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Abstract 

A long-standing debate on the causality of levels in biological explanations has divided 

philosophers into two camps. The reductionist camp insists on the causal primacy of lower, 

molecular levels, while the critics point out the inescapable shifting, reciprocity, and 

circularity of levels across biological explanations. We argue, however, that many 

explanations in biology do not exclusively draw their explanatory power from detailed 

insights into inter-level interactions; they predominantly require identifying the adequate 

levels of biological complexity to be explained. Moreover, the main explanatory strategies 

grounding both theoretical and experimental approaches to one of the central debates in 

contemporary biology, i.e., on the origin of life, are primarily and sometimes exclusively 

driven by issues concerning the levels of biochemical complexity, and these only 

subsequently frame more substantial and detailed accounts of inter-level biochemical 

interactions. 
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1. Introduction 

 

1.1.Causal interactions, levels, and complexity in biological explanations 

 

Based on their analysis of relevant cases across biology, a number of authors
2
 
3
 hold the view 

that detailed explanations of phenomena at various biological scales, including the molecular 

scale, do not unequivocally support the classical reductionist view of a fixed upwards hierarchy 

of causal powers and entities. Generally speaking, the more closely we probe the levels of life 

and the more detailed our explanations become, the less support we find for the reductionist 

approach. This is apparent in molecular processes, the explanations of which require causal 

reciprocity between the various levels of DNA bases, chromatin, proteins, and cellular structure 

to account for desired experimental outcomes and relevant phenomena.
4
 Accordingly, biological 

entities are identified at multiple levels (organism, tissue, cells, and molecular networks) as 

causally relevant, and reductionism in its various forms is, at best, an account of practices in 

isolated biological contexts for specialized purposes.
5
 

An alternative view wary of reductionism is that there is no coherent theory driving 

biology whatsoever; all we get are isolated practices to manipulate particular organisms and their 

properties.
6
 

Thus, the causal reciprocity
7
, circularity

8
  and shifting

9
 of levels are typical of 

explanations across biology - this includes the level of molecular properties relevant for living 

processes that reductionists have tried to deem causally basic. Put otherwise, the causal hierarchy 

in explanations of biological entities and their interactions is typically context-laden. And when 

such explanations are integrated, the various aspects of these explanations can causally parse, 
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prioritize, and order levels differently while jointly providing relevant insights.
10

 This is 

revelatory of the incommensurability of complementary explanations, to paraphrase Wimsatt
11

. It 

is very hard to argue against this point, but even if it weren’t, joining in this debate is not our 

main goal. 

As a general anti-reductionist viewpoint has become prevalent in philosophy of biology, 

the real philosophical challenge is to provide an overarching and coherent account of biological 

explanations and inter-level interactions and entities that realize them, within a mechanistic
12

 or 

instrumentalist paradigm
13

 or within a particular understanding of causation
14

.  Ontological and 

metaphysical implications are also of interest. 

Yet orthogonal to the explanations proffered by the proponents of the two sides in the 

debate on reduction is a class of biological explanations set up in a way that does not rely on the 

details of inter-level causal relations and whose explanatory power is predicated on inter-level 

interactions playing a side role, or even no explanatory role whatsoever. A central focus of those 

developing such explanations is the level of complexity of biological entities
15

, where the 

explanatory power and plausibility depend on identifying an adequate extent of complexity. We 

will now turn to such cases. 

 

2. The complexity-based explanatory strategy in biology 

 

When formulating explanations where the inter-level causal connections are not the main 

concern, it is crucial to identify the adequate level of complexity and only secondarily to identify 

or develop models of exact structures of inter-level interactions. Moreover, the level of 

complexity of entities rather than their causal status and causal powers primarily determines 
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whether they should be deemed the main building blocks of life on which explanatory power 

rests. We are interested in the nature of the justification characterizing this type of explanatory 

strategy. How much we can know in biology if we hold the explanatory aspect of inter-level 

causation to be secondary? 

In fact, the complexity-based aspect of explanations is visible across various areas of 

biology. In metabolomics, for example, analysis has been guided by identifying structural 

features of metabolic processes
16

. The explanations identify these complex units, and only later 

do they fill in the details of interactions within them. In microbiological research, especially in 

the study of archea, superorganisms, not individual bacteria, are identified as the basic units of 

inheritance and metabolic processes because of the ubiquitous lateral gene transfer among the 

units
17

. The study of inheritance and metabolism is predicated on the choice of a level of 

complexity at which analysis will be undertaken. In genetics, discovery of cis-regulators has 

already extended genetic explanations beyond the identification of a specific kind of molecule to 

a wider biochemical context, while the discovery of metylation as a key regulatory mechanism, 

the role of chromatin in transcription, and the importance of interactions between the DNA-

complex and protein make the choice of the right level of complexity as a framework for analysis 

paramount in genetics.  

In some cases, however, the level of complexity becomes a central issue, not just an 

aspect (albeit important) of explanations. The explanatory power in such cases does not, nor can 

it depend on the details surrounding the inter-level interactions. Rather, it frames the way they 

are conceptualized. In what follows, we focus on the use of complexity-based explanatory 

strategies in a central issue in contemporary biology, the question of the origin of life. In this 

area, debate and inquiry are driven by the issues of the complexity of biological levels to a far 
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greater extent than in the cases mentioned above. As will quickly become apparent, the evidence 

used in various theories of the origin of life hangs on the issue of the proper characterization of 

the complexity of biological levels – only secondarily resting on detailed accounts of interactions 

across the levels.  

The issue of the minimal complexity that characterizes life frames two main and opposed 

approaches to the question of the origin of life. The RNA-first theory postulates an ancient 

molecule similar to RNA as the first specialized molecule to perform the basic biological 

functions of biological control and inheritance. The other theory views life as a complex 

metabolic system whose origin can be traced to suitable biochemical processes which gather 

simpler organic molecules in a specific way. Both theories depend on the adequate identification 

of relevant levels of complexity (proteins, specialized molecules, their co-evolution, or gradually 

evolving molecular units). Problematically, one has to start by identifying the relevant level (or 

levels) based on very general and somewhat scarce insights into the level’s inner biochemical 

workings, and only then suggest the details of the relevant biochemical interactions. In other 

words, the issue of inter-level interactions (of keen interest to those involved in the debate on 

reduction) becomes part of the picture at a later stage.  

Moreover, the addition of the molecular and biochemical states to create the new level of 

complexity is not thermodynamically equivalent to the addition of the individual interactions 

carried out by individual entities. It may be implausible, thermodynamically speaking, to search 

for exact biochemical interactions as the mark of life before identifying the levels of complexity 

that may realize them. Even experiments addressing the origin of life start with dilemmas over 

complexity, while the questions of whether complexity, adaption, and biochemical control are 
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distributed across the biochemical network or localized in some basic elements are only 

subsequently addressed.  

Although the molecules that seem to be the basic elements of living forms are ubiquitous, 

both theory and experiments must initially address a relentless march of complexity in evolution. 

Our characterization of life when inquiring about its origins requires a complexity-based 

explanatory strategy. In many ways, this is the primary question about life and figuring out the 

reduction dilemma that preoccupies philosophers will depend on it – insofar as our 

understanding of life goes. Thus, the relevance of explanations based on causal interactions 

across biological levels depends on what sort of complexity generates life and which levels are 

recognized as holding together in the first place. This sort of insight must be deepened with the 

knowledge of biochemical details, but they can be neither initiated by nor reduced to them.  

                    

3. The origin of life: biological levels and their complexity 

 

The general approach to the question of the origin of life in biology has not been driven by the 

interaction-based aspects of life but has preceded it. This is also true of other, more refined 

questions stemming from the initial question posed by various, often contradictory, theories. 

Whether answers to such questions are satisfactory depends on how adequately we identify the 

level of complexity relevant for the phenomenon of life, as a certain level of complexity is 

indispensable for its origin. And this identification of relevant level of complexity only later 

frames inquiry into the details on a multitude of interactions across biological levels and their 

fine structure. What we think of living forms in terms of their complexity will imply the kind of 
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interactions we seek to account for them and their origin. Thus, one way or another, we start with 

interaction-neutral questions on biological entities and their structure.  

This methodological framework escapes the reductionist-minded philosophical accounts 

of biology: it stands in stark contrast to the kinds of explanations that reductionists put at the 

forefront of their accounts of biology wherein analysis of molecular properties and processes is 

deemed explanatorily basic. In a nutshell, whether we think that the search for the origin of life is 

a search for a particular specialized molecule or for particular chemical environments and 

chemical networks, the issue of the complexity of levels necessarily frames the debate and the 

kind of biochemical stories that will be supplied by either side. 

 

4. Theories of the origin of life and its complexity 

 

4.1 The RNA-first theory of the origin of life and the complexity of life 

 

This section looks at two major theories of the origin of life, the RNA-first and metabolism-first 

theories. The former was devised to pin down a specialized molecule that marked the beginning 

of life and the latter to discover the biochemical environment that started life.  

The RNA-first theory of life suggests a molecule similar to RNA was the first specialized 

molecule to perform the basic biological functions.
18

 Its further evolution by natural selection 

produced more complex life. This theory deals successfully with the challenge of explaining two 

crucial marks of life as it currently exists: 1) the evolution of enzymes that catalyze living 

processes, and 2) the unit of heredity, its structure and mechanisms
19

. The complex network of 
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enzymes evolved from the RNA-like molecule, the argument goes, and DNA is only an end 

result of the evolution of a primordial hereditary unit.  

It is obvious that the exposition of the RNA-first theory of the origin of life depends on a 

fairly detailed explanation of the interactions of the specialized molecule that enabled it to 

perform the double biological function in the first place while also enabling the evolution of 

other molecules. The epistemic status of this dependence is nowhere near the explanations of 

interactions in molecular biology that would make it a show-case for the reductionist insistence 

on the primacy of molecular interactions, despite the possible reductionist motivations of the 

creators of the theory.  

There is a starting and motivating assumption, albeit reticent and semi-explicit, of 

minimal complexity characterizing life in the form of a specialized molecule which can perform 

key biological functions that we see today.
20

 Thus, the chosen level of complexity is confined to 

the molecules that can self-replicate without proteins. Such a specialized molecule is chosen as 

the biochemical complex starting life as we know it, and RNA happens to fit the bill. The actual 

RNA properties provide adequate support, at least initially, for a general level of the theory. In 

fact, the claim is that something similar to RNA, not necessarily the exact molecule of RNA we 

see today, emerged. Whether it represented an appropriate level of complexity is another 

question, but the specialized-molecule-first theory inevitably starts with the choice of a 

complexity level it deems adequate. This choice is based on a very general idea of the details of 

relevant biochemical mechanisms – an exciting but tenuous analogy – with the RNA 

mechanisms isolated from DNA and the rest of our biochemical machinery. In effect, the first 

step is taken before the biochemical details are filled in.   
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The critique of the theory stems from the epistemic (methodological and conceptual) 

primacy of the issue of the adequate (plausible and probable) level of chemical complexity of 

early forms of life, given the structure of RNA-like molecular processes. In fact, the plausibility 

of the RNA-first theory hangs on the  structure of the former, rather than on the details of a 

suitable molecular structure. Thus, although the structure of the postulated RNA-like molecule is 

less complex than that of the DNA molecule, it is too complex to be simply and ad hoc deemed 

the first step in the evolution of life, the step that by virtue of its primacy does not require inquiry 

further in the past. The molecular constituents of RNA are monomers assembled into more 

complex polymers. These entities and the processes characterizing them and their formation are 

already complex and life-like (in terms of self-replication) and thus require substantial 

explanation if they are to be the first step in the formation of the RNA-like molecule. This 

requirement is not a nagging appeal to go ever further back in the history of life to find a 

plausible scenario for the formation of what may be the first functioning living unit. Rather, it 

exposes the following crucial problem with the initial RNA-first suggestion: « As a random 

event without a highly structured chemical context, this sequence has a forbiddingly low 

probability and the process lacks a plausible chemical explanation, despite considerable effort to 

supply one » 
21

. In fact, the realization that the stages preceding the formation of RNA or an 

RNA-like molecule are integral to the explanation of the origin of life was raised early on by 

those who thought RNA was one of the first stages of the emergence of life.
22

  

Identification of the nature of complexity of life prior to the RNA-first phase, if there was 

such a phase, has to be an integral part of the theory and must be characterized in biochemical 

terms. The theory’s plausibility hangs on identifying and accounting for relevant levels of 

complexity. Postulating the solutions within the RNA-first framework without addressing this 
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more general question does not provide the full or perhaps even the main part of the answer. 

Thus, concerns about complexity frame the issue, leading to divergent theoretical and 

experimental approaches and arguments.  

             

4.2 The biochemical context and the context of the cell 

 

The idea that living forms generate their own environment was first articulated by Varela and 

Maturana
23

. They argued that the autopoietic aspect of life is as important as units of inheritance 

and the function of enzymes. Thus, for instance, the evolution of the cell cannot be properly 

understood if we do not take into account that metabolic processes constantly arrange an 

immediate and an ever more extended environment in a way that benefits the cell. This on its 

own suggests that the origin of life must be a quest for autopoietic biochemical environments, 

not simply a search for a particular kind of molecule. Life is a system of particular complexity, 

and its origin should be explained accordingly by identifying suitable candidate chemical 

processes which can con-join suitable organic molecules in a suitably complex way. The guiding 

idea is to identify the basic level or levels of the complex biochemical environments 

characterizing life and fill in the biochemical details of origin accordingly.  

Following this lead, the metabolism-first theory of the origin of life suggests metabolic 

processes encapsulated in a protomembrane could have occurred in porous rocks close to the 

volcanic vents at the bottom of the ocean.
24

 Such places provided needed energy, deposits of 

organic gels filled with suitable organic molecules in rocks, and a metabolic network where 

interactions and selection could take place. This type of network could generate its own 

constituents – the core characteristic of a living system. Natural selection then refined this 
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recursive network by favouring particular chemical pathways. Such self-catalytic processes 

occurring in initial metabolic networks are now well known and well studied in organic 

chemistry and are always extended to be a part of a larger biochemical context: « Even in deep 

core of metabolism … we do not see the cycle in isolation » 
25

.   

This approach views the inter-level interactions and the chemical pathways as framed by 

two structural features of metabolic networks, namely, chemical self-catalysis and recursion. 

Thus, we are seeking a proto-metabolic system when we are looking for the initial seat of life, 

i.e. a specific chemical network that could favourably join organic molecules, rather than a 

particular fairly complex kind of a molecule, the kind assumed in the early version of the RNA-

first theory to randomly pop up from unidentified chemical processes. The initial living system 

emerges as a complex unit, whose complexity is enabled by more or less regular chemical 

processes of autocatalysis in certain chemical systems. This particular level and kind of 

complexity is identified as the mark of life. 

 

4.3 Conclusion 

 

The initial general task of explaining the emergence of the complex molecules that characterize 

life is inevitably tied to the notion of adequate biochemical complexity. The story of interactions 

should fill in the details but the initial explanatory target is the jump in biochemical complexity 

characterizing the emergence of life that can be explained in numerous ways, e.g. with the RNA-

first sort of theory or with the metabolism-first theory. Identifying the right level (or levels) of 

complexity that characterizes the emergence of life hangs over any attempt to explain the origin 

of life at the level of detailed molecular interactions. This exposes the weakness in early 
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instances of the RNA-first theory, a weakness addressed theoretically and experimentally by 

both the proponents and the critics of the theory. Based on the available knowledge of 

biochemistry, today’s life biologists opt for different and often opposed levels of complexity at 

which life emerged, all developing ideas that substantiate the biochemical details within their 

proposed framework. But explanations in terms of biochemical details can go only so far in 

explaining the origin of life, especially if they espouse a narrow level of biochemical complexity. 

For example, the early RNA-first theory was confined to a single stage, the origin of which 

required further explanation.  

Thus, we inevitably start by choosing a level of complexity, or a stratification of 

complexity, that our theory will address, i.e., a level deemed relevant, and go on to provide 

general reasons for its selection. Is it the level of proteins, the specialized molecules emerging 

initially without proteins, the co-evolution of the two, or the level of more basic molecular units 

that evolved in a way that conjoined a number of processes? When we consider such options, we 

realize that the knowledge of detailed interactions is scarce. Yet such considerations are the 

groundwork for the more detailed biochemical models and experimental approaches.  They are, 

in fact, hypotheses to be probed. They concern not only the right level of complexity but also the 

nature of complexity: whether we want the level of substantial metabolism with diverse elements 

or specialized molecules constituting a “thin” metabolic system.  

 

5.  Thermodynamics and the complexity of life 

 

We can go even deeper and ask a question about the proper level of complexity of living forms 

in terms of thermodynamic processes. How does life emerge, thermodynamically speaking, and 
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what does this tell us about the nature of its complexity and interactions across biological levels? 

In very general terms, then, « what is needed … is an extension of ordinary thermodynamics so 

that it can apply to systems maintained far from equilibrium by the flow of energy »
26

. 

In a thermodynamic system, we are trying to understand, based on the available 

assumptions, the statistical mechanical prediction of the next most probable state in the 

development of the system, i.e., the one with the maximum entropy that the system will 

produce.
27

 The so-called maximum-entropy distribution includes all possible combinations of 

those states not excluded by the information about the system we have at the time. Every other 

outcome that decreases entropy will necessarily be biased. This is true of thermodynamic 

systems and their configuration of individual states. But it is also true of systems that involve 

currents, whether physical or biophysical, as the maximum-entropy principle is consistent with 

the feedback mechanisms that produce currents in biochemical systems.
28

 Thus, the system will 

develop towards the state of maximum-entropy carrying along, as it were, the current flows that 

characterize it.  

In practical terms, this means the occurrence of metabolic systems characterized by 

feedback thermodynamic cycles is exactly what we would expect in the course of the evolution 

of complex organic systems on the earth, and, thus, it is exactly what we should seek as a mark 

of life. It is, in fact, a thermodynamic mark of life. A reductive citric acid cycling is one 

example; it characterizes the biochemistry of living systems and, as such, has been examined in 

detail.
29

 More generally put, metabolism is a basic structural feature of ecosystems, but the 

realization of these structures is achieved by different biochemical processes which are 

essentially ordinary thermodynamic systems, the existence of which accords with the predictions 

of maximum-entropy distribution. Such a specific complexity of living forms as a consequence 



14 
 

of thermodynamic properties is the level which should be the target of the search for the origin of 

life.  

There are certainly limitations to this approach. An analysis in terms of thermodynamics 

is fairly abstract and often too tenuously connected to the living systems when they are examined 

experimentally. At a minimum, however, we can conclude that how states add up to create a new 

level of complexity is, thermodynamically speaking, not equivalent to simply parsing them into 

individual interactions and entities in isolation from the context to achieve certain purposes, as in 

molecular biology. Indeed, it may be impossible to avoid identifying the levels of complexity as 

the mark of life prior to the search for the exact biochemical interactions that may realize them, 

irrespective of whether or not we subscribe to the specialized-molecule-first or metabolism first 

account. 

 

6.  The basic assumptions in the experimental approaches to the origin of life 

 

What about the experimental side of the question on the origin of life? Aren’t experiments 

predicated on the understanding of particular interactions to start with and doesn’t the issue of 

complexity inevitably retreat into the background once the experimental work begins? 

Experiments differ to a great extent in their justification and their assessment of the 

biochemical plausibility of the questions they address. Thus, a number of experiments
30

 

motivated by the RNA-first theory aim to provide a particular mechanism of control and kind of 

molecule that can perform postulated functions. Their daunting task is to proffer a plausible 

chemical explanation of the occurrence of the already complex RNA-like molecule. These 

experiments are really responding to the aforementioned challenge of the critics who say such a 
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specialized molecule is so complex that the approach to it must supply a plausible chemical story 

of its origin. Thus, the issue they address is a particular level of complexity, specifically the 

functional and chemical complexity of an RNA-like molecule. In that sense, the concern about 

complexity is the basic methodological framework, framing the search for relevant biochemical 

interactions in experiments addressing the RNA-first theory. The debate itself, irrespective of 

who wins or loses, is conceptually and methodologically guided by such a framework. This is 

even more obvious in the experiments motivated by the theory of life originating at the ocean 

vents; it even appears in the early experiments addressing the origin of life.  

The experiments that test the processes deemed relevant by the metabolism-first theory 

look into the chemical processes responsible for the coding mechanisms.
31

 They are based on the 

presupposition that such mechanisms can be a result of an entire molecular network with a 

number of intermediaries, rather than a specialized molecule such as RNA: « In this 

experimental setting, networks of small and randomly synthesized amino acids and single RNA 

units aid each others’ formation, assembly into strings and evolution of catalytic capacity. Both 

types of molecules grow long together »
32

. Again, the parsing of the relevant biochemistry is led 

by the issue of complexity of levels, not by concerns about immediate chemical interactions 

across levels. In fact, « [c]omplexity, adaptation and control are distributed in such networks, 

rather than concentrated in one molecular species or reaction type »
33

.  

Even the Urey-Miller experimental design, the first in a string of experiments addressing 

the origin of life, was an exercise in the emergence of complexity, only later seeking detailed 

accounts of interactions. It intended to identify potentially basic (inorganic) and complex 

(amino-acids) building blocks and determine whether the former could emerge from the latter. 

Whether complexity, adaptation, and control are distributed across the biochemical network at 
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each particular stage or localized in some basic elements is really neutral to the question 

addressed by the original experiment. 

 

7.  How simple can the basic level of life be? 

 

The molecules that seem to be the basic elements of living forms are ubiquitous. But this fact on 

its own may be neither an answer to any of the questions on the origin of life, nor very 

informative in that respect. It simply tells us that such a molecular level of complexity may not 

be sufficient to explain the origin of life despite the attempts to identify the molecule that can 

perform the basic living functions in the RNA-first theories. The relentless march of complexity 

in evolution, probably a gradual process of many smaller transitions
34

 is a phenomenon that must 

be addressed. The question that cannot be bypassed by this or any other theory is how likely it is 

that such molecules will assemble into a kind of complex system that characterizes living forms. 

Life begins when a certain level of complexity is reached, and the key question is what sort of 

level it is. Hence, explaining the origin of life requires a complexity-based explanatory strategy. 

Life can be sorted out by the extent of complexity, starting with the gathering of crystals 

into polymers. Alternatively, we might try to identify various levels of the basic unit of life, the 

cell, in terms of their complexity. One suggestion is to characterize the stages in the complexity 

of cells as the formation of the ur-cell, proto-cell and the living cells that exist currently. The 

quantitative measure of complexity will understandably vary from one issue in biology to 

another and from one area of biology to another. But could there be a general criterion of 

complexity in biology? Some biologists (Maynard-Smith & Szathmary 1997) are skeptical of 

addressing complexity in a precise manner. Yet as we have seen, we cannot really start asking 
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questions about the origin of life without dwelling on the nature of complexity, so it is 

worthwhile investigating various ideas of measuring complexity. In general, the number of parts 

may be a good provisional measure across biology,
35

 and computer simulations
36

 can go a long 

way to determining the relevant parameters. This groundwork may yet pave the way for a 

satisfying account of the origin of life. 
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