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Abstract

The many-worlds interpretation of quantum mechanics is based on
three key assumptions: (1) the completeness of the physical description
by means of the wave function, (2) the linearity of the dynamics for
the wave function, and (3) multiplicity. In this paper, I argue that the
combination of these assumptions may lead to a contradiction. In order
to avoid the contradiction, we must drop one of these key assumptions.

The many-worlds interpretation of quantum mechanics (MWI) assumes
that the wave function of a physical system is a complete description of
the system, and the wave function always evolves in accord with the linear
Schrödinger equation. In order to solve the measurement problem, MWI
further assumes that after a measurement with many possible results there
appear many equally real worlds, in each of which there is a measuring
device which obtains a definite result (Everett, 1957; DeWitt and Graham,
1973; Barrett, 1999; Wallace, 2012; Vaidman, 2014). In this paper, I will
argue that MWI may give contradictory predictions for certain unitary time
evolution.

Consider a simple measurement situation, in which a measuring device
M interacts with a measured system S. When the state of S is |0〉S , the
state of M does not change after the interaction:

|0〉S |ready〉M → |0〉S |ready〉M . (1)

When the state of S is |1〉S , the state of M changes and it obtains a mea-
surement result:

|1〉S |ready〉M → |1〉S |1〉M . (2)
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The interaction can be represented by a unitary time evolution operator, U .
Then the above two processes can be formulated as follows:

U |0〉S |ready〉M = |0〉S |ready〉M . (3)

U |1〉S |ready〉M = |1〉S |1〉M . (4)

According to MWI, there is no world branching, and there is still one mea-
suring device, namely the original one, after the above evolution.

Now suppose the measuring device M interacts with the system S being
in a superposed state |0〉S + |1〉S . For simplicity I omit the nomalization
factor 1/

√
2. By the linear Schrödinger equation, the state of the composite

system after the interaction will evolve into the following superposition:

|0〉S |ready〉M + |1〉S |1〉M . (5)

That is:

U(|0〉S + |1〉S) |ready〉M = |0〉S |ready〉M + |1〉S |1〉M . (6)

According to MWI, there is world branching after this interaction, and the
post-measurement state corresponds to two worlds, in each of which there
is a measuring device which has a definite state, either being in the ready
state or obtaining the result 1.1

In order to see whether MWI is consistent, let’s analyze possible evolu-
tion of the above post-measurement state or the corresponding worlds. First,
consider a unitary time evolution operator, UA, which changes |0〉S |ready〉M
to |1〉S |1〉M and |1〉S |1〉M to |0〉S |A0〉M :

UA |0〉S |ready〉M = |1〉S |1〉M , (7)

UA |1〉S |1〉M = |0〉S |A0〉M , (8)

where |A0〉M is a definite state of M . The first evolution of the measuring
device is exactly the same as the evolution of the measuring device in (4);
the state of the measuring device changes from |ready〉M to |1〉M , and it
obtains a definite result.

Then the unitary time evolution of the above post-measurement state is

UA(|0〉S |ready〉M + |1〉S |1〉M ) = |1〉S |1〉M + |0〉S |A0〉M . (9)

1Here I omit the environment terms in the evolution, which, in a more complete form,
should be U(|0〉S + |1〉S) |ready〉M |ready〉E = |0〉S |ready〉M |ready〉E + |1〉S |1〉M |1〉E .
This does not influence my following analysis. Besides, it is worth noting that in Wallace’s
(2012) formulation of MWI, worlds are emergent and their number after a measurement
is not definite due to the imperfectness of decoherence.
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By the linearity of the dynamics, the evolution of the two worlds are the
same as the above two forms of evolution. For example, when the state of
the measuring device in the first world changes from |ready〉M to |1〉M , it
obtains the result 1.

Now consider one of these unitary time evolution operators, UN , for
which |A0〉M = |ready〉M . In other words, UN changes |0〉S |ready〉M to
|1〉S |1〉M and |1〉S |1〉M to |0〉S |ready〉M . It is similar to the NOT gate for
a single q-bit, and is permitted by the Schrödinger equation in principle (al-
though it may hardly be realized in practical situations). Then the unitary
time evolution of the above post-measurement state is

UN (|0〉S |ready〉M + |1〉S |1〉M ) = |1〉S |1〉M + |0〉S |ready〉M . (10)

Again, when the state of the measuring device in the first world changes
from |ready〉M to |1〉M , it obtains the result 1. Similarly, when the state of
the measuring device in the second world changes from |1〉M to |ready〉M ,
the result 1 is erased.2 On the other hand, after the unitary time evolution
the whole superposition does not change.

Therefore, MWI predicts that after the above unitary time evolution,
the complete state of the composite system, which is described by the wave
function of the system, does not change, while the states of the two worlds
(either emergent or not) both change after the evolution. This is a con-
tradiction. If the complete state of a system does not change, then every
aspects of the system cannot change, including the state of each world the
system comprises.3

There are three possible ways to avoid the contradiction. The first way
is to deny that after the evolution the state of the composite system has not
changed. This requires that the wave function of a system is not a complete
description of the state of the system, and additional variables are needed to
introduce to describe the complete state. In other words, the assumption of
the completeness of the physical description by means of the wave function
should be dropped. The second way is to deny that after the evolution
the states of the worlds have changed. This is only possible when there is
only one world. In other words, the assumption of multiplicity should be
dropped. The third way is to deny the existence of the post-measurement
state (6). In other words, the assumption of the linearity of the dynamics
for the wave function should be dropped.

2The possibility of undoing a measurement in a unitary quantum theory has been
discussed recently (see Pusey, 2016; Healey, 2018).

3Note that the unitary time evolution cannot be implemented instantaneously, and the
state of the composite system also changes during the evolution. But the key point is that
the initial state and the final state of the system are the same, while the initial state and
the final state of each world are different. It is this result that leads to the contradiction.

3



The above result can also be obtained by an analysis of a direct com-
parison between two systems being in the same wave function, such as two
composite systems being in the same state |0〉S |ready〉M + |1〉S |1〉M . If
the state |0〉S |ready〉M + |1〉S |1〉M corresponds to two worlds according to
MWI, then there will be two different ways of comparison. The first way is
that a world of one system is compared with the world of the other system
which has the same state. This corresponds to the simplest case of identity
time evolution, for which there is no contradiction. The second way is that
a world of one system is compared with the world of the other system which
has a different state. This corresponds to the above case of the unitary time
evolution UN , for which there will be a contradiction. Note that if there
were only one way of comparison, then the two worlds of each system would
be identical, which means that there would be only one world.

To sum up, I have argued that the many-worlds interpretation of quan-
tum mechanics gives contradictory predictions for certain unitary time evo-
lution and thus it is inconsistent. In order to avoid the inconsistency, we
must drop one of its three key assumptions: (1) the completeness of the
physical description by means of the wave function, (2) the linearity of the
dynamics for the wave function, and (3) multiplicity.
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