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1 Introduction 

 

The recent and astounding boom of artificial intelligence reached the general public at least 

since AlphaGo triumphed over one of the strongest Go players, Lee Sedol, in 2016. Today, it 

seems almost inevitable to stumble upon some eye-catching news about artificial 

intelligence on a daily basis. Success messages by researchers or sensational announcements 

by start-up companies are promising to improve medical diagnostics, to prevent crimes 

through predictive analytics or to convict offenders with the help of facial recognition, while 

yet others aspire to automate translations or journalist writing, assist the car drivers or even 

substitute them, and so on and so forth. It seems to be a common presumption that artificial 

intelligence, together with big data, makes one of the most important technologies shaping 

our future. Therefore, it comes as no surprise that the political representatives see their 

nation states competing for a key technology and try to outdo each other with research 

programs. Of course, these prospects produce just as much fear and anxiety as they nurture 

hopes and utopian desires. 

In short, our situation can be summed up as follows: „Every day we read that digital 

computers play chess, translate languages, recognize patterns, and will soon be able to take 

over our jobs.“ (Dreyfus 1992, p. 79) Yet, this description was originally published in 1972 by 

Hubert Dreyfus, one of the most prominent critics of the first heyday of artificial intelligence 

research in the 1960 and 1970s that has never lived up to its promises. So, it would be easy 

to discredit the enormous attention given to this technique as a media hype and a well-

known strategy of scientists to raise money for their research and of start-ups to attract 

investors. However, such criticism seems quite hasty in view of the astonishing technical 

developments and their very rapid spread in many fields of application within the last years. 

A new assessment of this research, its applications and possible consequences presupposes 

that we have appropriate concepts at our disposal. Yet, as Luciano Floridi has recently 

indicated, we lack these concepts:  
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the current conceptual toolbox is not fitted to address new ICT-related [information 

and communication technology-related] challenges and leads to negative projections 

about the future: we fear and reject what we fail to make sense of and give meaning 

to. (Floridi 2015, p. 7) 

 

Whether the challenges will appear less frightening once we find the adequate conceptual 

tools giving meaning to applications of artificial intelligence remains to be seen. First of all, 

we need to find the conceptual tools to describe, conceive and assess especially the 

methods and applications originating in artificial intelligence research as well as their 

profound impact on society, economy and science. 

Against this rather broad background, the following contribution will suggest 

conceptual tools for epistemologically reflecting on the newer and successful approaches of 

artificial intelligence research, particularly in the area of deep learning. These conceptual 

tools are supposed to grasp how deep learning networks change our interaction with and 

our understanding of computers. In view of the increasing application of this technology and 

its potentially far-reaching consequences, it seems urgent to develop conceptual tools for 

their philosophical reflection beyond the machine learning community.  

The deep learning approach began to develop in the 1940s, but proved to be 

successful only in recent years.1 In the second section, I sketch the characteristics of deep 

learning by a short comparison of AlphaGo’s triumph over Lee Sedol in Go with Deep Blue’s 

win over Garri Kasparov in chess twenty years earlier.2 In the third section, I will specify how 

deep learning breaks with the formalization constitutive of algorithmic approaches to 

computing and discuss one crucial consequence: The results of a deep learning network are 

no more formal than the process in which they are obtained. Neither do we know the hows 

and whys of the outputs nor can we assume that a programmer has made sure that the 

outputs are computed correctly. This lack of transparency raises questions about the ways in 

which we can explain or justify the outputs of a deep learning network. These questions will 

be discussed in the fourth section with reference to the research literature in computer 

                                                        
1 For a short sketch of the history of this approach cf. Goodfellow, Bengio & Courville (2016, pp. 12-26).  
2 For the historical background of these two contests cf. Heßler (2017, p. 1-33). In the second section, I will 
develop a systematic comparison of Deep Blue and AlphaGo instead of writing a history of artificial intelligence 
research. 
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sciences. The challenge of explaining or justifying the way DLNs operate points to a change 

in our understanding of computers and their role in human practice: The output of a deep 

learning network is not to be explained as the result of a mechanical and verifiable rule-

based calculation. Rather, it takes on the character of a human judgment that we have to 

trust. By a short excursion into Immanuel Kant’s philosophical analysis of judgments, the 

fifth section will delve into the analogy of a deep learning network’s outputs and an expert’s 

judgments. Thereby I characterize the form of justification adequate for the outputs of deep 

learning networks: We can understand deep learning networks as judging machines by 

specifying the type of judgments and the form of justification they are capable of. 

 

 

2 AlphaGo vs. Deep Blue, deep learning vs. ‘brute force’ approaches 

 

In 1996, IBM’s Deep Blue was an advanced piece of parallel hardware and was designed on 

the basis of a ‘brute force’ approach: The program computed and evaluated many, many 

possible moves and included furthermore a database of openings and endgames provided 

by chess masters.3 In 2016, the approach of AlphaGo – developed by the start-up Deep Mind 

acquired by Google – was a totally different one. It is based on ‘deep neural networks’, that 

is, networks of single processors called ‘neurons’. These networks are structured in layers, 

an input layer, many hidden layers, and an output layer. By processing a training set of data, 

in this case a huge number of Go experts’ moves, and comparing the outputs with the 

desired results, the weights of the links between the so-called ‘neurons’ are adjusted. 

Thereby, such networks are able to learn from the training data.4  

IBM’s Deep Blue and Google’s AlphaGo were both very advanced, but also very 

different machines. Each can be seen against a different historical background of analogies 

between computing machines and human intelligence, i.e., on the basis of either the 

supposed common formal character of algorithmic programs and logical thinking or the 

alleged common processing of a network of artificial or biological type.5 Yet, I do not want to 

                                                        
3 For more technical details cf. the developer’s paper Campbell, Hoane & Hsu (2002, pp. 57-83); for the 
historical background cf. Ensmenger (2011, pp. 5-30, esp. 10-17). 
4 Surely, this description is highly simplified. For a more detailed description cf. Silver et al. (2016, pp. 484-489).  
5 The assumption of a formal and logical character of thinking as well as computation was the basis of artificial 
intelligence research for a long time (Floridi 1999, pp. 132-134 and 146-148) and made chess one of their 
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discuss these analogies and the related speculative question of whether artificial machines 

allow insights into human intelligence by imitating it.6 Instead of focusing on this 

“psychological question”, I would like to address the “engineering question of artificial 

intelligence” and the epistemological significance of the different approaches (Collins 1990, 

p. 14). Hence, the present contribution considers the different technical paradigms of 

artificial intelligence research and focuses on the epistemological consequences of deep 

neural networks for our cooperation with computers. 

Framed from this perspective, when IBM’s Deep Blue was labelled ‘deep’, it was not 

in the technical sense of deep learning: “Deep Blue, as it stands today, is not a ‘learning 

system.’”7 Deep Blue’s functionality was defined by formalized algorithms implemented in 

hardware and programs in the imperative programming language C.8 Consequently, its 

operations were predetermined by the developers and their code: They could expect to 

understand the weaknesses and strengths of their machine because they knew the 

hardware and program they had implemented. As one of the developers of Deep Blue, Feng-

hsiung Hsu, put it: “I could tell precisely what hardware evaluation features were at play in 

each game.” (Hsu 2002, p. 200) A similar understanding of the decisions of a ‘learning 

system’ like AlphaGo, on the other hand, would be rather surprising. AlphaGo was not called 

but rather qualified as ‘deep‘, in the technical sense that its functionality was first and 

foremost based on ‘deep learning’ – a term coined only around 20069 –: Deep learning 

systems operate in dependence of the architecture of the network and the weights of its 

links being themselves the result of adapting to data by training. Consequently, AlphaGo’s 

functionality is not based on a formal algorithm, but on its architecture and its adjustment to 

data by learning.  

                                                                                                                                                                             
pivotal paradigms (Heßler 2017, pp. 6-9). For further cultural and historical reasons for the crucial role of chess 
cf. Ensmenger (2011, pp. 17-21).  
6 The analogy of the formal and logical character of thinking and computation was the object of the – let’s say – 
classical critique of artificial intelligence research, cf. Dreyfus (1992, pp. 67-79 and 155-188) or Searle (1984, 
28-56). The analogy of biological and artificial networks is critically discussed in Floridi (1999, pp. 169-175). 
Goodfellow, Bengio & Courville (2016. P. 16) draw the conclusion: “one should not view deep learning as an 
attempt to simulate the brain. Modern deep learning draws inspiration from many fields”. 
7 Cf. https://de.wikipedia.org/wiki/Deep_Blue. The name ‘Deep Blue’ goes back to the computer ‘Deep 
Thought’ in Douglas Adams’ The Hitchiker’s Guide to the Galaxy and IBM’s nick name ‘Big Blue’, cf. Hsu (2002, 
pp. 69 and 126sq.). If there is any technical reason for calling it deep, it is the fact that it could perform ‘deep 
searches’ within the tree of possible moves and consequential moves, cf. ib. (p. 197). 
8 For a preliminary definition of algorithms cf. Floridi (1999, p. 47).  
9 I follow here the well-informed guess of Schmidhuber (2015, p. 96). 
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This outline provides a first idea of what a deep learning network (DLN) is as well as 

of the conditions for the recent successes and the current boom of artificial intelligence. 

Newer approaches are not based on formalization of the problems addressed by them and 

thereby break with the traditional premise of ‘good old fashioned artificial intelligence’. On 

the one hand, ‘brute force’ approaches presupposed that it is possible to formalize what and 

how to compute, which is in principle, e.g., in the case of chess or Go, rather simple. 

Subsequently, the crucial challenge was to develop efficient algorithms and to have 

sufficient computing power for the necessary computations, whose complexity is much 

lower in the case of chess than in the case of Go. Yet, this approach is not suitable for a lot of 

cases in which it is unclear what and how to compute, which again explains why such 

approaches failed in fields like machine vision or natural language processing. On the other 

hand, artificial intelligence research was dominated by the ‘knowledge base approach’: 

Developers of expert systems tried to formalize the relevant knowledge for a specific task by 

formalizing concepts, their semantic relations and rules of inference.10 However, it was not 

only a time-consuming task to implement the necessary knowledge but also the researchers 

often simply reached the limits of what can be formalized. Consequently, the critical debate 

about artificial intelligence focused on the premise of formalization by arguing for the 

necessary and narrow limits of the formalization of human practice (as the philosophers 

Hubert Dreyfus and John Searle) or by addressing the social conditions for formalizations of 

specific practices like arithmetic (as the social theoretician of knowledge Harry Collins).11 The 

limits of formalization became apparent in theoretical debates as well as in artificial 

intelligence research. Finally, this approach was considered a dead end and people began to 

speak of the ‘AI winter’.  

By breaking with the assumption of formalization, deep learning networks overcame 

at least some of the limits of the older approaches.12 This methodological innovation as well 

as its astounding success and broad deployment makes the lack of conceptual tools to 

conceive this new approach and to assess its possible consequences evident. Furthermore, 

this lack becomes obvious in the common speculative debates on artificial intelligence 

                                                        
10 For an introduction to this approach cf. Floridi (1999, pp. 196-207). This is the state of the art discussed in 
one of the most interesting philosophical approaches to artificial intelligence research, Donald Gillies’ Artificial 
Intelligence and Scientific Method (1996). 
11 Cf. in addition to the already cited passages of Dreyfus’ and Searle’s texts Dreyfus (1992, pp. ix-xxx) and 
Collins (1990, pp. 3-58). 
12 Cf. Schmidhuber (2015, p. 97), with reference to Deep Blue’s contest with Kasparov in 1997 and the pattern 
recognition of small children and computers then and in 2011. 
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marked by the recurrence of old cultural phantasies and dystopian fears that are much more 

linked to science fiction than to the actual technical developments. With regard to the latter, 

the overcoming of human kind by intelligent machines seems to be highly speculative 

because all available working machines are far removed from man’s general and adaptable 

intellectual abilities: They are special purpose machines designed for special tasks, like 

playing chess or Go, and can compete with humans only in the particular tasks they are 

made for.13 So, the topos ‘man against machine’ may have some sense, albeit the very 

limited one of a chess or Go contest, but it certainly has nothing to do with fantastic ideas 

about machines that turn against their creator.  

Perhaps, however, these dystopian fears intuitively express aspects of some technical 

changes that indeed should be taken seriously by philosophers. Undoubtedly, AlphaGo is not 

an autonomous machine, yet in a certain sense it does function more autonomously than 

the computers we have been used to. One of the developers of Deep Blue, Hsu, asserts: 

 

The ‘man versus machine’ angle apparently sells well for chess books, but it does not 

capture the true essence of the contest. The contest was really between men in two 

different roles: man as a performer and man as a toolmaker. (Hsu 2002, p. ix)14 

 

This description expresses the fact that the functionality of a machine is in principle 

predetermined by the design of the hardware and the programs written in an imperative 

language. In contrast, the functionality of a DLN is not defined in advance, but is established 

through training, which gives us the means to explain why AlphaGo is described as operating 

in a ‘more autonomous way’. For these reasons, its developers could hardly relate AlphaGo’s 

decisions to the functions and procedures that they had implemented or failed to 

implement. While AlphaGo was very successful in playing Go, its developers could not 

explain why it placed its checkers like it did. The same holds for Go experts. Not only was 

AlphaGo trained by many historic Go games played by humans but also it was in a second 

phase trained by playing against instances of itself, thereby developing its own strategies 

                                                        
13 That artificial intelligence research made progress in developing special purpose machines, is only a criticism 
if we presuppose that its primary aim is to imitate intelligent human abilities and that this aim was lost by 
focusing on special purposes, cf. paradigmatically Dreyfus (1992, p. 27). Instead, the present article is focusing 
on the different approaches of these special purpose machines and their epistemological consequences.  
14 Against the backdrop of philosophy of technology, we could dispute if it is adequate to conceive of such a 
complex machine as Deep Blue as a tool. At this point, however, this discussion leads astray. 
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that were unknown to the human Go tradition and therefore surprised and bewildered its 

experts.15 The relation between the developer, as well as the experts and the machine 

changed, so that Lee Sedol hardly played against ‘man as a toolmaker’ or even as a 

teacher,16 but rather against a self-learning machine.  

This observations should make it clear that deep learning profoundly affects our 

understanding of computers and computation and requires a revision of the philosophical 

reflection about them.17 For this purpose, I will set aside the well-known speculative debates 

for some time, and instead take into account the actual state of research and applications 

for developing adequate conceptual tools that succeed in capturing the effect of deep 

learning on our cooperation with computers and our understanding of computation.18  

 

 

3 The lack of transparency of deep learning networks  

 

The new approach of deep learning networks changed what programmers of artificial 

intelligence applications actually do. Whereas they formerly had to find ways to formalize 

the problem in such a way that solutions could be calculated or to provide a knowledge base 

that enabled the computer to deduce answers, they now have to set up and train a network. 

Dreyfus observed this difference already in the 1990s:  

 

                                                        
15 Cade Metz, The Sadness and the Beauty of Watching Google’s AI Play Go, in: Wired, March, 3, 2016, 
https://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go/ [last access 18 June 2018]. 
Technically speaking, AlphaGo was trained using a combination of supervised and unsupervised learning (i.e., 
reinforcement), cf. Silver (2016, pp. 484-486). While supervised learning requires the definition of the desired 
behavior of a DLN by a target value for every element of the training data, unsupervised learning aims to 
identify patterns within the data without such specifications. 
16 In a further step, Silver et al. (2017, pp. 354-359) developed AlphaGo Zero exclusively based on unsupervised 
learning so that it dispenses with the requirement of human expertise: “AlphaGo becomes its own teacher”. 
So, it discovered “not only fundamental elements of human Go knowledge, but also non-standard strategies 
beyond the scope of traditional Go knowledge.” (ib., p. 357)  
17 Dreyfus already saw the philosophical importance of ‘neural networks’: „neural networks raise deep 
philosophical questions. It seems that they undermine the fundamental rationalist assumption that one must 
have abstracted a theory of a domain in order to behave intelligently in that domain.“ (Dreyfus 1992, p. xxxiii) 
But in difference to the present paper, Dreyfus discusses artificial intelligence research primarily in view of the 
aim to replicate general and adaptive human intelligence and criticizes it on the basis of his “phenomenology of 
human intelligent action” (ib., lisq.). For this purpose, he readapts his criticism of expert systems to machine 
learning, cf. ib. (pp. xxxiii-xlvi); but this readaptation seems to be less accurate, also because research on DLNs 
has made enormous progress since then. 
18 In this paper I focus on our cooperation with computers; the consequences for our understanding of 
computing I plan to unfold in a second paper. There, I would like to detail the question of how deep learning 
introduces a new paradigm of computing and a new conception of ‘representation’ by computer ‘models’. 
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Indeed, the most striking difference between neural-network modeling and GOFAI 

[good old fashioned artificial intelligence] is that the neural-network modeler 

provides not rules relating features of the domain but a history of training input-

output pairs, and the network organizes itself by adjusting its many parameters so as 

to map inputs into outputs, that is, situations into responses. (Dreyfus 1992, p. xv)  

 

Yet, setting up a deep neural network is not a trivial job.19 Usually, a programmer 

uses one of the popular software libraries that enables them to set up a DLN without much 

effort. However, she has to define the general architecture of the network adequate for the 

task at hand and the desired performance.20 Furthermore, she has to specify activation 

functions for the single processors (‘neurons’) determining their output in relation to their 

inputs. In addition, she has to choose the starting values of the weights, that is, the numbers 

associated to each link determining its importance as input for the next single processor. 

Then, the network has to be trained with the help of a training set of data: By feeding data 

into the input layer, processing it through the single processors and communicating their 

outputs along the links and in dependence of their weights to the next processors, the 

output layer finally produces a result. This result, again, can be compared to the desired 

result included in the training data, in order to calculate the error and to adjust the weights 

of the links.21 By this, a “learning through weight changes” (Schmidhuber 2015, p. 87) is 

implemented. Each of these different steps implies specific methodological problems und 

engineering challenges: choosing the architecture adequate for the task is not trivial; the 

training of the network, however, is even more challenging.22  

                                                        
19 At different levels of difficulty, there are many good introductions to deep learning available that offer first 
insights into the implementation of a learning network. Rashid (2016), offers an easy-to-read introduction; 
Grant Sanderson’s video tutorial www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi 
takes a similar approach and can be recommended as a very entertaining introduction; Buduma (2017) is more 
demanding as well as comprehensive and works with Google’s TensorFlow; Graupe (2016, esp. 111sqq.) puts 
an interesting emphasis on applications of DLNs. The most encompassing overview is provided by Goodfellow, 
Bengio & Courville (2012).  
20 The most basic difference concerns cyclic (recurrent) or non-cyclic (feedforward) networks. Convolutional 
networks are a special type of feedforward networks known for their astonishing performance in many 
important applications, cf. the overview of LeCun, Bengio & Hinton (2015, pp. 439sq.). 
21 In the case of supervised learning backpropagation is the most important algorithm for adjusting the weights 
of the links, cf. Schmidhuber (2015, p. 91). For the basic idea of this algorithm and for an overview of the 
historical development of the research into it, cf. ib., (pp. 89-94). In the case of unsupervised learning 
reinforcement takes its place, cf. ib. (pp. 100-103).  
22 Cf. Buduma (2017, pp. 27-37) for a short overview over the most important problems of training and the 
crafts of optimizing the training. 
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The break with the formalization of procedural algorithms or semantic knowledge 

relevant to the task at hand made possible the success of DLNs in many areas such as 

pattern recognition, object detection, image segmentation, natural language processing, 

advertising, or finance. Yet, the theoretical and practical consequences of this break with 

formalization have hardly been discussed sufficiently: The outputs of learning networks are 

not based on well-defined procedures or explicit criteria any more than their processing. 

Although we do get an output, we do neither know how this output was computed nor why 

it is this output and no other. Therefore, DLNs are regularly called ‘black boxes’: “Despite 

widespread adoption, machine learning models remain mostly black boxes.”23 This 

metaphorical expression indicates a lack of transparency in DLNs’ mode of operation as well 

as the need for a more precise conceptual analysis. Most of the technical systems we use are 

‘black boxes’ to us. None of us understands in detail the operations of his or her computer, 

as the design of the hardware is too complicated and too many lines of code make up a 

program. But this lack of transparency is due to the sheer complexity of technical systems in 

general: Only a few of us will understand how an old FM radio works. However, the lack of 

transparency peculiar to DLNs is of a different kind. This specific lack of transparency can be 

captured more precisely by comparing the mode of operation of a DLN with that of an 

algorithmic machine.  

In order to implement the desired behavior in an algorithmic machine, the 

programmer anticipates every possible input and predetermines an adequate response to it. 

Thereby, she defines a formal frame within which the operations of the computer are 

determined. Consequently, the behavior of the machine is anticipated throughout the 

process of its programming, although this anticipation is in fact and due to the complexity of 

technical systems impossible, as the many bugs and security problems of our software prove 

on a daily basis. In contrast, the approach of machine learning is based on the insight that “it 

can be far easier to train a system by showing it examples of desired input-output behavior 

than to program it manually by anticipating the desired response for all possible inputs.” 

(Jordan & Mitchell 2015, p. 255) Thus, the behavior of a DLN is neither anticipated by the 

programmer nor is it possible to anticipate it, because a DLN does not operate within a 

predefined formal framework. Instead, the DLN determines its own functionality by adapting 

its structure (i.e., the weight of the links) to the training set of data. Therefore, the 

                                                        
23 Ribeiro, Singh & Guestrin (2016, abstract). For a more prominent text cf. Castelvecchi (2016).  
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operations and the behavior of a DLN cannot in principle be anticipated during its set-up, 

since they are only determined by, say, the ‘history’ or ‘experience’ of the DLN made 

through its training.24 The programmer has to check if the DLN works as it is supposed to by 

using parts of the training data not for training, but for testing the trained model. Thereby, 

the error rate of the DLN can be calculated. However, this does not imply that we 

understand how the DLN works and why it delivers whatever outputs.25 

Consequently, we have to draw a difference between the in-fact-impossibility to 

anticipate the operations of an algorithmic machine due to the complexity of the technical 

system and the in-principle-impossibility in the case of DLNs due to the fact that their 

functionality is established by learning. Because of this fundamental difference, the two 

lacks of transparency cannot be addressed in the same way. In the case of a classical 

computer program, we normally may not know how it works, but we may trust that the 

programmers have done a good job, have chosen adequate algorithms and implemented 

them correctly. If not, we could, at least in principle, try to trace the error by looking into the 

source code, learning the applied algorithms and discussing their implementation. With this 

aim in mind, ‘algorithm watch groups’ pursue the political demand that algorithms of great 

social importance be disclosed.26 Nevertheless, this approach falls short in the case of a DLN 

that established its functionality via learning. A DLN, we have learned, depends on a training 

set of data as well as the network structure, the algorithms for adaptation and the specific 

training process. The result is a network whose processing is characterized by a huge matrix 

of weights of links that is hardly intelligible: It does not provide any insight into how and why 

certain inputs lead to certain outputs, neither to the programmer nor to the user of the DLN. 

Hence, opening the ‘black box’ of a DLN does not and cannot immediately produce the 

transparency required to understand how a DLN works. 

This principle lack of transparency peculiar to DLNs entails a whole range of practical 

and theoretical challenges that can be addressed from different perspectives. One approach 

                                                        
24 That a computing machine can be determined by its history is also highlighted by Wegner (1998), with 
reference to the more general conception of ‘interactive machines’. 
25 Therefore, Zeiler & Fergus (2014, p. 818) observe for the most successful type of networks for image 
recognition and similar tasks, so called large convolutional network models, the following: “there is still little 
insight into the internal operation and behavior of these complex models, or how they achieve such good 
performance. From a scientific standpoint, this is deeply unsatisfactory. Without clear understanding of how 
and why they work, the development of better models is reduced to trial-and-error.” 
26 Cf. https://algorithmwatch.org/ or https://netzpolitik.org/2018/new-york-city-plant-arbeitsgruppe-zur-
ueberpruefung-von-staedtischen-algorithmen/ [last access 29 June 2018] on a municipal law in New York City 
with a similar aim. 
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common in the machine learning community is called ‘statistical learning theory’. There, a 

mathematical theory is used to grasp the “inductive learning” from data typical for machine 

learning (Harman & Kulkarni 2007, pp. 19-21 and 36-44). For this purpose, it does not focus 

on the specific approaches of machine learning and the respective computing processes.27 

Rather, statistical learning theory tries to formalize the properties of the learning process 

from an external perspective, i.e. to measure, evaluate and improve the approximation 

process to an unknown “background probability distribution” (ib., pp. 33-36).28  

In contrast, a second approach aims at gaining insight into the specific computing 

processes of DLNs that would help to explain how they achieve their often astonishing 

performance, e.g., how they can recognize objects in pictures. On this account, it is not 

sufficient to ‘look into the black box’ where we will only find thousands or millions of 

weights. Rather, we are in need of more advanced methods to reconstruct the learned 

functionality. A third approach addresses the lack of transparency of DLNs by providing users 

with additional information to understand and interpret the output of a DLN. The latter two 

approaches are particularly to be found in the deep learning community and often called 

‘interpretable’ or ‘explainable artificial intelligence’.29 As these key words make clear, this 

approach, unlike the first, focuses on the understanding of the functionality of a DLN by 

experts or users. Thus, the question of the explanation or justification of a DLN’s results is 

framed by our relation to a DLN and its computing processes. Yet, it is this relation that is 

most important if we want to understand how the technique of deep learning and its 

growing adoption possibly changes our understanding of computers and their role in human 

practices. Thus, in the following, I will draw on deep learning research that attempts to grasp 

                                                        
27 The technique that is mostly used in the context of statistical learning theory is the approach of ‘support 
vector machines’ (SVM), cf. Kulkarni & Harman (2011, pp. 172-186) whereof deep learning is considered to be 
“a special case”, cf. Harman & Kulkarni (2007, pp. 78-87, esp. 87). Thus, it is presupposed that DLNs – as SVMs 
– implement “rules that assign a classification to every possible set of features” (ib., p. 89). More precisely: 
“Such networks [feedforward neural networks] encode principles in their connection weights and there is no 
reason to expect people to have access to the relevant principles.” (ib. p. 92) Against the backdrop of my 
argumentation, the assumption of encoded principles to which we have no access seems questionable.  
28 For an exemplary and interesting study on the training process of DLNs based on statistical mechanics cf. 
Martin & Mahoney (2017). 
29 The well-known research funding organization of the US-American military, DARPA, has launched a special 
funding program for this research field in 2016: “The goal of Explainable Artificial Intelligence (XAI) is to create 
a suite of new or modified machine learning techniques that produce explainable models that, when combined 
with effective explanation techniques, enable end users to understand, appropriately trust, and effectively 
manage the emerging generation of Artificial Intelligence (AI) systems.” 
(https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf, 5 [last access 18 June 2018]). Yet, the challenge 
to explain or justify results has a longer history in machine learning as well as in adjacent fields, as Biran & 
Cotton (2017) show. 
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the computing processes of DLNs by discussing how their results can be explained or by 

justifying these results by supplemental information.  

 

 

4 Explanations or justifications 

 

Against the backdrop of deep learning research, it seems natural to react to the lack of 

transparency common to DLNs by inspecting their computation processes and thereby 

explaining their functionality. So, it is possible in the case of very simple networks to process 

a ‘backwards query’, i.e., to use the network in the other direction: By processing an output, 

we get an input representing the ‘features’ that are discriminatory for this output. In the 

case of a simple network identifying hand-written numbers for example, we process a single 

number and get a blurry picture exhibiting the visual structure ‘defining’ this number in 

hand-writing (Rashid 2016, pp. 178-182). In the case of more complex networks, however, 

‘backwards queries’ are impossible. Thus, more advanced methods have to be developed in 

order to visualize the features that help understanding, say, a network for classifying images. 

As these networks usually are of an immense size, the state of the art of such ‘feature 

visualizations’ shows the features of different layers of the network and thus different levels 

of abstraction.30 However, by the resulting image series we gain hardly any intelligible or 

formalizable knowledge about how the network processes its inputs. 

Philosophically, it is crucial to discuss how exactly such technical responses to the 

lack of transparency of DLNs can help us understanding their functionality. The research 

literature itself introduces the difference between the explanation and the justification of 

the results of a DLN and links it to the difference between algorithmic computing and deep 

learning: In the case of an algorithmic computation, the justification of the result can be 

identified with the explanation of the computing process because the rule-based procedure 

of computation justifies the correctness of its results; in the case of a DLN, the justification of 

                                                        
30 Cf. the well noticed paper Zeiler & Fergus (2014, pp. 818-825). They combine a convolutional network – the 
type of network that is the most important for a lot of applications – with a further deconvolutional network in 
order to visualize the features of relevance for the functionality of the different hidden layers, cf. ib. (p. 824). 
The very nice digital publication Olah, Mordvinstev & Schubert (2017) hints at the limits of this approach: “By 
itself, feature visualization will never give a completely satisfactory understanding. We see it as one of the 
fundamental building blocks that, combined with additional tools, will empower humans to understand these 
systems.” (ib., without pagination, conclusion) Cf. also Mordvintsev, Olah & Tyka (2015) and Mahendran & 
Vedaldi (2016). 
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a result cannot recur to the computing process in the same way, as Or Biran and Kathleen 

McKeown argue:  

 

In contrast to rule-based systems, justifying the predictions of ML [machine learning] 

is not a straightforward task; it is no longer the case that explaining how a prediction 

was reached automatically justifies it to the user. Due to the complex, quantitative 

and unintuitive nature of most models, it is unreasonable to expect that users who 

are not ML experts, even if they are experts in the domain of the prediction, will 

understand how the model works, regardless of how transparently it is presented. 

(Biran & McKeown 2017, p. 1461)  

 

Biran and McKeown assume that understanding the DLN and its output is only the problem 

of ‘users who are not experts’. Yet, they introduce a principal difference: An explanation 

refers to the factual computation and legitimates the results by its rule-based procedure; in 

contrast, a justification is supposed to provide an understanding why this output is adequate 

independently of how it was computed. Biran and McKeown are very clear about this 

difference between explanation and justification: “Explanation answers the question ‘how 

did the system arrive at the prediction?’ while justification aims to address a different 

question, ‘why should we believe the prediction is correct?’” (2014, without pagination, 

introduction) In the case of an algorithmic machine, explanation corresponds to justification 

because the rule-based computation justifies the correctness of its result. In the case of a 

DLN, however, explanation and justification have to be separated.31  

The difference between explanation and justification illustrates that this whole 

discussion is closely connected to our relation to computers and its change through the 

application of deep learning. Although it is not consistently observed in the research 

literature, it is crucial to assess the distinct ways through which different technical 

approaches address the DLNs’ lack of transparency. The above-mentioned approach of 

‘feature visualization’ inspects a DLN’s internal functionality in order to make explicit, as far 

as possible, the features it is ‘looking for’ and thus to explain how the outputs are computed. 

A different approach aims at justifying the output of a DLN by supplementing it with 

                                                        
31 Justification in this sense is not to be equated with mathematical criteria or measures of the performance of 
learning machines. Different varieties of such measures are discussed in an interesting paper by Corfield 
(2010).  
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additional information intended to strengthen the user's confidence. For example, Lisa Anne 

Hendricks et al. combine a DLN for image recognition with a DLN for image captioning in 

order to produce “visual explanations” in natural language that do not only describe the 

pictures but highlight the discriminative features ‘justifying’ the output of the image 

recognition network (2016, p. 3sq.). However, these ‘visual explanations’ do not effectively 

explain how the images were classified but merely justify the result of this classification in 

the sense of Biran and McKeown.32 They are not primarily supposed to increase our 

understanding of how the outputs were obtained, but to create trust in the decision of the 

DLN. For that purpose, we do not have to refer to the “features” the DLN operates with, but 

offer the users of the DLN “interpretable data representations” that facilitate their 

understanding, as Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin make clear: 

“interpretable explanations need to use a representation that is understandable to humans, 

regardless of the actual features used by the model [i.e., the DLN].” (2016, without 

pagination, section 3.1) In their paper “‘Why Should I Trust You?’”, they consequently focus 

on the question how to increase user trust by providing justifications of the output.  

The difference between justifications and explanations is of considerable 

philosophical importance because it helps to further characterize the lack of transparency 

peculiar to DLNs and its epistemological consequences. In the case of an algorithmic 

machine, we normally identify explanation and justification because we assume the 

justification to be referring to the algorithm, which at the same time explains how the result 

in fact was computed. We can assume this because the algorithmic approach implies the 

“coupling between the programmable algorithmic procedure and the computational process 

of which it is a specification”.33 In the case of DLNs, we instead have to mark out the 

difference between explanation and justification, because the computation of the outputs 

does not justify the functionality of the DLN. An explanation would have to relate to the 

factual process of computation of the output, i.e., the processing of the input along the links 

and in dependence of their weights step for step until the output layer is reached. 

Algorithmically, this process is basically a multiplication of huge matrices and vectors whose 

                                                        
32 Cf. Hendricks et al. (2016, pp. 3 and 5): “In contrast to systems […] which aim to explain the underlying 
mechanism behind a decision, Biran et al. [2014] concentrate on why a prediction is justifiable to the user. Such 
systems are advantageous because they do not rely on user familiarity with the design of an intelligent system 
in order to provide useful informations.”  
33 Floridi (1999, p. 35), with reference to the universal Turing machine as the standard model of algorithmic 
processing. 
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numbers are given by the weights of the links or the input. Yet, such an explanation does not 

‘explain’ very much and does not justify the output, because it does not provide any idea of 

the functionality of the DLN. The reason is that the algorithm used to calculate the output of 

different DLNs is every time the same, it is only parameterized by different numbers, i.e., the 

weights. Consequently, the specific functionality of a DLN is not specified by the algorithm 

used to calculate the outputs, but by the latter’s parameters: 

 

The computation performed by the network in transforming the input pattern of 

activity to the output pattern depends on the set of connection strengths; these 

weights are usually regarded as encoding the system’s knowledge. In this sense, the 

connection strengths play the role of the program in a conventional computer. 

(Smolensky 1988, p. 1)34 

 

Consequently, we can explain the computation of the outputs by a matrix multiplication 

algorithm, but this explanation does not genuinely explain the functionality of the DLN, nor 

is it to be understood as its justification, since it does not provide any insights into the 

functionality of the network and it gives no intelligible reasons for the output. Alternatively, 

if we try to justify the outputs of the DLN, as Biran and McKeown or Hendricks et al. suggest, 

we have to be aware that the added justification will be largely independent from the actual 

computation of the DLN. Especially, it cannot refer to the functionality of the network in the 

form of a rule-based procedure that would allow to easily embed the input/output-relation 

into inferential structures, as in the case of an algorithm. In contrast, the weights of the links 

that in fact determine the DLN’s functionality are hardly intelligible. Therefore, a justification 

of the output does not justify in an argumentative or even logical sense. Instead, it primarily 

aims at strengthening the user’s confidence in the DLN where its lack of transparency 

appears impenetrable. For sure, this aim is of great interest for computer scientists and of 

great importance for the deployment of DLNs.  

To sum up, the lack of transparency peculiar to DLNs translates into the absence of a 

justification that could claim an argumentative or logical value and be seamlessly embedded 

                                                        
34 This means that the functionality of the DLN can be computed or simulated by a classical algorithmic 
machine, but its functionality is not defined in the form of an algorithm. Therefore, deep learning is to be 
distinguished from the algorithmic paradigm detailed by the universal Turing machine and to be understood as 
an own paradigm of computing. This argument I plan to unfold with reference to the philosophy of computing 
in a further paper. 
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in inferential contexts. This finding poses a particular challenge for the scientific application 

of DLNs. Science often may be a ‘dirty practice’, yet it finally aims at justified knowledge. 

Thus, every enthusiasm about a possible “partial automation of every element of scientific 

method, from hypothesis generation to model construction to decisive experimentation” 

(Mjolsness & DeCoste 2001, p. 2051) should be met with a more differentiated 

consideration. The use of DLNs and their effects on scientific practice must be precisely 

assessed. Whether DLNs are used to predict a particular tissue-dependent expression of 

genes (Leung et al. 2014) or the biological activity of substances on the basis of their 

physico-chemical properties and structure in pharmaceutical drug research (Ma et al. 2015); 

whether they are part of a complex scheme of detecting specific particles in the proton 

collisions of the LHC at CERN (Ciodaro et al. 2012), we must be aware that they perform 

these tasks without us exactly knowing why and how they find their results. To be sure, they 

usually replace stochastic models and their probability statements, yet we often understand 

these models more precisely as the functionality of DLNs. Furthermore, such data is usually 

not neutral and imbued with the way how we evaluated it. So, the DLNs can become 

instruments that embody theories and knowledge of yesterday while we keep using these 

instruments on a daily basis without thinking too much, as they automatically deliver the 

results for the continuation of our work. However, if we get used to DLNs without knowing 

and reflecting on how they work, we will possibly start to erroneously trust their outputs. 

Hence, any DLN could become an asylum ignorantiae in the midst of scientific practice.  

From a philosophical point of view, however, the absence of justification in the sense 

of an explanation of the functionality of a DLN also raises the question of whether the 

outputs and the functionality of a DLN do not require another form of justification that is not 

based on the premise of a rule-based procedure and an algorithmic approach to computing. 

This question seems reasonable because a DLN and its outputs can be tentatively compared 

to a human expert and her judgments. The DLN resembles an experienced human being 

whose train of thought we cannot know in detail and whose judgment we nevertheless 

trust. Possibly, the doctor ‘explains’ her findings, but these ‘explanations’ primarily justify 

her judgment instead of explaining her conclusion on the basis of explicit rules and criteria. 

Certainly, she can try to make explicit the criteria and reasons for her findings, but she will 

hardly succeed in attempting to explain her judgment in reference to well-defined rules. As 

in the case of a DLN, the justifications react to the lack of transparency inherent in the 
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judgment of the human expert, but does not resolve this lack. Yet the case of expertise hints 

at a new form of justification: The expert’s judgment can be justified by his experience or 

authority. Possibly, this form could also be adequate for justifying the functionality of a DLN 

that is established by its training, i.e., the experience and history of its processing. 

Accordingly, the DLN seems to put into effect the power to judge on the basis of experience 

– and not only the power to calculate on the basis of procedural rules. The learning machine 

would be not a calculating, but a judging machine whose verdicts we have to trust if we 

want to work with it.  

Of course, this description suggests only a heuristic analogy. It is not meant to ascribe 

some psychological ability or intelligent behavior to computers or to anthropomorphize 

them. Rather, this analogy illustrates how we conceive of computers when interacting and 

working with them. Hitherto, the role computers play in practice was discussed mainly on 

the basis of our understanding them as algorithmic or calculating machines. Especially, the 

well-known approach of Harry Collins and Martin Kusch assumes that the functionality of 

computers consists in executing formal rules and procedures. This raises the question how 

this type of functionality can be embedded in a human practice which cannot be reduced to 

rule-based procedures.35 So, they highlight the essential difference between human actions 

and mechanical computation and at the same time describe aspects of the mechanization of 

human actions that allow for a cooperation of humans and computers and for the latter’s 

inclusion into human practice: “The two realms can interact where humans intentionally act 

like machines” (Collins & Kusch 1998, p. 196; cf. ib. pp. 1-3, 55-73, and 113-136). Starting 

with the above understanding of DLNs in contrast to algorithmic machines, the analogy of 

the functionality of learning machines and the judgment of human experts suggests another 

and new role of computers within human practice: The cooperation becomes less based on 

mechanization and formalization, but on learning, experience, and history which determines 

the DLN’s decisions. In this respect, its functionality seems comparable to the judgment of 

another experienced human being. In the context of scientific or epistemic practices, 

however, this analogy is primarily worthy of discussion insofar as it can be developed further 

and thereby provide us with a better understanding of a form of justification that would fit 

                                                        
35 Collins & Kusch (1998), p. 50, themselves occasionally concede possible limits of their approach, which refers 
almost exclusively to “good old artificial intelligence”. Their criticism primarily covers “the research program of 
artificial intelligence (at least, the program that preceded neural nets and so forth)”. 20 years ago, this 
limitation may not have been too severe, as there were good reasons to be skeptical about the performance of 
DLNs, cf. Collins and Kusch (ib., p. 129sq.).  
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to the specific mode of a DNL’s operation. With this aim in mind, I want to explore Immanuel 

Kant’s theory of judgment. 

 

 

5 Kant on forms of judgment and justification 

 

The theory of judgment is not an isolated part of Immanuel Kant’s work. Rather, it 

permeates his entire philosophy and is one of its constitutive concepts. Whether we focus 

on his epistemology, his ethics or his aesthetics, it is almost impossible to characterize the 

Kantian approach without discussing his understanding of judgments in the respective fields. 

In the following, I will only outline these aspects of judgments that are helpful to develop a 

better understanding of the functionality of DLNs. 

In general, Kant’s theory of knowledge introduced in his epoch-making Critique of 

Pure Reason (1781/1998) can be understood as a theory of judgment, as according to him 

we know only such objects that are objects of an objectively valid judgment. With this 

intricate formulation, I want to hint at some basic features of Kant’s epistemological 

approach. Firstly, objects of knowledge must not be confused with things that are given and 

exist independently of the process of knowledge. Rather, they are to be understood as the 

results or the correlates of knowledge. In this sense the objects of knowledge are in a strict 

sense objects of knowledge. Secondly, knowledge takes on the form of judgments that are 

not to be understood as referring to the relations between concepts, as the pre-Kantian 

tradition would have it, but as processes bringing together the two main sources of 

knowledge, i.e., intuitions and concepts. Thirdly, the validity of a judgment is based on its 

procedures because it depends on the concepts that are to be understood as general rules 

of synthesis which are applied to singular intuitions as its materials to be synthesized. In 

sum, the objects of knowledge are correlating to the processes of knowledge that take on 

the form of judgments whose validity again depends on the rules of judgment.  

Further, the question is where the rules come from and it is this question exactly that 

allows us to use this analysis of judgments as heuristics for our understanding of the 

different paradigms of computation.36 The aim of Kant’s Critique of Pure Reason is to show 

that our understanding is the “faculty of rules”. The faculty of rules does not apply any 

                                                        
36 In the following I will draw partly on an interpretation of Kant elaborated in Schubbach (2016, 147sqq.).  
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arbitrary rule but necessarily follows a small set of rules inherent to it, i.e., the categories 

(Kant 1781/1998, p. 242). These rules are supposed to be constitutive of any object of 

knowledge and any form of knowledge must conform to them. The Critique of Pure Reason 

therefore sometimes conveys the impression that the theory of knowledge has thus been 

completed. Yet, this impression lives from the assumption that a theory of knowledge 

exclusively deals with the most general rules of understanding encompassing every form of 

knowledge.  

However, at the latest in the Critique of Judgment (1790/2000) it becomes obvious 

that this is not sufficient for a theory of knowledge. Kant had realized that specific forms of 

knowledge – like physics, chemistry, or biology – furthermore require more specific rules 

adequate for different types of objects (moving physical bodies, chemical reactions of 

substances, living organisms and taxonomy of life forms). These rules cannot be necessary, 

because we apply them only within specific regions of empirical objects, and we have to 

learn about them from these very objects, that is, we firstly have to discover them and, 

secondly, have to validate them in the process of forming empirical knowledge. Hence, the 

Critique of Judgment introduces a second form of judgments, rules and objects in which the 

rules are no longer defined in advance and applied to any sensual data, but have to be 

extracted from the data and to stand the test of time.  

Finally, the Critique of Judgment introduces us to another, third form of judgment, 

i.e., the aesthetic judgment that takes its norms from individual perceptions of individual 

works of art without being able to translate them into general rules.37 We do not possess 

such rules for judging works of art, but we judge them nevertheless, based on the norms we 

learned by works of art and now transfer to others.38 Thus, Kant's analysis of judgments 

ultimately leads to the opposite end of the relationship between the object and rule of the 

judgment: Had he first tried to explain judgments by their most general and presupposed 

rules, irrespective of the concrete object, he finally arrives at judgments which are not 

capable of being explained by well-defined rules and can at best only refer to authoritative 

objects. Following Hannah Ginsborg’s interpretation, this last analysis also reveals the core 

of the judgment with regard to its epistemological implications: 

                                                        
37 Kant (1790/2000, p. 121): “Rather, as a necessity that is thought in an aesthetic judgment, it can only be 
called exemplary, i.e., a necessity of the assent of all to a judgment that is regarded as an example of a 
universal rule that one cannot produce.” [Emphases in original] 
38 Kant (1790/2000, p. 186): “since there can also be original nonsense, its [the genius’] products must at the 
same time be models, i.e., exemplary” [Emphases in original]. 
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What we need, to be able to claim in good faith that our capacity to judge is 

legitimate, is an independent sense that we can judge without relying on proofs and 

justifications: and it is this sense that aesthetic experience provides. (Ginsborg 1999, 

p. 218) 

 

Against the odds, these three forms of judgments offer a helpful heuristic for understanding 

the difference between an algorithmic and a learning machine as discussed in the preceding 

sections. For this purpose, we take Kant’s theory of judgments carried out by consciousness 

and transfer it to computers, not in order to speculate about the presumable pseudo-

psychological states of computers, but to specify the role of rules and of their relation to 

(sense) data in different approaches to computing. With this said, it is possible to conceive of 

the classic algorithmic approach by comparing it to the first form of judgment according to 

our rough sketch of Kant’s analysis. Algorithms define the rules of processing in advance of 

their actual execution, as the categories do for the understanding. This implies that the 

objects and the features that can be represented are also predetermined by these rules, be 

that the rules of an algorithm or of our understanding. Correspondingly, the data to which 

these rules are applied are nothing else than “raw material” – as Kant describes “sensible 

sensations” in relation to understanding and Floridi labels data in relation to algorithmic 

processing39 –: Nothing has to be learned from these data, the rules of processing remain 

independent of them. Thereby, this first form of judgment has narrow limits: It can only 

relate to data and objects on the basis of its own rules and therefore can represent only 

these features that are predefined by these rules independent of specific data and objects.  

A learning machine, on the contrary, is better understood by comparing it to the 

second or even third form of judgments. Deep learning breaks with the formalization of 

predefined algorithmic rules in order to implement a “learning from example” (Buduma 

2017, p. 4), which also marks a crucial point in Kant’s second and third form of judgment. 

Particularly, we can draw an important parallel in this respect, namely that ‘learning from 

example’ is not restricted to finding out if an object has this or that feature out of a 

predefined set of possibilities. Instead, this type of learning consists in “representation 

                                                        
39 Kant (1791/1998, p. 127): “Experience is without doubt the first product that our understanding brings forth 
as it works on the raw material of sensible sensations.” Floridi (1999, p. 229), with reference to the conception 
of the algorithm insofar as it was already outlined by the mechanical calculators in the prehistory of computing.  
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learning” (LeCun, Bengio & Hinton 2015, p. 436), that is, in learning the adequate conditions 

for representing specific types of objects and their special features. This is essential for 

judgments in the sense of Kant’s second form of judgments (in respect to moving bodies, 

reactions of substances, living organisms) as well as for deep learning that adapts the 

network to the structures hidden in the data and thereby develops ways of representing 

their essential features (the distinguishing features of written letters, the features of specific 

objects within a picture, the features of a specific painting style, etc.). Accordingly, the 

results of a DLN seem to be comparable to Kant’s empirical judgments as they first and 

foremost are based on learning the frames of representation from the data and objects they 

relate to.  

On closer reflection, however, the comparison of the learning machine and Kant’s 

second form of judgment appears premature. In the case of Kant’s empirical judgment, the 

frames of representation learned from examples are nothing else than the conceptual 

conditions, thus the explicit rules for processing the data and representing the objects. 

Consequently, the outputs of the DLN’s operations can only be compared to Kant’s empirical 

judgment if its functionality can, at least in retrospect, be translated into explicit rules and 

criteria. If this is not possible, then the outputs appear to be closer to the aesthetic 

judgment: The aesthetic judgment is also based on ‘learning from example’, but in contrast 

to the empirical judgment it cannot make explicit the norms learned from exemplary works 

of art. Following Kant, these norms cannot be translated into general rules, because the 

aesthetic judgment can and must not be based on such rules. This is also true for the DLN, if 

the argument of the preceding section of this paper is correct. The outputs of a DLN are 

calculated on the basis of rather simple rules, yet this does not imply that the functionality 

simulated in this way can be translated into the algorithmic form of procedural rules and 

explicit criteria. Kant’s analysis of judgment helps us to explain why such a translation seems 

impossible: The different forms of judgment progressively reduce the role of formal 

procedures while strengthening the role of the objects and their inherent structures. It is this 

development that explores the possibility of judgments which are not justified by their 

presupposed formal rules but by their inherent involvement with their objects. Similarly, 

DLNs engage in ‘representation learning’ and ‘learning from examples’ that distinguishes 

them from the algorithmic approach on the same basis, i.e., by an inherent involvement with 

data effected by the adaptation of the network and the weights of its links during training. 
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Therefore, a DLN can be conceptualized as a kind of judging machine that takes judgments 

‘without relying on proofs and justifications’, if we presuppose that this justification could 

only consist in an unbroken chain or seamless net of inferences.40 Nevertheless, Kant’s 

understanding of the aesthetic judgment hints at a different form of justification of 

judgments through their involvement with data or objects. It is this form of justification that 

is more appropriate for the functionality of DLNs, as this functionality is established through 

learning and experience.  

 

 

6 Conclusion 

 

Kant’s analysis of different forms of judgment yields some valuable insights into how we can 

understand the functionality of DLNs within human practice by analogy to an expert’s 

judgment. Firstly, the lack of transparency is not only typical for a DLN, but also for the 

human expertise and its form of judgment: The outputs of a DLN as well as the decisions 

taken by humans are mostly not transparent, as they are rarely based on procedural rules 

and explicit criteria. Consequently, the lack of transparency inherent in the functionality of 

DLNs is not a totally new problem of epistemic practices. Nevertheless, it is new that the 

outputs of computers participate in a similar kind of lack of transparency as human 

judgment because they are not the result of an algorithm that would, at least in principle, 

explain and justify the why and how of this output. Secondly, Kant’s analysis of judgments 

provides us with a framework to assess the lack of transparency common to this type of 

judgments. This lack is not only a shortcoming in comparison to strictly rule-based 

judgments but rather a positive characteristic of a different type of judgments: They get 

involved with their specific objects or data in order to extract their structures and adapt to 

them. For this purpose, they cannot rely on presupposed rules. Thirdly, Kant’s analysis 

                                                        
40 For Kant, a judgment without objective validity based on the rules of understanding remains a kind of 
philosophical curiosity. Therefore, he introduces a new form of so called ‘intersubjective validity’ adequate for 
the aesthetic judgment. This intersubjective validity is based not on common rules of processing as the 
objective validity of knowledge judgments, but expresses the common reaction to a sensory stimulus that is to 
be explained by the common constitution and faculties of human beings, cf. Kant (2000, p. 170). This argument 
results out of a rather simple and disputable reading, but sheds an interesting light on the question to what 
extent we can understand and comprehend the results of DLNs. Kant’s argument seems not to go any further, 
since the processing of DLNs and human judgement do not operate on a common basis, and self-learning 
machines develop their own mode of operation. The moves of AlphaGo that appeared totally foreign to human 
Go experts shortly discussed in the second section of this paper seem to confirm this thought.  
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suggests the argument that it is a different type of task and situation requiring such 

judgments being entangled with objects and data. If deep learning is to be considered as an 

own paradigm of computing, this still does not imply that it is the kind of new paradigm that 

is going to replace the old one. Rather, deep learning should be understood as a paradigm 

linked to specific tasks in situations that defy judgments based on procedural rules and 

explicit criteria.  

Finally, Kant’s analysis of judgments suggests a new form of justification that seems 

appropriate to judging machines.  Thus, it seems to be impossible to justify these outputs as 

in the case of an algorithmic processing by explaining how they are computed. As we saw in 

the fourth section, that is why researchers address this lack of explanation by adding a 

complementary ‘justification’ to the output. Yet, this ‘justification’ does not justify in a strict, 

argumentative or even logical sense, rather it aims at building trust on the user’s side and 

thereby at facilitating the widespread use of DLNs. In contrast, Kant’s analysis of judgment 

points toward a different form of justification, one that is not based on rules, but still 

necessary and essential where we do not and cannot know rules. In this situation, judgments 

can be justified by experience, by familiarity or involvement with objects and data. It is this 

form of justification which the expert could claim for herself and which we could also 

concede to a DLN. For sure, this form of justification does not seamlessly and completely 

integrate into a chain or network of logical inferences as an algorithmic program could 

possibly promise. On the contrary, it intercepts them. That is why every judgment linked to 

such a form of justification does not exclude its critical discussion – in opposition to 

judgments justified by formal, logical or deductive rules. Rather, it makes such a discussion 

possible and requires critical scrutiny.  

Consequently, introducing this form of justification by involvement with objects and 

data and conceding it to the outputs of DLNs does not amount to a wholesale justification of 

this technique. The approach of deep learning in general can neither be positively nor 

negatively assessed. Rather, the deployment of DLNs entails a differentiated assessment and 

requires a critical discussion of consequences in each case and context. The decisions taken 

in offices or laboratories are only rarely justified by strict rules and explicit criteria. Often, 

they primarily are justified by experience and involvement with the data, objects, or 

persons, but also often biased by prejudices. Hence, the deployment of DLNs does not 

introduce a totally new lack of transparency, but rather another one. The question is how 
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these lacks of transparency are reflected in practice or can even be harnessed. If the judging 

machine would assist the decision, it could be possible to compensate for one lack of 

transparency by another and create opportunities for critical reflection. If the judging 

machine were to substitute for human decisions, then the risk of an automated decision 

process eliminating the room for critically reflecting on the decisions and their effects 

emerges. Therefore, the deployment of DLNs should be critically monitored where 

important and far-reaching decisions are made.41  

Such a monitoring should pay particular attention to the data used to train networks. 

If the functionality of the network is largely and directly determined by the data without 

being mediated by common sense or the prejudices of human expertise and if we concede 

that its judgments can be justified by the involvement with data, the fact that data are rarely 

neutral or unproblematic, but often biased or prone to systematical error is of crucial 

importance. The strength of deep learning is to learn from examples, to adapt to data and to 

get involved with them. However, this strength can turn into weakness if the data is of 

dubious nature. So in 2016, Microsoft was forced to switch off its Twitter bot @TayandYou 

within 24 hours: In fact, it effectively learned from other Twitter users, but soon it was 

taught how to behave like a racist and sexist.42 

  

                                                        
41 This is not only the case in medical diagnosis or similar applications, but also in credit scoring or evaluation of 
job applications. For a powerful polemic against the use of mathematical methods and their impact on society, 
cf. O’Neil (2016). 
42 Cf. https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-
in-racism-from-twitter?CMP=twt_a-technology_b-gdntech [last access 6 July 2018]. 
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