised in [1]. Here one can make something of a
virtue of ignorance. As we noted, the perturbative string account depends on the
radius of curvature being large compared to the string scale, so the scheme will
simply break down at finite curvature, and no singularity is implied. Of course, ig-
norance is also a vice, since the unknown full theory is needed to say what replaces
the singularity (though techniques employing dualities may shed some light). At
the level of the ideas developed here, one can only suppose that the quantum state
in the region of the singularity will cease to be coherent, and no classical effective
description will apply. Then according to string theory singularities are not objects,
or edges, but are ‘merely inadequate descriptions that will be dispensed with by a
truly fundamental theory of quantum gravity’ as Bokulich and Curiel ask.
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