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”We must, in general, be prepared to accept the fact

that a complete elucidation of one and the same object

may require diverse points of view which defy a unique

description.”

Niels Bohr, 1929

Abstract

This paper is the sequel of a previous one where we have introduced a
paraconsistent logic termed paraclassical logic to deal with ’complemen-
tary propositions’ [17]. Here, we enlarge upon the discussion by consider-
ing certain ’meaning principles’, which sanction either some restrictions of
’classical’ procedures or the utilization of certain ’classical’ incompatible
schemes in the domain of the physical theories. Here, the term ’classical’
refers to classical physics. Some general comments on the logical basis
of a scientific theory are also put in between the text, motivated by the
discussion of complementarity.

1 Introduction

J. Kalckar, the editor of volume 6 of Bohr’s Collected Works [11, pp. 26-27],
suggested that the first reference to the notion of complementarity is to be found
in a manuscript written by Bohr on July 10, 1927, where we read that ”. . . the
theory exhibited a duality when one considered on one hand the superposition
principle and on the other hand the conservation of energy and momentum
(. . .) Complementary aspects of experience that cannot be unified into a space-
time picture on the classical theories” (cf. ibid., pp. 26-27). Roughly speaking,
the idea involves something like this: complementarity means the possibility
of unifying aspects which cannot be put together from a ’classical’ perspective.
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Kalckar also keeps off the view claimed by some writers who have sustained that
Bohr was motivated by sources outside physics, like the readings of Kierkegaard
or of the Danish philosopher H. Høffding. According to Kalckar, the very origins
of such an idea came from physics itself and, to reinforce his claim, he recalls L.
Rosenfeld’s words, which interest also us here: ”Bohr’s conception of comple-
mentarity in quantum mechanics is not the expression of a ’specific philosophical
position’, but an inherent part of the theory which has the same validity as its
formal aspect and is inseparable from it.” (apud ibid., p. 28, italics ours).

It should be remarked that it seems to exist a discrepancy between Rosenfeld
and Bohr in what concerns the way of understanding complementarity. This
difference may justify Bohr’s refuse to accept that von Weizsäcker had described
’the logic os complementarity’, as we shall see below. Apparently, Bohr envis-
aged his ideas on complementarity as forming part of a general epistemological
principle, which could guide us not only in physics (from which the ideas really
came), but in any other field of science as well; as he said, ”. . . the lessons
taught us by recent developments in physics regarding the necessity of a con-
stant extension of the frame of concepts appropriate for the classification of
new experiences leads us to a general epistemological attitude which might help
us to avoid apparent conceptual difficulties in other fields of science as well”
[8]. In other words, we might say that, according to Bohr, complementarity
may be viewed as a kind of a general regulative methodological principle. On
the other hand, there are positions sustained by people like Rosenfeld (and von
Weizsäcker), who see such ideas as making part of the (physical) theory itself.
What is the difference?

The difference lies in what we consider as a meta-theoretical principle of
science and what is to be considered as a strict principle of a particular (say,
axiomatized) scientific theory. The former may be viewed as a meta-principle,
while the latter is something to be ’internalized’ within the object language of
the theory itself. In what follows, we shall try to push this distinction a little bit
in relation to the concept of complementarity. This is of particular importance
for, as we shall see below, the very idea of complementarity resembles that of the
existence of contradictions; keeping it as a meaning principle, it seems easier to
understand how it may help us in accepting that ”[t]he apparently incompatible
sorts of information about the behavior of the object under examination which
we get by different experimental arrangements can clearly not be brought into
connection with each other in the usual way, but may, as equally essential for
an exhaustive account of all experience, be regarded as ’complementary’ to each
other” [8].

In this paper, we shall consider how ’complementary ideas’ can be seen from
both perspectives, that is, as standing both for a general regulative meaning
principle and also as a law that can be internalized in the language of the theory
proper. As we shall see, although resembling contradictions (but see a way of
better specifying them below), the concept of complementary propositions can
be put within a certain object language (so keeping it as an ’inherent part of the
theory’ as Rosenfeld has claimed) without risk of trivializing the whole theory.
This will enable us to discuss also the role played by logic in the context of the
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physical sciences.
We begin firstly by describing the main features connected with the idea of

complementarity. We note that there is no general agreement among histori-
ans and philosophers (and even among physicists) about the precise meaning
of Bohr’s Principle of Complementarity (henceforth, PC), what makes the his-
torical analysis quite problematic [1], [24], [25]. Even so, after revising some
of the main references made by Bohr himself and by various of his commen-
tators on complementarity, we arrive at a characterization of ’complementary
propositions’ from a strict logical point of view (that is, as defined in a suitable
formal language). Then, we shall sketch the main norms of the logic of such
propositions, by evidencing that it is a kind of paraconsistent logic, termed
paraclassical logic (see [15], [32]). Nonetheless, complementarity, for us, also
encompasses meta-theoretical meaning principles imposing some limitations on
theories; in addition, it sanctions the use of incompatible approaches in physics.
Complementarity, as a meaning principle, plays the role of a kind of normative
rule.

Secondly, we insist that the relevance of this kind of study is neither merely
historical nor an exercise of logic. In addition to the necessity of a philosophical
distinction between meaning principles and strict physical laws, we believe that
this discussion has a profound philosophical significance also in showing some
of the relationships that there exist between certain non-classical logics and the
empirical sciences, in particular to physics. Of course, although in this paper we
neither have pursued the historical details on complementarity in deep, though
we have mentioned some of the main references one finds in the literature,
nor have investigated the logical system we propose in all its formal aspects
(a task we hope to accomplish in the near future), we hope to make clear the
general underlying idea of the paper. It was and continue partially motivated by
Bohr’s own way of accepting both the particle and the wave pictures of reality.
We believe that the understanding of a wide field of knowledge, like quantum
physics, may gain in much if we accept a pluralistic view according to which
there are several and eventually non equivalent ways of looking at it (perhaps
some of them based on non-classical logics), each one being adequate from its
particular perspective, and showing details which cannot be seen from the other
points of view, analogously to the different drawings of an engineer in descriptive
geometry, à la Monge, of a given object.

2 Complementarity

The concept of ‘complementarity’ was introduced in quantum mechanics by
Niels Bohr in his famous ‘Como Lecture’, in 1927, although the basic ideas
go back to 1925 [3], [11]. The consequences of his view were fundamental,
particularly for the development of the Copenhagen interpretation of quantum
mechanics and constitutes, as it is largely recognized in the literature, one of
the most fundamental contributions to the development of quantum theory (see
also [1], [24], [25]).

3



In this section we make clear in what sense we understand the word ‘com-
plementarity’. The quotations taken from Bohr and from other important com-
mentators aim at to reinforce our view, although we are of course aware that
a few isolated quotations cannot provide evidence for the full understanding of
concepts, especially regarding the present (and difficult) case. Even so, we hope
we can convince the reader that complementarity can be interpreted as a more
general principle related to ’incompatibility’ in some sense (the ‘sense’ being
explained in the next sections) than to some kind of impossibility of ’simulta-
neously measuring’.

In what concerns this point, we remark that we find Bohr speaking about
complementary concepts which cannot be used at the same time (as we see in
several of his papers listed in our references [11, p. 369]). Though this way of
talking should be viewed as a way of speaking, for it stands for situations which,
according to Bohr himself, demand specific analysis; as he says, ”[o]ne must be
very careful, therefore, in analyzing which concepts actually underly limitations”
(ibid., p. 370). Really, there are several ways of looking at complementarity.
Pauli, for instance, claimed that ”[if] the use of a classical concept excludes of
another , we call both concepts (. . .) complementary (to each other), following
Bohr” ([29, p. 7], quoted in [19, p. 33]). By the way, J. Cushing also stressed
his own view, in saying that ”[w]hatever historical route, Bohr did arrive at a
doctrine of mutually exclusive, incompatible, but necessary classical pictures in
which any given application emphasizing one class of concepts must exclude the
other” (op. cit., pp. 34-5).

This idea of complementary propositions as ’excluding’ each other (what
appears to mean something like ’incompatibility’) is reinforced by Bohr himself
in several passages, as the following ones:

”The existence of different aspects of the description of a physical
system, seemingly incompatible but both needed for a complete de-
scription of the system. In particular, the wave-particle duality.”
(apud [22, p. 370])

”The phenomenon by which, in the atomic domain, objects exhibit
the properties of both particle and waves, which in classical, macro-
scopic physics are mutually exclusive categories.” (ibid., pp. 371-2)

”The very nature of the quantum theory thus forces us to regard
the space-time co-ordination and the claim of causality, the union
of which characterizes the classical theories, as complementary but
exclusive features of the description, symbolizing the idealization of
observation and definition respectively.” [3, p. 566]

”The apparently incompatible sorts of information about the be-
havior of the object under examination which we get by different
experimental arrangements can clearly not be brought into connec-
tion with each other in the usual way, but may, as equally essential
for an exhaustive account of all experience, be regarded as ‘comple-
mentary’ to each other.” ([8, p. 291]; [31, p. 31])
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”Information regarding the behaviour of an atomic object obtained
under definite experimental conditions may, however, according to
a terminology often used in atomic physics, be adequately charac-
terized as complementary to any information about the same object
obtained by some other experimental arrangement excluding the ful-
fillment of the first conditions. Although such kinds of information
cannot be combined into a single picture by means of ordinary con-
cepts, they represent indeed equally essential aspects of any knowl-
edge of the object in question which can be obtained in this domain.”
([9, p. 26], apud [31, p. 31], second italic ours).

E. Scheibe also says that

”. . . which is here said to be ‘complementary’, is also said to be ‘ap-
parently incompatible’, the reference can scarcely be to those classi-
cal concepts, quantities or aspects whose combination was previously
asserted to be characteristic of the classical theories. For ‘apparently
incompatible’ surely means incompatible on classical considerations
alone.” [31, p. 31]

In other words, it is perfectly reasonable to regard complementary aspects as
incompatible, in the sense that their combination into a single description may
lead to difficulties. But in a theory grounded on standard logic, the conjunction
of two theses is also a thesis; in other words, if α and β are both theses or
theorems of a theory (founded on classical logic), then α ∧ β is also a thesis (or
a theorem) of that theory. This is what we intuitively mean when we say that,
on the grounds of classical logic, a ’true’ proposition cannot ‘exclude’ another
’true’ proposition. In this sense, the quantum world is rather distinct from
the ‘classical’, for although complementary propositions are to be regarded as
acceptable, their conjunction seems to be not.

This corresponds to the fact that, in classical logic, if α is a consequence of
a set ∆ of statements and β is also a consequence of ∆, then α ∧ β (α and β)
is also a consequence of ∆. If β is the negation of α (or vice-versa), then this
rule implies that from the set of formulas ∆ we deduce a contradiction α ∧ ¬α
(or ¬β ∧ β). In addition, when α and β are in some sense incompatible, α ∧ β
constitutes an impossibility.

Therefore, as we shall show below, part of a natural procedure to surmount
the problem is to restrict the rule in question. But before that, let us make
some few additional remarks on complementarity.

3 Recent results

As it is well known, Bohr and others like P. Jordan and F. Gonseth have sug-
gested that complementarity could be useful not only in physics but in other
areas as well, in particular in biology and in the study of primitive cultures
(see [25, pp. 87ff], where still other fields of application, like psychology, are
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mentioned). Although these applications may be interesting, they are outside
the scope of this paper. Keeping within physics, it should be recalled that in
1994 Englert et al. argued that complementarity is not simply a consequence of
the uncertainty relations, as advocated by those who believe that “two comple-
mentary variables, such as position and momentum, cannot simultaneously be
measured to less than a fundamental limit of accuracy”, but that

”(. . .) uncertainty is not the only enforce of complementarity. We
devised and analyzed both real and thought experiments that by-
pass the uncertainty relation, in effect to ‘trick’ the quantum objects
under study. Nevertheless, the results always reveal that nature
safeguards itself against such intrusions –complementarity remains
intact even when the uncertainty relation plays no role. We con-
clude that complementarity is deeper than has been appreciated: it
is more general and more fundamental to quantum mechanics than
is the uncertainty rule.” [21]

If Englert et al. are right, then it seems that the paraclassical logic we shall
describe below may in fact be useful.

Recently (1998), some experiments developed in the Weizmann Institute in
Israel indicated that the Principle of Complementarity has been verified also
for fermions (electrons) [12]. Through nano-technology devices created in low-
temperature scales, the scientists developed measuring techniques which have
enabled them to show that in a certain two-slit experiment, the wave-like be-
haviour occurs when the possible paths a particle can take remain indiscernible,
and that a particle-like behaviour occurs when a ’which-path’ detector is in-
troduced, determining the actual path taken by the electron. These recent
experiments show that the ancient intuitions and some Gedankenexperimente
performed by Bohr and others were in the right direction, so sustaining Bohr’s
position that complementarity is in fact a characteristic trait of matter. So,
to accommodate this idea within a formal description of physics is in fact an
important task.

A still more recent (2001) ’experimental proof’ of Bohr’s principle came from
Austria, where O. Nairz and others have reported that Heisenberg uncertainty
principle, which is closely related to complementarity, was demonstrated for
a massive object, namely, the fullerene molecule C70 at a temperature of 900
K. In justifying their work, they said that ”[t]here are good reasons to believe
that complementarity and the uncertainty relation will hold for a sufficiently
well isolated object of the physical world and that these quantum properties are
generally only hidden by technical noise for large objects. It is therefore interest-
ing to see how far this quantum mechanical phenomenon can be experimentally
extended to the macroscopic domain” [28].

This apparently opens the road for the acceptance of the validity of com-
plementarity also in the macroscopic world. The analysis of these applications
should interest not only physicists and other scientists, but philosophers as well.
We believe that Bohr’s intuitions that complementarity is a general phenomenon
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in the world deserves careful examination in the near future. But let us go back
to logic.

4 Logics of Complementarity

The expression ’logic of complementarity’ has been used elsewhere to designate
different logical systems, or even informal conceptions, which intended to pro-
vide a description of Bohr’s ideas of complementarity from a ’logical’ point of
view.

As a historical remark, we recall that some authors like C. von Weizsäcker,
M. Strauss and P. Février have already tried to elucidate Bohr’s principle from
such a logical point of view (cf. [23], [25, pp. 377ff], [33]). Jammer mentions
Bohr’s negative answer to von Weizsäcker’s attempt of interpreting his principle,
and observes that this should be taken as a warning for analyzing the subject
(ibid. p. 90). As shown by Jammer, Bohr explained that his rejection was due to
his conception that ”[t]he complementary mode of description (. . .) is ultimately
based on the communication of experience, [quoting Bohr] ’which has to use the
language adapted to our usual orientation in daily life’ ”; Jammer continues
by recalling that, to Bohr, ”objective description of experience must always
be formulated in [quoting Bohr again] ’plain language which serves the needs
for practical life and social intercourse’ ” ([25, p. 379]. These points reinforce
our emphasis that Bohr ascribed to complementarity the role of a meaning
principle. So, maybe Bohr’s rejection of accepting a ’logic of complementarity’
could be due to the discrepancies (or ’divergent conceptions’) related to the way
of understanding complementarity. In his 1966 book, Jammer also suggested
something analogous [24, p. 356].

Another tentative of building a ’logic of complementarity’ was P. Février’s.
She began by considering Heisenberg uncertainty relations not simply as some-
thing which can be derived in the formalism of quantum theory, but attributed
to them a distinctive fundamental role as being the very basic principle on which
quantum theory should be built on. She distinguished (yet not explicitly) be-
tween propositions which can and which cannot be composed. The last are to
stand for complementary propositions; in her logic, a third value is used for the
conjunction of complementary propositions to mean that their conjunction is
’absolutely false’. Other connectives are presented by the matrix method, so
that a ’logic of complementarity’ is proposed, yet not detailed in full ([23]; for
further details on her system, see [18]).

Strauss’ logic is based on his conception that the complementarity principle
”excludes simultaneously decidability of incompatible propositions” [25, p. 356];
then, he proposed a different theory in which conjunctions and disjunctions
of complementary propositions were to be excluded. So, in a certain sense,
although described in probabilistic terms, we may say that his intention was
to develop a logic in which two propositions, say α and β (which stand for
complementary propositions) may be both accepted, but not their conjunction
α ∧ β (op. cit., p. 335). It is interesting to remark that Carnap declared that
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Strauss’ logic was ‘inadvisable’ [13, p. 289]. Today, by using another kind of
paraconsistent logic, termed Jaśkowski logic, we think that perhaps Strauss’
position can be sustained.

Leaving these historical details aside, we shall proceed as follows. After intro-
ducing the concept of a theory which admits a Complementarity Interpretation
(to use Jammer’s words –see below), we shall argue that under a plausible defi-
nition of complementarity, the underlying logic of such a theory is paraclassical
logic. In the sequel we shall sketch the main features of this logic.

5 Complementarity theories

Bohr’s view provides the grounds for defining a very general class of theories,
which we have elsewhere termed ’complementarity’ (C-theories; see [17]). Here,
we generalize the concept of a C-theory, by defining ’complementarity theories
with meaning principles’ (termed Cmp-theories), more or less paraphrasing Car-
nap (but without any compromise with his stance), in which some meta-rules are
considered in order we know about the possibility of accepting (or not accepting)
certain propositions. Before characterizing these theories, let us see how some
authors read complementarity; this will guide our definition of Cmp-theories.

To begin with, let us quote Max Jammer:

”Although it is not easy, as we see, to define Bohr’s notion of com-
plementarity , the notion of complementarity interpretation seems to
raise fewer definitory difficulties. The following definition of this
notion suggests itself. A given theory T admits a complementarity
interpretation if the following conditions are satisfied: (1) T con-
tains (at least) two descriptions D1 and D2 of its substance-matter;
(2) D1 and D2 refer to the same universe of discourse U (in Bohr’s
case, microphysics); (3) neither D1 nor D2, if taken alone, accounts
exhaustively for all phenomena of U ; (4) D1 and D2 are mutually
exclusive in the sense that their combination into a single description
would lead to logical contradictions.

”That these conditions characterize a complementarity interpreta-
tion as understood by the Copenhagen school can easily be docu-
mented. According to Léon Rosenfeld, (. . .) one of the principal
spokesmen of this school, complementarity is the answer to the fol-
lowing question: What are we to do when we are confronted with
such situation, in which we have to use two concepts that are mu-
tually exclusive, and yet both of them necessary for a complete de-
scription of the phenomena? “Complementarity denotes the logical
relation, of quite a new type, between concepts which are mutually
exclusive, and which therefore cannot be considered at the same time
–that would lead to logical mistakes– but which nevertheless must
both be used in order to give a complete description of the situa-
tion.” Or to quote Bohr himself concerning condition (4): “In quan-
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tum physics evidence about atomic objects by different experimental
arrangements (. . .) appears contradictory when combination into a
single picture is attempted.” (. . .) In fact, Bohr’s Como lecture with
its emphasis on the mutual exclusive but simultaneous necessity of
the causal (D1) and the space-time description (D2), that is, Bohr’s
first pronouncement of his complementarity interpretation, forms an
example which fully conforms with the preceding definition. Borh’s
discovery of complementarity, it is often said, constitutes his greatest
contribution to the philosophy of modern science.” [25, pp. 104-5]

Jammer’s quotation is interpreted as follows. We take for granted that
both D1 and D2 are sentences formulated in the language of a complementary
theory T , so that items (1) and (2) are considered only implicitly. Item (3) is
understood as entailing that both D1 and D2 are, from the point of view of T ,
necessary for the full comprehension of the relevant aspects of the objects of the
domain; so, item (3) is asserted on the grounds of a certain meaning principle;
so, we take both D1 and D2 as ‘true’ sentences, that is, T ` D1 and T ` D2.
Important to remark that here the concept of truth is taken in a syntactical
way: a sentence is true in T if it is a theorem of T , and false if its negation is a
theorem of T . If neither the sentence nor its negation are theorems of T , then
the sentence (so as its negation) is said to be independent.

Item (4) deserves further attention. Jammer (loc. cit.)says that ‘mutually
exclusive’ means that the “combination of D1 and D2 into a single description
would lead to logical contradictions”, and this is reinforced by Rosenfeld’s words
that the involved concepts “cannot be considered at the same time”, since this
would entail a “logical mistake”. Then, we informally say that mutually exclu-
sive, conjugate propositions, or complementary propositions, are sentences which
lead (by classical deduction) to a contradiction; in particular, their conjunction
yields a contradiction.

So, following Jammer and Rosenfeld, we shall say that a theory T admits
complementarity interpretation, or that T is a C-theory, if T encompasses ’true’
formulas α and β (which may stand for Jammer’s D1 and D2 respectively) which
are ‘mutually exclusive’ in the above sense, for instance, that their conjunction
yields to a strict contradiction if classical logic is applied. In other words, if ` is
the symbol of deduction of classical logic, then, α and β being complementary,
we have α, β ` γ ∧ ¬γ for some γ of the language of T (see [27, pp. 34-5]).

The problem with this characterization of complementarity is that if the
underlying logic of T is classical logic, then T , involving complementary propo-
sitions in the above sense, is contradictory or inconsistent. Apparently, this is
precisely what Rosenfeld claimed in the above quotation. Obviously, if we in-
tend to maintain the idea of complementary propositions as forming part of the
theory and being expressed in the object language without trivialization, one
solution (perhaps the only one) is to employe as the underlying logic of T a logic
such that the admission of both α and β would not entail a strict contradiction
(i.e., a formula of the form γ ∧¬γ). One way to do so is to modify the classical
concept of deduction, obtaining a new kind of logic, called paraclassical logic,
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as we shall do in what follows.
That kind of logic is the underlying logic of what we have termed comple-

mentary theories; here we call complementary theory or Cmp-theory, a C-theory
with meaning principles. For instance, as we have seen, Heinsenberg uncertainty
relations were taken by Février as the starting point for quantum physics. Ac-
cording to her, these relations should not be a simple result obtained within the
formalism of quantum theory,1 but should be the base of quantum mechanics.
Meaning principles, as we have said before, are here understood as assumptions
which sanction either some restrictions of ’classical’ procedures or the utilization
of certain ’classical’ incompatible schemes in the domain of scientific theories.
The word ’classical’ refers to classical physics (Bohr strongly believed that all
the discourse involving quantum phenomena should be done in the language of
classical physics).

6 The underlying logic of Cmp-theories

We shall restrict our explanation to the propositional level, although it is not
difficult to extend our system to encompass quantifiers (and set theory) as it
would be necessary if we intend to construct a possible logical basis for physical
theories. Let us call C an axiomatized system for the classical propositional
calculus. The concept of deduction in C is taken to be the standard one; we use
the symbol ` to represent deductions in C (see [27]). Furthermore, the formulas
of C are denoted by Greek lowercase letters, while Greek uppercase letters stand
for sets of formulas. The symbols ¬, →, ∧, ∨ and ↔ have their usual meanings,
and standard conventions in writing formulas will be also assumed without
further comments.

Definition 1 Let Γ be a set of formulas of C and let α be a formula (of the
language of C). Then we say that α is a (syntactical) P-consequence of Γ, and
write Γ `P α, if and only if

(P1) α ∈ Γ, or

(P2) α is a classical tautology, or

(P3) There exists a consistent (according to classical logic) subset ∆ ⊆ Γ such
that ∆ ` α (in classical logic).

We call `P the relation of P-consequence.

Definition 2 P is the logic whose language is that of C and whose relation of
consequence is that of P-consequence. Such a logic will be called paraclassical.

It is immediate that, among others, the following results can be proved:
1For a derivation of Heisenberg relations within the Hilbert space formalism, see [30, pp.

59ff].
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Theorem 1

1. If α is a theorem of the classical propositional calculus C and if Γ is a set of
formulas, then Γ `P α; in particular, `P α.

2. If Γ is consistent (according to C), then Γ ` α (in C) iff Γ `P α (in P).

3. If Γ `P α and if Γ ⊆ ∆, then ∆ `P α ( The defined notion of P-consequence
is monotonic.)

4. The notion of P-consequence is recursive.

5. Since the theses of P (valid formulas of P) are those of C, P is decidable.

Definition 3 A set of formulas Γ is P-trivial iff Γ `P α for every formula
α. Otherwise, Γ is P-non-trivial. (Similarly we define the concept of a set of
formulas being trivial in C).

Definition 4 A set of formulas Γ is P-inconsistent if there exists a formula α
such that Γ `P α and Γ `P ¬α. Otherwise, Γ is P-consistent.

Theorem 2

1. If α is an atomic formula, then Γ = {α,¬α} is P-inconsistent, but P-non-
trivial.

2. If the set of formulas Γ is P-trivial, then it is trivial (according to classical
logic). If Γ is non-trivial, then it is P-nontrivial.

3. If Γ is P-inconsistent, then it is inconsistent according to classical logic. If Γ
is consistent according to classical logic, then Γ is P-consistent.

A semantical analysis of P, for instance a completeness theorem, can be
obtained without difficulty [15]. We remark that the set {α∧¬α}, where α is a
propositional variable, is trivial according to classical logic, but it is not P-trivial.
Notwithstanding, we are not suggesting that complementary propositions should
be understood necessarily as pairs of contradictory sentences. This is made clear
by the following definition:

Definition 5 (Complementarity Theories or Cmp-theories) A C-theory is
a set of formulas T of the language of C (the classical propositional calculus)
closed by the relation of P-consequence, that is, α ∈ T for any α such that
T `P α. In other words, T is a theory whose underlying logic is P. A Cmp-
theory is a C-theory subjected to meaning principles.

Of course the definition of a Cmp-theory is a little bit vague. However,
for instance in the case of a meaning principle that introduces restrictions in
the acceptable statements of the theory, the hypothesis and axioms used in
deductions have to satisfy such restrictive conditions. For instance, if a meaning
principle of a theory T is formulated as Heisenberg Uncertainty Principle, this
circumstance will impose obvious restrictions to certain statements of T .
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Theorem 3 There exist C-theories and Cmp-theories that are inconsistent, al-
though are P-non-trivial.

Proof: Immediate consequence of Theorem 2. 2

Finally, we state a result (Theorem 4), whose proof is an immediate conse-
quence of the definition of P-consequence. However, before stating the theorem,
let us introduce a definition:

Definition 6 (Complementary Propositions) Let T be a Cmp-theory (in
particular, a C-theory) and let α and β be formulas of the language of T . We say
that α and β are T -complementary (or simply complementary) if there exists a
formula γ of the language of T such that:

1. T `P α and T `P β

2. T, α `P γ and T, β `P ¬γ (in particular, α `P γ and β `P ¬γ).

Theorem 4 If α and β are complementary theorems of a Cmp-theory T and
α `P γ and β `P ¬γ, then in general γ ∧ ¬γ is not a theorem of T .

Proof: Immediate, as a consequence of Theorem 2. 2

In other words, T is inconsistent from the point of view of classical logic,
but it is P-non-trivial.

It should be emphasized that our way of characterizing complementarity
does not mean that complementary propositions are always contradictory, for
α and β above are not necessarily one the negation of the other. However,
as complementary propositions, we may derive from them (in classical logic) a
contradiction; to exemplify, we remark that ’x is a particle’ is not the direct
negation of ’x is a wave’, but ’x is a particle’ entails that x is not a wave. This
reading of complementarity as not indicating strict contradiction, as we have
already made clear, is in accordance with Bohr himself; let us quote him once
more to reinforce this idea. Bohr says:

”In considering the well-known paradoxes which are encountered in
the application of the quantum theory to atomic structure, it is es-
sential to remember, in this connection, that the properties of atoms
are always obtained by observing their reactions under collisions or
under the influence of radiation, and that the (. . .) limitation on the
possibilities of measurement is directly related to the apparent con-
tradictions which have been revealed in the discussion of the nature
of light and of the material particles. In order to emphasize that
we are not concerned here with real contradictions, the author [Bohr
himself] suggested in an earlier article the term ’complementarity’.”
[6, p. 95] (italics ours).

Let us give a simple example of a situation involving a Cmp-theory. Suppose
that our theory T is a fragment of quantum mechanics admitting Heisenberg
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relations as a meaning principle and having as its underlying logic paraclassical
logic. If α and β are two incompatible propositions according to Heisenberg’s
principle, we can interpret this principle as implying that α entails ¬β (or that
β entails ¬α). So, even if we add α and β to T , we will be unable to derive, in
T , α∧ β. Analogously, Pauli’s Exclusion Principle has also an interpretation as
that of Heisenberg’s.

As we said before, the basic characteristic of Cmp-theories is that, in making
P-inferences, we suppose that some sets of statements we handle are consis-
tent. In other words, Cmp-theories are closer to those theories scientists actually
use in their everyday activity than those theories with the classical concept of
deduction. In other words, paraclassical logic (and paraconsistent logics in gen-
eral) seems to fit more accurately the way scientists reason when stating their
theories.

7 The paralogic associated to a logic

As we noted in [17], the technique used above to define the paraclassical logic
associated to classical logic can be generalized to other logics L (including logics
having no negation symbol, but we will not deal with this case here), as well
as the concept of a Cmp-theory. More precisely, starting with a logic L, which
can be seen as a pair L = 〈F ,`〉, where F is an abstract set called the set
of formulas of L and `⊆ P(F) × F is the deduction relation of L (which is
subjected to certain postulates depending on the particular logic L) [2], we can
define the PL-logic associated to L (the ‘paralogic’ associated to L) as follows.

Let L be a logic, which may be classical logic, intuicionistic logic, some
paraconsistent logic or, in principle, any other logical system. By simplicity, we
suppose that the language of L has a symbol for negation, ¬. Then,

Definition 7 A theory based on L (an L-theory) is a set of formulas Γ of the
language of L closed under `L (the symbol of deduction in L). In other words,
α ∈ Γ for every formula α such that Γ `L α.

Definition 8 An L-theory Γ is L-inconsistent if there exists a formula α of the
language of L such that Γ `L α and Γ `L ¬α, where ¬α is the negation of α.
Otherwise, Γ is L-consistent.

Definition 9 An L-theory Γ is L-trivial if Γ `L α for any formula α of the
language of L. Otherwise, Γ is L-non-trivial.

Then, we define the PL-logic associated with L whose language and syntacti-
cal concepts are those of L, except the concept of deduction, which is introduced
as follows: we say that α is a PL-syntactical consequence of a set Γ of formulas,
and write Γ `PL α if and only if:

(1) α ∈ Γ, or

(2) α is a provable formula of L (that is, `L α), or
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(3) There exists ∆ ⊆ Γ such that ∆ is L-non-trivial, and ∆ `L α.

For instance, we may consider the paraconsistent calculus C1 [14] as our logic
L. Then the paralogic associated with C1 is a kind of ‘para-paraconsistent’ logic.

It seems worthwhile to note the following in connection with the paraclassical
treatment of theories. Sometimes, when one has a paraclassical theory T such
that T `P α and T `P ¬α, there exist appropriate propositions β and γ such
that T can be replaced by a classical consistent theory T ′ in which β → α
and γ → ¬α are theorems. If this happens, the logical difficulty is in principle
eliminable and classical logic maintained.

8 Logic and physics

When we hear something about the relationships between logic and quantum
physics, we usually tend to relate the subject with the so called ’quantum logics’,
a field that has its ’official’ birth in Birkhoff and von Neumann’s well known
paper from 1936 (see [20]). This is completely justified, for their fundamental
work caused the development of a wide field of research in logic. Today there are
various ’quantum logical systems’, although they have been studied specially as
pure mathematical systems, far from applications to the axiomatization of the
microphysical world and also far from the insights of the forerunners of quantum
mechanics (for a general and updated account on this field, see [20]).

Of course an axiomatization of a given empirical theory is not always totally
determinate, and the need for a logic distinct from the classical as the underlying
logic of quantum theory is still open to discussion. In fact, the axiomatic basis
of a scientific theory depends on the several aspects of the theory, explicitly
or implicitly, appropriate to take into account its structure. So, for example,
Ludwig [26] studies an axiomatization of quantum mechanics based on classical
logic. All the stances, that of employing a logic like paraclassical logic (or
other kind of system as one of those mentioned above), and that of Ludwig,
are in principle acceptable, since they treat different perspectives of the same
domain of discourse, and different ’perspectives’ of a domain of science may
demand for distinct logical apparatuses; this is a philosophical point of view
radically different from the classical. As we said in another work (see [18]), the
possibility of using non-standard systems in the foundations of physics (and in
general of science) does not necessarily entail that classical logic is wrong, or
that (in particular) quantum theory needs another logic. Physicists probably
will continue to use classical (informal) logic in the near future. But we should
realize that other forms of logic may help us in the better understanding of
certain features of the quantum world as well, not easily treated by classical
devices, such as complementarity. Only the future of physics will perhaps decide
what is the better solution, a decision that involves even pragmatic factors.

To summarize, we believe that there is no just one ’true logic’, and distinct
logical (so as mathematical and perhaps even physical) systems, like paraclassi-
cal logic, may be useful to approach different aspects of a wide field of knowledge
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like quantum theory. The important point is to be open to the justifiable revi-
sion of concepts, a point very lucidly emphasized by Niels Bohr, who wrote:

”For describing our mental activity, we require, on one hand, an
objectively given content to be placed in opposition to a perceiving
subject, while, on the other hand, as is already implied in such an
assertion, no sharp separation between object and subject can be
maintained, since the perceiving subject also belongs to our men-
tal content. From these circumstances follows not only the relative
meaning of every concept, or rather of every word, the meaning de-
pending upon our arbitrary choice of view point, but also we must,
in general, be prepared to accept the fact that a complete elucidation
of one and the same object may require diverse points of view which
defy a unique description. Indeed, strictly speaking, the conscious
analysis of any concept stands in a relation of exclusion to its imme-
diate application. The necessity of taking recourse to a complemen-
tarity, or reciprocal, mode of description is perhaps most familiar to
us from psychological problems. In opposition to this, the feature
which characterizes the so-called exact sciences is, in general, the
attempt to attain to uniqueness by avoiding all reference to the per-
ceiving subject. This endeavour is found most consciously, perhaps,
in the mathematical symbolism which sets up for our contempla-
tion an ideal of objectivity to the attainment of which scarcely any
limits are set, so long as we remain within a self-contained field of
applied logic. In the natural sciences proper, however, there can be
no question of a strictly self-contained field of application of the log-
ical principles, since we must continually count on the appearance
of new facts, the inclusion of which within the compass of our earlier
experience may require a revision of our fundamental concepts.” [6,
pp. 212-213]
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