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This note clarifies some technical and conceptual details about the descrip-
tion of the measurement process in Bohmian mechanics and responds to a
recent manuscript by Shan Gao (2019), wrongly claiming that Bohmian me-
chanics is inconsistent and doesn’t solve the measurement problem.

1 Introduction

Bohmian mechanics is a quantum theory that grounds the predictions of standard quan-
tum mechanics in an ontology of point particles and two precise dynamical laws: the
Schrödinger equation for the wave function, and the guiding equation in which the wave
function enters to define a velocity field for the particles. For advocates of the theory,
one of the main virtues of Bohmian mechanics is that it allows for a physical description
of the measurement process that avoids the infamous measurement problem and illu-
minates the meaning and status of the usual quantum formalism. On the flipside, this
has occasionally raised the ambition of critics to deny these otherwise well-established
accomplishments. A recent example is a manuscript by Shan Gao (2019), claiming to
derive a “contradiction” in the Bohmian description of the measurement process.

Since Gao’s objections seem to exemplify a variety of misunderstandings about the
Bohmian theory – some more subtle than others – I want to use it as an opportunity
to discuss several technical and conceptual details about the measurement process that
are rarely spelled out explicitly in the literature. In Section 3, I will then address Gao’s
argument in detail and explain why it is incorrect.
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2 Measurements in Bohmian mechanics

A prototypical measurement in Bohmian mechanics is an interaction between a system S

and a measurement device D resulting in one of several macroscopically discernible con-
figurations of D (“pointer positions”) which are correlated with certain possible quantum
states of S. Schematically, the interaction between the measured system and measure-
ment device is such that, under the Schrödinger evolution,

ϕiΦ0
Schrödinger evolution−→ ϕiΦi , (1)

where the wave function Φ0 is concentrated on pointer configurations corresponding to
the “ready state” of the measurement device, and Φi are concentrated on configurations
indicating a particular measurement result, e.g., by a pointer pointing to a value on a
scale, a point-like region of a detector screen being darkened, a detector clicking or not
clicking, etc. The Schrödinger time evolution is linear, so that the superposition

ϕ = c1ϕ1 + c2ϕ2, c1, c2 ∈ C, |c1|2 + |c2|2 = 1,

leads to
ϕΦ0 = (c1ϕ1 + c2ϕ2)Φ0

Schrödinger evolution−→ c1ϕ1Φ1 + c2ϕ2Φ2. (2)

At this point, standard quantum mechanics is hit by the measurement problem (Maudlin,
1995a). In Bohmian mechanics, however, the system is described not only by the wave
function but also by the actual spatial configuration (X, Y ) ∈ Rm × Rn of measured
system and measurement device, given by the positions of their constituent particles. It
thus has a well-defined configuration at all times, regardless of whether or not its wave
function is in a superposition.
For illustrative purposes, we assume that Φ1 is concentrated on a region L ⊂ Rn of

the configuration space of D corresponding to the pointer of the measurement device
pointing to the left, while Φ2 is concentrated on a region R ⊂ Rn of the configuration
space of D corresponding to the pointer pointing to the right. Obviously, the two regions
are disjoint, i.e. L ∩ R = ∅. By assumption, Φ1 and Φ2 must be well localized in the
respective regions (otherwise, the measurement device is no good), i.e., almost zero
outside. This implies, in particular,∫

L
|Φ1|2 dny ≈ 1,

∫
L
|Φ2|2 dny ≈ 0 (3a)∫

R
|Φ1|2 dny ≈ 0,

∫
R
|Φ2|2 dny ≈ 1. (3b)
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As Gao (2019) rightly points out, it’s not realistic to assume that Φ1 and Φ2 have
compact support in L, respectively R, i.e., that they are precisely zero outside.1 Hence
the “≈” in the above equations. The better these pointer states are localized, the better
the approximation. In practice, this will depend on the details of the experiment, such
as the makeup of the measurement apparatus, and the strength and duration of its
interaction with the microscopic system.

L R

Φ1 Φ2

Figure 1: Sketch of the pointer wave functions on configuration space.

Now, according to Bohmian mechanics, the probability for the pointer actually pointing
to the left is:

P(Y ∈ L) =
∫
Rm×L

|c1ϕ1Φ1 + c2ϕ2Φ2|2 dmxdny

= |c1|2
∫
Rm×L

|ϕ1Φ1|2dmxdny

+ |c2|2
∫
Rm×L

|ϕ2Φ2|2dmx dny

+ 2 Re
(
c1c2

∫
Rm×L

(ϕ1Φ1)∗ϕ2Φ2dmx dny
)
≈ |c1|2.

(4)

The final approximation follows from eq. (3a) (together with the Cauchy-Schwarz in-
equality |

∫
L Φ∗1Φ2| ≤

√∫
L |Φ1|2

√∫
L |Φ2|2 ). Similarly, the probability of the pointer

pointing to the right is P(Y ∈ R) ≈ |c2|2. If ϕ1 and ϕ2 are eigenstates of some quantum
observable, |c1|2 and |c2|2 are the statistical predictions of standard quantum mechanics
for an ideal measurement. The better the pointer states Φ1 and Φ2 are localized in
disjoint regions of configuration space, the closer the measurement is to “ideal”.

1It is also not realistic to assume, as he does, that the pointer wave functions evolve freely. Usually,
there will be some potential keeping the pointers in place, and decoherence, through interactions
with the environment, leading to further localization (see Remark 4 below).
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Since a realistic measurement is not quite ideal, we see that there is also a very small,
yet non-zero, probability that the final pointer position is inconclusive, e.g. because it
remains roughly in the ready state, or because the measurement device is blown into
pieces. Tough luck, measurements can fail.

2.1 Remarks and Observations

1. After the measurement (assuming it was not destructive), the system S will be
guided by the effective wave function ϕ1(x)Φ1(Y ) + ϕ2(x)Φ2(Y ). If the pointer
actually points left (let’s say), i.e. Y ∈ L, we have Φ2(Y ) ≈ 0 and hence (after
normalization) the effective wave function ϕ1 describing the System S after the
measurement. This is the effective collapse in Bohmian mechanics.2

2. In many papers – including some of my own – it is said with regard to eq. (4) that
we are integrating “over the support of Φ1”. This is indeed a little abuse of mathe-
matical language. For non-idealized situations, one should read the statement like
a physicist, not like a mathematician, namely as saying: we integrate over a region
of configuration space – here L – that contains almost the entire L2-weight of Φ1

(and which corresponds to configurations in which the pointer points to the left).
Let’s call this the FAPP3-support.

3. If the pointer after the measurement is actually pointing to the left (let’s say),
i.e. Y ∈ L, then the contribution of Φ2 to the Bohmian guiding field at Y will be
negligibly small, as well – provided the tails are “well-behaved”. This justifies the
statement that the configuration of the measurement device is effectively guided
by the wave packet Φ1 only. “Well-behaved” means that not only Φ2 itself but also
its gradient – more precisely Im∇yΦ2 – is very small outside the FAPP-support
(think, for instance, of Gaussian tails). This assumption is commonly made in
physics, and well justified in general. Moreover, the contribution of the other
branch will further diminish (even for not so well-behaved tails) as decoherence
is progressing through interactions with the environment, leading in effect to the
situation of the effective collapse for the pointer states (see Remark 4).

4. Suppose we go one step further and consider a “measurement of the pointer po-
sition” by another system E. You may think of an “observer” looking at the
measurement device, resulting, ultimately, in a particular particle configuration in
her brain, though I prefer a camera or some other system under no suspicion of

2See Dürr et al. (2013, ch. 2) for more details.
3For All Practical Purposes
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consciousness. In any case, the spatial resolution of such an observation can easily
be finer than the localization of the initial pointer wave functions, thus leading to
a Schrödinger evolution of the form

Φi −→
∑

j

ΦijΨj ,

where
∑

j Φij = Φi, and the Ψj are well localized in disjoint regions of the con-
figuration space of E (corresponding to different “record” configurations of the
observing system). This then leads to decoherence and localization (by effective
collapse) of the apparatus wave function into one of the wave packets Φij

‖Φij‖2
.

Hence, clearly, the precision of an observation of the pointer position is not limited
by the spread of the pointer states Φi prior to observation (contrary to what Gao
(2019) seems to suggest). In particular, the apparatus wave function can effectively
collapse into wave functions other than Φ1 or Φ2.

Notably, we didn’t even have to consider a second “measurement” – environmental
decoherence, if only by scattering of air molecules, photons, etc., occurs everywhere
and all the time (unless one takes very special precautions to prevent it), leading
to localization of the macroscopic wave function.

If some of these points are rarely spelled out in detail in the “Bohmian” literature, then
because they involve arguments that are (or at least should be) fairly standard in physics.
No deep foundational issues are hiding behind the mathematical details here. If there’s
a lesson to learn, then that serious physics is a bit messier and a bit more subtle than
the sterile operator-formalism of quantum mechanics reveals.

3 What Gao’s objection gets wrong

So, if not mathematical nitpicking, what is the point of the objection formulated by
Shan Gao (2019)? My best attempt at a reconstruction of his argument goes as follows:

i) The possible measurement results are first and foremost given by the pointer states
Φ1 and Φ2. The role of the Bohmian particle configuration Y is to pick out one of
the two results.

ii) The particle configuration picks out one of the two results by ending up in the
support4 of either Φ1 or Φ2.

4The support is the smallest (closed) set in which the function is not zero.
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iii) Since Φ1 and Φ2 do not have disjoint supports, there is a non-zero probability that
the pointer configuration ends up in their overlap and hence doesn’t pick out either
Φ1 or Φ2 as the measurement result. Therefore, Bohmian mechanics doesn’t solve
the measurement problem.

In Gao’s words: “This means that there is no one-to-one correspondence from the
particle configurations of a measuring device to the result wave functions of the
device or the measurement results.” (p. 3)

This objection is based on a superficial understanding of Bohmian mechanics and misses
its mark for several reasons. Let’s start to unpack them.

Premise i) seems to come from Brown and Wallace (2005), who claim to identify
this “Result Assumption” in the second part of David Bohm’s 1952 paper.5 Here, I
am not interested in an exegesis of Bohm’s original work (and I lack the historical
competence to provide one). I believe that Brown and Wallace are reading too much
into an innocuous statement, but it’s possible that Bohm had not yet appreciated the
implications of his theory in full. What I can unequivocally say is that this “Result
Assumption” plays no role in the modern understanding of Bohmian mechanics (that has
been further developed by Bell, and Dürr, Goldstein, Zanghì, among others). Instead,
one should to take the ontological commitment to particles seriously and say that the
pointer configuration is the measurement result.

More precisely, the complete physical state of the measurement apparatus – as with
any other subsystem in Bohmian mechanics – is described by a pair (Y, Φ), where Y ∈
Rn is the particle configuration and Φ ∈ L2(Rn) the (effective or conditional) wave
function.6 This state is always uniquely determined by the deterministic laws defining
Bohmian mechanics (plus initial conditions). Hence, there cannot be any ambiguity
or inconsistency in the predictions of the theory. In practice, of course, we cannot
know the exact initial conditions and care only about a coarse-grained description of the
measurement outcome – e.g. “pointer left” (Y ∈ L) or “pointer right” (Y ∈ R). This
then leads to the statistical analysis sketched in Chapter 2.
Note that, according to Bohmian mechanis, the wave function of a closed system (in

particular, the universal wave function) always evolves unitarily; in and by itself, it is
thus insensitive to different measurement results. However, the particle configuration
of the apparatus – and then, notably, its environment if we take it into account – will
determine which branch of the wave function is guiding the system and which decoherent

5Bohm (1952) writes: “[T]he packet entered by the apparatus variable y determines the actual result
of the measurement, which the observer will obtain when he looks at the apparatus.” (p. 182)

6See Dürr et al. (2013, ch. 2) for the difference between effective and conditional wave function.
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branches can be ignored. Particle configurations, in other words, determine the collapsed
effective wave function at the end of the experiment. To this end, the separation of the
superposed wave packets on configuration space doesn’t need to be perfect, they don’t
need to have literally disjoint support as explained in the Remarks above. Hence, Gao’s
premise ii) – to the extent that it is even meaningful – is wrong, as well. As is the still
common misunderstanding that particle configurations are irrelevant to, or provide no
information about, the wave functions of subsystems (cf. Maudlin (1995b)).
Coming back to the “Result Assumption”, the reason why it would indeed be a rather

silly assumption to make is that it leaves open the critical question, how and why and
it what sense a particular wave function is supposed to “correspond to a measurement
result” – or any concrete physical fact at all. This question is really at the core of the
measurement problem (and many other problems in quantum mechanics), and different
quantum theories provide different answers (though I don’t know which one answers it
in a way consistent with Gao’s analysis).
Gao seems to assume that the pointer states Φ1 and Φ1 – which he calls “result

wave functions” – are somehow an observationally “preferred basis”, a distinguished
set of quantum states that correspond to the possible observations or measurement
results. This assumption is a) not part of Bohmian mechanics b) poorly motivated
(what physical law or principle distinguishes these wave functions and their connection
to particular measurement results?) and c) not borne out by any quantum theory I can
think of. Any quantum theory (applicable on macroscopic scales) seems to agree that the
apparatus wave function can evolve, decohere, and/or (in whatever sense) collapse into
wave functions other than Φ1 or Φ2 (cf. Remark 4). For this reason alone, the assertion
that there are exactly two possible outcomes of the measurement, corresponding precisely
to Φ1 or Φ2, seems incorrect or at least arbitrary – and not just in Bohmian mechanics.
Some quantum theories – in particular, modern versions of Everettian quantum me-

chanics – try to relate the wave function to objects and events in physical space (like
measurement devices showing indicating a measurement result) by some sort of func-
tional analysis in terms of internal degrees of freedom of the wave function or quantum
state. This seems to be the basis of the discussion of Brown and Wallace (2005), but it
is not how the Bohmian theory connects to the physical world.

Bohmian mechanics is a theory about particles moving in physical space. The empiri-
cal content of the theory lies in the spatio-temporal configuration of matter, constituted
by particles. The role of the wave function is first and foremost to determine how the
particles move, and also (though this is a theorem rather than an additional postulate)
to describe typical statistical distributions in ensembles of subsystems.
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In the present case, the wave packet Φ1 (Φ2) “corresponds” to the pointer pointing
left (right) in the sense that it is well-localized in a region of configuration space whose
points realize a pointer configuration pointing to the left (right) and thus assign very
high probability to the respective pointer position. This (and only this) is also what
justifies common notations such as |left〉 and |right〉 for the pointer states. Nonetheless,
Φ1 may be consistent with a pointer actually pointing to the middle or even to the right,
and Φ2 may be consistent with a pointer actually pointing to the middle or even to the
left. So again, it is unclear what Gao has in mind when he insists that “the whole result
wave function [not just a truncated part] ... corresponds to the result” (p. 2). If the
relevant result is “pointer left” or “pointer right”, the statement seems incorrect.
The most charitable reading of Gao’s objection is that the final pointer position “left”

(Y ∈ L) or “right” (Y ∈ R) is not perfectly correlated with the quantum states ϕ1 or ϕ2

of the measured system. Indeed! The pointer states Φ1 and Φ2 having a finite overlap
means precisely that the detector is not perfect in this sense. And this is an utterly
realistic limitation of measurements that more sophisticated quantum measurement for-
malisms capture, as well (under “non-ideal measurements”, see e.g. Albert and Loewer
(1993); Bacciagaluppi and Hemmo (1994) for a philosophical discussion).7 Hence, if the
objection here is that Bohmian mechanics contradicts the predictions of standard quan-
tum mechanics, it is based on a questionable – and I would say wrong – understanding
of what “‘standard” quantum mechanics actually predicts. Ironically, Gao rightly points
out that the assumption of pointer states with disjoint supports is an unrealistic ideal-
ization but doesn’t seem to realize that the very same idealization lies behind the usual
von Neumann measurements of textbook quantum mechanics.
Finally, I also have to warn against thinking of the quantum states ϕ1 or ϕ2 – even

if they are eigenstates of some relevant observable – as corresponding to pre-existing
properties of the system that the measurement is supposed to reveal. This idea, which is
conclusively dispelled by Bohmian mechanics, lies behind many of the alleged paradoxes
of quantum mechanics or misguided talk about “quantum logic” (Bell, 2004, chs. 17, 23).
Thus, contrary to what Gao seems to assume (p. 5), there is no “measured quantity”
with pre-existing values that the Bohmian particle configuration registers (cf. Norsen
(2014) for the particular example of spin measurements). Bohmian particles have a
position and nothing else,8 while different wave functions or quantum states have to be
understood through their dynamical role for the particle motion.

7A more extreme, but very important, case are so-called weak measurements, in which the possible
pointer states overlap a lot, thus providing very little information from a single measurement event
but also affecting the state of the measured system as little as possible (cf. e.g. Wiseman (2007)).

8We can leave open the status of dynamical parameters such as mass and charge.
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John Bell (2004) summarized this important insight brilliantly:

“[I]n physics the only observations we must consider are position observa-
tions, if only the positions of instrument pointers. It is a great merit of the
de Broglie-Bohm picture to force us to consider this fact. If you make axioms,
rather than definitions and theorems, about the ‘measurement’ of anything
else, then you commit redundancy and risk inconsistency.” (p. 166)

4 Conclusion

Possibly the most basic mistake committed by many critics is to think of Bohmian
mechanics essentially as standard quantum mechanics plus an ad hoc addition of particle
positions to solve the measurement problem. In fact, the measurement formalism of
quantum mechanics reduces to Bohmian mechanics as an effective statistical description
of the fundamental microscopic theory. Simply put, Bohmian mechanics is to textbook
quantum mechanics what Hamiltonian mechanics is to thermodynamics. There would
thus be a lot more to learn by studying the measurement process from a Bohmian point
of view: the status of Born’s rule (Dürr et al., 2013, ch.2), the role of observables (Dürr
et al., 2013, ch.3), the meaning of the no-hidden-variables theorems (Lazarovici et al.,
2018) – all this and more is clarified by Bohmian mechanics.
What Bohmian mechanics doesn’t provide – and what a serious physical theory

shouldn’t provide, as we learned, in particular, from Bell – are postulates about “ob-
servables”, “measurements”, “measurement results”, etc. The theory describes what is
going on in the world, and we have to analyze the theory to know what it predicts
for a particular physical situation, what we can measure and how, and whether these
predictions match our empirical evidence.
One of the many intellectual harms done by operational quantum mechanics is that

this way of doing serious physics is no longer common ground.
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