M entropy MoPY

Article
Morphological Computation: Nothing but
Physical Computation

Marcin Mitkowski

Institute of Philosophy and Sociology of the Polish Academy of Sciences, ul. Nowy Swiat 72,
00-330 Warszawa, Poland; mmilkows@ifispan.waw.pl

check for

Received: 2 November 2018; Accepted: 5 December 2018; Published: 7 December 2018 updates

Abstract: The purpose of this paper is to argue against the claim that morphological computation
is substantially different from other kinds of physical computation. I show that some (but not all)
purported cases of morphological computation do not count as specifically computational, and that
those that do are solely physical computational systems. These latter cases are not, however, specific
enough: all computational systems, not only morphological ones, may (and sometimes should) be
studied in various ways, including their energy efficiency, cost, reliability, and durability. Second,
I critically analyze the notion of “offloading” computation to the morphology of an agent or robot,
by showing that, literally, computation is sometimes not offloaded but simply avoided. Third, I point
out that while the morphology of any agent is indicative of the environment that it is adapted
to, or informative about that environment, it does not follow that every agent has access to its
morphology as the model of its environment.

Keywords: morphological computation; offloading; adaptivity; physical computation; computational
modeling; free-energy principle

1. Introduction

In this paper, I defend the claim that morphological computation, in spite of its growing popularity
as an object of research (cf. References [1-6]), does not deserve the attention it has been given in recent
years as a groundbreaking or novel kind of physical computation. In particular, by drawing partly
on previous work [7], I show, in Section 2, that some (but not all) purported forms of morphological
computation are not computational, and those that are compute in the mechanistic sense [8,9].
Consequently, there is nothing special about them as kinds of physical computation. Similarly, as I
argue in Section 3, they do not play any unitary explanatory role that would be in any way uniquely
different from other kinds of physical computation. I focus specifically on the idea that morphological
computation makes offloading of computational tasks of biological organisms or robots either possible
or easy. However, in some cases, the notion of offloading may be used, at best, metaphorically. As such,
it may be somewhat misleading in the debate. This leads to the following consideration: while physical
entities may bear information about the milieu in which they are found, it need not mean that this
information is available for them to process. Thus, the mere presence of physical processes that lawfully
covary with the processes in their surroundings is not evidence that they are engaged in morphological
computation as computational models of the environment, in contrast to what Reference [10] claimed.
These three considerations yield the conclusion that morphological computation as a grand category is
either confusing or trivial: it is not a single specific kind of physical computational process, it does not
play any single specific explanatory role, and it merely contributes to further confusion in the study of
physical computation. Note that I do not claim that there is no morphological computation, or that one
should not study it. I simply argue against the conceptual abuses found in the recent debate.

Entropy 2018, 20, 942; d0i:10.3390/e20120942 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-7646-5742
http://www.mdpi.com/1099-4300/20/12/942?type=check_update&version=1
http://dx.doi.org/10.3390/e20120942
http://www.mdpi.com/journal/entropy

Entropy 2018, 20, 942 2 0of 18

Before criticizing the (ab)use of the notion, clarification is in order. The term morphological
computation was introduced to refer to computation “performed by the body that otherwise would have
to be performed by the brain” ([11], p. 96). The definition suggests that morphological computation
is functionally equivalent to physical computation in the brain. However, this equivalence may be
misleading for some robots and biological organisms. Some (or even most) robots contain standard
electronic components. Such components are neither brains nor contain any brains, so such robots
cannot perform any computation in their brains, and hence, could never be engaged in morphological
computation, according to this definition.

However, there is little reason to suppose that the computational processes of silicon chips
in computers within such robots could not be performed by other physical parts of their bodies,
for example by mechanical gears as opposed to electronic parts (exactly as Reference [2] studied).
Thus, one could refine the above definition by substituting the term brain with the expression electronic
parts. Nonetheless, then the term non-electronic computation would be sufficient to refer to physical
computation performed by machinery built of non-electronic parts. After all, fully functional computers
are also made of electric parts [12], as well as mechanical relays, gears, and pulleys.

It is, unfortunately, doubtful that this would constitute a refinement, because there is nothing
specific about electric signals as opposed to gears and pulleys that could make a theoretical difference
to the range of computational functions. Why would an arbitrary physical feature of computational
machinery be sufficient to draw a distinction between kinds of computational mechanisms?

Granted, the physical makeup of any machinery may influence its breakdown patterns, levels of
noise, useful life, speed, energy consumption, footprint, etc. These features may be indeed crucial in
explaining a number of features of physical computers [13]. However, they do not license a motivated
distinction between kinds of computation in any straightforward way. For example, even though
vacuum-tube computers, relay-based computers, and silicon-chip computers all operate on electric
signals, relay-based computers are much more prone to mechanical wear and tear than transistors
in an integrated circuit. These differences, although obviously real and physical, do not seem to
carve nature at its joints in order to clearly delineate the class of morphological computation from the
non-morphological one.

Thus, it is not clear what could replace the term brain in this definition in order to make it
applicable to all possible cases. Unfortunately, not all biological agents have brains, even if they
rely on their nervous systems. Finding a non-trivial property shared by all nervous systems and
all kinds of electronic parts is unlikely. The definition, therefore, seems hopelessly narrow. Thus,
even though this original definition is still currently in use (cf. Reference [5]) in the present paper,
it will be supplanted by the analysis proposed in Reference [7]. (Another interesting attempt at
defining the notion formally in terms of programmable dynamical systems is found in Reference [14].
However, the formal definition offered there covers any kind of deterministic physical computation.
The specific difference for so-called non-portable morphological computation is that “part of the
information determining the computation is given by the physical structure of the device performing
the computation.” (p. 18). This is understood to say that parameters that govern the evolution of a
physical system “should not contain all the information necessary to perform a desired computational
task on a Turing machine”. Nonetheless, such parameters may be even single-bit inputs to a physical
finite state machine M and switch a highly complex mode of its operation. A single bit of course would
not be sufficient to simulate this complex mode of operation without knowing the transitions of M.
However, if you know the transitions of any discrete deterministic physical system, you have the
information to simulate it on a Turing machine. It is difficult to say why M would then be unportable.
Thus, the analysis offered in Reference [14] requires further refinement.)

Miiller and Hoffman distinguished three kinds of morphological computation: (1) morphology
facilitating control, (2) morphology facilitating perception, and (3) morphological computation
proper [7]. In the first case, the physical structure of the system contributes to its motor control.
An example of this is the morphological control in a passive-dynamic walker [15]. This contraption



Entropy 2018, 20, 942 30f18

walks naturally without any dedicated computational circuits. Miiller and Hoffman argue that
there is little reason to consider the passive-dynamic walker as computational. The two remaining
categories, in their opinion, are less controversial; indeed, one can find real examples of the physical
shape of sensory receptors facilitating perception, although they still consider this case insufficiently
computational. The reason given for this is quite obscure:

The problem that needs to be solved by the agent is not solely an abstract one, but lies at the
interface of the physical world, which needs to be sensed, and the abstract world, where the
agent needs to estimate the distances to objects ([7], p. 15).

However, the requirement that problems to be solved computationally should be abstract themselves
seems ill-motivated (in the next section, I will also briefly argue why the account of computation
as defended in Reference [16] is deeply flawed, which further undermines the analysis offered in
Reference [7]). Physical machinery used to solve problems is always physical and concrete, so one
cannot say that a problem is concrete just because it is solved in the physical world for use in the
physical world. Although people sometimes talk as if there were a natural divide between “abstract”
and “concrete” problems; such talk simply indicates that they consider these problems of less practical
use and greater difficulty in understanding. The divide has nothing to do with a purported character
of problems per se but rather a lot to do with a subjective evaluation of its utility. Alan Turing built
machinery for decrypting Enigma; was this an abstract or a concrete problem? Of course, it was
both: defeating Hitler is a practical purpose, solved by studying mathematical considerations in
cryptanalysis.

All in all, Miiller and Hoffman seem to embrace an intuitive argument that some authors use:
computers have to be somehow flexible or programmable to count as computers. Programmability is
also stipulated in the informal definition of morphological computation proposed in 2007 in Venice
at the first International Conference on Morphological Computing in Venice as well as well, cf.
Reference [14]. This definition is as follows: morphological computation is “any process that (a)
serves for a computational purpose, (b) has clearly assignable input and output states and (c) is
programmable, where ‘programmable’ is understood in the broad sense that a programmer can
vary the behavior of the system by varying a set of parameters”. As Reference [14], p. 10 shows,
this definition implies that all physical computation is morphological. Therefore, the definition is too
broad and will not be adopted here.

The term programmability is vague and could be made precise in several ways. Here, the analysis
offered by Reference [17] is endorsed, i.e., program execution literally involves loading instructions
to a processor. However, one may understand the term in a broader fashion. For example,
in Reference [14] it is understood in terms of the influence of parameters on the evolution of a
dynamical system. Quite clearly, finite state machines with inputs that influence their state transitions
count as programmable in such a case; in contrast, they do not count as such according to Reference [17].

However, an insistence on programmability makes a number of intuitively-computational devices
non-computational, including ENIAC and classical artificial neural networks. For the current author,
this is a powerful reductio ad absurdum. ENIAC was not programmable because it had to be manually
rewired to perform any computation. Classical artificial neural networks are not programmed in
any straightforward sense: they are trained, which changes the connection weights between the
nodes. Nonetheless, it is obvious that ENIAC was a computer, so programmability cannot be the
essential feature of computation. Thus, in the rest of this paper, it will be assumed that this kind of
morphological computation is computational.

There are also possible hybrid architectures that use various physical media to jointly compute
mathematical functions, and this constitutes morphological computation proper according to
Reference [7]. However, as cases of physical computation, they are insufficiently divergent from
cases of non-morphological computation to merit the theoretical attention they have been given.
In the following section, a more detailed account of physical computation is offered to back up
this assessment.



Entropy 2018, 20, 942 4 0f 18

2. The Place of Morphological Computation in Nature

In this section, it is shown that morphological computation in the senses analyzed in Reference [6]
is either non-computational or insufficiently divergent from other kinds of physical computation
to deserve a separate term. To argue for these claims, the mechanistic account of physical
computation [8,9] will be used. However, the same claim, as will also be indicated, can be defended
from the perspective of the semantic view of computation [18-21]. Before presenting the mechanistic
account, the modeling view on computation [16] embraced by Reference [7] in their critique of
morphological computation will be shown to be critically deficient, which forces me to reject it.

Arguably one of the most influential objections against computationalism is the attempt to show
that the notion of physical can be trivialized [22], cf. Reference [23]. The triviality argument was
defended independently by John Searle [24] and Hilary Putnam [25], who presented a formal proof that
any open physical system could implement any inputless finite state machine. The idea of Putnam’s
proof is straightforward (for a detailed analysis, see Reference [26]). Assume that the finite state
machine F has 7 states it can be in (which follows from the definition of the finite state machine).
Assume that there is a way to carve a physical system S into n states such that these states are also
ordered in the same sequence as in F (Putnam uses relations to an external clock for this purpose).
Now, it can be shown that F and S are isomorphic, and this is all that the physical implementation of
computation requires, according to Putnam (in the subsequent debate, such a view was dubbed simple
mapping account of computation, see Reference [27]). In particular, Putnam argued that given a clock
external to S, one can always carve S into a sufficient number of states, and if there are still insufficient
states, they can be defined using the disjunction operator (so that a predicate C,, would be defined as
Ci v Cjand refer to a union of sets denoted by C; V Cj)- In a nutshell, this argument relies on the idea
that isomorphism is insufficient to pick the appropriate physical structure (cf. Reference [28]).

If the triviality arguments are cogent, then any physical system implements any computation
whatsoever because the same construction can be performed for any finite state machine, or any model
of finite computation (note that this is not to be confused with the claim that any physical system
implements some computation). This is detrimental to computationalism, for it would imply that
ascribing computation to a physical system does not yield any significant predictions. For this reason,
in the subsequent debate, various improvements over the simple view were offered, from requiring
that states of physical systems should also be carved in such a way as to support counterfactual
claims about other runs of programs or machines [29] or to track causal relations [30], to stressing that
the Kolmogorov complexity of the mapping procedure should not exceed that of the computation
posited [26,31,32]. Finally, more complex accounts were devised in order to avoid triviality, such as the
mechanistic and the semantic views presented later in this section.

What is, however, striking is that the account presented in Reference [16] and endorsed in
Reference [7] is very much prone to triviality arguments. According to Horsman et al., physical
computation is modeled by an abstract description, which should predict the evolution of the physical
system, and the input values of the computation are encoded in the physical system, while output
values must be decoded. However, if one follows the method presented by Putnam, then any physical
system will be trivially predicted by the finite state machine because we carved the evolution of the
system into so many states that they correspond to states of the finite state machine. Let me elucidate.
A physical system p should be given an abstract representation 1 by the modeling representation
relation Rr. Then m;, evolves according to theory T, Cr, resulting in the abstract system m,, and p
undergoes its own evolution H. (In Reference [16], it is also shown that one can talk of a reversed
modeling relation and define an instantiation relation, but for my argument, this is not required).
This can be used to produce a diagram showing that the abstract representation corresponds to the
physical system (see Figure 1).



Entropy 2018, 20, 942 50f 18

Mp CT(mp) > My
RT RT'
P H(p) p'

Figure 1. Physical computation in system p as modeled by relations such as RT.

However, there is no requirement that Ct is not produced in a way devised by Putnam. Simply,
if one is free to pick any physical state of p by using any description of p, there is a way to perform
a Putnamesque trivialization, even for machines with input. Suppose, for example, that we wish to
show that p implements a finite state machine F1 with a sequence of six states, ki, ... , k¢. F1 is an
acceptor machine that accepts a string “robot.” Thus, by relying on the external clock, we can pick
even the same state of p, j1, ..., js at six distinct time intervals and decree that modeling relations
RT3, ..., RTs at these intervals obtain between ky, ... , ks and ji, ... , j. This suffices to show that p
implements F1 (see Figure 2). Notice that the account presented by Horsman et al. does not require
the input to be mapped separately. We just stipulate that the input is encoded by a relation with yet
another external clock tick.

RTs

. E "__w ‘_x_.—" ”‘_’_»_.«

Figure 2. A simple acceptor finite state machine that accepts a string “robot,” mapped by six relations
with physical states of p (j1, . .. , j¢) that are determined by the external clock. Here, we assume that the
input is “robot,” encoded by yet another clock state. Decoding of the output relies on the relationship
with the clock as well.

Such a procedure may be applied to any finite state machine, even without relying on external
clocks (any logical relation of a physical system with a sufficiently dense set is sufficient to perform
the construction). Given that the same idea may be applied to any finitely describable computational
machine model, it shows that this account of computation is hopeless against this attack. While any
defender of computational modeling should view Putnamesque constructions as artificial and absurd,



Entropy 2018, 20, 942 6 of 18

Horsman et al. give little reason to reject them. This is because their modeling view does not really
go beyond the simple mapping account, like many other attempts to formalize the notion of physical
computation (e.g., Reference [14]).

The two dominant accounts of physical computation that go beyond the simple mapping account
are the semantic and the mechanistic views. The first states that semantic properties are somehow
essential to the nature of computation [20], and the latter views computation as specifiable without
any recourse to semantic, or representational properties. In particular, the mechanistic account [8,9]
considers physical computation to be a causal process that occurs in physical mechanisms, whose
function is to interact with information vehicles in a way described by some mathematical model
of computation (philosophers usually call such models rules, but models of computation need not
be literally rule-based). Importantly, the information vehicles (called digits in Reference [8]) are not
specified semantically; they are just bearers of structural information (in the sense of Reference [33]).
They are degrees of freedom of the physical vehicle to which the mechanism is causally sensitive.
Consequently, because computational mechanisms operate on vehicles whose states are specified in
terms of their degrees of freedom, they are, to some extent, substrate-neutral. For the computational
process to succeed, it is not essential how, exactly, the degree of freedom (say, particular level of
voltage or a hole in a punch card) is physically realized, as long as the device causally responds to
the change of state appropriately. In this regard, the morphology of an agent may be a vehicle of
some computation. For example, one could build a Turing-complete machine from a large number of
morphological NAND (NOT-AND) gates (which could be reasonably idealized as a universal machine
if it were large enough for practical purposes). In other words, the mechanistic account does not
exclude the existence of morphological computation by fiat. Note, also, that the causal requirement
undermines the arbitrary construction such as the one in Figure 2: because j; is not a cause of j, and so
on, the whole construction collapses.

Thus defined, computational mechanisms could form a huge class unless the notion of function is
made explicit. While there are various attempts at doing so (cf. Reference [8,9,34]), the basic point is that
planets, for example, do not compute their orbits. However, a person might, or an electronic computer
might (if it were designed to do so). Thus, denying a physical system S the function to compute, leads
to qualifying S as non-computational, even though one could find some physical vehicles as parts of
S. Note that three mechanistic approaches to function differ considerably (see also Reference [35] for
a generic account of functional mechanisms). According to Reference [8], only mechanisms whose
parts were selected as types (and not particulars) by some process in accordance with a blueprint
of their designs, have function (cf. Reference [36]). According to Reference [8], only mechanisms
that stably contribute to goals of organisms may be computational. Both, as should be immediately
clear, exclude planetary systems as possible bearers of computational functions. Finally, according to
Reference [34], the function of a given mechanism is specified by a theorist in a specific explanatory
context (cf. Reference [37]). While the last proposal is the most liberal, some ascriptions of function
may turn out to be spurious if they lead to incorrect causal explanations [38]. However, when an
arbitrary correct causal model of a mechanism is considered computational, it is difficult to discard it
solely because it lacks function in the teleological sense (as References [8,9] require).

Functional considerations are, however, only a portion of the further requirements of the
mechanistic account. Some defenders of the mechanistic view also require that the output of a
computational mechanism be also usable for the finite observer by “exploiting procedures that are
executable, automatic, uniform, and reliable” ([39], p. 736) (cf. Reference [8], p. 250). This requirement
is, in one form or another, also common in other accounts of computation. For example, it is because
of this requirement, as stated in Reference [16], that Miiller and Hoffman qualify passive-dynamic
walkers as non-computational [7]. According to Reference [16] (p. 15), for a physical system to be a
genuine computer, not just a potential one, it is required that information is encoded and decoded from
it. Thus, even if the passive-dynamic mechanical control could be re-described in terms of information
processing, there would be no user of the information beyond immediate motor control. Robots such



Entropy 2018, 20, 942 7 of 18

as these lack an output value that a “finite observer” could read at the output of computation. Simply,
this argument presupposes that computers “process information in ways that are useful to us” ([40],
p- 2). Note that the semantic account of physical computation is also committed to this kind of view: it
requires that the inputs and outputs of a computation be semantically interpretable.

However, all this seems too quick. The assumption that the output value of computation should
be available for the finite observer to read is not universally shared by all theorists of physical
computation. Some of these may claim that all physical systems are, in some sense, computational [41].
This would presuppose, of course, a form of pancomputationalism, as this view is now called.
Pancomputationalism is a controversial view [42,43], thus, assuming that it should be avoided by
requiring that a finite observer should be able to read the output is not a critical issue.

Another, much more critical problem is that a self-regulating system might operate autonomously
without finite observers and remain computational in its operation. A dramatic example is an active
homing nuclear missile that could kill all biological observers by relying on its internal computational
structure. If the missile is just one among many similar computational devices, operated by similar
software and computer hardware, denying that it is computational seems premature. Would it cease to
be computational at the moment it kills all finite biological observers? This is even more preposterous.

However, the condition that a finite observer is supposed to exploit the output of a computation
plays a crucial role. One may doubt that a physical mechanism that could perform an operation, which
can also be achieved through computational means, actually is a computational device: a morphological
computer, to be exact. For example, one could use a shovel to remove obstacles that prevent rocks
from falling down a hill. The same obstacles could be removed by heavy rain. Nonetheless, it would
be really counterintuitive to say that the shovel, rain, or rocks (by themselves or in conjunction with a
shovel or rain) are computational.

One could appeal to functional considerations cited above to deny that rocks are computational.
Even if the causal processes in this case could be re-described in computational terms, neither the rocks
nor the rain has the function of computing anything. However, suppose one claims that Reference [9]
or Reference [8] offer a faulty account of function, and Reference [34] seems overly liberal. What then?

Fortunately, there is another reason to doubt that rocks compute. The purported computational
description of rocks is explanatorily and predictively idle [9]. This is because their basic physical
description could be an equally predictive model of their behavior, thus there is no need to appeal
to computation. The computational description should account for the real pattern in information
processing [9,31]. Crucially, the whole phenomenon for which the hypothesized computational
mechanism is supposedly responsible should be causally explainable by recourse to information
processing, or to causal transaction of substrate-neutral vehicles. While this explanatory norm would
require considerable unpacking to replace the usability criterion proposed by Piccinini [39], suffice
it to say that passive-dynamic walker behavior depends crucially on physical interactions that are
highly substrate-dependent. Simply, without the gravity of Earth, it would cease to work properly,
and one could not physically replace any of its parts to process the digits (i.e., vehicles of structural
information) that one could try to associate with gravity. Compare this with a simple electronic
thermostat that controls a boiler: as soon as the signal exceeds a threshold, a signal is sent to open
a valve. The threshold value, however, may be encoded in a variety of physical ways ranging from
voltage levels to light waves in a fiber-optic cable, as long as there is an appropriate receiver of the
signal that causally responds to the change in state of the physical medium. Nothing like that seems
possible for the passive-dynamic walker.

Thus, the criticism offered by Miiller and Hoffman turns out to be correct, albeit for different
reasons than those offered in their paper [7]. Morphology facilitating control is not a case of
morphological computation, or any kind of computation for that matter. However, as I show in
Section 4, confusing cases of morphology facilitating control with computation proper may lie at the
core of claims about the importance of morphological computation, as they have become part of the
grand unifying theory of life [44]. This point is therefore important.



Entropy 2018, 20, 942 8 of 18

Unfortunately, the argument that speaks against considering morphology facilitating control
computational also undermines the apparently special status of morphology facilitating perception and
morphological computation proper. While morphology facilitating perception satisfies the usability
condition, it also satisfies the requirement of an explanatory value of the organism’s morphological
features in its functioning. Take a female cricket’s ears [45]. Their physical structure facilitates
recognition of mating sounds of male crickets, so copying their morphology in a robot is a reasonable
strategy for a cricket-simulating robot [46,47]. Of course, they can be built of multiple physical
materials, because only structural-informational properties count in this case: i.e., the auditory
information that is recognized by these highly directional ears, and the detail that is not picked
up. This facilitates further processing, which does not need to not rely on extensive sound filtering.
However, this is not a special class of physical computation. Attaching physical sensors to computers
is not sufficient to change the physical implementation of these computers. Thus, in terms of the way
computation is implemented, there is nothing special here (for an extensive analysis of the cricket
robot case from the mechanistic point of view, see Reference [9]).

Morphological computation proper, as exemplified by hybrid computational systems, such as
reservoir computing, is also considered computational in Reference [7]. Reservoir computing consists
of a “non-linear recurrent dynamical system coupled to a single input layer and a single output
layer” [48] (p. 1). Of course, one cannot deny that a system is not a computational mechanism just
because it uses various physical media. Here, there is little doubt that they are computational because
these systems produce usable outputs, are designed to compute certain functions (so they are functional
mechanisms), and they remain sensitive to states of structural information. Nowakowski [4] argues
that these hybrid architectures are paradigmatic cases of morphological computation. In his view,
such architectures involve at least two parts: one capable of performing computational operations by
itself, and another usable only in connection with the proper computational part (think of an electronic
computer connected to some non-standard physical medium). Nonetheless, the existence of such
hybrid architectures is not problematic for standard computationalism any more than the existence of
vacuum tubes or various kinds of mechanical abaci. However, even if some consider the prospects
of building such systems exciting and groundbreaking (as Reference [4] does), these systems do not
undermine our understanding of physical computation. Hence, there is nothing special or really
novel about them as kinds of physical computation. Computationally, they may all be equivalent,
and because the notion of morphology remains vague, one could even claim that because all physical
media have some form, morphology always plays some role in co