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Abstract 

What is the relationship between evolutionary contingency and diversity?  The evolutionary 

contingency thesis emphasizes dependency relations and chance as the hallmarks of evolution. 

While contingency can be destructive of, for example, the fragile and complex dynamics in an 

ecosystem, I will mainly focus on the productive or causal aspect of contingency for a particular 

sort of diversity. There are many sorts of diversities: Gould is most famous for his diversity-to-

decimation model, which includes disparate body plans distinguishing different phyla. However, 

structural diversity construed more broadly spans scales, such as organization in and among 

cells, structural arrangements and biomechanics on various scales, and even the profile of 

ancestor-descendent relationships or community structure of interactions within ecosystems. 

By focusing on stochastic processes in contingent evolution, I argue that contingency causes 

structural diversity. Specifically, I focus on the plurality of structural types of cells, genetic 

codes, and phyla diversity as case studies.  
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“…[W]e would like to have some reason for believing that…evolution had actually resulted in 
only one outcome: one mechanism of inheritance in sexual organisms, one mechanism of 

development on eukaryotes, one foraging strategy in herbivores. But why would we expect 
evolutionary outcomes to be so constrained?” 

--John Beatty (1994, 52) Theoretical Pluralism in Biology 
 
 

1. Introduction 
 

John Beatty once argued that we should not expect evolutionary outcomes to be highly 

constrained by selection or some singular mechanism (1994, 52). While Beatty’s work suggests 

a pluralism concerning evolutionary products and a view of evolution as unconstrained, Hull 

(1987, 178) worried that pluralism could be destructive of science. That tension motivates my 

thesis in this paper: I argue that contingency has a generative role in the production of diverse 

outcomes. In other words, one should not assume that the products of evolution, such as the 

genetic code, cell types, modes of inheritance, or even individuals in selection, are constrained 

in such a way that they often resist change and limit new variants. One important upshot is that 

contingency, by causing diversity of a certain sort, results in a pluralism. Specifically, 

contingency causes structural variations, which distinguish a plurality of types. Many 

philosophers have adopted pluralism about biological categories, such as species, individuals, 

and so forth. I’ll argue that such pluralism is to be expected because evolutionary contingency 

generates it. Reasons to expect pluralism from an evolutionary contingency framework is a 

strong undercurrent and systemic motivation throughout this paper. Admittedly though, to say 

that contingency causes diversity sounds strange at first pass, yet it is an indispensable move in 

the argument from contingency to pluralism. And so, this paper mainly consists in working 

through the diversity I have in mind and how contingency causes it.  
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 On the one hand, Beatty (1995, 47) proposed the evolutionary contingency thesis (ECT) 

to include generalizations that are distinctly biological and as such they describe contingent 

outcomes of evolution. However, here I do not discuss laws and generalizations in biology 

directly, rather I understand ECT more broadly. ECT now also includes topics from 

contemporary literature that tackle a variety of concerns, such as how the pattern of 

contingent evolution unfolds (Beatty 2006, Turner 2011, Desjardins 2011), the sources or 

causes of that contingent profile (McConwell and Currie 2017), and evidence for or against 

contingency as the hallmark of evolution (Powell and Mariscal 2015).  Generally, the profile of 

contingent evolution consists of a set of events whose trajectory depends on prior events, 

sometimes their order or path, and unbiased processes, such as mutation, drift, species sorting, 

and external disturbances. Here I aim to understand the contingency thesis’s explanatory reach. 

I anticipate a dilemma concerning contingency as causal, which is given careful analysis in 

section 3. As we’ll see, the dilemma sets up the process-based approach to evolutionary 

contingency explored in the present paper. The process-based approach to contingency I adopt 

is in a similar vein as mine and Adrian Currie’s (2017) previous work, which contrasts with the 

traditional approaches primarily working with modal properties. I discuss this in Section 2. 

On the other hand, concepts of diversity have a complex history that cross branches of 

biology, such as evolutionary theory and ecology.  One main message of Maclaurin and 

Sterelny’s work is that a single measure of diversity in a biological system is untenable (2008, 7). 

There is historical attention concerning diversity as a central theme of ecology, the varieties of 

measurement, and different sorts of diversities (Magurran 1988), as well as a recent focus on 

explaining patterns of species abundance and diversity (Bausman, 2016). From this, any 
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connection between diversity and contingency, or why it matters, is not entirely obvious. 

Though perhaps we can return to Gould. 

Gould argued for a diversity-to-decimation model, which includes disparate body plans 

distinguishing different phyla.  Diversity qua disparity is a technical notion referring to 

differences among anatomical designs (Wills et al. 1994, Foote 1993, Maclaurin and Sterelny 

2008). Although Gould outlines a decimation model where Baupläne disparity decreases 

through time, as we’ll see, it’s not obvious that Gould’s model necessarily discounts episodes or 

explosions of diversity even after periods of decline. This is the case when diversity, specifically 

structural diversity, is treated more broadly than anatomical design. Gould’s treatment of 

contingency as a destroyer of diversity, is only one part of the story. Instead, I ask, is there a 

positive or productive connection between evolutionary contingency and diversity? Indeed, as 

we’ll see, there are grounds to consider that connection as causally productive. 

The paper is organized as follows: first I introduce the contingency literature starting with 

Gould and followed by Beatty’s 2006 distinction between two senses of contingency. I use their 

work as a foundation to start thinking of contingency as causal by working through a dilemma 

in Section 3. The dilemma is explored in detail because it motivates the process-based approach 

to evolutionary contingency I adopt in this paper. That approach emphasizes processes that 

cause contingent evolution rather than evolution’s modal character.1 Thereafter, while noting 

various types of diversity in Section 4, I analyze case studies for evidence of contingent 

                                                        
1 Another way to think about process-based approaches versus primarily modal approaches to evolutionary 
contingency is this: ‘thin’ accounts of contingency appeal primarily to modal properties of evolutionary 
trajectories, whereas ‘thicker’ accounts include more specific causal details about the processes responsible for 
those modal properties. 
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evolution and structural diversity. I finalize in Section 5 by reconciling Gould’s decimation (or 

the “contingency as destructive”) model with the present thesis that evolutionary contingency 

produces (rather than only destroys) diversity. 

2. Contingency 
 

Understanding the extent of contingency in evolution and the nature of evolutionary history 

is a significant research programme.  Stephen Jay Gould famously argued for the prevalence of 

chance and dependency relations in life’s history. He used contingency to challenge 

evolutionary inevitability and progressiveness, in addition to panselectionism—the view that 

natural selection, especially at microscales, could capture patterns found over large spans of 

time. While in this section I focus on Beatty’s two senses of contingency found in Gould’s work, 

I’ll first start with a brief introduction to the topic more generally. 

It is well-known that the Burgess Shale quarry contains remarkable soft-part preservation in 

some of the earliest known fossils from the Cambrian period (570 mya). Gould counted over 20 

Baupläne designs (i.e. body plans) or assemblages of morphological features establishing 

different phyla, of which only 4 survived (1989, 106). “The rare soft-bodied faunas of the fossil 

record are precious windows into the true range and diversity of ancient life” (1989, 24).2 

However, Gould did not think that life unfolds in predictable pathways of progress and ever-

increasing anatomical disparity (276). He challenges his reader to imagine replaying life’s tape: 

if survivors of the Burgess Shale are superior in their adaptive features, then they should win on 

                                                        
2 There has been controversy over reclassification of Burgess Shale fauna (Brysse 2008). Changes in taxonomic 
methodology and the adoption of stem group concepts concerning Burgess creatures’ relationships with modern 
organisms has challenged the range of Cambrian diversity. Brysse understands this shift as a methodological 
artifact not necessarily forged by new data. 
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every replay. But if those survivors are “protégés of Lady Luck or fortunate beneficiaries of odd 

historical contingencies, then each replay of the tape would yield a different set of survivors 

and a radically different history” (1989, 50). On this picture, evolutionary outcomes have mostly 

unique qualities that vary across replays.  

More recently, Gould’s framework has been further developed (Beatty 2006, Desjardins 

2011, Turner 2011). Beatty distinguishes two senses of contingency used by Gould: contingent 

upon and contingent per se. The former is historical and refers to dependency relations among 

events, such as sensitivity to initial conditions and path-dependence, which includes prior 

pathways that constrain future evolution (Desjardins 2011, 737). The latter, contingency per se, 

is forward-looking—future evolutionary events are unpredictable due to the causal 

insufficiency of any prior state (Beatty 2006, 339, Turner 2011, Gould 1989, 278).  

 Adrian Currie and I (2017) have argued that these accounts understand evolutionary history 

modally. The modal pattern is an increasing trajectory of necessary yet insufficient conditions: a 

prior particular state might be needed (or as John Beatty puts it ‘strongly necessary’) to bring 

about a particular outcome, but alone is not enough: an event’s occurrence provides no 

guarantee for what happens next.  Evolution lacks the sort of necessity that would guarantee a 

bridge to make future predictions. This modal pattern of dependence and insufficiency is 

analytically described in a way that effectively black-boxes the causal processes of evolution’s 

profile. That is, traditional accounts of contingency largely ignore or de-emphasize (i.e. “black-

box”) the sorts of processes that cause contingent evolution, which is unsatisfactory. Against 

the mainstream, we emphasize the role of contingency in terms of processes. Adrian and I look 

at different sources of evolution—the processes causally responsible for life’s pattern. The 
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process-based approach is useful—we appealed to empirical differences in the sources of 

contingent evolutionary patterns to clarify the debates. Along a similar vein, I draw from the 

role of stochastic processes in contingent evolution, however, I emphasize different contexts 

where the process-based approach is required. In the next section, I directly reflect on the two 

different approaches to evolutionary contingency (modal vs. process-based) and the potential 

problems they raise for contingency’s causality in a dilemma. Then later in section 4, by 

adopting a process-based approach, I discuss how contingency causes diversity.  

3. Thinking of Contingency as Causal: A Dilemma to Contend With 
 

The thesis that contingency causes diversity likely raises an immediate worry. Prima facie, to 

think of contingency as causal is strange because of its modal baggage. In this section I unpack 

two horns of a dilemma for thinking of contingency as causal.  Insofar as there are at least two 

approaches to thinking about evolutionary contingency, a problem arises in each case: 

(1) The modal approach: If contingency is a modal property, then to think of contingency as 

causal is misinformed or misguided because modal properties don’t cause things, much 

less diversity. Contingent upon and Contingent per se, as outlined by Beatty, are the 

modal senses of contingency analyzed here. A process-based approach avoids such 

strangeness by addressing the sources (i.e. the processes) of contingency. 

(2) The process-based approach: However, if one considers contingency as the stochastic 

processes that cause contingent evolution, then stochastic processes are doing all of the 

causal work. The threat is for contingency to become extraneous: Stochastic processes 

cause diversity, so why is evolutionary contingency needed at all?  
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My strategy is to address each horn in turn by not only unpacking the approaches in (1) and (2), 

but also navigating through contingency’s causality in each case.3 In the end, I adopt and 

defend a process-based approach to contingency in order to argue that it causes diversity in 

section 4. 

3.1 The Dilemma’s First Horn: The Modal Approach 
 
Contingency is traditionally a modal property considered in contrast to necessity, and 

sometimes situated in historical contexts (Ben-Menahem 1997). Modality can be understood in 

possible world frameworks (re: Lewis), along with other analytic work (Cresswell 2016). 

Generally, ‘modality’ refers to non-actual aspects of statements: modal properties situate their 

bearers within possibility. Evolutionary contingency, then, is a property of events arranged in a 

certain pattern or relationship to one another such that their likelihood is counterfactually 

understood.  One aim in recent evolutionary contingency literature is to establish the 

prevalence of contingent outcomes compared to those that are necessitated or determined. In 

the latter case, evolutionary trajectories converge regardless of history (Gould 1989, Conway 

Morris 2003, Powell and Mariscal 2015). In other words, the aim is to discover how much 

history matters in evolution: do outcomes typically converge across different phylogenies, e.g. 

eyes for sight in humans and squids? Or does history make a difference most of the time? 

Under a modal framework, one might argue that diversity is itself an outcome that is either 

contingent (i.e. fragile and dependent on history) or robust (i.e. frequently occurring in certain 

environmental conditions).  

                                                        
3 The line between modal versus process-based approaches may not be as clear cut as presented here, though it 
serves as a heuristic to navigate the contingency literature landscape. 
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The worry is this: contingency is a modal property and modal properties do not cause 

things, therefore, to say that contingency is causal is misinformed, or even foolhardy. The plot 

thickens further as a modal approach includes the two senses of contingency identified by 

Beatty.4  

First, the causal dependence sense of contingency is the backward-looking historical sense, 

which includes outcome sensitivity to both initial conditions and prior ordering of states, 

events, and processes (Beatty 2006, Desjardins 2011). So, the existence of today’s giraffes 

(Giraffa camelopardalis) is likely contingent upon the existence of their ancestor Okapia 

johnstoni. That is, O. johnstoni was potentially necessary5, but alone insufficient for G. 

Camelopardalis because many other factors (stochastic and otherwise) occurred in between.6  

When a particular outcome depends upon a prior state(s) that precedes it, that outcome is 

contingent upon the prior state(s) (Beatty 2006, 339). That is, the relationship between states is 

one of causal dependence. If ‘contingency’ is defined as causal dependence, then to say that 

contingency causes diversity amounts to the following: 

causal dependence causes diversity 

To say that diversity is explained by causal dependence seems uninformative or even trivial: 

That there are many kinds of wasps, for example, depends upon prior states of affairs, such as 

                                                        
4 I am very much indebted to Derek Turner and Joyce Havstad for articulating the dilemma to follow through in 
order to consider contingency as causal. 
5 O. johnstoni as a necessary condition for G. Camelopardalis does not mean “if O. johnstoni occurs, then G. 
camelopardalis necessarily occurs.” In other words, to recognize the dependence of G. camelopardalis on O. 
johnstoni is to acknowledge prior needed (yet individually insufficient) conditions of a particular path leading to a 
particular outcome. Identifying necessary and sufficient conditions can be used to make sense of the historical 
dependency relation between species, but Desjardins has showed how such path dependent relationships can 
come in degrees of sensitivity too.  
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environments hospitable to wasps. However, the trouble is not necessarily triviality, if indeed 

one lesson from contingency-as-causal-dependence is that history constrains future evolution. 

Recall Gould’s explanation for what makes life so wonderful: even under a million replays, it’s 

not obvious that anything like human existence, or any other outcome of interest, would ever 

evolve again. This is due to the various possible starting conditions and dependencies along the 

way that guide and constrain pathways. On this picture, evolutionary outcomes are mostly 

unique across different possible replays. As Currie (forthcoming) states, “history bends 

possibility: once inviting routes are closed off, once remote paths become neighbourly” (203). 

“Historical contingency generates uniqueness” in the sense that “historically contingent end 

states require highly specific initial conditions and sequences of events to occur, and so shall be 

rare if those conditions or sequences are” (213-14).7  Such rarity or uniqueness is revealed upon 

thinking counterfactually where outcomes are sensitive to a complicated, and sometimes 

unlikely, trajectory of prior events. Therefore, replays yield a diverse set of outcomes in the 

sense of uniqueness across possibility space where such rarity is discovered counterfactually.  

I’ll stipulate up front that contingency-as-casual-dependence cannot do the causal work 

needed in this paper. I aim to show that contingency produces a variability that can be typed 

and categorized both synchronically and diachronically: actual differences in structures (i.e. 

arrangements, relations, or mechanisms as we’ll see later), which serve to distinguish various 

types of biological phenomena persisting at the same time and one after another. This is 

developed later in Section 4. Rarity or uniqueness in terms of possibility and counterfactual 

                                                        
7 Currie (forthcoming, 204) analyzes positive and negative historicity in terms of our evidential access to the past 
and how it can be used for historical reconstruction. Currie draws from Wimsatt’s work on generative 
entrenchment where dependencies accumulate and become necessary for future contingencies.  
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thinking does not quite capture that aim. However, the modal approach to evolutionary 

contingency identifies a second sense of contingency to contend with—contingency per se. 

 How might one consider the unpredictability sense of contingency or contingency per se 

as potentially causal? This sense of contingency emphasizes how an event or state might not 

have happened or might have happened differently.  Here we are still thinking of evolutionary 

history counterfactually: a lack of necessity affects the probability distribution of outcomes 

across different replays. For example, the introduction of pelvic appendage gate patterns was 

potentially a causal factor in the evolution of walking and diversification in tetrapods (King et al. 

2011).  However, the existence of pelvic appendages is insufficient; more was needed, such as 

the use of a bottom substrate (i.e. a solid surface) to produce propelling force, digited limbs, 

and terrestiality (King et al. 2011, 21146).  The evolution of walking may have turned out very 

differently (or perhaps might not have happened at all) if the complexity with which the events 

took place over very large spans of time is considered. This second sense of contingency within 

a modal framework, then, amounts to causal insufficiency (see Turner 2011): any particular 

prior event (e.g. pelvic appendages) alone is not enough (e.g. for the evolution of walking). The 

evolutionary trajectory for tetrapod walking included an intricate network of other influences, 

pressure, and luck in addition to the evolution of pelvic appendages.  However, trying to make 

sense of contingency’s causality is particularly challenging if by stating ‘contingency causes 

diversity’ one means:  

causal insufficiency causes diversity 

How could causal insufficiency possibility cause diversity? The present setting of counterfactual 

thinking, possibility, and replays—i.e. what might have happened or not—employed by the 
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modal approach does not help my current quest for contingency’s causality. Causal insufficiency 

causing diversity seems non-sensical to say the least.8 Rather, in the tetrapod case above, 

concrete causal factors were the morphology of pelvic appendages, or happenstance of 

location, avoiding annihilation, favourable selection, and stochastic processes. 

To recap thus far, the dilemma’s first horn includes problems with the modal approach. The 

modal approach to contingency provides two options for considering contingency’s causality. 

On the one hand, contingency-as-causal-dependence leads us astray (i.e. to uniqueness and 

rarity of outcomes rather than to a diverse set). On the other hand, contingency-as-causal-

insufficiency yields a nonsensical result for contingency’s causality. Hope is not lost though. 

Next, we’ll see how a process-based approach can make sense of contingency’s causality, but 

not without its own obstacles to overcome. 

3.2 The Dilemma’s Second Horn: A Process-Based Approach 
 

Here I explain the process-based approach to contingency before tackling two concerns. 

There are some foundational ideas in the literature for processes that cause contingent 

evolution. For example, Turner (2015) argues that what Gould really meant by ‘contingency’ 

was unbiased macroevolutionary sorting and passive trends more generally.  At the microlevel 

(think genes, traits, organisms, local populations) natural selection is a process affecting the 

distribution of traits within populations in a way that is biased to the environment, whereas 

drift is an unbiased process.  There are analogous processes at the macrolevel influencing large-

scale lineages with species selection and unbiased sorting, which cause the persistence of some 

                                                        
8 It has been pointed out to me that if absences can be causes (e.g. not locking my door is a causal factor in my 
house being robbed), then why can’t insufficiency as a lack of causal power itself be a causal factor? I’ll leave the 
controversy over the causal power of absences and Tyler Goldschmidt’s paper to the Daily Nous! 
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species over others. Unbiased sorting patterns can be statistically captured as passive, 

undirected (i.e. not directed by selection) trends.  Turner’s 2015 paper offers a starting point 

for what contingency means in terms of causal processes and how certain processes are 

responsible for contingent evolution. Additionally, Adrian Currie and I (2017) explicitly focus on 

the sources of contingency: the causal processes (i.e. mutation, drift, unbiased species sorting) 

in relation to some evolutionary pattern at a particular scale (i.e. microscale or macroscale). 

Rather than focus on the shape or modal profile of life’s history, attention should be paid to the 

processes that produce the pattern in question.  For current purposes, this means that 

contingency as a property of outcomes can be conceptually pulled apart from the sources or 

processes that cause contingent evolution.  

Let’s dig in further to the notion of a process. Consider Roberta Millstein’s (2006, 679) 

claim concerning the difference between processes and outcomes as a starting point: 

By “process” I mean a series of physical states occurring over time, whereas by 
“outcome” I mean the effect, or ending state at a particular point in time, of that 
process. 

 

An outcome might be some pattern of gene frequency in a population that changes over time, 

some structural feature that serves a particular function, such as the limbs of vertebrates, an 

adaptive function, or even the emergence of cyclic metabolic pathways, and transmitted 

information through cellular signalling, etc. (da Costa and Galembeck 2016). Generally, while 

some outcomes are conserved through time, others undergo transformation through both 

divergence and change. Measuring the diversity of outcomes, then, amounts to individuation 

and counting according to some set of criteria. The processes responsible for outcomes can be 

evolutionary, developmental, biochemical, or ecological. Which means such processes might 
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include natural selection, mutation, drift, species sorting, organogenesis, signalling or signal 

transduction, cell adhesion, biosynthesis, and even geological factors like water cycles affecting 

wetland ecosystems, community dynamics, and so on.  The process-based analysis of 

contingency I am presenting here secures a sensible account of contingency’s causality because 

‘contingency causes diversity’ means: 

contingency-as-stochastic-processes causes diversity 
 

That processes cause diverse outcomes is less controversial than either sense of contingency in 

the modal approach previously discussed. One need not worry about the strangeness of 

contingency as causal if by ‘contingency’ one just means some process or other. And so, to 

establish that contingency causes diversity calls for a positive connection between stochastic or 

chance-based evolutionary processes and diversity.  Stochastic processes of interest might be, 

but are not limited to, the following three. 

First, it’s common to understand mutations—or random changes in nucleotide 

sequences unbiased to the environment—as a source of variation that selection works with. 

Though there has been a “neo-Darwinian prejudice against evolution through macro-

mutations,” mutations of large effects can occur, for example, when deeply entrenched traits 

have many downstream dependencies (Schank and Wimsatt 1986, 39). Second, one can treat 

drift, namely the frequency of allelic (or gene variant) changes according to the random 

sampling of individuals in a population, as a force or process. The role of drift in evolution is a 

contentious notion. For instance, it is sometimes construed as a merely statistical effect and 

questioned as to whether random sampling could have an evolutionary effect in a population. 

Regardless, drift has been frequently “invoked to account for many apparently nonadaptive 



 15 

patterns of variation” (Beatty 1992, 277).  And third, species sorting according to Turner (2011) 

is the macroevolutionary analogue of random drift—certain species persist or not without 

directionality.  As we have seen, Turner argues that “evolutionary contingency is the random or 

unbiased sorting of entire lineages” (2011, 69 my italics).  To construe contingency as stochastic 

processes though leads out of the dilemma’s first horn, and right into the second. 

What work is contingency doing if stochastic evolutionary processes cause diversity? The 

worry might be twofold: (1) If natural selection is the most significant evolutionary driver, why 

focus on unbiased processes? And (2) one can discuss the roles mutation, drift, and unbiased 

sorting have in producing diversity without needing contingency at all. So not only is the focus 

misguided (i.e. on stochasticity rather than selection), but contingency also becomes 

extraneous. Below is a response that keeps the focus on stochastic processes and still motivates 

the salience of contingency. 

First, natural selection may not be the most significant evolutionary driver. There are 

good reasons to be suspicious of selection’s alleged all-encompassing power to dominantly 

drive evolution at all scales. Gould (2002, 505) discussed how the modern synthesis of 

Darwinian theory and Mendelian inheritance initially considered a plurality of mechanisms for 

evolutionary change. Prior to the hardening of the synthesis, the pluralistic phase “grant[ed] a 

greater role to randomness and nonadaptation in evolutionary change,” (523). Gould 

challenged the overreach of natural selection throughout his career, the culmination of which is 

reached in his last publication’s final pages. There he argued for Darwin’s own commitment to 
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contingency (2002, 1334). Simply put, there are well-known solid grounds to reject a narrow 

focus on selection alone.9 

And second, contingency is not extraneous: contingency matters in contradistinction to 

the adaptive, functional, convergent, and environmental-fit factors of natural selection. By 

keeping stochastic, unbiased processes under the banner of contingency, there is something to 

be learned about the role of contingency at various scales. If it were the case that natural 

selection could act both dominantly and uncompromised by other factors, certainly some level 

of predictability would be at our finger tips. That is, so long as certain environmental conditions 

hold, natural selection as biased to the environment, should produce outcomes that converge 

on a function suitable to the challenge.  Notably it is a large research project to establish 

convergences compared to divergent contingencies, which amounts to analyzing the relative 

significance of natural selection compared to chance in evolution. In other words, chance 

processes are grouped together under contingency typically in opposition to selection and 

other biased processes. What can be said about this oppositional relationship though?  

Previously, chance influences, such as mutation, drift, and even recombination have 

been referred to as “degradational forces” that can hinder selection’s capacity to maintain 

against them (Schank and Wimsatt 1986, 44). Perhaps one can add to that list other contingent 

influences like external disturbances (i.e. extinctions caused by geological factors). Moreover, 

developmental constraints are often construed as restricting evolutionary change and 

adaptation, rather than, for example, positively channeling evolution (Pigluicci 2008). To take 

an antagonistic caricature of selection versus other forces is useful because it can affect how 

                                                        
9 See Gould and Lewontin (1979) for a critique of adaptationism.  
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evolutionary patterns of diversity appear to us. Such diversity is due to selection not having a 

clear shot: the power of selection is confounded by the forces of contingency. That is, 

stochastic processes, internal constraints, and even external disturbances affect the available 

strategies that natural selection has to cope with in addressing environmental challenges, but 

selection is not the only facilitator of change.10 As Brigandt (2007, 715) suggests, traditional 

evolutionary biology often proceeds to explain evolutionary change through natural selection 

acting on variation without attempting to explain why that variation occurs and its significance. 

And so, in the next section I explore stochastic influence in the production of variability, and 

how that variation can be pluralistically classified using a not-so-adaptively-focused approach.11  

In summary, this section included a dilemma: first, there is strangeness concerning 

contingency as causal in its traditional clothing of both contingent upon (causal dependence) 

and per se (causal insufficiency).  Instead I adopted the process-based approach to contingency 

to circumvent the issue: If evolutionary contingency just is stochastic or unbiased processes, 

and stochastic processes are all concrete causes, then contingency as causal is less problematic.  

However, the focus on processes yields the dilemma’s second horn: what role is left for 

contingency? I argued that contingency still matters in contrast to selectionist explanations. 

This is because contingency serves as a lens through which the history of life is approached by 

gathering matters of chance under its umbrella. Contingency as a modifier can apply to events, 

                                                        
10 Schank and Wimsatt (1986, 52) explore an experiment by Stuart Kauffman on gene control networks, which they 
argue showed significant limitations on the power of selection with changes in properties of the networks better 
explained by intrinsic constraints rather than selection.  
11 Stochastically-produced outcomes are not truly random in a way that circumvents rational explanation. Instead, 
such outcomes are “chance events from the viewpoint of function” (Noble 2013, 1236). It is better to think of 
stochastic processes as merely unbiased to the environment, rather than occurring purely without reason or 
pattern. This means that coherent explanations of diversity are still possible even when they draw from the role of 
chance. 
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processes, states, and so on, but even as a modal operator certain causal processes in addition 

to their end states and overall profiles all fall under its domain. Stochastic processes share in 

being non-adaptational or non-optimal modelling processes: united under the contingency 

framework they muddle the uniformity of selectionist models.12 That uniformity is 

predominantly functional: it relies on the identification of how traits work in their respective 

environments regardless of their biological structure or form.  

The distinction between ‘function’ and ‘structure’ is important for the cases studies in 

section 4. Adaptations as markers of selection are construed by the work they perform, and in 

terms of their responses to the environment. Similar environments yield a confined set of 

stable functions. This means that the differences among various structures of evolutionary 

mechanisms don’t matter insofar as they fulfill the same functional role. In other words, 

functional roles like heritability, variability, evolutionary individuality, etc. remain stable and 

constrained in selectionist models. Those functions remain stable despite important structural 

differences among the mechanisms by which they are realized.  

4. Functional and Structural Measurements of Difference: How 
Contingency Causes Structural Diversity 

 

So long as we distinguish among outcomes in number and have some way to measure 

differentiation, then a general notion of diversity begins to take shape (Maclaurin and Sterelny 

                                                        
12 Does contingency just amount to any other evolutionary force other than natural selection on my account? 
McConwell and Currie (2017, 250-251) argue that natural selection can be a source of contingent evolution too: 
evolutionary outcomes can be sensitive to initial conditions such as a traits heritability for example. At the very 
least natural selection can be a source for historical contingency, but my emphasis on chance drives the contrast 
between processes under the banner of contingency and natural selection. 
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2008, 9). Up to this point, I have introduced contingency and argued that contingency is causal 

insofar as the stochastic processes shaping contingent evolution are causal. The aim of this 

paper is to show that contingency causes diversity, so in this section I rely on examples to 

demonstrate the positive influence of contingency for diversity production of a certain sort. In 

surveying the examples, I look for the influence of stochastic, unbiased processes, emphasize 

structural (rather than functional) differences, and discuss why those differences matter.  

However, before turning to those cases I’ll introduce diversity more generally and how 

functional versus structural approaches can affect measurements of difference. 

 Different measures of diversities yield different sorts of diversities, which are, in effect, 

different kinds or types of outcomes. One main message of Maclaurin and Sterelny’s work is 

that a single measure of diversity in a biological system is untenable (2008, 7). There are 

different sorts of diversities, such as taxonomic biodiversity in communities assessed by the 

number of species they contain (richness) and how evenly the individuals are distributed among 

species (evenness). Diversity is also assessed by functional interaction types or other ecological 

traits (Mougi and Kondoh 2012). There is diversity qua anatomical disparity where diversity is 

measured by the range of disparate anatomical body plans or structure of higher taxa, such as 

phyla (see Gould 1991, Wills et al. 1994, Foote 1993). Finally, but not exhaustively, there is 

phenetic and phylogenetic diversity of traits and organisms where degrees of similarities and 

differences are used to measure the diversity among shared traits (both morphological and 

otherwise) in phylogenetic trees, and the degree of divergence by evolutionary relatedness and 

common ancestry in branching-patterned cladograms. Though evolutionary systematics and 

cladistics are different ways to construe evolutionary relationships, they are also ways to 
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potentially track diversity in evolutionary history (Gould 1991, 420, Maclaurin and Sterelny 

2008).  

To determine whether there is diversity or not will depend upon measurement strategies 

and tools, which are sometimes coloured by presuppositions about the processes identified as 

dominant causers.  

Consider the following scenario as a warm up:  

 

 

Figure 1. The evolution of sight. M1 represents mammalian eyes, M2 represents reptilian eyes, and M3 represents 
bird eyes. Functional and structural approaches classify these outcomes differently.  
 
When can we say there is diversity?  Because questions of diversity draw from ways to 

individuate and differentiate, a more traditional way to phrase the question might be: when 

has enough change occurred such that two different types of mechanisms can be identified, 

rather than one? Conversely, what needs to be conserved in order to say we have the same 

type of mechanism? These are tough questions and there are different tools to approach them 

that I’ll refer to as ‘functional’ versus ‘structural’ strategies.  This will help to elucidate what 

structural diversity amounts to. Suppose that M1, M2, and M3 represent mammalian eyes, 

reptilian eyes, and bird eyes, respectively. Both mammalian (M1) and non-mammalian 
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vertebrate (M2 and M3) eyes resemble the function of a camera in important ways. The quality 

of vision depends on the lens and cornea, and the cornea’s shape influences visual accuracy or 

sharpness. Cornea shape is determined by the structure and biomechanics of collagen lamellar 

organization—layers of collagen fibers or ribbons. 

On the one hand, with a functional approach M1, M2, and M3 can all be grouped together 

based on what they achieve in their respective environments. So, for example, even though the 

animals belong to different classes, the function of these traits in terms of their activities for 

some purpose (i.e. for sight) converge. Convergence is important because it shows that 

adaptation, and therefore natural selection, is at work in similar environments.  Functional 

convergences are often considered as both marks against the significance of evolutionary 

contingency and demonstrative of natural selection’s power. A functional approach might 

attend to the relationship of eyes with their environments, and also their parallelism or 

homoplasic status compared to traits in other species. By privileging adaptive function, this 

evolutionary history appears more constrained—the outcomes are less diverse, more 

convergent, and conservative when structural variation is ignored. On a functional account 

selection as the evolutionary process takes center stage. Conway Morris is well known for 

providing lists of convergences to serve as counter examples against the prevalence of 

evolutionary contingency.13 Functional analysis, however, is not the only way to represent and 

categorize evolutionary outcomes. 

                                                        
13 Convergences are also cited in support of evolutionary inevitability or predictability of outcomes (Conway Morris 
2003).  
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On the other hand, one might approach the case structurally. To analyze differences in 

biological structure might involve large scale body plans that define different phyla, for 

example. However, there is also structure on smaller scales beyond total body plans, though 

the smaller scale features may help produce and maintain them. There is structural 

organization among cells, internal to cells, arrangements and biomechanics on various scales, 

and even organization and relations in general, such as the structure of ancestor-descendent 

relationships or community structure of interactions within ecosystems. Chance-based sources 

of contingency often play a role in altering these structures. And even though mutational 

sources, for instance, may become adaptive downstream, the classification of structural 

difference does not necessarily rely on function nor should evolutionary history be addressed 

only in that light. Structural details matter in informing our investigation of living things: they 

can be used to represent, classify, and categorize biological phenomena.  

 
 
 
Figure 1a. A functional approach groups together mammalian (M1) and non-mammalian (M2 reptile and M3 bird) 
by how the traits perform in a given environment. However, while reptile and bird eyes share in structural 
organization, mammalian corneas are organized differently. Diversity is increased when approached structurally in 
this case. 
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Importantly, while non-mammalian vertebrate eyes share their structural organization, 

mammalian corneas are organized differently “suggesting a divergent evolutionary 

background” (Winkler et al. 2015).  Recall that cornea shape is determined by the structure and 

biomechanics of collagen lamellar organization—layers of collagen fibers or ribbons. In reptiles 

and birds, the collagen sheets are broken down into ribbons and maintain a particular 

orientation, whereas in mammals the “layered collagen sheets are replaced by more dynamic 

fiber bundles” in random orientation (Winkler et al. 2015). Winkler et al. (2015) aim to 

understand the biomechanical structures in controlling corneal shape because of how that 

shape affects refractivity, thereby, affecting the sharpness of vision across species. Not only do 

the “mammalian corneas [exhibit] a radically different structural paradigm,” which suggests 

unique developmental programs, the visual experience in birds is very different from 

mammals—an important detail glossed over by a functional account (ibid). Birds have two to 

eight times increased visual acuity (or sharpness) compared to mammals, their visual fields are 

over 360 degrees with an increased ability to detect certain movement, and they have the 

potential to perceive ultraviolet light (Doneley et al. 2016). In order to classify sight as a 

functionally convergent trait across classes, these structural details are ignored. 

Admittedly, it’s not that one approach—structural or functional—is necessarily the 

approach one must take.  Assessing structural and functional (dis)similarity in order to 

understand evolutionary patterns is messy and complex. Love (2009, 13-14) puts it best when 

he says, 

The typology is structural in some cases, whereas in others it is functional…and 
what counts as ‘structural’ and ‘functional’ also varies across disciplines. In some 
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cases, structural and functional considerations are mixed…what is grouped 
together is heterogeneous, including entities, activities, properties (size, weight, 
colour), processes (selection), mechanism, and time (normal stages). 

 

The three cases explored next have structural diversities that tend to be finer-grained and 

revealing of differences in a way that functional accounts can overlook.  Different processes 

produce different sorts of patterns, which means inflating the relative significance of selection 

in evolution yields a more constrained, functionally-glossed pattern of evolution. However, by 

paying attention to chance or unbiased processes and the structural variability they cause, 

revealed is a contingent evolutionary pattern far less constrained and much more diverse. A 

structuralist approach is not necessarily opposed to functionalist accounts. Instead, 

structuralism enriches our understanding of evolution. Admittedly, one implication of all of this 

is that functional analyses make evolution appear more constrained—is that the case? 

 It might be that both structure and function can be individuated more or less finely.14 

Or, one might also explore what sorts of consequences structural differences can have for 

relevant functions just as the Losos Lab does by investigating different species of Caribbean 

Anolis lizards. However, that structure and function can be placed on descriptive continuums 

does not bear significant negative weight against contingency’s productive relationship with 

structural diversity. Indeed, there might be some coarse-grained structural descriptions that in 

some sense have less divergent details than a corresponding functional one, or even structural 

convergences (such as the upper limbs of penguins and other birds) that have very different 

functions. So, while I suspect that structural diversities tend to be more fine-grained there is still 

                                                        
14 A reviewer for this paper raised concerns about the implication that functional analyses make evolution appear 
more constrained, and so they requested that something akin to that claim should be defended.  
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room for those types of exceptions. Additionally, Conway Morris has spent much of his career 

detailing functional convergences as evidence for constrained evolution. One good example is 

entitled “Life’s Solution: what happens when we re-run the tape of life?” (2008) where Conway 

Morris argues that evolution is constrained based on what he takes to be the pervasive nature 

of convergences defined as “near identical functional solutions” (2008, 207). Conway Morris 

(2003) is known for providing lists of those convergences as evidence against contingent and 

unconstrained evolution. And so, in contrast, I offer a case for structural diversity and 

unconstrained evolution. 

In the following, I’ll discuss three examples that showcase how contingent evolution causes 

structural diversities. Any forward-looking sense of contingency has been heretofore discussed 

as either unpredictability (Beatty 2006) or causal insufficiency (Turner 2011).  These accounts 

do reflect a sense of vast possibility space such that any structural flexibility found suggests 

future possible trajectories. However, I direct attention to the process-based approach: 

structural diversities are caused and distinguished by processes responsible for contingent 

evolution. Contingency causes diversity through the production of structural novelties and their 

transformation through time. I turn to three examples—the structure of the genetic code, the 

evolution of signalling pathways yielding cell-type diversity, and on a larger scale, anatomical 

body plans. I survey the examples briefly for the influence of stochastic processes and their role 

in producing structural (rather than functional) differences.  

First, consider the genetic code, that is, the rules that govern how information encoded in 

DNA and RNA is translated into proteins that are comprised by amino acid sequences. Through 

this process certain combinations of nucleotides called ‘codons’ correspond to an amino acid in 
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constructing a protein.15  The rules, for example, determine which codons (or ‘nucleotide’ 

triplets such as U-A-C) bind to a tRNA molecule carrying the amino acid to be added next during 

protein synthesis.  The genetic code was thought to be universal among all organisms, and a 

frozen accident unable to evolve further (Crick 1968). In other words, the genetic code is 

constrained and “impossible to improve because so many proteins depended on a fixed 

system” (Cornish-Bowden et al. 2014, 18).  

However, not only are there alternatives codes existing currently, there’s evidence of 

genetic code flexibility due to stochastic processes. Therefore, “it cannot be strictly fixed” (ibid 

19). For example, there are small differences known in non-plant mitochondria and other 

systems such as intracellular bacteria, which have both an alternative genetic codes and DNA 

structure. Mitochondrial code differs from the standard genetic code in its translation of certain 

codons (Jukes and Osawa 1990). In fact, Elzanowski and Ostell (2016) have compiled a list of 

more than twenty different genetic codes.16 Those codes include different rules for 

arrangements and relationships among codons and their corresponding nucleotide sequences. 

Additionally, while typical nuclear DNA is a double helix structure, mitochondrial DNA is a 

closed circular doubled stranded DNA molecule. In other words, there is something like a 

coarse-grained morphological disparity at the molecular level: the double helix structure of 

nuclear DNA is structurally different than the closed circular structure of mitochondrial DNA. 

The genetic code as a singular universal phenomenon is only considered as such when 

                                                        
15 Stop signals halt translation into proteins.  
16 Elzanowksi and Ostell’s list of genetic codes can be found at: 
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c 
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differences among codes are ignored in favour of their functional similarities, such as “single 

direction reading” (see Kubyshkin, Acevedo-Rocha, and Budisa 2017 for more on similarities 

across coding events). 

In order to establish that contingency causes code diversity we’d need to investigate the 

origin and evolution of the various genetic codes and the stochastic processes involved. I can 

only speculatively gesture at the direction one could take. Mitochondria are thought to be of 

separate evolutionary origin before the endosymbiotic event eventuating eukaryotic cells—the 

mitochondrion is the remnant of the engulfed bacterial cell.  That two different types of DNA 

structures exist within eukaryotic cells, which are each guided by their own respective genetic 

code variants, is at minimum a structural diversity likely caused by a highly contingent 

endosymbiotic event wherein an archaeon engulfed a bacterium (Martin et al. 2015).   

Moreover, any genetic code flexibility demonstrates future evolutionary potential for 

change into a new type, but how could changes to the codes possibly occur? In codon 

reassignment, the meaning of the codon is altered and thought to be lethal in causing 

mistranslation of genetic information. However, genetic code flexibility is revealed in E. coli 

(Mukai et al. 2010).  Though the processes responsible for genetic code flexibility are not 

entirely understood, there is work on mutational processes (i.e. one source of contingency) to 

prepare E. coli for the codon reassignments associated with changes in DNA structure (ibid).  

We should be open to such flexibility marking the potential for change, even in evolution’s most 

basic (i.e. small-scale) structural components, such as genetic codes. That genetic mechanisms 

control the breeding habits and life cycles of organisms does not necessarily exempt them from 

change. Darlington (1939) argued that the genetic systems central to evolution were 
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themselves subject to change and constantly evolving. And Beatty (1980) has argued that 

meiotic mutants, such as nondisjunction, are evidence of evolutionary flexibility in the meiotic 

mechanism, and of the reproductive process itself that’s integral to heredity. My point is that 

similar inferences can be made about evident flexibility in the genetic code.  

Second, let’s zoom out to a slightly larger scale: cell type diversity.  While cell type 

classification can be a difficult task, traditionally it was achieved by identification of 

morphological (or structural) variability, such as inclusion size, shape, staining properties, 

organelles, and cytoskeletal structure (Vickaryous and Hall 2006, 426). More recently, gene 

expression and chemical constituents of tissues have been used, along with modern imaging 

techniques, to identify dendritic17 stratification patterns, for example (Arendt et al. 2016). 

Signalling pathways allow cells to communicate their identity to others, which may have 

facilitated the evolution of multicellularity. Cell-to-cell communication occurs through 

intercellular signalling pathways and other extracellular means where signals are transmitted, 

signals which are important for multicelled life. Pathways involve “systems of proteins that act 

in an orchestrated fashion, [and] mediate the response of a cell toward internal and external 

signals” (Soyer and Bonhoeffer 2006, 16337).  

Because cell-type diversity is achieved through several different pathways (Vickaryous and 

Hall, 441), the contingent evolution of those pathways can be explored.18 There are various 

                                                        
17 Dendrites are short branching extensions of nerve cells, but there are dendritic cells that are part of mammalian 
immune systems named for their tree-like or dendritic shapes. 
18 One reviewer suggested that even though cell type diversity is realized through multiple pathways (and I 
suggested the contingent evolution of those pathways be explored), this could be an example of a different type of 
convergent evolution. Perhaps the idea is that while one can distinguish between structural types based on 
contingent features and mechanisms, one might also distinguish between different functional types based on their 
prior histories (e.g. convergent evolution, parallelism).  
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pathways by which cell types arise each with definitional challenges analogous to the various 

species concepts.19 However, there are patterns of diversity used to identify corresponding cell 

types (Vickaryous and Hall 2006).  Babonis and Martindale (2017) investigate the evolution of 

signalling pathways that facilitate cellular communication by tracking pathway phylogenetic 

history. They aim to understand the evolution of complex multi-component signalling pathways 

and the evolution of novel cell communication systems in general (2017, 14). The evolution of 

more complex signalling pathways, such as complexity-as-pathway-size, was likely needed for 

multicellularity to occur in order to navigate the terrain of different cell types within close 

vicinity. Soyer and Bonhoeffer (2006, 16337) show that such complexity can occur without any 

selective pressure for it, and that final pathway size tends to be lower and less complex when 

pathways evolve under strict selection criteria. They argue that pathways have an intrinsic 

tendency to become more complex resulting from mutational events on pathway response, 

mutations that yield the addition of new interactions or proteins. They discuss how the 

evolution of these pathways occur due to the “nature of mutational events affecting pathway 

structure” with only a nominal role for selection pressure on function (ibid). This suggests that 

the signalling pathways responsible for diverse types of cells, distinguished structurally, are 

caused mostly by stochastic processes and, as such, contingently evolve. 

Third and finally, let’s turn to largescale structural transformation in the origins of diverse 

novel body plans: diversity as anatomical disparity. There is disagreement over the amount of 

                                                        
19 Cell-type classification might call for philosophical analogues of various species concepts: Vickaryous and Hall 
(2017, 426) hope for unique cell markers to demonstrate unambiguous identity of cells, but despair about identity 
complications, such as how some cells can come to share features with recently encountered cells, and how 
identification is often up to the investigator. 
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disparity in life’s early history (Wills et al. 1994, Foote 1993, Ridley 1993), especially by appeal 

to stem groups and changes in taxonomic methodology (see Brysse 2008, Briggs and Fortey 

2005, Erwin 2016). Disparity is a technical sense of diversity closely associated with contingency 

because it articulates a diverse set of starting points. Diversity here is measured by the range of 

disparate anatomical body plans or structure of higher taxa, such as phyla.   

Gould argued that the Cambrian explosion had a vast array of structural designs in this 

sense because Cambrian creatures were “so damned curious, different from one another and 

dissimilar from surviving lineages…life’s greatest radiation” (1991 413, 416). However, even 

though typology is central to comparative morphology concerning form and structure 

commonalities and differences across taxa, structural types need not be just coarse-grained 

descriptions of anatomical traits. Structural types can be used to explain why some pattern is 

present or why certain traits are shared by a taxon (Brigandt 2017, 5).20  It’s also incorrect to 

think that structural typologies can’t include variability and change (ibid, 2, 6).  Not all changes 

are responses to environmental change or entry into the Simpson-esque pre-existing adaptive 

zones (Cavalier-Smith 2017, 12). Small mutations can cause huge changes, and in the right 

“organismal, phylogenetic, developmental, and ecological context, they [i.e. mutations] can 

make new phyla” (ibid).  This certainly suggests that body plan design—the bodily forms or 

structures that distinguish higher taxa, are less constrained: phyla diversification was 

potentially caused by mutational change. Cavalier-Smith argues that the origin of sponges, for 

example, were “internal non-responsive innovations that worked” and that key mutations early 

                                                        
20 Levin et al (2016) argue that phyla can be distinguished by mid-developmental transitions, which serves as an 
example of how structural typing can include fine-grained patterns and not just abstract anatomical descriptions. 
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in development can radically change animal phenotypes (ibid). In other words, “self creation of 

radical novelty can dramatically alter” and even positively channel selection producing 

ancestors with “unprecedented evolutionary potential” (ibid). If Cavalier-Smith is correct, then 

mutational processes—a source of contingent evolution—directly caused structural diversity on 

a very large scale.  

Together the above survey of genetic codes, cell types, and phyla disparity serves as a 

lesson. Instead of thoroughly developing a singular case, my goal was to introduce a small 

variety of cases under the contingency framework. Each token case serves as a historical datum 

for the causal relationship between processes in contingent evolution and structural diversity 

found on a fine-grained, non-functional scale. The diversities of structural types above are 

distinguished from one another through stochastic means, which causes biomechanical 

variation and flexibility. By paying attention to structural differences, so long as contingent 

evolution continues, one can take this a step further: evolution is transformative, less optimal, 

and less constrained.  

Overall, diversity has many dimensions. It is ill-advised to ask questions about diversity in 

isolation from the greater context in which they are embedded: background understandings of 

evolution colour the way diversity is approached. The evolutionary contingency thesis serves as 

an explanatory framework for diversity in biology: In the three case studies, chance-based 

processes cause structural diversity and the contingent evolution of those different 

mechanisms.  One can then start typing the variability on that basis, i.e. classifying based on 
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structural differences, such that a plurality of biological phenomena follows.21 McConwell 

(2017) argues for a plurality of individuality types in selection based on chance processes and 

structural differences in variation and heritability mechanisms. I envision that something similar 

could be more fully developed with each of the three examples above. Recall a motivating 

undercurrent for working through contingency and diversity: If classifying variability into types 

or kinds distinguished structurally yields a pluralism, then pluralism in the biological domain is 

explained by the evolutionary contingency thesis. As I stated in the introduction, Hull (1987, 

178) raised a concern about pluralism. He once proposed that remaining content with a 

plurality of concepts, such as species concepts for example, “might be admirably openminded 

and liberal, but it would be destructive of science” (ibid). Hull maintained that it was the best 

scientific tradition to opt for “one perspective and [push] it for all its worth” (ibid). I very much 

disagree. It’s not about remaining content as if to settle with biological plurality when that 

plurality is caused by contingent evolution. 

 

 

 

                                                        
21 A reviewer asks why I have not addressed simple cases: “Darwin would have said that structural variation within 
pigeons was due to the chance processes of accidental mutations. This process would help to increase variability in 
the population, and this is how we (sometimes) model mutation in population genetics, as introducing 
variation…there is an obvious case in which contingency causes diversity.” I avoid those cases because my aim is 
not to discuss accidental mutations as merely introducing variation for selectionist frameworks of evolution. My 
aim is to show how contingency, by causing structural diversity, results in pluralism. We sometimes find a plurality 
of x in the biological domain (kinds of heredity, for example), however, I aim to provide an explanation for that 
pluralism by appeal to evolutionary contingency as an explanatory framework.  
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5. Reconciling Productive Contingency with Gould’s Diversity to 
Decimation Model 

 

Lastly, recall that Gould did propose a diversity-to-decimation model, which included an 

initial explosion of diversity with many different body plans eradicated through the course of 

evolution (1991, 1993). Gould spent much of his career arguing for contingency’s destructive 

power, yet in this paper I have argued that contingency is productive—it causes diversity. As I’ll 

illustrate in this final section, my view is not in tension with Gould’s. Gould’s model does not 

necessarily discount episodes or explosions of diversity on different scales, even after periods 

of decline. Rather, contingency can be both destructive and productive. Let’s take a closer look. 

As mentioned previously, Gould was concerned with diversity as disparity, a technical 

notion referring to differences among anatomical designs (Wills et al 1994, Foote 1993). Rather 

than steadily increasing diversity with only a few forms at the base, Gould’s model consists of a 

diverse set of starting points: 

 
Figure 2. The traditional cone of increasing diversity with a less diverse base and increasing branching effects that 
can be classified together (see Brysse 2008, 308 on stem, crown, and total groups) vs. Gould’s decimation model 
with mass radiation followed by extinctions of large groups.  
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Destruction is built into Gould’s model, and arguably informed by his claims of evolutionary 

lottery and luck in the face of extinction for both local and mass scenarios. The role for 

contingency can be damaging of diversity unless active stabilization takes place for the 

“architectural depth” of structural characters (1991 417-18). Even Briggs and Fortey (2005, 

108), both critics of Gould, also discuss how contingency factors into evolution and its diversity 

in a negative way.22 They state that contingency is involved “to the extent that the loss of many 

taxa during mass extinctions, particularly those attributed to asteroid impacts, is randomly 

determined” (ibid). On this picture, contingency is negative and backward-looking: in tracking 

evolutionary patterns, one finds them chipped away by fragile dependencies due to matters of 

chance both evolutionary and otherwise. While the previous section included case studies for 

contingency’s productivity, consider the following as an example of contingency’s destructive 

power. 

 There are cases where external disturbances are detrimental to mutualistic interactions, 

which are structural relations among organisms and species (Garcia-Algarra et al 2017). 

“Interaction networks play an essential role in the stability of ecosystems…as well as in the 

maintenance of biodiversity” (ibid). Interaction-type extinctions can cause a cascade of changes 

in communities and the loss of important ecological functions like pollination and seed dispersal 

(Jordano 2016).  One popular example is the effect of drought on the extinction and breakdown 

of mutualisms between figs and fig-wasps (Ficus-Agaonidae). When such droughts are due to 

                                                        
22 Brysse (2008, 299) argues that changes in taxonomic methodology and the advent of stem group concepts that 
fit the “weird wonders” from the Burgess Shale with modern phyla, change the model of history to a less diverse 
base. Evolutionary systematics concerning similarity produces more phyla diversity compared to cladistics, which 
produces less.  



 35 

weather events that cause temporary changes in the world climate, such as the El Niῆo, an 

increase in ocean temperature occurs due to complex interaction between wind and waves.  In 

these cases, the very same entities present in those mutualisms no longer cooperate due to 

external disruption. Drought caused a break in the production of fig inflorescences, which is a 

special casing lined by small flowers that fig wasps enter to pollinate and lay eggs.  Fig-wasps 

depend on the production of inflorescences, the lack of which resulted in local extinction of 

some pollinator species.  This is, in effect, a story of contingency because the evolution of 

cooperative mutualisms is dependent on both historical and stochastic processes relevant to 

geology, meteorology, and oceanography.  The evolutionary history of this complex relationship 

reveals a fragility: a sensitivity to disruptions that effectively shape the evolutionary profile of 

the fig-wasp mutualism. Presumably, catastrophic events causing mass decimation work 

similarly—there is sensitivity to disruptions that affect largescale evolutionary patterns and the 

organization of higher taxa too.  

So, if contingency is destructive by constraining and demolishing pathways, how does the 

productively causal aspect of contingency square with the decimation model? I’ll show that not 

only is diversity production compatible with the decimation model, but contingency’s 

destructive power also contributes to diversity. Each will be taken in turn before concluding the 

paper. 

There are at least three points that support the compatibility of contingency’s productive 

and destructive aspects, two of which are found in Gould’s own work. First, Gould (2002, 948) 

criticizes the speed with which recovery occurs after catastrophic events—this was of course his 

view that evolution proceeded episodically and with a punctuated character, rather than 
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gradual. It is in his description of evolution’s tempo and mode one finds a hint of positive 

diversity production. Gould thought that “episodes of recovery from maximum decimation at 

the extinction to full reestablishment of previous levels of diversity occur more quickly” until 

the next mass extinction of global biota (ibid). The diversity-to-decimation model, then, can be 

viewed as an all-encompassing picture of life, and also as a more local, and repetitive, snapshot 

in time: diversity bounces back even if to a lesser extent. Second, Gould’s model was about 

anatomical disparity, which on his model exceeded modern levels. However, species diversity in 

the Cambrian was much lower than now despite having a greater range of body plans. 

Contingency can span scales: on the decimation model, an increase in diversity is only 

controversial depending on the sort of diversity in question.  

Third, and albeit a little more speculatively, while identifying causes of the Cambrian 

diversification event is a contentious issue, the actual body plans themselves may have been 

generated by chance. Recall the Gouldian balance of both external environmental factors 

causing selection for adaptive traits and internal-type forces that constrain inheritance and 

development. History and chance have positive roles in generating evolutionary pathways that 

reflect both inherited patterns and environmental pressures. According to Gould, contingency 

destroyed the Cambrian body plans, which constituted a subset of workable but lucky survivals 

among a much larger set that “either never arose, or lost their opportunities, by historical 

happenstance” (2002, 1161). However, Gould (1989, 53) was also critical of direct and simple 

preCambrian ancestors of phyla in the Cambrian explosion. Drawing from more recent 

research, a major factor in the radiation was alterations to the way Hox genes (i.e. genes 

responsible for basic segment morphology) were put together, their expression, and 
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downstream signaling effects (Penumaka 2011, 47). This might mean that in early history 

before pathways were entrenched, mutations could alter organism development in a way that 

produced, rather than only destroyed, actual body plan diversification. 

And finally, consider a version of Will Bausman’s (2016) useful metaphor tailored to explain 

how contingency’s destructive power can still produce diversity.23  

 
 
Figure 3.  Contingency both produces and destroys diversity, but insofar as diversity is just a measurement of 
variability according to some criteria (e.g. just as one might use different tools to measure liquid volume), 
production and destruction really just are two sides of the same coin. 
 

I view this metaphor as a tool: another way to approach how contingency can be both 

destructive (as Gould argued for) and productive (as I have argued for). Imagine the water level 

in your sink as analogous to a certain measure of diversity—cell types, species number, 

ecological interaction types, even anatomical disparity, etc. The inflow rate of the faucet 

                                                        
23 Bausman (2016, 8, 224) explores neutral theory—a theory of patterns of kinds of species in an ecological 
community. The primary process is ecological drift: demographic stochasticity or random birth and death similar to 
the MBL model that explains evolutionary patterns stochastically and without selection. He discusses how species 
can maintain an equilibrium despite speciation and extinction (as a product of drift), as analogous to how the 
water level in your sink is explained by the inflow rate from the faucet and the outflow rate of the drain. Solving 
how species number remains constant is like “solving the sink problem when the water level is constant” (21). 
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includes generative stochastic processes that produce variability—mutation, recombination, 

and maybe even drift and its macrolevel analogue (i.e. species sorting) if you catch them on a 

lucky day. The outflow rate of the drain includes chancy destructive components that affect the 

diversity measure “negatively” by taking away some trait, interaction, species, etc. or 

preventing them from reaching a certain level. These destructive processes might be 

extinctions (mass or local). Or they might be unbiased sorting processes if caught on an unlucky 

day where extinction and eradication are their products.  

Sometimes the very same processes (i.e. unbiased sorting processes) can play both 

productive and destructive roles depending on their products. We might also include internal 

developmental constraints that both guide and prevent pathways. Destructive processes in 

contingent evolution alter diversity by helping to maintain an equilibrium or simply just a 

change in measurement outcome. Similar to how your drain can balance a high inflow rate 

from the faucet or affect possible water levels either positively or negatively, developmental 

constraints mitigate what is made possible by mutation, for instance. Constraints influence the 

patterns of diversity and as such are not exempt from understanding it. However, if we think 

that diversity measures transformational change over time, rather than only more-different-

things-added-at -one-time, then the drain as our destructive and restrictive processes causes 

that sort of diversity too. Drains, from time to time, do back up after all and shift the 

composition of what’s in the sink.  One might consider this in terms of Gould and Lewontin’s 

spandrels, which arose from morphological evolution driven not by selection, but by 

“architectural-developmental constraints” (Brigandt 2014). Brigandt (2014) also argues that 

constraints do not just restrict possibilities; they can also facilitate change, transformation, and 
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novel form. Contingency both produces and destroys diversity, but insofar as diversity is just 

measurement of variability according to some criteria, production and destruction really just 

are two sides of the same coin. 

6. Conclusion 
 

In conclusion, the aim of this paper was to elucidate what Gould left out about contingency. 

I demonstrated how contingency can be an engine of diversity in a way that amounts to more 

than Darwin’s idea of mutation and chance as engines for mere variation. Gould primarily 

discussed contingency as a destroyer of diversity, which leaves a gap concerning contingency’s 

productive role—a role that is more significant than merely natural selection’s servant or 

“lackey.” However, as I discussed, his decimation model does not preclude contingency’s role in 

causing and maintaining structural diversity either. I provided a defense for thinking of 

contingency as causal and explored how contingency causes structural diversity. Mechanisms 

dependent on stochastic, unbiased processes of contingency, which distinguish different types 

of the following: cells, modes of inheritance, DNA structures and genetics codes, types of 

interactions, and body plans. Classifying based on structural differences yields not just one 

mechanism type, but a plurality. These structural variations are not merely inputs for selection, 

but evolutionary outcomes readily classified into a plurality of types regardless of 

environmental functions.  

Importantly, the persistence of structural diversity has consequences for the tension 

between Beatty and Hull’s work concerning pluralism and evolutionary science. Recall that 

Beatty questions the expectation of primarily constrained evolution. I tried to further that 

agenda: Rather than assuming evolution resulted in only one outcome, i.e. one set of cell types, 
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one mode of inheritance, or one genetic code, etc., from a structural approach one should not 

expect evolution to be so constrained. Contingent evolution diversifies structures that can be 

sorted into a plurality. To accept such pluralism does not amount to simply giving up before our 

query is settled in a way that might be destructive of science, as Hull worried about. Instead, 

evolution is not so constrained: there is good reason to expect pluralism working within the 

framework of evolutionary contingency. 
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