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Abstract

Recent studies of scientific interaction based on agent-based models
(ABMs) suggest that a crucial factor conducive to efficient inquiry is what
Zollman, 2010 has dubbed ‘transient diversity’. It signifies a process in
which a community engages in parallel exploration of rivaling theories
lasting sufficiently long for the community to identify the best theory and
to converge on it. But what exactly generates transient diversity? And
is transient diversity a decisive factor when it comes to the efficiency of
inquiry? In this paper we examine the impact of different conditions on
the efficiency of inquiry, as well as the relation between diversity and effi-
ciency. This includes certain diversity-generating mechanisms previously
proposed in the literature (such as different social networks and cautious
decision-making), as well as some factors that have so far been neglected
(such as evaluations underlying theory-choice performed by scientists).
This study is obtained via an argumentation-based ABM (Borg et al.,
2017, 2018). Our results suggest that cautious decision-making does not
always have a significant impact on the efficiency of inquiry while differ-
ent evaluations underlying theory-choice and different social networks do.
Moreover, we find a correlation between diversity and a successful per-
formance of agents only under specific conditions, which indicates that
transient diversity is sometimes not the primary factor responsible for ef-
ficiency. Altogether, when comparing our results to those obtained by
structurally different ABMs based on Zollman’s work, the impact of spe-
cific factors on efficiency of inquiry, as well as the role of transient diversity
in achieving efficiency, appear to be highly dependent on the underlying
model.

Keywords: agent-based modeling, cautious decision-making, theory-
choice, transient diversity, scientific inquiry, scientific interaction.
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1 Introduction

Recent studies on epistemic effects of scientific interaction, conducted via agent-
based models (ABMs), have largely focused on the context of theoretical diver-
sity, where a scientific community pursues different rivaling theories within a
given scientific domain (Borg et al., 2017, 2018; Frey and Šešelja, 2018a; Grim,
2009; Grim et al., 2013; Kummerfeld and Zollman, 2016; Zollman, 2007, 2010).
Since one of the rivaling theories is assumed to be the best, agents are successful
if they manage to converge on it. A take-home message from a number of these
studies has been the following: in order for an inquiry to be successful it needs
a property of ‘transient diversity’ (Zollman, 2010). Transient diversity refers
to a process in which a community engages in a parallel exploration of differ-
ent theories, which lasts sufficiently long to prevent a premature abandonment
of the best of the available theories, but which eventually gets replaced by a
consensus on the best theory. Or as Pöyhönen and Kuorikoski, 2016 specify it,
transient diversity represents “a proper balance between the diversity of beliefs
and consensus”.

But what does exactly generate this kind of balance? Zollman has sug-
gested that transient diversity can be obtained either by limiting information
flow among scientists or by equipping them with extreme prior values for their
initial hypotheses (though not by both of these mechanisms at the same time).
Kummerfeld and Zollman (2016) suggest that institutional encouragement of
unpopular, risky paths of inquiry may be necessary to obtain such a diversity.
Finally, Frey and Šešelja (2018) suggest that cautious decision-making may be
yet another mechanism that increases the chance of the community achieving
the optimal degree of diversity. In all of these models mechanisms that gener-
ate transient diversity function by preventing fully connected communities from
prematurely converging on a possibly wrong theory.1

Since all of the above ABMs are inspired by Zollman’s models,2 which rep-
resent the situation of theoretical diversity in terms of ‘bandit problems’, this
raises the question whether the same kind of mechanisms still played a role (in
the sense of generating transient diversity) if we represented scientific inquiry
in a structurally different way (as e.g. Grim et al., 2013 or Borg et al., 2018 do).
Moreover, whether transient diversity is a robust property in the sense that a
certain degree of a diversity is a ‘difference-making’ factor when it comes to
successful inquiry, is another open question. Addressing this issue is important

1Alexander, 2013 presents a slightly different scenario, where the number of rivaling theories
grows over time. His results suggest that some learning strategies (namely, the combination
of reinforcement and social learning via preferential attachment) can lead to the optimal level
of diversity, under the condition that agents discount the knowledge of past theories.

2We have omitted a class of models employing epistemic landscapes (such as Alexander,
Himmelreich, and Thompson, 2015; Pöyhönen, 2017; Thoma, 2015; Weisberg and Muldoon,
2009) since they tend to represent a different kind of diversity than the one we are focusing
on in this paper: they rather examine what would better be labeled as ‘cognitive diversity’
(Pöyhönen and Kuorikoski, 2016), which concerns different research heuristics employed by
individual agents across the given community. Moreover, efficiency of inquiry in these models
is usually measured in terms of success of the community in discovering certain patches of the
given landscape, rather than in terms of agents converging on a single theory.
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not only for the examination of the robustness of previous results, but also for
a more precise understanding of the phenomenon of transient diversity and its
relation to the efficiency of inquiry (where efficiency is a function of the rate of
successful convergence and the required time).

In this paper we will examine this question by means of an argumentation-
based ABM (ArgABM) of scientific interaction, which we previously presented
in Borg et al., 2017.3 We will focus on two kinds of interrelated mechanisms:

1. On the one hand, we will examine mechanisms that represent cautious
decision-making (previously discussed by Frey and Šešelja, 2018a with re-
spect to a Zollman-inspired model). The first such mechanism is ‘rational
inertia’ that an agent has towards her pursued theory, which assures she
abandons the theory only after having repeatedly gathered evidence in
favor of its rival for a significant period of time. The second mechanism is
a relative threshold value which a rivaling theory has to surpass in order
to count as superior to one’s current theory.

2. On the other hand, we will examine different evaluative procedures, in
view of which scientists decide which theory to pursue and on top of which
cautious decision-making is employed. For instance, agents in the model
may prefer theories that have a wider scope than their rivals, or they may
avoid theories that exhibit more anomalies than their rivals. These mea-
sures may come down to different preference orders on the given theories.
While ABMs of scientific interaction have usually employed a specific kind
of assessment, which of these assessments is either descriptively adequate
or normatively desirable has largely remained open. To this end, it is
helpful to understand their impact on the efficiency of inquiry.

What makes ArgABM especially suitable for this research question is that,
on the one hand, it employs both of the above mechanisms representing cautious
decision-making as parameters of the model. On the other hand, the model al-
lows for a straightforward approach to studying different assessment procedures
underlying theory-choice of scientists. In addition, the model employs a specific
approach to knowledge representation, which is structurally different from Zoll-
man’s or Grim & Singer’s models. For instance, both defensible and anomalous
parts of knowledge can be located as specific parts of the given theories. This
makes the model apt for the above mentioned robustness analysis.

Our results suggest that, a certain degree of diversity can be clearly iden-
tified as correlated with efficient inquiry only when agents employ a specific
theory-choice assessment—namely, when they prefer theories that are based on
a comparatively larger body of solidified research, relative to their rivals. In
that case cautious decision-making has a positive impact on the efficiency of
fully connected communities. When it comes to other evaluations, as well as
to less connected communities, cautious decision-making either has no impact

3The model is programmed in NetLogo (Wilensky, 1999). The code of the model employed
in this paper can be found at: https://github.com/g4v4g4i/ArgABM.
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on the efficiency or it is harmful for it. Hence, this study indicates that deter-
mining factors conducive to the efficiency of inquiry is highly dependent on the
specific model and its idealizations. This points to an important task for future
research: specifying which types of inquiry (for example, related to specific sci-
entific domains) are more adequately represented by some of these conditions
and certain ABMs of science, rather than others.

Here is how we will proceed. In Section 2 we will present the central features
of ArgABM. In Section 3 we will introduce four different types of evaluation
underlying scientists’ decision as for which theory to pursue. In Section 4 we
will explicate how we model cautious decision-making. In Section 5 we will
present our results: we will show how different social networks perform in each
of the four evaluations, with and without the mechanisms of cautious decision-
making. Moreover, we will analyze the impact of diversity on successful inquiry.
In Section 6 we will conclude the paper suggesting some questions for future
research.

2 ArgABM: an overview

In this section we introduce ArgABM, an argumentation-based ABM of scientific
inquiry, which has previously been used for the examination of epistemic effects
of scientific interaction under different types of social networks (Borg et al.,
2017, 2018). The model is designed to measure the efficiency of groups of agents
in their knowledge acquisition. Knowledge acquisition is represented in terms
of agents exploring a number of rivaling scientific theories, where they have to
determine which theory is the best one. Efficiency of their inquiry is represented
in terms of their success in converging on the best of the available theories, and
in terms of time they need to achieve this convergence.4

A specific feature of this model is that it aims to represent argumentative
dynamics among scientists who explore rivaling theories or research programs5

and exchange arguments pro and con these theories along the way. To this
end, the model represents the argumentative context underlying theories, within
which scientists gather evidence for the hypotheses constituting the given theory
and against the rivaling ones. Such an argumentative context is represented in
terms of an argumentative landscape, explored by agents.

4In (Borg et al., 2017, 2018) the efficiency in terms of time is measured in a slightly
different way. Moreover, Borg et al., 2017 presents an alternative, ‘pluralist’ measure of
success, according to which agents are successful if at the end of the run the best theory
isn’t less populated than any of its rivals. In the current section we will try to keep technical
details at the minimum. An interested reader can take a closer look at the above mentioned
publications on this model.

5For the sake of simplicity, we use the terms ‘theory’ and ‘research program’ interchange-
ably in this paper.
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2.1 The argumentative landscape

As mentioned above, the model represents scientific inquiry in which scien-
tists explore their research programs, gradually fleshing them out. They do so
by exploring the argumentative landscape, which represents the argumentative
context underlying the rivaling research programs. Each theory is represented
as consisting of a number of arguments. These arguments are represented ab-
stractly, as nodes in a directed graph, connected via a discovery relation. An
argument can be understood as a hypothesis supported by evidence gained by
means of a certain study (e.g. an experiment).6 The discovery relation repre-
sents paths that agents take when moving on the landscape, from one argument
to another. Its role is to track the temporal aspect of research where new re-
search steps build on the previous ones. Moreover, arguments belonging to one
research program can attack arguments of one of the rivaling programs. Such
an attack represents, for instance, a discovery of a methodological problem in
a certain study of the rivaling research program, or results of a novel study
which provides a better explanation of a certain phenomenon than a study of-
fered within the rivaling program.7 The landscape then consists of different
argumentative rooted trees, with nodes as arguments and edges as discovery
relation, where an argument in one tree may attack an argument in another
tree (see Figure 1).8 The extent to which each research program is attacked is
a parameter of the model. We represent all theories as trees of the same size,
i.e. consisting of the same number of arguments.

While at the beginning of the run, agents only see the root argument of
each theory, over the course of the run they gradually discover the rest of the
landscape. Each argument can be understood as a hypothesis investigated by

6For a concrete example of a scientific controversy—namely, the continental drift debate—
represented by means of a similar framework (based on abstract argumentation) see Šešelja
and Straßer, 2013.

7While we can imagine a situation in which a single argument serves as an objection
attacking the rivaling theory in whole (for example, showing the theory cannot explain a
certain set of phenomena) in the current model we abstract away from such cases by employing
the idealization that attacks always target a specific part of a theory (e.g. an attack on a study
in a rivaling research program pointing to a methodological problem doesn’t necessarily attack
results of other studies within the same program—i.e. other arguments). Note that this is
already a step further in the direction of representational adequacy in comparison to Zollman-
inspired ABMs. It remains a task for future research to examine whether our results remain
robust if we implemented a more detailed representation of argumentative attacks, e.g. by
introducing an explanatory relation between arguments and a set of explananda (as it is done
by Šešelja and Straßer, 2013) and more refined evaluation procedures (as compared to the
ones to be introduced in Section 3).

8The representation of our landscape is inspired by abstract argumentation frameworks
(Dung, 1995). Formally, the landscape is given by a triple 〈A, , ↪→〉 where ↪→ is the discovery
relation,  is the attack relation, and A = 〈A1, . . . ,Am〉 is partitioned in m many theories
Ti = 〈Ai, ai, ↪→〉 which are trees with ai ∈ Ai as a root and

 ⊆
⋃

1≤i,j≤m
i 6=j

(Ai ×Aj) and ↪→ ⊆
⋃

1≤i≤m

(Ai ×Ai).

Specifying  like this ensures that the theories are conflict-free, i.e. that there are no attacks
between the arguments of the same theory.
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Program 1
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♀
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♀

Figure 1: An example of an argumentative landscape consisting of 2 theories (or
research programs). Darker shaded nodes represent arguments that have been
investigated by agents and are thus visible to them; brighter shaded nodes stand
for arguments that aren’t visible to agents. The biggest node in each theory
is the root argument, from whcih agents start their exploration via discovery
relation, which connects arguments within one theory. Arrows stand for attacks
from an argument in one theory to an argument in another theory.

scientists. Throughout their exploration of the landscape, our scientists will
occasionally encounter defeating evidence, represented as attacks coming from
arguments in a rivaling theory. Moreover, they may encounter arguments that
defend their attacked hypotheses, where—informally speaking—an argument a
is defended in the theory if it is not attacked or if each attacker b from another
theory is itself attacked by some defended argument c in the current theory.9,10

Let’s look at the example illustrated in Figure 2. In graph (a) we have
argument a1 from theory T1, which is attacked by argument b1 from theory
T2. In this case, a2 defends a1 since it attacks b1, the attacker of a1. If in the

9More precisely, we call a subset of arguments A of a given theory T admissible iff for each
attacker b of some a in A there is an a′ in A that attacks b. Since every theory in the model
is conflict-free, it can easily be shown that for each theory T there is a unique maximally
admissible subset of T (with respect to set inclusion). An argument a in T is said to be
defended in T iff it is a member of this maximally admissible subset of T .

10Agents discover attacks to and from their current arguments, as well as the child arguments
of their current arguments gradually, depending on the degree of exploration assigned to the
current argument at a given time point of a run: for each agent ag and each argument a ∈ A,
expl(a, ag) ∈ {0, . . . , 6} where 0 indicates that the argument is unknown to ag and 6 indicates
that the argument is fully explored and cannot be further explored. Since the model is round-
based, each round may be interpreted as one research day. Each of the 6 levels of an argument
takes a researcher 5 rounds/days of exploration. Thus, each argument represents a hypothesis
that needs altogether 30 research days to be fully investigated.
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a1 b1

a2 b2

(a)

a1 b1

a2 b2

(b)

Figure 2: Argumentation graph with arguments a1 and a2 to theory T1, and
arguments b1 and b2 belonging to theory T2. Discovery relations are omitted.

further course of exploration agents encounter b2, which attacks a2 (graph (b)),
then the previous defense becomes unsuccessful and both a1 and a2 will now be
undefended (for a formally precise definition of defended arguments see below
Section 3.1).

The idea behind such argumentative dynamics stems from the defeasible
character of scientific reasoning, where throughout inquiry scientists may en-
counter defeating evidence for their previously accepted hypotheses, and defense
of hypotheses that they have earlier rejected. This feature allows for the repre-
sentation of errors that commonly appear in scientific research: false positives
(accepting a hypothesis that is actually false) and false negatives (rejecting a
hypothesis that is actually true). This is important in a model that aims to ex-
amine the efficiency of scientific inquiry, since these errors have a direct impact
on it. Cases in which scientists accepted a false hypothesis (sometimes simula-
teously with rejecting a true one) are well known from the history of science.11

This is precisely why Zollman-inspired models examine the efficiency of inquiry
by focusing on the mechanisms that are conducive to minimizing the risk of
false positives and false negatives.

The argumentative dynamics in our model allows for a straightforward rep-
resentation of false positives and false negatives: the former are arguments that
initially appear defensible, though further inquiry would reveal that they are
not; the latter are arguments that are attacked and undefended, but for which
defense can eventually be found.

Now, an important feature of the model is that one of the rivaling research
programs is designed as the ‘best one’. In this way we can measure the effi-
ciency of scientists by assessing their success and time needed to converge on
this particular theory. The best theory is simply the one which is designed as
fully defended from all the attacks, in the fully explored landscape.12 This is,
of course, an idealization, but it helps to represent the above mentioned ap-
pearance of false positives and false negatives: while at early stages of inquiry,
the best theory may appear to have many anomalies (undefended arguments),
if scientists keep on exploring it, they will find solutions for these anomalies

11For instance, the continental drift debate or the research on peptic ulcer disease are some
of the cases in point (see Šešelja and Straßer, 2014b; Šešelja and Weber, 2012).

12The other theories are modeled as having a certain percentage of their arguments attacked
and undefended.
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(namely, defenses of the attacked arguments).

2.2 Behavior of agents

The model is round-based and each round agents perform one of the following
actions:

A1 exploring a single argument, thereby gradually discovering possible attacks
(on it, and from it to arguments that belong to other theories) as well as
discovery relations to neighboring arguments;

A2 moving to a neighboring argument along the discovery relation within the
same theory;

A3 moving to an argument of a rivaling theory.

As mentioned above, agents start the run of the simulation at the root of
a given theory and gradually discover more and more of the argumentative
landscape. In this way each turn an agent operates on the basis of her own
(subjective) fragment of the landscape, which consists of arguments that she
has explored to a specific degree, and (attack and discovery) relations that she
has found between the arguments.

To decide whether to keep on pursuing their current theory (actions A1 and
A2 above), or whether to better start working on an alternative theory (A3)
agents are equipped with the ability to evaluate theories.13 Every few rounds
they apply an evaluative procedure, with respect to the set of arguments and
attacks they currently know (i.e. their subjective memory). We will introduce
four such procedures in the next section. For now, it will suffice to say that all
such evaluations are based on the question, how many defended or undefended
arguments the theory has.

2.3 Social networks

Just like other models of scientific interaction, ArgABM employs social net-
works. In particular, agents form their subjective knowledge of the landscape
not only in view of information they gather on their own, but also in view of
information they receive from other agents, with whom they are linked in a
network. There are two types of such networks:

1. Collaborative groups, which consist of five individuals who start from the
same theory. While each agent gathers information about the landscape
on her own, every five time steps this information is shared with all other
agents forming the same collaborative network.

13In addition, agents are equipped with a certain heuristic behavior, which allows them to
search for the defense of their current argument in case it is attacked. See Borg et al., 2017,
Section 2.2.
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Figure 3: A cycle, a wheel and a complete graph. Each node is a collaborative
group, while the edges represent communication channels.

2. Community-networks, between collaborative groups, which are formed out
of representative agents from each of the linked collaborative networks
(one representative agent per collaborative network). Within community-
networks agents share information (arguments and attack relations) that
they have recently gathered via their exploration. This could be inter-
preted as having a scientist report on her recent (positive and negative)
findings concerning her current theory, by writing a paper or giving a
conference talk.14 Community-networks can have one of the following
structures: a cycle, in which each collaborative group is connected to ex-
actly two other groups, a wheel which is similar to the cycle, except that
a unique group is connected to every other group, and a complete graph
where each group is connected to all other groups (see Figure 3).

3 Evaluations underlying theory-choice

As mentioned in the previous section, agents in ArgABM assess their theory
in order to decide whether to stick with it, or to switch to one of the rivaling
theories. In this section we will present four evaluative procedures, in view of
which scientists can make such a theory-choice.

In order to explore the space of possibilities, we start with two simple mea-
sures, and then proceed by adjusting them towards two additional, more com-
plex measures. Of course, which of these measures (or yet some other ones)
is actually employed by scientists is an empirical question, which cannot be
answered from a philosophical armchair. We will motivate four suggestions for
implementing such evaluative procedures in the context of ArgABM (see Section
6 for some additional proposals).

14In the current model we assume that agents reliably share information, i.e. that they share
both positive and negative findings about their current theory. Borg et al., 2018 examine in
addition deceptive information sharing, i.e. agents who share only positive findings about
their theory (arguments and attacks to other theories), while witholding the information
about attacks on their own theory. Whether the results presented in this paper also hold for
deceptive agents remains a question for future research.
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e a c

f b d

theory defended degree of def.
T1 = {e, f} (white) {f} 1
T2 = {a, b, g} (gray) {} 0

T3 = {c, d} (dark gray) {} 0

Figure 4: Argumentation Framework 1

3.1 The degree of defensibility (assessment D)

Our first measure is the assessment of theories in terms of their degree of de-
fensibility.15 We will call it for short: assessment D. The degree of defensibility
of a theory is the number of defended arguments in this theory. T1 is preferred
to T2 iff T1 has more defended arguments than T2.

This strategy represents scientists who are easily impressed by the size of a
theory, that is, by the size of its defensible parts.16 In other words, they keep
on pursuing their current theory unless one of the rivaling theories turns out to
have more defended arguments.

Let’s give a more precise formal definition. First, we call a subset of argu-
ments A of a given theory T admissible iff for each attacker b of some a in A
there is an a′ in A that attacks b. Since every theory is conflict-free, it can easily
be shown that for each theory T there is a unique maximally admissible subset
of T (with respect to set inclusion). An argument a in T is said to be defended
in T iff it is a member of this maximally admissible subset of T .17 The degree
of defensibility of T is equal to the number of defended arguments in T .

Figure 4 depicts a situation with three theories as it might occur from the
perspective of a given agent: T1 consisting of arguments e and f (white nodes),
T2 consisting of arguments a, b and g (gray nodes), and T3 consisting of ar-
guments c and d (dark gray nodes). The arrows represent attacks, we omit
discovery relations. We are now interested in the degrees of defensibility our
agent would ascribe to the given theories. The table shows which arguments
are defended in each theory and their corresponding degree of defensibility. The
only defended argument in this situation is f in theory T1. Note for instance
that in T3 the argument d is not defended since no argument in T3 is able to

15This measure is employed in previous versions of ArgABM (Borg et al., 2017, 2018).
16An alternative way to interpret this assessment is in terms of an explanatory scope of a

theory, where we are assuming that the arguments constituting the given theory are explana-
tory in nature (see Šešelja and Straßer, 2013). A less idealized measure of explanatory power
could be implemented by introducing a set of explananda E and an explanatory relation from
some of the arguments in the theory to a subset of E.

17Given that theories in the model are conflict-free, the notion of admissibility is here the
same as the one introduced in Dung, 1995. In Dung’s terminology, our sets of defended
arguments correspond to preferred extension (which are exactly the maximally admissible
sets), except that we determine these sets relative to given theories.
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e a c

f b d

theory defended degree of def.
T1 = {e, f} (white) {} 0
T2 = {a, b, g} (gray) {a, b, g} 3

T3 = {c, d} (dark gray) {} 0

Figure 5: Argumentation Framework 2

defend it from the attack by b. Although the argument f in T1 attacks b, it
doesn’t count as a defender of d for theory T3 when determining the defended
arguments in T3 since in our account a theory is supposed to defend itself.

Figure 5 depicts the situation after an attack from a to f has been discovered.
Consider theory T2. In this situation a defends b from the attack by f , b defends
a from the attack by d, a defends g from the attack by e and g defends a from
the attack by c. Hence, all arguments are defended resulting in a degree of
defensibility of 3.

3.2 The degree of anomaly (assessment A)

According to this measure, T1 is preferred to T2 iff T2 has more undefended
arguments than T1. We call it for short: assessment A. If we interpret the
number of undefended arguments as the degree of anomaly of the given research
program, this strategy can be taken as representing scientists who abandon
theories that become more anomalous than their rivals. This approach could
be seen as corresponding to a Kuhnian scientist who resists converting to a new
paradigm until her theory is clearly more anomalous than its rival (see Kuhn,
1962 [1996]).

Taking a look at the scenario in Figure 4, T1 has a degree of anomaly 1,
while T2 has a degree of anomaly 2 and T3 has a degree of anomaly 3. Hence,
agents will prefer T1. In Figure 5 T1 and T3 have a degree of anomaly 2, while
T2 has a degree of 0. Here they will thus prefer T2.

3.3 Multiplication (assessment M)

We now turn to more sophisticated assessments. According to the measure
which we call ‘multiplication’, T1 is preferred to T2 iff |Undef(T1)| · |Disc(T1)| <
|Undef(T2)| · |Disc(T2)|, where Undef(Ti) stands for undefended arguments of
theory Ti, and Disc(Ti) stands for all discovered arguments of Ti (i.e. arguments
that belong to the knowledge base of the agent). We call this procedure for short:
assessment M.

This strategy represents scientists who are less forgiving toward anomalies
in their research program the more advanced it is (i.e. the more arguments it
has). This approach could be seen as corresponding to the Lakatosian idea that

11



in their early stages research programs are infested with anomalies, which are
expected to be resolved as time passes by (see Lakatos, 1978).

Taking a look at the example in Figure 4, if we assume all the arguments
in the framework are actually discovered, then T1 has a multiplication score of
1× 2 = 2, T2 has a score of 3× 3 = 9 and T3 2× 2 = 4. Agents will thus prefer
T1.

3.4 Normalization (assessment N)

Our final measure is labeled ‘normalization’ since according to it, T1 is pre-
ferred to T2 iff |Undef(T1)|/|Disc(T1)| < |Undef(T2)|/|Disc(T2)|, where again
Undef(Ti) stands for undefended arguments of theory Ti, and Disc(Ti) stands
for all discovered arguments of Ti.

18 We call this evaluation for short: assess-
ment N.

This strategy represents scientists who evaluate the defended (or anomalous)
scope of their research program relative to how advanced it is. The idea behind
this assessment is similar to Bayesian updating via beta-distributions (employed
by Zollman, 2010), the mean of which is given by the ratio of the number of
successful draws from the distribution through the number of all draws.

Considering the example in Figure 4 and assuming all the arguments are
discovered, the normalization score for T1 is 1/2 = 0.5, for T2 it is 3/3 = 1, and
for T3 it is 2/2 = 1. Thus, agents prefer T1.

While applying our four evaluations to the example in Figure 4 has led to
the same preference order (with T1 being selected in each case), the following
example illustrates that our four assessments may not always lead to the same
theory-choice.

The example in Figure 6 consists of two theories, a blue one, T1, with ar-
guments a1-a3, and a green one, T2, with arguments b1-b6. We have that
Disc(T1) = 3, Def(T1) = 1, Undef(T1) = 2, Disc(T2) = 6, Def(T2) = 3 and
Undef(T2) = 3. Hence, T1 has a multiplication score of 6 and a normalization
score of 2

3 and T2 has a multiplication score of 18 and a normalization score
of 3

6 . Therefore, T1 is preferred over T2 if theories are compared by means of
assessments A or M, and T2 is preferred over T1 when evaluation is done by
means of assessments D or N.

18It is easy to show that the following measure results in an equivalent preference order:
T1 is preferred to T2 iff |Def(T1)|/|Disc(T1)| > |Def(T2)|/|Disc(T2)|, where Def(Ti) stands for
defended arguments.
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a1 b1 b4

a2 b2 b5

a3 b3 b6

T1 better? T2

D 1 ≺ 3

A 2 � 3

M 6 � 18

N 2
3 ≺ 3

6

Figure 6: Argumentation framework illustrating different evaluations underlying
theory-choice. D: degree of defensibility, A: degree of anomaly, M: multiplica-
tion, N: normalization.

4 Modeling cautious reasoning

We will now explicate two types of diversity-preserving mechanisms, each of
which can be understood in terms of cautious reasoning, that functions in com-
bination with evaluations presented in the previous section.

4.1 Rational inertia: temporal threshold

The first mechanism has the aim to prevent agents from being hastily swayed by
new evidence. It functions in the following way: an agent abandons her current
theory and switches to a rivaling one only after she has received consistent
evidence showing that the latter is better for X number of evaluations (where
X is a parameter of the model). We will refer to X as temporal threshold.
This corresponds to the situation in which scientists don’t easily abandon their
theory, even after discovering problems with it. Instead, they stick with it until
and unless they are convinced that it can no longer be saved from the defeating
evidence and that its rival is superior to it.

We call such an inertia rational for it wouldn’t make much sense for a scien-
tist to prematurely abandon her theory, before she is sure the current anomalies
cannot be resolved and the theory improved. In this sense, it is rational for a
scientist to stick to her theory for a while longer (see Kelp and Douven, 201219).
Moreover, such an inertia is rational also in view of the fact that changing one’s
inquiry usually comes with various costs (such as acquiring additional knowl-
edge, new equipment, etc.).

19Rational inertia shouldn’t be confused though with the ‘Steadfast Norm’ discussed by
Kelp and Douven in the same paper, and well-known in the literature on peer disagreement.
Unlike in their account, in our model we may interpret a scientist as having a rational inertia
towards her theory, while having lowered her confidence that the theory is actually true.
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4.2 Similarly successful theories count as equally good:
epistemic threshold

While a rational inertia keeps agents ‘sticky’ on their theories for a certain period
of time, our second mechanism keeps them ‘sticky’ for as long as the rivaling
theory isn’t significantly better than their current one. To this end, agents stay
on their current theory unless it has been surpassed by a rival beyond a given
threshold value, relative to the employed evaluation procedure. We call such a
threshold – epistemic threshold.

More precisely, an agent abandons her current theory only if it fails to be
one of the best theories, where the set of ‘best theories’ is calculated by means
of the four evaluative procedures together with the epistemic threshold in the
following way:

• For the evaluation in terms of assessment D: if Ti stands for a theory that
has the highest degree of defensibility, then the set of best theories consists
of those theories that have at least the following assessment D:

|Def(Ti)| · [epistemic threshold]

where epistemic threshold is a value from the interval (0, 1].

• For the evaluation in terms of assessments A, M and N: if Ti stands for
a theory that has the lowest Evaluation Score(Ti) for each of the three
measures, then the set of best theories consists of those theories that have
maximally the following score:

Evaluation Score(Ti)

[epistemic threshold]

where epistemic threshold is a value from the interval (0,1].

For instance, let Ti be a theory with Disc(Ti) = 20, Undef(Ti) = 10 and
Def(Ti) = 10 and assume Ti is the theory with the most defended arguments
and the lowest evaluative score according to A, M and N procedures. We choose
the epistemic threshold of 0.9. For each of the evaluation procedures we get the
following scores:

• D: all theories that have at least 10 · 0.9 = 9 defended arguments will fall
among the set of best theories,

• A: all theories whose degree of anomalies is smaller than 10/0.9 = 11.11
count among the best ones,

• M: all theories whose multiplication score is less that (10·20)/0.9 = 222.22
count among the best ones,

• N: all theories whose normalization score is less than (10/20)/0.9 = 0.55
count among the best ones.

The primary idea behind this mechanism is that a rivaling theory has to pass
a sufficiently wide margin to be considered superior to one’s current theory. This
corresponds to the reasoning of a scientist who uses a dose of caution in such
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evaluations, knowing that future inquiry might reveal new evidence. As a result,
she will abandon her current theory not merely after she has seen it perform
worse multiple number of times (as in the case of rational inertia), but only
after its rival has become sufficiently superior to it.

In Table 1, we show the sets of best theories for the example in Figure 6, for
different values of epistemic thresholds.

Epistemic threshold 1
4

1
3

1
2

2
3

3
4

D {T1, T2} {T1, T2} {T2} {T2} {T2}
A {T1, T2} {T1, T2} {T1, T2} {T1, T2} {T1}
M {T1, T2} {T1, T2} {T1} {T1} {T1}
N {T1, T2} {T1, T2} {T1, T2} {T1, T2} {T1, T2}

Table 1: Set of best theories for the example in Figure 6, for different epistemic
threshold values.

5 Our findings

In this section we present the results of our simulations, focusing on two mea-
sures: how successful agents are in converging on the best theory, and how much
time they need to converge on it.20 Each of the plots shows a mean of 10,000
simulations for each data point (unless otherwise indicated). All the simulations
were run with a landscape consisting of 3 theories, each having 85 arguments.
While the best theory is fully defended, the other two theories have a certain
portion of undefended arguments.

Concerning the last point, we employ two types of landscapes:

1. an ‘easy’ landscape, in which the two suboptimal theories have around
35% of undefended arguments,21

2. a ‘difficult’ landscape, in which the two suboptimal theories have around
85% of undefended arguments.

That a landscape is easy/difficult means that theories are more or less similar
in terms of their degree of defensibility, which makes it easier or harder to
determine which one is the best.

A simulation stops when one of the theories is fully explored. At this point
we examine whether the agents have converged on the best theory, and if so, at
which step of the simulation they have done so.22

20Due to space restructions, many of the plots are omitted from the paper and can be found
in the online appendix of this paper.

21For the exact procedure of how the attacks are generated, and the degree of defensibility
of the two suboptimal theories such a procedure results in, see Borg et al., 2018.

22The reason why we stop the simulation at this point is that otherwise some agents would
become ‘idle’: since they have explored their preferred theory fully, the only way they would
change their preference is by waiting for other agents to send them new information. Borg
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As for our two mechanisms explicated in the previous section—which we call
for short ‘threshold mechanisms’ or ‘thresholds’—we have employed the tempo-
ral threshold of 10. This means that in order for an agent to switch to a rivaling
theory, she has to consistently evaluate that theory as one of the best ones (and
better than her current theory) for 10 (not necessarily consecutive) rounds.23

For the epistemic threshold, we have opted for a relatively small value of 0.9.
We have tested our results with higher thresholds (e.g. temporal threshold of
50, and the epistemic threshold of 0.7) and they have remained robust under
these changes, except for the time agents need to achieve convergence, which,
as expected, increases with higher thresholds.

5.1 Results

We will now focus on four interesting points revealed by the simulations. In the
next subsection we will discuss these findings.

Impact of threshold-mechanisms. First, the impact of the threshold mech-
anisms varies across different evaluative procedures. The only case where we
observe a positive effect of thresholds on the success of agents is the complete
graph employing procedure D. The impact of thresholds on different networks
employing assessment D can nicely be observed in case of a larger population (of
70 agents), represented in Figure 7. In case of all other evaluations and network
structures, thresholds either have no effect or they have a negative effect, across
both easy and difficult landscapes (see Table 2).

et al., 2019 propose an alternative model in which the simulation continues after this point,
eventually bringing all agents on the best theory, so that the efficiency is measured in terms
of time only (similarly to the ABM proposed by Frey and Šešelja, 2018a).

23In view of an interpretation suggested by Borg et al., 2017, according to which a round
stands for a working day, this threshold means that scientists have to wait 10 weeks before
being able to change their theory. Of course, different interpretations of the time in the model
are possible.
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Figure 7: Success of agents employing procedure D (70 agents).

Success Time
Evaluation Complete Sub-Complete Complete Sub-Complete
D + + − − − − − −
A ± ± ± ± ± ± ± ±
M ± ± − − ± ± ± ±
N ± ± ± ± − ± − ±

Table 2: The impact of threshold-mechanisms on different social networks with
respect to the four evaluative procedures on the easy landscape (on the left) and
on the difficult landscape (on the right with shaded background). Complete:
complete graph; Sub-Complete: cycle and wheel networks; +: positive impact;
−: negative impact; ±: neither positive nor negative impact. Note that the
effect is the strongest for larger populations.

Efficiency of different evaluative procedures. Second, different evaluative
procedures result in drastically different degrees of efficiency, across all three
networks. While D assessment results in the worst performance for all three
networks in case of both types of landscapes, N procedure makes all three net-
works very efficient on the easy landscape. Nevertheless, a complete graph
employing the M procedure overtakes the N one on the difficult landscape (see
Figures 8 and 9).

Efficiency of different social networks. Third, the relative efficiency of
different social networks remains pretty robust across all explored scenarios,
with the complete graph outperforming less connected networks in terms of
both – the success of agents in converging on the best theory, and the amount
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Figure 8: Easy landscape: success of agents connected in the complete graph
for different evaluation procedures (aggregated over both runs with thresholds
and without thresholds).
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Figure 9: Difficult landscape: success of agents connected in the complete graph
for different evaluation procedures (aggregated over both runs with thresholds
and without thresholds).
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Figure 10: The effect of thresholds on the degree of diversity (70 agents, difficult
landscape, complete graph)

of time they need to achieve such convergence. In the case of A, M and N
evaluations the complete graph is extremely successful on the easy landscape,
while being a bit less successful on the difficult one.

Transient Diversity. As mentioned in Section 1, the literature on ABMs of
science has advanced the idea that in order to optimize efficiency of scientific
inquiry we seek a diversifying mechanism that creates a tension among agents
such that it is (a) strong enough to prevent agents from an early convergence on
the wrong theory and (b) sufficiently soft to enable them to eventually converge
on the right theory. The wanted type of diversity has been labeled transient.
One ingredient of such diversity was identified in the social network structure,
another one in epistemic biases (Zollman, 2010). In this paper we have studied
other parameters, such as evaluative standards of agents and (temporal and
epistemic) thresholds used by agents when deciding when to choose another
theory.

Our first expectation is that higher thresholds have a diversifying effect sim-
ilar to loser network structures. And indeed this is what we see for instance in
Figure 10 for the D and N procedure. We measure diversity of a run in terms of
the number of rounds in which agents have no consensus on any theory divided
by the number of rounds it took to terminate the run. We can see that the center
of mass is moved to the right (more diversity) when introducing thresholds.

When considering the relation between the degree of diversity and efficiency
we may naively expect a bell-shaped curve at whose peak we find runs with
most efficiency while moving to more or less diversity the situation worsens.
Things are more complicated, though. We find, for instance, a camel-like curve
for the D-procedure and difficult landscapes (see Figure 11) with one peak for
runs with diversity degrees between 0 and 0.1, and another peak for runs with
diversity degrees between 0.7 and 0.8. Furthermore, the difficulty of the land-
scape influences the shape of the curve: for easy landscapes more diversity is
highly beneficial as we can see for the interval from 0.5 to 0.8, but less so for
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Figure 11: The effect of diversity on efficiency (70 agents, complete graph)

low diversity degrees (unlike in the difficult landscape). Also the evaluation cri-
terion matters, as we can observe when considering the N procedure where we
see a continuous (for a long time slow) decline of efficiency with higher degrees
of diversity.

In sum, the efficiency-diversity relation does not in general exhibit a simple
bell-like curve. Moreover, the shape of the curve is highly dependent on factors
such as the underlying evaluative procedure and the difficulty of the problem.
Furthermore, in some cases (like the N procedure) diversity has not much of
an influence on efficiency (except for extreme degrees). This also highlights the
importance of studying other factors which influence the efficiency of scientific
inquiry, such as evaluation procedures, as done in this paper.

5.2 Discussion

We will now comment on a few most important aspects of our findings.
Highly successful communities. The first striking point that deems an
explanation is the extremely high success rate of fully connected communities
in case of A, M and N evaluations. Why do these populations perform so well?
To answer this question, we will first explain (i) why fully connected networks
tend to be at least as successful as the less connected ones, and in most cases
much more successful, and then turn to (ii) the success of A, M and N evaluations
in particular.

As for (i), the reason for their success lies in the way information is repre-
sented in our model. How accurate one’s assessment about the given theories is,
directly depends on how much knowledge of the landscape the agent has. Larger
gaps in such knowledge can easily lead to errors in theory assessments. Now,
since our agents share only recently acquired information (rather than their en-
tire knowledge of the landscape), in less connected communities some of this
information may easily be missed, and hence their knowledge of the landscape
will be ‘patchier’. As a result, they may fail to accurately determine the best
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theory.24 Note that this is also why larger communities linked in sub-complete
graphs have a low success rate: since in our community-networks not every agent
communicates with every other agent (instead collaborative groups appoint rep-
resentative agents who then share information in community-networks), the de-
gree of connectedness gets smaller the larger the overall population is, and as a
result, subjective knowledge can in larger populations be rather different across
different collaborative groups. Moreover, since agents share recently gathered
information, there may be a permanent information loss in such groups. This is
in contrast to, e.g., Zollman’s model, where any shared information is represen-
tative of the entire theory, which makes information losses much less harmful.
We take ArgABM, however, to be representative of a situation in which scientists
who don’t share all their results may fail to have an encompassing understanding
of each of the rivaling theories (e.g. they might lack an insight into an important
study in one of the theories). This means that larger populations of scientists
will have a harder time converging on the same theory due to the fact that they
assess theories in view of different evidence. This is, however, not unrealistic:
larger scientific communities that are not tightly connected indeed tend to have
a harder time achieving consensus on one theory.

As for (ii), the reason why A, N and M evaluations perform better than D
becomes clear when we observe that agents in the case of the former assessments
tend to switch more often from one theory to another (see Figures 12 and 13). In
other words, these assessments generate diversity by allowing agents to change
their theories and gain enough information about them to accurately decide
which one is the best.

Cautious decision-making. What do our results tell us about cautious
decision-making and its conduciveness to efficient inquiry? The impact of our
threshold mechanisms seems to be highly dependent on (i) the degree of con-
nectedness of the given community, and (ii) the evaluation underlying theory
choice employed by agents (as visible from Table 2). Altogether, the thresh-
olds increase the efficiency only of fully connected communities that employ D
assessment, while sometimes having the opposite effect on the less connected
ones. Moreover, for A, N and M assessments the addition of thresholds just
slows them down.

In view of these considerations it might seem like our mechanisms of cautious
decision-making play no beneficial epistemic role at all unless scientists apply
the assessment in terms of D procedure. Nevertheless, a closer look at the
simulations reveals that thresholds do play an important role, which is not
immediately clear when analyzing the results for success and time. Looking
at the exploratory behavior of agents—how many times they switch from one
theory to another—we observe that without the presence of thresholds, agents

24Though we haven’t examined the situation in which agents share a random subset of
their knowledge of the landscape (rather than only recently acquired information), the fully
connected community would most likely still outperform the less connected networks since,
on the one hand, it would still have a less patchier knowledge of the landscape than the other
two networks, while on the other hand, such a change is not likely to increase the chance that
the community prematurely abandons the best theory.
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Figure 12: The number of times agents switch from one theory to another
with no threshold-mechanisms, averaged over all population sizes for the easy
landscape.
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Figure 13: The number of times agents switch from one theory to another
with temporal threshold of 10 and epistemic threshold of 0.9, averaged over all
population sizes for the easy landscape.
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frequently switch between theories (see Figures 12 and 13). While our model
doesn’t take into account that changing theories can be costly (in terms of time
one needs to learn the necessary background knowledge or in terms of costs
of acquiring the right equipment), in many domains this can be an important
issue.25

This brings us to the following conclusion: while in view of previous ABMs
(such as Frey and Šešelja, 2018a), it seemed that threshold mechanisms played
an important role in generating transient diversity in fully connected commu-
nities, our results indicate that this is the case only under certain conditions.
More precisely, threshold mechanisms will have a beneficial impact only if the
costs of changing theories, occurring in the absence of cautious decision-making,
are high enough to make incautious communities slower than the cautious ones.
This points to the importance of including this factor in ABMs of scientific in-
quiry. Note, however, that a proper study of such costs would require empirical
calibration of the given model. First, the time in the model would have to be
mapped to the real time of inquiry, and second, the costs associated with chang-
ing one’s theory would have to be based on empirical data concerning the given
domain of science.

The role of diversity. Let’s take now a closer look at the D procedure to
get a better understanding of the role diversity plays in our simulations. As
we can observe in Figure 10a, without thresholds the majority of the runs is
roughly located between diversity degrees 0 and 0.5 while with thresholds it is
roughly between 0.5 and 1. When introducing thresholds we only get a slight
increase in successful runs for the difficult landscape despite the vast difference in
diversity (see Figure 7). How to explain this? The answer is given in Figure 11a.
Given the information from Figure 10a, We notice that without thresholds many
successful runs will be located around the steep peak at 0.1 and not many around
the peak at 0.7 to 0.8. When introducing thresholds the situation is exactly vice
versa. Since overall the area between 0.5 and 0.8 is more elevated as compared
to the area from 0 to 0.5 we get a slight boost in efficiency, but not too much.

This analysis demonstrates that when analyzing the given dynamics in our
runs, diversity has explanatory value: only by combining the data given in
Figures 10a and 11a we were able to explain the only slight performance boost
in Figure 7. Nevertheless, we consider the investigations into diversity in this
section preliminary for several reasons. For instance, our way of measuring
diversity is still very rough. A more refined approach may provide measures that
distinguish between synchronic and diachronic diversity: the former concerns
the distribution of agents among different theories at a given time point, the
latter concerns the number of times agents change theories over the course of a
run. Our current measure can be considered as a rough way of measuring the
former. We postpone a more in-depth analysis for future work.

More general take-home message. More generally, these results show that

25For example, different hypothesis in medicine concerning the main causes behind a given
disease may require knowledge in different medical disciplines. For a further discussion on the
importance of including costs of this kind into ABMs of science see Muldoon, 2017.
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determining the impact of a specific factor on the efficiency of scientific inquiry is
highly dependent on the specific model and its idealizations. While in Zollman-
inspired ABMs threshold mechanisms had a big impact, in ArgABM they do so
only under very specific conditions. In the former, their main role is in prevent-
ing the community from prematurely converging on the wrong hypothesis by
allowing for more data to be gathered before the decision is made. This is also
the case in ArgABM when agents employ D assessment on the easy landscape.
However, a much better approach to increasing the efficiency seems to lie in the
type of assessment underlying scientists’ decisions as for which theory to pursue.
Altogether, our analysis provides further support to the argument that ABMs
of science are in need of detailed robustness analysis before we can draw from
them any conclusions about actual scientific practice.26

It is also worth noticing that differences between our procedures for theory-
choice could be understood as representing specific epistemic and methodolog-
ical values preferred by scientists. While such preferences are still highly ide-
alized across ABMs of science, our results suggest that methodological values
may play an important role in the efficiency of inquiry and that they deserve
further attention. Beside Weisberg and Muldoon’s (2009) ‘mavericks’ and ‘fol-
lowers’, or Currie and Avin’s (2018) ‘obligates’ and ‘omnivores’27, other types of
methodological preferences could be considered: for instance, a method based
on the search for defeaters vs. a method that prioritizes corroborating evidence
for one’s current hypothesis, etc.

Another important take-home message is that some relevant factors may very
well remain hidden unless we take an in-depth analysis of the given simulations.
For instance, while the impact of the threshold-mechanisms seemed rather neu-
tral or even harmful for three of our evaluations, only once we have examined
how often scientists change theories, it has become obvious that they did play
an important role—by reducing possibly high costs that may be involved in a
scientist’s frequent change of a pursued theory.

6 Outlook and conclusion

In this paper we have investigated the impact of different factors on the effi-
ciency of scientific inquiry by means of ArgABM. To this end, we have examined
the impact of cautious decision-making, different assessments underlying theory-
choice, and different network structures on the efficiency of inquiry. In addition,
we have examined the phenomenon of transient diversity by studying the re-
lationship between diverse, non-consensual spread of scientists across different
theories and their performance under varying conditions. Our results suggest

26For the importance of robustness analysis for models in general see e.g. Weisberg, 2006
and for ABMs of science in particular see Frey and Šešelja, 2018a,b; Šešelja, 2019.

27While maverics and followers stand for more or less epistemically risk-averse agents, om-
nivorse are agents that prioritize independent evidence for their hypotheses, i.e. evidence that
is supported by background theories that overlap as little as possible. Obligates, on the other
hand, seek sharp evidence that “speaks clearly and firmly” (p.5): the sharper the evidence
the more it allows us to increase our credence in a given hypothesis.
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that, on the one hand, cautious decision-making has a significant impact on the
efficiency of inquiry only under specific conditions. On the other hand, different
assessments underlying theory-choice and different network structures result in
varying degrees of efficiency. Moreover, diversity is not always correlated with a
successful performance of scientists, but only under some conditions employed
in the model. Such correlation occurs when scientists prefer theories that have
a relatively larger scope of solidified results, in comparison to their rivals.

It is important to add though that the nature of this model and our results
are primarily exploratory (rather than having normative consequences for actual
scientific inquiry). The next step in this investigation includes, for instance,
examining the performance of other evaluation procedures, which include the
measure of the growth of the given research program.28 Next, it would be
valuable to relate these evaluations with philosophical and historical accounts
of decision-making in the context of pursuit (such as Nickles, 2006; Šešelja
and Straßer, 2014a; Whitt, 1992), as well as to empirically calibrate different
aspects of the model (such as the time of inquiry, the degree of anomaly of given
theories, etc.). Furthermore, it remains a task for future research to determine
which types of inquiry (e.g. more related to some scientific domains rather than
others) are more adequately captured by Zollman-inspired models, which by
Grim & Singer’s ones, and which by ArgABM. Finally, our results point to the
importance of further studies of the phenomenon of transient diversity and its
relation to efficient inquiry.
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“Epistemic effects of scientific interaction: approaching the question with
an argumentative agent-based model”. In: Historical Social Research 43.1,
pp. 285–309.

— (2019). “Using Agent-Based Models to Explain Past Scientific Episodes: to-
wards robust findings”. In: Forthcoming.

Currie, Adrian and Shahar Avin (2018). “Method Pluralism, Method Mismatch
& Method Bias”. In: Philosopher’s Imprint.

Dung, Phan Minh (1995). “On the Acceptability of Arguments and its Funda-
mental Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games”. In: Artificial Intelligence 77, pp. 321–358.
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