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Abstract In this paper I detail three major mathematical developments that
led to the emergence of Yang-Mills theories as the foundation for the standard
model of particle physics. In less than ten years, work on renormalizability,
the renormalization group, and lattice quantum field theory highlighted the
utility of Yang-Mills type models of quantum field theory by connecting poorly
understood candidate dynamical models to emerging experimental results. I
use this historical case study to provide lessons for theory construction in
physics, and touch on issues related to renormalization group realism from a
more historical perspective. In particular, I highlight the fact that much of
the hard work in theory construction comes when trying to understand the
consequences and representational capacities of a theoretical framework.

1 Introduction

In the mid-1960s, particle physics was in a bit of a theoretical bind. With larger
and larger accelerators finding a seemingly endless supply of new resonances,
the lack of a mathematically well-defined theoretical framework left theorists
constructing relatively narrow phenomenological models in an attempt to sys-
tematize the new experimental findings (cf. Brown et al. (1989)). This lack
of theoretical foundation did not stop the development of more sophisticated
phenomenological models—like the current algebra techniques of Gell-Mann—
or the discovery of important properties of certain interactions—such as the
nonconservation of parity in the weak interactions. However, in the mid-1950s
quantum field theory—after a brief moment of glory in the wake of the confir-
mation of predictions from quantum electrodynamcs (QED)—quickly fell out
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of favour as a framework for particle physics. By the mid-1960s, there was
no longer any candidate replacement for quantum field theory either, with
S-matrix theory having lost steam by this point as well (cf. Cushing (1990)).

Over the next ten years, quantum field theory made a substantial come-
back. By 1975, the Glashow-Salam-Weinberg electroweak model and quan-
tum chromodynamics (QCD) formed the foundation of the emerging standard
model of particle physics. In the intervening period, a small group of theo-
rists continued to work on the foundations of quantum field theory—with a
focus on Yang-Mills theories in particular—and discovered that the represen-
tational capacity1 of the mathematical formalism was different than originally
expected, and sufficiently rich to both account for known strong and weak
phenomena. New dynamical models provided concrete predictions, which were
subsequently tested and largely confirmed. In this paper I will outline the ma-
jor mathematical discoveries regarding Yang-Mills models of quantum field
theory that led to their rapid reascendancy during this period. The majority
of the work done involved constructing new mathematical techniques for ex-
ploring the space of possible models of Yang-Mills theory. This is a case where
foundational analysis of the theoretical framework of a discipline led to the
construction of new mathematical tools for constructing dynamical models
and connecting the dynamics to experiment and phenomenology.2 The ma-
jor techniques necessary for the acceptance of Yang-Mills models were: a full
proof of the renormalizability of massless and massive Yang-Mills models, the
use of renormalization group techniques to prove asymptotic freedom, and lat-
tice quantum field theory as a tool for numerical computations in the strong
coupling regime. Analysis of theory construction in the past does more than
provide a philosophical depth of understanding to the history of physics; one
potential contemporary use for such analysis is to learn generalizable epis-
temic principles that may serve as useful heuristics for theory construction
today. A general lesson from this case study is that theories do not wear their
consequences on their sleeve; it often takes a fair deal of analysis—including
development of new mathematical tools—in order to figure out what a theory
implies. These new discoveries are often more than deductive consequences of
the original equations—they add to the content of the theoretical framework.

The remainder of this paper is organized as follows. In §1.1 I will introduce
and explain the terminology I will use for discussing the various components of
high-energy physics (HEP) in this case study. The terminology is not common,
but I think it provides a more fine-grained distinction of the “pieces” of a
scientific discipline, at least one that is highly mathematized. One goal of the
present work is to provide a set of distinctions fine enough to account for

1 By “representational capacity” I mean the ability of a model to properly capture the
relevant phenomena for its domain. In the case of QCD, for example, it is important that
it exhibit asymptotic freedom and quark confinement in order to match the experimental
results from deep inelastic scattering and the absence of observed free quarks, respectively.
I do not mean representation in some deeper sense, implying that we should therefore be
realists about the model. That, I think, requires an extra step, and is outside the scope of
this paper.

2 These terms will be defined in §1.1.
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the details of successful (and unsuccessful) theory construction, but general
enough to apply outside of the domain of post-World War II particle physics.

Following this, in §2 I outline the status of Yang-Mills models circa 1965,
and the epistemic context in which they were rejected. §3 provides a condensed
history of the development of renormalization proofs (§3.1), renormalization
group equations (§3.2), and lattice quantum field theory (§3.3). Finally, in §4,
I discuss important lessons from this case study for theory construction in
physics (§4.1), the use of analogies in physics (§4.2), and current discussions
in the philosophy of quantum field theory (§4.3).

1.1 Terminology

My analysis below will split HEP into distinct components. The goal of this
division is to clarify how these parts—often considered independently in philo-
sophical analyses of scientific practice, or at least at a more coarse-grained
level—work together in this successful era of theory construction. There are
many ways to divide the practice of physics, and I do not claim this division
is unique. It does, however, illuminate the high degree of collaboration and
interaction between what is typically called theory and experiment in this era,
and is sufficiently general to serve as a starting point for analysis elsewhere in
physics.

By theoretical framework, I mean the network of principles and general
mathematical constraints that serve as the common language of a research
program. Currently, the theoretical framework underlying HEP is quantum
field theory. In the 1960s, however, there was distrust in quantum field the-
ory as a general framework, and so the agreed upon theoretical framework
was much more minimal. It consisted of a relativistic causal structure and
conservation laws carried over from non-relativistic quantum theory. New-
tonian classical mechanics is another example of a theoretical framework in
physics, containing concepts such as force, inertia, mass, and so on. Within
a theoretical framework, one constructs dynamical models to describe partic-
ular interactions. As a paradigmatic example, QED constitutes a dynamical
model in HEP, as it describes the electromagnetic interaction between elec-
trons, positrons, and photons. I use dynamical model in the way most would
use the term “theory,” to disambiguate the particular models of interactions
from the theoretical framework guiding and constraining their construction.
I include the word “dynamical” to highlight the fact that in physics, these
models are often encoded in some set of dynamical evolution equations.3 Typ-
ically, quantum field theory and QED would both be described as “theories,”
though the latter is but an instance of the former. Given this distinction, it

3 This is independent of the way in which dynamical models are interpreted. Dynamical
models do not require a realist or mechanistic underlying interpretation. The dynamical
models in the standard model—quantum chromodynamics and the electroweak model—
are still the subject of heavy interpretive controversy, and many physicists involved in its
construction take a clear instrumentalist view of the standard model. Nevertheless, the
standard model is a clear case of a collection of dynamical models.
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may be unclear what I mean by “theory construction.” For the purposes of
this analysis, theory construction is the process by which a theoretical frame-
work is established, and a consensus collection of important dynamical models
emerges within that framework. For HEP, this is equivalent to the construc-
tion of the standard model and the working out of quantum field theory as its
basis.

I further divide models into dynamical and phenomenological models, for
a few reasons. First, the term “model” is ambiguous. In the first sense, we can
understand the term as used in model theory. Then a model is simply an in-
terpretation of a theory. Take, as an example, the theory of general relativity.
Mathematically, any model of the theory is given by a specification of a tuple
〈M, gµν , Tµν〉 including the manifold M, a pseudo-Riemannian metric tensor
gµν , and a stress energy tensor encoding the matter content, Tµν . In terms
of model theory, the class of these models satisfying the Einstein equations
constitutes the theory of general relativity, and any particular specification is
a model of the theory.4 Hence, an FLRW cosmological solution to the Ein-
stein equations is a model of general relativity, though it forms the basis for
the theory of cosmology. This is not usually the sense of the word “model”
meant in the modeling literature in philosophy of science. This second mean-
ing usually refers to partial constructions—with input from a the relevant
theory, other auxiliary theories, and perhaps phenomenology—meant to more
directly model some proper subsystem that falls under a particular theory. My
terminology is distinct from these two senses, though there is overlap between
my phenomenological models and partial constructions. Some model-theoretic
models—like those in general relativity—would also be instances of dynamical
models in my sense. However, as will become clear, dynamical models in HEP
are not so rigorously or formally defined.

Experiments in high-energy physics produce data, and from these data
phenomena are constructed.5 Phenomena are built from experimental data
and expectations shaped by dynamical models or the theoretical framework.
Mathematical methods and tools are used at every step of the process, in order
to generate predictions, construct phenomena, and compare the two. As I will
argue below, the mutual influence between experiment, mathematical tools,
and a theoretical framework was essential to the construction and acceptance
of QCD and the electroweak model. First I will provide a brief “state of the
discipline” for HEP in this era.

4 I use the example of general relativity here because it fits particularly well with model
theory. Quantum field theory, on the other hand, is nowhere near as clearly or rigorously
defined, and specifying models of quantum field theory in this sense is extremely difficult.

5 The data-phenomena distinction was first explicated by Bogen and Woodward (1988).
This distinction is of some importance to my view, as phenomenological models, though
closely connected to experiment, can only be used to describe experimental phenomena, not
the data. In what follows I largely gloss over this distinction, and refer to the comparison of
experimental data with phenomenological models. These statements should be understood
to be shorthand for the conversion of experimental data into phenomena, followed by the
comparison with phenomenological models.
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2 Yang-Mills theories in the 1960s

Before examining the theoretical developments of the late 1960s and early
1970s, it is important to understand the epistemic situation regarding Yang-
Mills theories in the mid-1960s. In this section, I outline the prevailing atti-
tudes regarding gauge freedom (§2.1) and renormalization (§2.2), and discuss
the reasons for rejecting quantum field theory as an adequate framework for
HEP (§2.3).

2.1 Gauge freedom

Yang and Mills (1954) created a construction procedure for local field theories,
in analogy with QED. The idea is that one starts with a Lagrangian density
describing a set of fields obeying some global internal symmetry. In QED this
is the U(1) phase symmetry, ψ(x) → exp(iα)ψ(x), α ∈ [0, 2π), though Yang
and Mills generalize this to a transformation under a global SU(2) isospin
symmetry, ψ(x) → exp(iαat

a)ψ(x) = Sψ(x), where the ta are generators
of the SU(2) symmetry group, and S = exp(iαat

a). The gauge principle is
a way to elevate the global symmetry group to a local symmetry group, so
that the phase parameters can vary with spatiotemporal coordinates: αa →
αa(x).6 Standard Lagrangian densities involve derivatives of the fields, and
these must be suitably modified to ensure that the new local symmetry leaves
the Lagrangian invariant. One accomplishes this via the introduction of a
covariant derivative Dµ = ∂µ−igBµ, such that S[Dµψ] = Dµψ

′. This amounts
to the introduction of a minimal coupling to a new vector field Bµ = Bµat

a,
whose transformation properties are constrained to be

Bµ → S−1BµS −
i

g
(∂µS)S−1. (2.1.1)

In QED, this new vector field is naturally assigned to the photon, such that
electromagnetic interactions occur between two charged particles and a pho-
ton. More generally, the new vector field will correspond to some force me-
diating boson, possibly possessing internal structure. The final ingredient to
complete the new so-called “gauge theory” is to introduce a kinetic energy term
for the new vector field Bµ. This is given in analogy with electromagnetism as

Lkin = −1

4
FµνF

µν ; Fµν = ∂µBν − ∂νBµ − [Bµ, Bν ] . (2.1.2)

Yang and Mills went through the explicit construction for a generalization
of isospin invariance of the strong interaction, but the procedure is easily
generalized to other internal symmetry groups. The key was generalizing the

6 The term “gauge” to describe the local symmetry operations comes from Weyl (1918),
who sought to expand general relativity by allowing the metric field to include local varia-
tions to the length scale.
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properties of the gauge field and its kinetic energy term from the Abelian U(1)
group of electromagnetism to general non-Abelian groups.

The classical form of the Yang-Mills Lagrangian does not contain an ex-
plicit mass term for the gauge boson, since this term would violate gauge in-
variance. However, at the time of publication, Yang and Mills were uncertain
of the implications for boson mass in a fully renormalized quantized theory.
Due to the difficulties of renormalization, they “[had] therefore not been able
to conclude anything about the mass of the [B] quantum” (p. 195). Yang and
Mills argued that mass for the gauge boson was an important concern for the
viability of the Yang-Mills theory as a quantum field theory of strong inter-
actions. “[I]t is inconsistent with present experiments to have their mass less
than that of the pions, because among other reasons they would then be cre-
ated abundantly at high energies and the charged ones should live long enough
to be seen” (p. 195).

Rather than awaiting a solution to renormalization questions for Yang-Mills
theories—which wouldn’t come about until about 1970—many began adding
mass terms in for gauge bosons by hand. Glashow’s (1961) early model of elec-
troweak unification focused on a Yang-Mills type theory with an SU(2)×U(1)
gauge group. He proposed an idea of partial Lagrangian symmetries, where all
terms in the Lagrangian except mass terms obeyed the partial symmetry. Sym-
metry concerns were important for Glashow in order to understand partially
conserved currents, such as strangeness and what he called “isobaric spin.”
Gauge invariance and renormalizability weren’t brought into Glashow’s dis-
cussion. He had hoped that there would be some mechanism that would ensure
renormalizability and generate mass, but this wasn’t discovered until ’t Hooft
proved that massless Yang-Mills theories undergoing spontaneous symmetry
breaking were renormalizable, discussed below in §3.1. Gauge invariance was
explicitly violated by the mass terms, and Glashow’s argument involving par-
tial symmetries did not demonstrate that gauge invariance would be restored
upon quantization. Given the analogy with QED—where gauge freedom rep-
resented mathematical redundancy and all physical quantities had to be gauge
invariant—it was hard to see how mass terms that vary with gauge could be
considered physical. In the next section I will discuss the status of renormal-
ization, and how this further influenced the rejection of gauge theories.

2.2 Renormalization

Renormalization was initially thought of as a means to “cure” relativistic elec-
trodynamics of its divergences. One major problem with quantizing the elec-
tromagnetic interaction was that the formalism was plagued with divergent
quantities.7 Arguments were given justifying the straightforward neglect of

7 Divergences were also rampant in the classical relativistic theory. Unlike for nonrela-
tivistic models of the atom—for which quantization introduced stability—quantization did
not solve the divergence problem. Quantum electromagnetism suffered from logarithmic di-
vergences instead of the steeper linear divergences of the classical theory, but the divergences
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some of these infinite quantities, and subtraction procedures could be used
to remove certain divergences. For example, the energy of the ground state
of the Hamiltonian operator diverges in quantum field theory, but physicists
at the time argued on physical grounds that only differences in energy from
the ground state were measurable, and so one could effectively set the ground
state energy to zero without changing physical predictions. In a certain sense,
this “renormalizes” the vacuum energy for the theory.8 However, further diver-
gences occur within the theory, leading to two distinct problems. First, since
electrodynamics is inherently relativistic, a relativistically invariant renormal-
ization procedure was needed. If a subtraction procedure could only be carried
out under a special foliation of spacetime, it was unclear if the new renormal-
ized theory would be Lorentz invariant in the right ways. A manifestly Lorentz
invariant procedure would ensure that one did not rely on a privileged reference
frame. Second, the renormalization procedure could only be effective if there
were a finite—and preferably a small—number of divergences to be removed
from the Lagrangian or Hamiltonian. These problems were solved in tandem,
independently by Tomonaga (1946), Schwinger (1948; 1949), and Feynman
(1949). Dyson (1949a; 1949b) proved that the three approaches were equiva-
lent, and strengthened the proof of renormalizability for QED. A brief account
of the solutions to these problems is outlined below.9

Tomonaga (1946) developed methods for generating manifestly Lorentz-
invariant generalizations of the canonical commutation relations of nonrel-
ativistic quantum theory, and his later work uses this formalism to formu-
late a relativistic theory of the photon-electron interaction. His idea was to
use a hybrid of the Heisenberg and Schrödinger representations for the field
operators—now known as the interaction picture—to develop four-dimensional
commutation relations. In a manifestly Lorentz-invariant formulation of field
theory, invariant subtraction procedures for removing the infinite quantities
were therefore easier to formulate. Schwinger (1948; 1949) showed that the
difficult divergent quantities in QED could be absorbed into the physical elec-
tric charge—due to vacuum polarization effects—and the electron mass—due
to electron self-interaction effects. He further showed that there were no anal-
ogous divergences in the photon self-energy.

remained. It wasn’t until the advent of QED that one had a (perturbatively) divergence free
formulation of relativistic electrodynamics—quantum or classical.

8 In more modern terms, renormalization is a process which occurs after a regulariza-
tion procedure. Regularization is a process by which divergent quantities are replaced by
finite quantities depending on some arbitrary regularization parameter. Renormalization,
on the other hand, is a process in which one takes the regularized theory and determines
the “physical” form of the relevant parameters in the theory—usually masses and coupling
constants—in such a way that they do not depend on the value of the regularization pa-
rameter. If this can be done, then the theory is renormalizable. A straightforward removal
of the ground state energy value is therefore not a renormalization in this modern sense,
but earlier views regarding “renormalization methods” were closer to “removing divergences
from a theory.” In this older sense of the term, subtracting the ground state energy was a
renormalization of the Hamiltonian.

9 For a more comprehensive account of the history of the development of QED, see Schwe-
ber (1994).
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Though the divergences are still problematic, the fact that they can be lim-
ited to two sources is promising for the predictive power of QED. Schwinger
supposed that some future theory would cure these divergences. In the absence
of this successor theory, if the divergences are limited to a small number of
physical quantities, then QED can still be successful so long as they are prop-
erly renormalized away, replacing the divergent mass and charge with those
“true” empirically determined values.

Feynman (1948) then developed a physical motivation for modifying QED
to include the relativistic cutoff, at least in cases involving virtual photons.
In a following paper, Feynman (1949) introduced the now well-known path
integral formalism for QED, and showed that a relativistic cutoff procedure
would yield results equivalent to Schwinger’s Hamiltonian approach when the
quantities calculated could be shown to be independent of the cutoff value
(i.e., were well-defined in the limit taking the cutoff to infinity). The great
advantage of Feynman’s path integral approach was that it handled collision
interactions in a particularly simple way. Feynman diagrams could be used
to visualize the processes, and simple rules for moving from the diagrams to
scattering amplitudes for collision processes were almost algorithmic in their
simplicity.10 Dyson (1949a) showed that the Tomonaga, Schwinger, and Feyn-
man formalisms are all equivalent when calculations can be carried out in all
three, and introduced a new renormalization procedure for Schwinger’s formal-
ism. A few months later, Dyson (1949b) demonstrated that the formalisms of
Feynman and Schwinger express the same underlying theory, insofar as their
S matrix elements agree (p. 1736).

More importantly, the paper showed that QED was renormalizable—that
is, it yields finite S matrix elements to all orders. The divergences are absorbed
into the physical mass and charge parameters using a relativistically invari-
ant cutoff procedure to separate out the divergent parts of a given S matrix
element, and absorb them into the physical charge or mass order-by-order.
Though Dyson remarks on the utility of the S matrix for prediction, he is
puzzled by the structure of QED:

The surprising feature of the S matrix theory, as outlined in this pa-
per, is its success in avoiding difficulties. Starting from the methods of
Tomonaga, Schwinger and Feynman, and using no new ideas or tech-
niques, one arrives at an S matrix from which the well-known diver-
gences seem to have conspired to eliminate themselves. This automatic
disappearance of divergences is an empirical fact, which must be given
due weight in considering the future prospects of electrodynamics. Para-
doxically opposed to the finiteness of the S matrix is the second fact,

10 The resulting integrals, however, are not guaranteed to be amenable to analytic solution.
It is still the case that diagrams with a higher order in the coupling constant α lead to inte-
grals that are enormously difficult to compute. For example, one major empirical success of
QED is the high degree of precision match between the experimentally determined anoma-
lous magnetic moment of the electron and the value predicted as a perturbative expansion
of α in QED. The current state of the art calculation cannot be carried out analytically, and
provides a prediction to fifth order in α, or tenth order in e (Kinoshita, 2013).
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that the whole theory is built upon a Hamiltonian formalism with an
interaction-function which is infinite and therefore physically meaning-
less. (p. 1754)

In order to reconcile the seeming paradox, Dyson chose to interpret the cutoff-
dependent QED as representing a physical limitation to the possible mea-
surements in the theory. If we idealize to an observer limited in measurement
precision only by the principles of relativity and quantum theory (i.e., ~ and
c as the fundamental limiting constants), then the original Hamiltonian pic-
ture would be accurate, and all physically meaningful quantities would di-
verge. The cutoff-dependent renormalized theory, in contrast, represents the
fact that there are other physically relevant limitations on the precision of our
measurements, including atomic scales and electromagnetic couplings, since
our measuring equipment is composed of matter whose chief interactions are
electromagnetic. Dyson shared Schwinger’s hope for a more complete theory as
a successor to QED, in which the divergent Hamiltonian formalism will appear
as a limiting case when infinitely precise measurements are allowed. So already
we see a dissatisfaction with the cutoff-based renormalization procedure, even
by those who invented it. Though a successful basis for calculation, the lack
of principled basis for the cutoffs was thought to represent an incompleteness
to QED.

Stueckelberg and Petermann (1953) showed that the different theories one
arrives at when introducing different cutoff procedures are all related, and a
theory with cutoff Λ1 is related to one with cutoff Λ2 by a group transforma-
tion. This is the origin of the term “renormalization group.” Gell-Mann and
Low (1954) utilize their independent formulation of the renormalization group
to examine the asymptotic behaviour of QED. They start by introducing a
regularization parameter λ in such a way that the physical electric charge is
a function of the bare charge and λ, e = eλ. The new electric charge serves
to interpolate between the long-distance physical charge and the bare charge,
such that lim(λ → 0)eλ = e and lim(λ → ∞)eλ = e∞. Gell-Mann and Low
find that the family of parameters eλ obey a differential equation of the form

λ2
de2λ
dλ2

= f(e2λ,m
2/λ2), (2.2.1)

where the function f has a power series expansion, and the high energy values
λ� m are approximated by the function f(e2λ, 0). Using this approximation,
they show that the bare charge e∞ is either infinite, or a root of the equation
f(e2∞, 0); in both cases this is independent of the physical charge e. This is the
first time that renormalization is quantitatively connected to the behaviour of
QED at high energy scales, and the indication here is that the electric charge
displays asymptotic divergence.

It is worth noting that most of quantum field theory in the 1950s was
largely done within the canonical Hamiltonian formalism. It turns out that
the choice of formalism is very important for proving renormalizability, and
Yang-Mills theories are easiest to renormalize either within the path integral
formalism or directly at the level of Feynman diagrams.
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By the mid-1960s, those thinking about renormalization in quantum field
theory would have had in mind the subtraction procedures of Tomonaga,
Schwinger, Feynman, and Dyson, and perhaps the scaling behaviour of QED
as investigated by Gell-Mann and Low. The reservations regarding the phys-
ical meaning of subtraction renormalization would have also been prevalent,
and this was one of the reasons for a general distrust of quantum field theories
as a basis for the strong and weak interactions.

2.3 Rejection of local field theories

Despite the empirical success of QED, by the mid-1960s most physicists were
convinced of the futility of using quantum field theory as a foundation for the
rest of HEP. Though the Yang-Mills procedure provided a recipe for generating
field theories involving gauge bosons and nearly arbitrary internal symmetry
groups—a huge advantage given the prevalence of group theory and symme-
try considerations in particle classification—it appeared to only be suitable
for massless gauge bosons. Further, its status as a renormalizable theory was
unknown. Renormalization methods were in their infancy in the mid-1960s,
and most physicists were skeptical of renormalization even in the successful
domain of QED.

Both the strong and weak nuclear interactions are short range interactions,
and this means that, if they are mediated by force-carrying bosons, then these
bosons must be massive.11 As mentioned above, adding mass terms to a Yang-
Mills Lagrangian spoils gauge invariance and adds further complications to the
renormalizability question.12 The developments in renormalization techniques
also seemed to suggest that the electric charge in QED really was divergent at
high energies. Most physicists more-or-less shared the views of Dyson, Feyn-
man, and Schwinger, and thought of QED as a useful tool for predictions, but
unsuitable as a standalone fundamental theory. The simple cutoff and sub-
traction renormalization methods were viewed as a pragmatic way to conceal
this defect of QED.

Other groups were more vocal about the rejection of quantum field the-
ory as an inherently incoherent framework for particle physics. Landau and
his collaborators (Landau et al., 1954) in Russia were also investigating the
structure of QED, and found an ultraviolet pole that has since come to be
known as the Landau pole. The argument is similar to the scaling behaviour
investigated by Gell-Mann and Low. They show that the coupling constant

11 The heuristic argument for the connection between range of interaction and mass relies
on a limit based on Heisenberg’s uncertainty principle. The energy-time version of the un-
certainty relation is ∆E∆t ≥ 1/2~. The timescale on which a boson can exist is related to
the rest mass as t ≈ ~/(2mc2). So a particle traveling near the speed of light would have a
range R ≈ ~/(2mc). This argument is initially due to Wick (1938), explicating the Yukawa
(1935) model of nuclear forces.
12 Even today, the mass gap problem in Yang-Mills theories is a topic of interest among

mathematically inclined physicists. The Clay Institute has offered up $1 million as a reward
for solving the mass-gap problem as one of their seven millennium problems.
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for theories like QED diverges as the cutoff momentum is taken to infinity,
and they interpreted this (incorrectly, as it turns out) to be a general fea-
ture of quantum field theories. Unlike the more conservative distrust of QED
expressed by the American physicists who created it, Landau et al. thought
their result showed that no quantum field theory could be a candidate for a
complete theory of fundamental particle interactions. They took this as rea-
son to abandon the quantum field theory formalism altogether, and this view
was influential for Chew and the development of the S-matrix program (cf.
(Cushing, 1990, pp.129-30)).

The S-matrix theory emerged as a rival research program for hadronic
physics in the late 1950s, and its early phenomenological successes were taken
by Chew, Goldberger, and others as a further sign that quantum field the-
ory had run its course. The S-matrix theory was inspired by the mathemat-
ical problems with quantum field theory as well as the surprising successes
of dealing directly with constraints on the properties of a scattering matrix.
Heisenberg (1946) started an S-matrix project in the 1940s, which was largely
forgotten with the rise of QED. However, Chew, Gell-Mann, and Goldberger,
initially inspired by Dyson’s S-matrix treatment of QED, used the S-matrix
formalism as a self-consciously phenomenological framework with which to
make predictions for hadronic physics (cf. Cushing (1990)). The principles of
S-matrix theory became more complex, and by the mid-1960s even this rival
to quantum field theory was treated with skepticism.

So, while the tools were in place that would eventually be used as the
foundation of the standard model of particle physics, their properties were
poorly understood. Over the next decade, however, new mathematical and
phenomenological developments would lead to the rapid reemergence of Yang-
Mills theories. These will be outlined in the next section

3 The reemergence of Yang-Mills theories

In the late-1960s, the constituent quark model was accepted as a useful fiction
for classifying new hadronic particles, and Gell-Mann had begun a program
of current algebra as an extension of the spirit of the S-matrix program (cf.
Cao (2010)). Weinberg (1967) published a paper on a plausible field-theoretic
model of electroweak unification, but this was largely ignored, for the rea-
sons given in the previous section. There was a general distrust of quantum
field theory, with the renormalizability of Yang-Mills type models still in ma-
jor doubt—especially models with massive bosons. Phenomenology regarding
the weak interaction was handled with a combination of current rules and
the Fermi-model. Very quickly, however, experimental discoveries and mathe-
matical advances led to the widespread acceptance of Yang-Mills theories as
the foundation for both the strong and weak interactions, and quantum field
theory regained its place at the foundations of particle physics.

In this section I will outline some of these developments, highlighting the
ways in which the refinement and development of new mathematical tools
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led to discoveries about properties of Yang-Mills theories that fit well with the
emerging experimental evidence, especially for the strong interaction. §3.1 dis-
cusses the developments in understanding renormalization, leading to a proof
of such for both pure and spontaneously broken Yang-Mills theories. §3.2 out-
lines the development of renormalization group methods, used to analyze the
asymptotic behaviour of quantum field theories underlying the strong inter-
action. The renormalization group methods, as emphasized by Wilson, are
generic tools for handling systems undergoing behaviour for which a wide range
of energy scales are not only all relevant, but highly nonseparable. Finally, §3.3
outlines the lattice field theory developments, which allow for analysis of the
low-energy (and therefore strong coupling) regime of the strong interaction,
and provide a plausibility argument for quark confinement.

3.1 Proof of renormalizability

While the majority of physicists working in America and Western Europe were
focused on current algebra, a few physicists retained an interest in quantum
field theories. Most notable for this paper was the work of Martinus Veltman,
who worked on renormalizing Yang-Mills theories in relative isolation in the
late 1960s, until his student Gerard ’t Hooft joined him in the early 1970s. The
work of ’t Hooft ended up with a proof of the renormalizability of massless
Yang-Mills theories, including ones with spontaneously broken symmetries.

3.1.1 Veltman’s work

By the mid-1960s, the dominant formalism13 in which to do quantum field
theory, or to calculate S-matrix elements, was the canonical operator formal-
ism. Within this formalism, one begins with a manifestly Poincaré-invariant
Lagrangian density and uses it to construct a Hamiltonian operator in terms
of the fields and their corresponding canonical field momenta. Canonical quan-
tization proceeds by imposing (anti)commutation relations between the fields
and their conjugate momenta (fermion) boson fields,

[φ(x, t), π(y, t)]± = i~δ3(x− y), [φ(x, t), φ(y, t)]± = [π(x, t), π(y, t)]± = 0,
(3.1.1)

where φ is a field operator, π = ∂tφ is its canonical momentum, and [·, ·]±
represents the anticommutator (plus) and commutator (minus), respectively.
The canonical operator formalism has the virtue of being highly similar to non-
relativistic quantum mechanics, and guarantees the unitarity of the resulting
S-matrix. However, in moving from working with a Lagrangian density to
a Hamiltonian, Poincaré invariance becomes highly obscure. The canonical

13 If one can call any formalism for quantum field theory “dominant” at this time. Trust
in the reliability of quantum field theory was at an all time low, but the formalism was still
used on a heuristic basis in order to arrive at the S-matrix. The S-matrix was then thought
to contain all of the physical content involved in particle physics.
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formalism also turns out to be ill-suited to scattering problems, where the
path integral formalism excels.

In the path integral formalism, one starts with the same Lagrangian density
for a classical field theory,14 and inserts this into the classical action. A par-
tition function—analogous to a partition function in statistical mechanics—is
then constructed as a functional integral over field configurations in the action,

Z[φ] =

∫
Dφ exp

[
i

~

∫
d4xL(φ(x), ∂µφ(x))

]
, (3.1.2)

where the term inside the exponential is i/~ times the classical action, and
L is the classical Lagrangian density. The functional integral “quantizes” the
classical action by including non-extremized field configurations, i.e., “paths”
for which δS[L] 6= 0. The classical limit corresponds to focusing on the extrem-
ized action, where effectively only this one field configuration has a measurable
contribution. In the path integral formalism, Poincaré invariance remains ex-
plicit, and scattering amplitudes are easily related to the functional integral.
However, unlike the canonical operator formalism, unitarity is not guaranteed.

Finally, non-Abelian gauge theories complicate both formalisms signifi-
cantly. Considering the fact that Yang-Mills type theories involve non-Abelian
gauge fields, these complications are highly relevant for the epistemic envi-
ronment of the mid-1960s. Many Russian physicists worked on modifying the
path integral formalism to account for non-Abelian gauge freedom (Faddeev
and Popov, 1967). Veltman, on the other hand, had the insight to work directly
with the Feynman rules for a theory. Rather than trying to prove renormal-
izability directly from the Lagrangian, or even from one of the two dominant
formalisms, Veltman found it much easier to work directly with the diagram-
matic representation of a theory (Veltman, 1997). As he later recounts, how-
ever, there is an additional step when working directly with the Feynman
diagrams:

a simple canonical transformation of fields may turn a perfectly rea-
sonable set of Feynman rules into an unrenormalizable mess. Let me
emphasize: unrenormalizable. An example of that is a gauge theory in
the physical (or unitary) gauge. That is an unrenormalizable theory.
Even if you subtract the known (that is, known from the renormaliz-
able version) infinities, you do not wind up with a finite theory. Green’s
functions have infinities all over the place. Only when you pass to the
S-matrix do these infinities go away, assuming that your regularization
method is quite perfect. (Veltman, 1997, p.149)

One can arrive at many, prima facie distinct sets of Feynman rules from the
same Lagrangian through simple canonical transformations prior to deriving

14 For quantum field theories involving fermions, the field theory has to be somewhat
artificial in that Grassmann fields are used in place of classical real-valued fields. This is to
ensure the appropriate anticommutation relations upon quantization.
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the rules.15 And even worse, renormalizability will only be provable for a small
subset—perhaps a singleton set—of Feynman rules. Most sets of Feynman
rules will actually be provably nonrenormalizable! This was another epistemic
hurdle that Veltman had to clear: a proof of renormalizability is an existence
proof in this paradigm. One must show that there exists a set of Feynman
rules for a theory that are renormalizable. Proofs of the nonrenormalizability
of a particular set of Feynman rules, which physicists at the time thought
amounted to proofs of the nonrenormalizability of the dynamical model as a
whole, do not actually tell one anything about the renormalizability of the
model as a whole. As a first step to the renormalizability of Yang-Mills type
theories, Veltman recounts one of the main tricks that he employed, the Bell-
Treiman transformation:

Introduce a free scalar field, not interacting with the vector bosons.
Now replace the vector field with some combination of vector field and
scalar field; at the same time add vertices such that the scalar field
remains a free field. Surely then the physics remains the same. But
the Feynman rules for the new theory were different: the propagator
for the W-field was replaced by the propagator for the combination,
and that combination could be chosen so as to lead to less divergent
Feynman rules. The price to be paid were the new vertices, and the new
particle entered as a ghost (remember that is was a free particle). That is
how ghosts entered my scheme. I called the technique the Bell-Treiman
transformation. Neither Bell nor Treiman was responsible. (Veltman,
1997, p.155)

I reemphasize that this was only a first step towards a proof of the renormal-
izability of Yang-Mills theories.16 In effect, the strategy Veltman took towards
renormalization was as follows:

1. Understand the relationship between a Lagrangian and its possible sets of
Feynman rules.

2. Use canonical transformations to manipulate the degrees of freedom such
that gauge-varying terms end up as free fields.

15 Note that canonical transformations are distinct from gauge transformations. A canon-
ical transformation is a change of field variables, leading to (anti)commutation relations
involving different field operators. Though this leads to the problem of unitarily inequiva-
lent representations in quantum field theory, fields related by canonical transformations are
generally thought to represent the same physical situation.
16 In the context of the above quote, Veltman was actually working on renormalizing explic-

itly massive Yang-Mills theory, which was ultimately a failure. What Veltman accomplished
was to renormalize massive Yang-Mills theory up to one loop. This was an important feat,
especially in light of the more modern view of the quantum field theories as being effective
theories of matter; a theory that is renormalizable to one loop can be used to generate
low-energy predictions on scattering. Fermi’s theory of the weak force was one-loop renor-
malizable, and Veltman further showed that Yang-Mills theory with an explicit mass term
was equally useful. The steps Veltman took here can also apply to the massless Yang-Mills
case, or the case where mass is obtained for the vector bosons through spontaneous symme-
try breaking.
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3. Find the “correct” set of such Feynman rules for a given Lagrangian, with
which to demonstrate renormalizability.

4. Tame divergences in groups, such that renormalizability is demonstrated
in steps (i.e., prove renormalizability to one-loop, then prove general renor-
malizability).

These techniques were then coupled with a more powerful regularization scheme
by Veltman’s student, Gerard ’t Hooft.

3.1.2 ’t Hooft’s work

While Veltman was working on renormalizing Yang-Mills theories, a topic he
“avoided dragging students into,” his student ’t Hooft expressed interest in
the field. Veltman conceded, but the compromise was that, “[f]or at least part
of their thesis work, I insisted on more phenomenologically oriented work”
(Veltman, 1997, p.166).

’t Hooft was initially inspired by the sigma model, constructed by Gell-
Mann and Lévy (1960), which treated pions as the fundamental fields, and
included a scalar sigma field whose vacuum state symmetry was spontaneously
broken, giving mass to the pions. ’t Hooft suspected that spontaneous sym-
metry breaking may be the appropriate mass generation mechanism to ensure
the renormalizability of Yang-Mills theories. This suspicion led to a particu-
lar strategy for working on the problem of renormalization: start by proving
the renormalizability of massless Yang-Mills theory, and then show that the
mechanism for spontaneous symmetry breaking does not spoil renormalizabil-
ity. This was a departure from Veltman’s work, as Veltman was focused on
explicitly massive variants of Yang-Mills theory.

The major obstacle for proving the renormalizability of massless Yang-Mills
theory in general turned out to be finding a gauge invariant regularization
scheme. The problem with contemporary cutoff procedures, or lattice regular-
ization, is that gauge invariance is spoiled, and gauge invariance is required in
order for the S-matrix determined from the theory’s Feynman rules to be uni-
tary.17 Further, explicitly gauge invariant regulators could be constructed, but
their complexity past a one-loop correction was unwieldy, and their complexity
obscured the unitarity and causality of the theory. What ’t Hooft discovered
was that a new regularization trick would solve the problem in a way that al-
lowed for easier order-by-order regularization, and which manifestly preserved
the unitarity and causality of the theory: dimensional regularization.

’t Hooft started with something much like the Gell-Mann and Lévy sigma
model, prior to spontaneous symmetry breaking. In effect, this is a Yang-Mills
theory with an additional scalar field introduced. The first hint of the new
regularization procedure came in an intermediate proof of the one-loop renor-
malizability of the sigma model. In order to provide appropriate counterterms
for contributions to the Feynman diagrams internal to the loop, ’t Hooft moved

17 As mentioned in §3.3, a gauge invariant lattice regularization procedure was eventually
introduced by Wilson (1974), but was not available to ’t Hooft at the time.
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to five dimensions during the regularization process. The one-loop renormaliz-
ability proof of the symmetric sigma model transfered over rather easily to the
case in which the symmetry is spontaneously broken. “[T]he step remaining to
be taken was a small one. As I knew from Cargeèse, the actual nature of the
vacuum state has little effect upon renormalization counterterms” (’t Hooft,
1997, p. 191). The transition was relatively easy because ’t Hooft realized
that the regularization only needed to preserve gauge invariance of the total
set of terms (plus counterterms) in the Lagrangian. A gauge fixing leading
to spontaneous symmetry breaking amounts to the introduction of individual
gauge-varying terms, though the model as a whole can remain gauge-invariant.

Fig. 1 A single fermion loop contribution to the self-energy of the photon. From this dia-
gram, one can easily understand the terminology of one-loop renormalization: terms like this
must be properly renormalized to prove one-loop renormalizability of a dynamical model.

One can see the new regularization and renormalization processes as follows
in an example from quantum electrodynamics (cf. ’t Hooft (1971a)). Consider
the contribution to the photon self-energy from a single fermion loop, as in
Figure 1. At a first pass, the integral associated with this diagram diverges
quadratically, but can be regularized by replacing the propagator (m+ iγk)−1

with a series of terms
∑
j cj(mj + iγk)−1 such that

c0 = 1, m0 = m,
∑
j

cj = 0,
∑
j

cjmj = 0,
∑
j

cjm
2
j = 0,

effectively adding a series of terms similar to the original propagator to the
integral. For finite mj , the new integral converges, and can be solved explic-
itly with a change of variables. Then one takes the limit of mj → ∞, j 6= 0
(keeping the cj constant), which is necessary in order to neglect terms in the
integral of order q/m2

j . The resulting expression, which I will refer to as Πµν , is
rather complicated, but importantly the resulting term does not satisfy gauge
invariance, and the renormalized photon mass term is not zero. The gauge
condition is of the following form:

qµΠµν(q) = 0, (3.1.3)

where qµ is the photon 4-momentum.
The offending portion of the expression is a rank one polynomial in q2,

and can simply be cancelled by the introduction of a counterterm in the La-
grangian. As ’t Hooft notes, “[t]hese terms [introduced to the Lagrangian] are
local and have dimension less than or equal to four, so that causality and renor-
malizability [respectively,] are not destroyed” (’t Hooft, 1971a, p.178). Though
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a simpler renormalization scheme exists for this term in QED, ’t Hooft’s pro-
cedure turns out to be generalizable beyond this particular propagator and be-
yond QED to Yang-Mills theories; rather than imposing fully gauge-invariant
constraints on the renormalization procedure, one can replace the propagator
with one of revised form and add counterterms to the Lagrangian to cancel
out the resulting terms that spoil gauge invariance. Arbitrary constants can
then be fixed by imposing conditions of the form of equation (3.1.3), which ’t
Hooft calls generalized Ward identities. So long as the counterterms are local,
and of dimension less than or equal to four, this procedure preserves explicit
locality and renormalizability of the overall Lagrangian.

The advantage of this procedure for massless Yang-Mills theories is that
the regularization is easier to define than procedures for which total gauge
invariance is manifest, while the desirable properties of locality and causality
are preserved. The trick in moving from QED to massless Yang-Mills is that
an additional term must be added to the denominator of the propagator to
regulate the Lagrangian in a gauge invariant manner. ’t Hooft motivated this
additional term (for one-loop) by assuming that the in-loop momenta actually
have five components, and that the fifth component for all had a fixed magni-
tude M . This results in an effective replacement of the gauge boson and scalar
particle propagators,

δabδµν
k2

→ δabδµν
k2 +M

(3.1.4)

δab
k2
→ δab

k2 +M
. (3.1.5)

Internal to the loop, the gauge boson will have a fifth polarization direction,
and this is treated as a new particle with its own Feynman rules. Imposing
the generalized Ward identities on a theory like this ensures renormalizabil-
ity, and the new M dependence serves as an effective regulator. The case of
spontaneous symmetry breaking relies on the same renormalization procedure,
and ’t Hooft (1971b) showed this in a follow-up paper using the example of a
partial breaking of SU(2) with a scalar isospin-1 boson.18

Getting beyond one-loop renormalizability turned out to require a different
approach to regularization, the hint of which is to be found in the above regu-
larization procedure. Moving from four to five dimensions internal to one-loop
was successful, but beyond one-loop renormalizability the trick was inade-
quate. ’t Hooft and Veltman (1972) generalized the procedure into a process
now known as dimensional regularization.

18 In the course of proving renormalizability of Yang-Mills theories, this was a minor step.
However, this second paper was hugely influential in the development of the Standard Model,
as it proved at least one-loop renormalizability of the Glashow-Salam-Weinberg electroweak
model. The model was therefore proven to be usable for first order predictions, which were
later tested and confirmed the adequacy of the model. By this time, ’t Hooft and Veltman
(1972) had demonstrated full renormalizability using the dimensional regularization proce-
dure (see below), and the electroweak model was accepted as the appropriate description of
the newly unified electromagnetic and weak interactions.
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The procedure suggested in [’t Hooft (1971a)] was based on the obser-
vation that the Ward identities do hold irrespective of the dimension of
the space involved. By introducing a fictitious fifth dimension and a very
large fifth component of momentum inside the loop suitable gauge in-
variant regulator diagrams could be formulated. This procedure breaks
down for diagrams containing two or more closed loops because then
the “fifth” component of loop momentum may be distributed over the
various internal lines. It was guessed that more dimensions would have
to be introduced, and thus the idea of continuation in the number of di-
mensions suggested itself. This is the basic idea employed in this paper.
(p. 190)

’t Hooft and Veltman define an analytic continuation of S-matrix elements
involving some number of loops in the complex n-plane, where positive in-
teger values of n correspond to a spacetime dimension of that integer. The
continuation is defined such that elements involving finite diagrams at n = 4
agree with the conventional results. Divergences in the perturbative expansion
can be shown to be poles in the complex plane at n = 4, and the generalized
expressions are analytic in n. Then renormalization is just a subtraction of
the poles, along with the proof of unitarity and causality of the elements for
all n given by ’t Hooft and Veltman. This amounts to the claim that, at a
given order in perturbation theory, the terms introduced to subtract off the
pole are real and local. Unitarity uniquely determines the imaginary part of
the Lagrangian from that of lower orders, so the new terms introduced at a
higher order cannot contribute in unexpected ways. The requirement that the
new terms are local is necessary to ensure causality.

Since the new dimensional regularization method could be applied equally
well to massless Yang-Mills theory and Yang-Mills with massive gauge bosons
from spontaneous symmetry breaking, ’t Hooft and Veltman proved the renor-
malizability of the electroweak model and what would become quantum chro-
modynamics. The missing ingredients for the latter—asympototic freedom,
confinement, and the presence of massless mediating bosons—were developed
in parallel, and will be discussed in the next two subsections.

3.2 Development of the renormalization group

The work of Gell-Mann and Low (1954) on the scaling behaviour of electric
charge in QED was not picked up in the particle physics community. By the
mid-1960s, work on scaling was done primarily in the realm of condensed
matter physics or classical statistical mechanics, where physicists’ efforts were
focused on understanding critical behaviour in phase transitions.

Near the critical point of a large system, some quantity related to the
system—called the order parameter—will abruptly change. At the critical
point, the susceptibility of the order parameter usually diverges. The main
theoretical example studied in the 1960s and 1970s was the Ising model of
a ferromagnet. In the simplest version of this model, one has a cubic lattice
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of spin degrees of freedom, for which the Hamiltonian includes only near-
est neighbour interactions between spins (causing their direction to correlate)
and the influence of an external magnetic field. At some critical tempera-
ture, the spins will spontaneously align, causing a global magnetization of the
material, i.e., M(T > TC) = 0 → M(TC) 6= 0. As the system approaches
the critical temperature from above, the correlation length—parameterizing
the average size of “blocks” of spins that are aligned—diverges.19 Kadanoff
(1966) developed a technique to quantitatively analyze the spin-spin correla-
tions for the Ising model near the critical temperature. In effect, he iterated a
coarse-graining procedure by which one would take 2× 2× 2 blocks of spins,
and treat these as contributing a single effective magnetic moment in the
Hamiltonian. These blocks would then enter into the Hamiltonian with simple
nearest-neighbour interactions, as in the original Ising model. The form of the
Hamiltonian would remain invariant under the iterated coarse-graining, while
certain physical parameters—the effective temperature and external magnetic
field—might be distinct from the original model. Thus there was a set of re-
lationships in which the temperature and external field at lattice spacing 2L,
T2L and B2L were given in terms of TL and BL. Kadanoff found that, at the
critical point, T and B would have fixed values, independent of the particu-
lar lattice spacing L. If the lattice spacing is allowed to change continuously,
rather than in integer multiples, one can derive differential equations governing
the change of T and B in terms of lattice spacing, which reach a fixed point
as L → ∞. These are formally similar to the differential equation governing
the scaling behaviour of the electric charge in Gell-Mann and Low’s analysis
of quantum electrodynamics. Kadanoff was one of the first to systematically
treat the scaling behaviour of classical systems in the language of quantum
systems. He reformulated the Onsager solution to the 2D Ising model in terms
of Green’s functions. This was a key step in the eventual use of scaling meth-
ods in quantum field theory, as Green’s functions are a particularly natural
tool in quantum field theory.

Kenneth Wilson, a former graduate student of Gell-Mann’s, became inter-
ested in the scaling of physical constants in quantum field theory, and began
with a close analysis of the Gell-Mann and Low paper. As mentioned above
in §2.2, this work used a dummy momentum index to interpolate between the
long-range, physically measured electric charge e, and the short range, bare
charge e0. The renormalization group equation (2.2.1) governs the change of
the electric charge eλ with the change in momentum parameter λ, and Gell-
Mann and Low show that eλ increases as λ → ∞, though it was unclear
whether the bare charge reached a fixed point or diverged. This work inspired
Wilson to consider the scaling behaviour of coupling “constants” in quantum
field theory, particularly in the high-energy domain of candidate dynamical
models of quantum field theory.

19 This is assuming an infinitely extended ferromagnet. In general, true critical phenomena
in statistical mechanics require the thermodynamic limit be taken as an idealization: the
volume and number of particles both go to infinity such that the density N/V of particles
remains constant.
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After studying the renormalization group treatment of Gell-Mann and Low,
Wilson developed a set of rules for short distance expansion for products of op-
erators in a quantum field theory, which behave singularly in the limit of point
products.20 These were based on high-momentum Feynman diagrams, trans-
formed into position space. Wilson (1965) used a similar method of analysis
on the fixed source meson theory, where

I realized that the results I was getting became much clearer if I made a
simplification of the fixed source model itself, in which the momentum
space continuum was replaced by momentum slices. That is, I rubbed
out all momenta except well separated slices, e.g., 1 ≤ |k| ≤ 2, Λ ≤
|k| ≤ 2Λ, Λ2 ≤ |k| ≤ 2λ2, Λn ≤ |k| ≤ 2Λn, etc. with Λ a large number.
This model could be solved by a perturbation theory very different from
the methods previously used in field theory. The energy scales for each
slice were very different, namely of order Λn for the nth slice. Hence
the natural procedure was to treat the Hamiltonian for the largest mo-
mentum slice as the unperturbed Hamiltonian, and the terms for all
lesser slices as the perturbation. In each slice the Hamiltonian con-
tained both a free meson energy term and an interaction term, so this
new perturbation method was neither a weak coupling nor a strong
coupling perturbation. (Wilson, 1982, pp.115-6)

The usual perturbation methods used in quantum field theory involve ex-
panding in a power series about the coupling constant, while here one treats
lower energy effects as perturbations to a high energy Hamiltonian. Further,
Wilson generated an iterative renormalization procedure for the Hamiltonian
of free meson theory. Starting with n momentum slices and using the ground
state for the unperturbed nth slice Hamiltonian, the next term was an effec-
tive Hamiltonian for the remaining n − 1 slices, with the coupling constant
renormalized. This was the first practical use Wilson found for the renormal-
ization group formalism. In this way, one could isolate momentum scales from
the theory, solve them, and iterate to the next momentum stage.

Wilson’s focus on the Hamiltonian in the fixed source meson theory trans-
ferred over to the Kadanoff picture of the Ising model, and Wilson (1971a,b)
ended up reformulating and generalizing the Kadanoff picture of the Ising
model near a critical point. As with much of his work on the renormalization
group and critical phenomena after this point, Wilson refitted the Kadanoff
picture to allow for continuous scaling, and investigated the asymptotic be-
haviour of differential equations relating the dependence of temperature TL
and magnetic field BL on the scaling length L. These take the following form,

dTL
dL

= L−1 u(TL, B
2
L) (3.2.1)

dBL
dL

= L−1BL v(TL, B
2
L), (3.2.2)

20 This work on operator product expansions would eventually be published as Wilson
(1969), after Wilson resolved some issues with the expected behaviour of expansion coeffi-
cients in the strong coupling domain.
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with the assumption that u and v were analytic at the critical temperature for
a phase transition. Wilson was able to rederive the Widom-Kadanoff scaling
laws for the Ising model from a more general, parallel set of assumptions,
beginning with these differential equations.

In analogy with the analysis of Gell-Mann and Low, Wilson found the
differential form of the renormalization group relations to be most useful. One
major benefit of thinking of the renormalization group in terms of differential
equations is that qualitative analyses of scaling behaviour are easily obtainable.
In the case of Wilson’s analysis of the Kadanoff model, the particular functions
u and v that one derives are actually singular at the critical temperature.
Wilson argues that the physical picture underlying the Kadanoff block spin
formalism implies that the differential equations should not be singular:

In the block picture one should be able to construct [TL] and [BL] just
by adding up interactions of individual spins within a block or across
the boundary between two blocks; it is hard to see how this simple
addition over a finite region can lead to singular expressions for [TL]
and [BL], as a function of [T ] and [B], if L is fixed. . . in the spirit of the
Kadanoff approach one does not try to get specific forms for [u(T,B2)]
and [v(T,B2)] because this would require that one take literally the idea
that all spins within a block act as a unit. (Wilson, 1971a, p. 3177)21

In part II, a replacement form is found for the equations u and v to remove the
singularities in the differential equation, but part I is dedicated to the qual-
itative features of scaling that can be determined from placing general con-
straints on the form of u and v. The main point is that the analytic differential
equation is capable of recovering critical point singularities—most notably the
Widom-Kadanoff scaling law—as asymptotic divergences at L =∞.

Importantly for the reemergence of Yang-Mills theory, Wilson (1971c) also
applied the renormalization group analysis to plausible candidates for a the-
ory of the strong interactions. In this paper renormalization group methods
are applied to the strong coupling constant, to determine how it would scale
with momentum and the properties that would follow. Experiment and ac-
companying phenomenological models from the late 1960s indicated that scale
invariance was an approximate symmetry of deep inelastic scattering—where
the strong interaction was thought to play an important role—and the loga-
rithmic corrections to scale invariance were well known (cf. (Cao, 2010, Ch.6)).
Wilson demonstrated that broken scale invariance would follow if the strong in-
teraction was described by a renormalizable theory, and if the renormalization
group flow asymptotically approached a fixed point at high energy (Wilson,
1971c, Sec. III.D). The Gell-Mann and Low analysis also indicated that the
electromagnetic coupling strength would increase in strength at high energies,

21 Wilson uses an analogy with a simple classical mechanical system—a ball at the crest of
a hill—to argue that the singularities inherent in a particular form of differential equation
may be an artifact of the variables chosen to represent the equation. This is also familiar
in the context of solutions to Einstein’s field equations, where coordinate singularities can
arise, and an appropriate transformation of coordinates must be done to remove the false
singularity.
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making is plausible that at some energy scale Λ the strength of the strong
and electromagnetic forces would become equivalent. Wilson showed that, if
this were true, the fixed point for strong interactions would additionally be
infrared stable, allowing for an iterative “bootstrap” procedure to determine
renormalized coupling constants as a function of energy scale (Sec. III.F). The
importance of these results it that they provided some concrete connection be-
tween the Lagrangians describing models of the strong interaction—for which
the standard perturbative procedures employed in QED would not work—and
the phenomenology of strong interactions.

Conjectured in the conclusion of this paper, and confirmed by later devel-
opments, was the idea that renormalization group methods would be essential
for the solution of strongly interacting relativistic fields. The benefit of the
renormalization group equations is that they allow one to determine the dy-
namics at a particular energy scale, under the assumption that dynamics at
higher energy scales have already been solved. “In order to solve the infinite
number of energy scales which exceed energies of practical interest, one must
iterate the renormalization-group transformation an infinite number of times,
thus making asymptotic behavior of this transformation of crucial importance
in solving the model” (Wilson, 1971c, p.1842).

One final scaling property of the gluon model for strong interactions—later
christened QCD—was discovered by ’t Hooft,22 and later Gross and Wilczek
(1973) and Politzer (1973): asymptotic freedom. The scaling of a coupling con-
stant in massless Yang-Mills theory is parametrized by a function β(g) that
depends on the coupling constant. Analysis of β(g) indicated that the coupling
constant would decrease with increasing energy scales to the point where g → 0
as Λ→∞, and so a massless Yang-Mills theory is asymptotically free. For an
SU(3) Yang-Mills theory, up to 16 fundamental fermion fields could be intro-
duced without spoiling asymptotic freedom. Asymptotic freedom is important
because at very high energies, the strong coupling constant would become
small, and so perturbative methods could be used to extract predictions from
these models. Earlier testing of scaling in the deep inelastic scattering regime
(Bloom et al., 1969; Breidenbach et al., 1969)—where asymptotic freedom be-
comes relevant—showed that hadrons behaved as composites of point particles,
and vindicated the predictions generated from the QCD Largrangian.

3.3 Lattice quantum field theory

A final piece of the puzzle for connecting the QCD model with strong in-
teraction phenomenology was required. In QCD quarks are the fundamental
fermion fields, with gluons being the gauge bosons mediating the interaction
between quarks. However, no free quarks or gluons had ever been detected
experimentally; instead, only baryons and mesons—composed of 3 quarks or

22 ’t Hooft presented the final equation for the scaling of the beta function at a conference
in 1972, but never published the results. Gross, Wilczek, and Politzer would eventually win
the 2004 Nobel prize for the theoretical prediction of asymptotic freedom.
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a quark-antiquark pair according to QCD, respectively—had been observed
interacting via the strong force. If QCD was to be the foundational model for
the dynamics of the strong interaction, it had to give rise to quark confinement
in a natural way.

One problem in determining whether or not quark confinement would arise
in QCD is the inverse of the asymptotic freedom property: at low energies—
where baryons and mesons exist, and at which collider experiments are conducted—
the strong coupling constant is large. The majority of the methods for gener-
ating dynamical predictions from quantum field theories depended on a per-
turbative expansion in powers of the coupling constant, and it is precisely in
the most easily empirically accessible regime that these break down for QCD.

Wilson’s work on lattice QCD (1974)—inspired by, but not directly related
to his work on the renormalization group analysis—provided a plausible dy-
namical account of quark confinement, and was convincing enough to remove
this worry.

The inspiration for pursuing lattice quantum field theory began from Wil-
son’s earlier work on the fixed source meson model:

However, I learned from this picture of the Hamiltonian that the Hamil-
tonian would have to be cutoff at some large but finite value of momen-
tum k in order to make any sense out of it, and that once it was cutoff,
I basically had a lattice theory to deal with, the lattice corresponding
roughly to the position space blocks for the largest momentum scale.
More precisely, the sensible procedure for defining the lattice theory was
to define phase space cells covering all of the cutoff momentum space,
in which case there would be a single set of position space blocks, which
in turn defined a position space lattice on which the field φ would be
defined. I saw from this that to understand quantum field theories I
would have to understand quantum field theories on a lattice. (Wilson,
1982, p. 117)

In order to place a quantum field theory on a lattice, one must first move from a
Minkowski spacetime metric to a Euclidean spatial metric.23 High-momentum
cutoffs in the original quantum field theory then correspond to the spatial
separation of lattice sites. The biggest “trick” for developing a quantum field
theory on a lattice was to make the lattice theory explicitly gauge invariant.
This is important because the renormalization procedure used to make lattice
quantities finite would spoil the restoration of gauge invariance afterward, so
the quantities must be gauge invariant before renormalization.

In the lattice formulation of non-Abelian Yang-Mills theory coupled to
fermions—of which lattice QCD is a particular model—confinement is demon-
strated in the strong coupling (g →∞) limit. First, one starts with a position
space path integral formalism. Associated with each classical path is a con-
tribution to the path integral which is weighted by a gauge field term, with

23 This change is central to the physical disanalogies between models in quantum field
theory and condensed matter physics (cf. Fraser and Koberinski (2016)). Causal and modal
structures change dramatically when time is converted to a spatial dimension.
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an overall weighting for all paths that includes the free gauge field action.
The total weight factor is averaged over all quark paths and all gauge field
values. In the strong coupling limit Wilson showed that the lattice version of
the gauge field average for a closed path is exponentially suppressed by its
area, meaning that the dominant contribution to the propagator is the path
with least area for a given perimeter. This leads to a suppression of large area
quark-antiquark loops (there is a term proportional to the gauge field average
in the quark propagator) in position space; large area loops are necessary for
the separation between bound quarks to be sufficient for individual detection
as effectively free particles.

Though not a conclusive proof of quark confinement, Wilson provided a
compelling reason to think that quarks would be confined in QCD using lattice
methods. The further advantage of lattice quantum field theory is that it
allows for small QCD systems to be solved using numerical methods on a
computer. Even today, most results in QCD that do not depend on the use
of perturbative methods in the high-energy, weak coupling limit still rely on a
lattice formulation of the model.

With this last epistemic barrier removed for QCD, the path was clear for
the full acceptance of the Glashow-Salam-Weinberg electroweak model and
QCD as the basis for describing the fundamental forces governing the interac-
tions in HEP.

4 Analysis

The rapid shift in perception of quantum field theory—from mathematically
inconsistent and useless for strong interactions, to forming the basis of the
standard model of particle physics—between the mid-1960s and mid-1970s
has been outlined above. It is largely a story of a deepening understanding of
the properties of quantum field theories (particularly of the Yang-Mills type)
and their suitability as a theoretical framework for recovering particle physics
phenomenology. This is a case study in developing mathematical tools to un-
derstand the properties of a theoretical framework, and then using the newly
understood properties as a basis for justifying the construction of dynamical
models of both the strong and (electro)weak interactions.

In this section, I will outline what I take to be the important lessons this
era provides about theory construction in physics. I will start from specific
epistemic and methodological breakthroughs for particle physics (§4.1 and
§4.2), and finally address the relevance of looking at the process of theory
construction for modern views on effective field theories (§4.3).

4.1 Implications for theory construction

The reemergence of Yang-Mills theory as a theoretical foundation for parti-
cle physics—forming the two dynamical models at the heart of the standard
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model—highlights the importance of developing mathematical techniques for
investigating the properties of a theoretical framework. In the mid-1960s the-
orists occupied a limited epistemic perspective on quantum field theories, par-
ticularly Yang-Mills theories. Until it was established that renormalizability
was an existence claim for a given model of quantum field theory (i.e., one
needed to find the appropriate set of Feynman rules), physicists strongly sus-
pected that Yang-Mills theories were not renormalizable, and the possibility of
a mass generation mechanism for Yang-Mills gauge bosons was not conceived.
Further, the strong interaction was not well understood, and it was unclear if
baryons and mesons were supposed to be the fundamental fields, or if the non-
relativistic quark model could be turned into a fully relativistic field model.
All of these misunderstandings are related to the limited understanding of the
quantum field theoretical framework and its representational capacity.

By better understanding the representational capacity of the formal sys-
tem, physicists were able to enrich their theoretical framework—by expanding
the space of possible Lagrangians consistent with the core concepts of rela-
tivistic quantum field theory—and more easily construct candidate dynamical
models—such as QCD and the electroweak model. Further, one could prove
the compatibility of particular dynamical models with new experimental dis-
coveries by employing the new mathematical tools. These tools were used to
understand the representational capacities of the theoretical framework (quan-
tum field theory). ’t Hooft and Veltman’s dimensional regularization scheme
was used to show that Yang-Mills type quantum field theories were in fact
renormalizable, which meant that the class of Yang-Mills models could be
candidates for consistent dynamical models of strong and weak interactions.
In the case of weak interactions, the Weinberg-Salam model of electroweak
unification had already been worked out, so focus shifted to finding decisive
empirical signatures—like weak neutral currents. For the strong force, more
work was needed. As Cao (2010) has already detailed, there were multiple can-
didate relativistic quark-gluon models, but it was unknown how they connected
to the weak binding constituent quark model—useful for group-theoretic clas-
sification of hadrons—and the relativistic current algebra.

Renormalization group analysis of the beta function for non-Abelian Yang-
Mills theories showed that pure Yang-Mills theories were asymptotically free,
though the addition of fermions would introduce terms in the beta function
that increased with increasing energy. It turns out that the larger the Yang-
Mills internal symmetry group, the more fermion generations could be accom-
modated without spoiling asymptotic freedom. This helped to rule out the
simpler quark-gluon models, in which only a single gluon field existed (inter-
nal U(1) symmetry), and allowed QCD (internal SU(3) symmetry) to explain
the success of the simple constituent quark model, in which hadrons behaved
as composites of point quarks. In the deep inelastic regime, scattering results
indicated that constituent quarks were effectively free, vindicating the high en-
ergy freedom of QCD. The SU(3) symmetry group matched the SU(3)×SU(3)
symmetry of current algebra as well.
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The last question to be answered for QCD was whether the coupling of
quarks and gluons prohibited free quarks at low energies. Wilson’s lattice
methods made a convincing argument for low energy quark confinement, and
QCD was accepted as the consensus dynamical model of strong interactions.

Importantly, the sigma and U(1) gluon models were not asymptotically
free, and previously proposed phenomenological models (constituent quark
models, current algebra) could be connected to QCD in appropriate limit-
ing cases. Without the new mathematical tools, these properties of candidate
strong interaction models could not have been elucidated.

All three major developments outlined in §3—renormalizability, the renor-
malization group, and lattice quantum field theory—were tools with which to
analyze the framework of quantum field theory. Renormalizability was demon-
strated for large classes of quantum field theories, with the relevant models
being the class of massless (or spontaneously broken) Yang-Mills theories. The
knowledge that this class of models was renormalizable led to further investi-
gations of candidate dynamical models—the electroweak model and QCD were
the prime targets. The renormalization group analysis of QCD was essential
to its acceptance, since asymptotic freedom made the substructure of hadrons
accessible via deep inelastic scattering. Crucially, the number of fundamental
fermion fields was limited in order to ensure asymptotic freedom, and this
theoretical limit was consistent with the known number of fermions. The close
interplay of mathematical investigation into the theoretical framework with
experimental tests allowed for the emergence of consensus dynamical models
within a matter of a few years.

The importance of better understanding the framework is highlighted well
in Veltman’s reflections on the importance of renormalizability proofs:

Personally I have always felt that the proof was much more important
than the actual construction of a model, the Standard Model. I felt that,
once you knew the recipe, the road to a realistic description of Nature
would be a matter of time and experiment. . . The proof of renormaliz-
ability also provided detailed technical methods such as, for example,
suitable regularization methods, next to indispensable for any practical
application of the theory. In longer perspective, the developments in
supersymmetry and supergravity have been stimulated and enhanced
by the renewed respectability of renormalizable field theory. (Veltman,
1997, p.145)

Though it may seem obvious in retrospect, one lesson to keep in mind for
contemporary theory construction in physics is that it takes time and innova-
tion to discover the consequences and representation capacities of a theoretical
framework. Much of the hard work in theory construction comes when trying
to understand the consequences and representational capacities of a theoretical
framework. In the case of particle physics, the theoretical framework of quan-
tum field theory—mathematized in terms of Lagrangians, action functionals,
canonical quantization procedures, Green’s functions, scattering amplitudes,
etc.—required a broader set of mathematical tools beyond perturbative ex-
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pansions in coupling, and a more systematic treatment of renormalization.
It turned out that the successful application of perturbative expansions and
non-systematic treatments of renormalization were permissible for QED due
to some peculiar features of the electromagnetic interaction: first, the dimen-
sionless coupling constant for QED is relatively small (α ≈ 1/137), making
a perturbation about the coupling constant accurate after only a few orders;
second, QED is a special case of an Abelian gauge theory, and did not require
more sophisticated regularization and renormalization techniques. The failure
of techniques that worked for the comparatively simple QED did not mean
that quantum field theory in general would fail, and it took the work of the
few physicists who remained interested in quantum field theory to prove this.

One important feature of quantum field theory in the mid-1960s was that
there was already a useful dynamical model in existence: QED. Though it
seemed to be the case that QED was not easily extended to accommodate
the strong or weak interactions—for example, the renormalization procedures
were not easily generalized—it provided a clear example showing that quantum
field theory was at least suitable for a limited domain of particle physics. In
the context of quantum field theory, we can now see why straightforward
extensions of QED would have to be unsuccessful. One needed to move from
Abelian gauge theory to non-Abelian gauge theory, and the tools required to
handle the latter turned out to be much more complicated.

4.2 The success of formal analogies with statistical mechanics

An understanding of the full representational capacity of Yang-Mills theories
required the development of novel mathematical techniques to explore their
renormalizability, scaling behaviour, numerical solutions, and mass generation
mechanisms.24 All of these methods were either developed within or originated
from condensed matter physics, and were carried (back) over to particle physics
due to the formal similarities between the structure of models in the two
disciplines.

As mentioned in §3.2 and §3.3, much of Wilson’s work regarding the renor-
malization group and lattice QCD was inspired by strong formal analogies
with statistical mechanical systems. Though the initial application of renor-
malization group equations to particle physics was through Gell-Mann and
Low’s (1954) treatment of scaling in QED, condensed matter physicists (like
Kadanoff) did much of the work on the renormalization group in the 1960s,
in the context of simple statistical mechanical models—both quantum and
classical. Many of Wilson’s papers on the renormalization group deal vari-
ously with particle physics and statistical physics. The three landmark papers
published in 1971 deal with the applicability of renormalization group meth-
ods to the strong interaction (1971a), and to the Kadanoff scaling picture of

24 Mass generation—in the form of spontaneous symmetry breaking—was not discussed
in this paper. For a detailed analysis of the formal analogy between spontaneous symmetry
breaking in the Higgs mechanism and in superconductivity, see Fraser and Koberinski (2016).
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the Ising model (1971b;1971c). In the more systematic paper on renormal-
ization group methods, Wilson and Kogut (1974), both statistical mechanical
and quantum field theoretic systems are treated. A few sections at the end of
their paper—particularly Section 10—outline the formal connection between
statistical mechanics and quantum field theory. In particular, the Feynman di-
agrams for a φ4 lattice quantum field theory—when converted to a Euclidean
metric—are identical to the spin correlation functions for the generalized Ising
model.

Wilson and Kogut (1974, Sec 12.2) present the details of renormalization
group flow and its applicability to quantum field theory in the case of a four-
dimensional φ4 model. One starts with the model defined on a lattice, which
is implied by the introduction of a momentum cutoff scale. First, one must
regularize the model, and then introduce a nonzero coupling constant at infi-
nite “correlation length”—the analogue of which in quantum field theory is a
continuum relativistic model. The reasons that a tight formal correspondence
can be set up between (classical, in this case) statistical mechanics and quan-
tum field theory are complex, but the application of the renormalization group
analysis to both is no accident. In later works, Wilson explicitly emphasizes
the expected generality of renormalization group methods as applicable to
numerical solutions of physical situations. Unlike the simple problems with a
few degrees of freedom that are amenable to simple numerical approximation
schemes,

There is a fourth class of problems which until very recently lacked any
convincing numerical approach. This fourth class is a subclass of prob-
lems involving a large or infinite number of degrees of freedom. The
special feature of this subclass is the problem of “renormalization.”
Originally, renormalization was the procedure for removing the diver-
gences of quantum electrodynamics and was applied to the Feynman
graph expansion. The difficulties of renormalization prevent one from
formulating even a Monte Carlo method for quantum electrodynamics.
Similar difficulties show up in a number of problems scattered through-
out physics (and chemistry, too). These problems include: turbulence
(a problem in classical hydrodynamics), critical phenomena (statistical
mechanics), dilute magnetic alloys, known as the Kondo problem (solid
state physics), the molecular bond for large molecules (chemistry), in
addition to all of quantum field theory.
In this paper the problem of renormalization will be shown to be the
problem of many length or energy scales. (Wilson, 1975, p.171)

It is clear from this quote that Wilson, at least, saw the renormalization
group as a mathematical technique for systematically treating problems where
energy scales are not cleanly separable. So the treatment of renormalization,
though initially developed in order to make QED a predictive model, is really
a quite general phenomena in physics, and should perhaps be likened more to
techniques such as Taylor expansions and Sturm-Liouville theory. These are
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techniques for finding solutions to formal problems, that have little directly to
do with the physical situation at hand.

So if the renormalization group methods are meant to be so generally
applicable, why was the analogy with statistical mechanics important for their
development beyond QED in particle physics? It’s because the trick with the
renormalization group is to find a way to express the problem that makes it
clear how to use the techniques.

[I]t is rather difficult to formulate renormalization group methods for
new problems; in fact, the renormalization group approach generally
seems as hopeless as any other approach until someone succeeds in
solving the problem by the renormalization group approach. Where the
renormalization group approach has been successful a lot of ingenuity
has been required: one cannot write a renormalization group cookbook.
(Wilson, 1975, p.185).

After Wilson’s success in formulating the Ising model in such a way that
a renormalization group analysis could be performed, he looked for ways to
transform quantum field theory problems into the same form as the classi-
cal statistical mechanical Ising model. As Fraser (2018) has emphasized, the
analogy between the classical Ising model and four-dimensional φ4 model is
facilitated by transforming the φ4 model into a Euclidean metric by Wick ro-
tating the temporal part of the metric t→ −it, and discretizing the spacetime
by introducing a minimum length scale. Then, one must establish a formal
correspondence between the spin-spin correlation function Γm,n in the Ising
model and the propagator Dm(nτ) in the φ4 model,

Γm,n = ζDm(nτ), (4.2.1)

where the Ising model is defined on a lattice with spacings m and n, the prop-
agator is defined on a lattice with spatial spacing m and temporal spacing n,
τ = −it, and ζ is a constant of proportionality. Given this formal identification
of models in statistical mechanics, the renormalization group formulation of
the Ising model can be applied straightforwardly to quantum field theory.25

To summarize, Wilson developed methods for solving models in physics
for which energy scales are all highly linked, and qualitative behaviour is sen-
sitive to the interactions spanning large ranges of energy. In order to apply
these methods to non-Abelian quantum field theory—particularly Yang-Mills
models—formal analogies with soluble models in statistical mechanics were
essential. Wilson thus used the successes in statistical mechanics as a basis
for formal analogies with quantum field theory, and found ways to apply the
renormalization group analysis across both domains. In setting up the formal
correspondence, putting quantum field models on a lattice was an important
intermediate step as well. The importance of the inspiration from statistical

25 There is a bit more work to be done to establish that the quantum field model reaches
a critical surface when the continuum limit is taken, and this will vary from model to model
within quantum field theory. See Wilson and Kogut (1974); Fraser (2018) for the remaining
details.
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mechanics was that renormalization problems had already been successfully
solved there; Wilson was able to more-or-less carry over those results once he
had established the identity in equation (4.2.1).

4.3 Renormalizability and effective field theory

Given the predominant viewpoint in modern physics that quantum field theories—
and the standard model in particular—form an adequate framework only of
effective field theories, the importance of renormalizability proofs for the ac-
ceptance of Yang-Mills theories might seem a bit odd. If we view quantum
field theories as effective theories with a built in cutoff scale (Weinberg, 1979;
Wallace, 2011; Williams, 2017; Fraser, 2017), then full renormalizability can-
not be a necessary mathematical property of a physical model of quantum
field theory, however nice it may be.26 So why was the HEP community so
dismissive of candidate Yang-Mills models for the strong and (electro)weak
interactions until ’t Hooft published a proof of their renormalizability?

The most important reason that a full proof of the renormalizability of
Yang-Mills theories was essential to their acceptance is that the view of the
standard model as a collection of effective field theories depends critically on
the use of renormalization group methods to demonstrate that non-renormalizable
terms become negligible at low energies. Weinberg (1979) outlined the utility
of the use of what he called “phenomenological Lagrangians” as a tool for both
understanding properties of interactions not captured within known models,
and justifying the addition of nonlinear, nonrenormalizable terms. Though
fully nonrenormalizable terms in a Lagrangian can only be used to make pre-
dictions at low orders—higher order contributions from such terms introduce
a growing number of arbitrary parameters that must be fixed—one can study
their scaling behaviour using the renormalization group methods. In this way,
high energy properties—both qualitative and quantitative—of nonrenormaliz-
able terms can be explored. Further, a general lesson from the renormalization
group analysis of critical phenomena in statistical mechanics is that, at large
distances (equivalent to low energy-momenta) many interaction terms become
entirely irrelevant to the behaviour of the system in question. That is, the
relative contributions from certain interaction terms “die off” at low energies,

26 There is not a consensus that an effective field theory view of the standard model is the
best way to interpret the utility of quantum field theoretic models. Many people working
in axiomatic and/or algebraic quantum field theory, for example, aim to provide an exact
model for realistic interactions, to which the standard perturbative methods of conventional
quantum field theory create an asymptotic expansion (e.g., Streater and Wightman (1964);
Buchholz and Verch (1995); Halvorson and Müger (2007); Feintzeig (2017)). These may
still be effective theories in the sense that they have a limited domain of applicability, but
they would then be candidates for a more standard philosophical interpretation. Others
have criticized the limited utility of a realist interpretation of effective field theories based
on the renormalization group (Fraser, 2018; Ruetsche, 2018). Though these are important
philosophical issues, they are orthogonal to the discussion here. For the purposes of the main
discussion, I will uncritically accept the effective field theory view, and attempt to explain
why a proof of renormalizability is still epistemically important in HEP.
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and many different theories (in the sense of having different terms in their
Lagrangian) will all reduce to a critical surface in the space of Lagrangians on
which only renormalizable terms have nonzero coefficients. The same is sus-
pected to hold true for models in quantum field theory, such that a hierarchy
of increasingly complicated Lagrangians is expected to obtain at higher and
higher energies. These Lagrangians will not contain all and only renormaliz-
able terms, and therefore would require some high-energy cutoff in order to
generate empirical predictions. This is why many physicists and philosophers
now view quantum field theory as a framework only for effective field theories,
and that some new class of theory will be required for a “complete” model of
fundamental physics applicable at all energy scales.

This modern view was not developed until after the construction of the elec-
troweak model and QCD, and in fact could not have been convincingly argued
for without the help of renormalization group techniques. Furthermore, the
most convincing argument for a hierarchy of effective field theories—that low
energy models of quantum field theory will retain only renormalizable terms—
depends crucially on an understanding of the flow from general Lagrangians
down to the critical surface of renormalizable interaction terms. The process
of proving renormalizability is a two part process: first, one selects a general
class of models with similar sets of terms (e.g., Yang-Mills models); second,
one must develop appropriate novel techniques for actually proving that this
particular class of Largrangians is actually renormalizable, such as dimensional
regularization. This is clearly how Veltman viewed the importance of renor-
malizability (cf. quote in §4.1), though he would presumably not subscribe to
the effective field theory view.

I have shown that the process of arriving at the standard model of par-
ticle physics required the coincident development of mathematical tools for
dealing with non-Abelian gauge theories and experimental discoveries corrob-
orating the newly discovered properties of the framework. The mathematical
developments connected non-Abelian Yang-Mills theories to experiment by
demonstrating that renormalizability, asymptotic freedom, and confinement
were all properties of QCD, fleshing out the bare Lagrangian form of the can-
didate model of strong interactions. This case study has provided lessons for
the detailed process of theory construction in physics, highlighting the fact
that theories are rarely axiomatic systems with a neat set of deductive con-
sequences. Theories like the standard model are instead modular, and rely on
key conceptual and mathematical tools that can largely be treated indepen-
dently. In the case of the HEP, the tools were often constructed by analogy
with condensed matter physics. These lessons for theory construction can in-
form the process of constructing new theories, in particular those attempting
to quantize gravity.
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