
Deception as Cooperation

Abstract
I develop a rate-distortion analysis of signaling games with imperfect

common interest. Sender and receiver should be seen as jointly managing a
communication channel with the objective of minimizing two independent
distortion measures. I use this analysis to identify a problem with ‘func-
tional’ theories of deception, and in particular Brian Skyrms’s: there are
perfectly cooperative, non-exploitative instances of channel management
that come out as manipulative and deceptive according to those theories.

1 Introduction
How communication is modeled in a Lewis-Skyrms signaling game (also simply
signaling game henceforth, Lewis 1969, chap. 4; Skyrms 2010) is perfectly
isomorphic to how information processing is modeled in information theory
(Shannon & Weaver 1998; Cover & Thomas 2006). See Figs. 1 and 2.

World Sender Messages Receiver
state act

Figure 1: A signaling game

Source Encoder Channel Decoder
original message

M

signal signal decoded message

M̂

Figure 2: An information-processing pipeline

In this paper I take this isomorphism seriously: literally, senders and receivers
in a signaling game are jointly managing an information-processing channel.
This information-theoretic perspective on signaling games has been neglected
in the literature, and it should not have: as I will argue here, the central
behavioral unit in signaling games is neither sender nor receiver strategies, but
the encoding-decoding pair (also code henceforth) that they jointly construct.
This ‘channel-first’ perspective makes it possible to identify cooperative examples
of joint channel-management. It will turn out that what certain prominent
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contemporary accounts of deception call ‘deceptive’ or even ‘manipulative’ is
compatible with exquisitely cooperative arrangements.

I have just suggested that information-theoretic analyses of signaling games are
virtually non-existent. If the reader is familiar with the literature, this claim
might have struck them as odd: information-theoretic notions are routinely
used in the analysis of signaling games. Unfortunately, only the subset of
information theory that was introduced to philosophers by Dretske’s seminal
(1981) book is typically appealed to. This subset is relatively small, and can
be introduced in full in a few paragraphs. I will do so in section 2, after briefly
presenting signaling games. The Dretskean subset of information theory leaves
important informational structure out. In section 3 I summarize a few key ideas
in rate-distortion theory, the branch of information theory that describes lossy
communication and which, I propose, can be fruitfully applied to the description
of signaling games. In section 4 I discuss a conservative extension to rate-
distortion theory that deals with situations in which two independent distortion
measures (in our case, those of sender and receiver) are used to calculate the
rate of a code. With the help of these tools, in section 5 I show that a very
prominent, so-called functional approach to deception in simple organisms, and
in particular Skyrms’s application of this idea, somewhat myopically regards
individual signals as manipulative, even if they are part of a code which equally
respects the interests of sender and receiver. Section 6 recapitulates and offers
some conclusions.

2 Information in Lewis-Skyrms Signaling
Games

In the version of signaling games I will be concerning myself with here, the world
observed by the sender is represented as a random variable, S.1 For my current
purposes, this random variable can be identified with a set of s possible states for
the variable to be in, [S1, . . . , Si, . . . , Ss], together with a probability distribution
over states [Pr(S1), . . . ,Pr(Ss)], where Pr(Si) ≥ 0 and

∑
i Pr(Si) = 1 (MacKay

2003, p. 34) The sender observes the state the world is in and then sends a
signal to the receiver (see Fig. 1). Again, signals can be thought of as a random
variable M : there are, say, m possible signals in the putative representation
system we are studying, [M1, . . . ,Mi, . . . ,Mm]. Finally, the receiver observes
the signal sent by the sender and chooses an act, Ai, out of a possible acts. A is
our third and final random variable.

There is a payoff associated with every combination of state and act.2 The
combination of state Si and act Aj results in a sender payoff of pσij and a
receiver payoff of pρij (Fig. 3). Signaling games are, as originally described,

1For a more detailed introduction to Lewis-Skyrms signaling games see Martínez & Godfrey-
Smith (2016).

2Here I am focusing on so-called cheap talk games. In related models, payoffs attach to
triples of state, message and act. See, e.g., Martínez (2015).

2



game-theoretic models, and these payoff matrices are used to calculate Nash
equilibria and evolutionary trajectories (see Godfrey-Smith & Martínez 2013;
Martínez & Godfrey-Smith 2016 for details). As we are about to see, that is the
full extent of their use—again, it should not be.p

σ
11 . . . pσ1a
...

. . .
...

pσs1 . . . pσsa


p

ρ
11 . . . pρ1a
...

. . .
...

pρs1 . . . pρsa


Figure 3: Sender payoff (left) and receiver payoff (right)

The probabilities associated with the three random variables, S, M and A, are
interconnected through the sender strategy (a matrix of probabilities of signals
conditional on world states), and the receiver strategy (a matrix of probabilities
of acts conditional on signals). See Fig. 4.

Pr(M1|S1) . . . Pr(Mm|S1)
...

. . .
...

Pr(M1|Ss) . . . Pr(Mm|Ss)


 Pr(A1|M1) . . . Pr(Aa|M1)

...
. . .

...
Pr(A1|Mm) . . . Pr(Aa|Mm)


Figure 4: Sender strategy (left) and receiver strategy (right)

With the probabilities of world states together with sender and receiver strategies
we can calculate all possible joint and conditional probabilities involving the
three random variables. Brian Skyrms, in a very influential information-theoretic
treatment of signaling games (2010, ch. 3), uses these quantities to define the
informational content of a signal. First, he defines the “information in [Mj ] in
favor of [Si]” (op. cit., p. 36—variables changed) as

log2 Pr(Si|Mj)− log2 Pr(Si) (1)

This is simply a measure of the difference between the unconditional probability
of world state Si and its probability conditional on the signal.3 Skyrms then
proposes that the informational content of a signal, Mi, should be identified
with the collection of the informations that this signal carries about every world
state:

〈log2 Pr(S1|Mi)− log2 Pr(S1), . . . , log2 Pr(Ss|Mi)− log2 Pr(Ss)〉 (2)

The analogous construction gives us the informational content of the signal about
acts (ibid. p. 39).

3This quantity is sometimes called pointwise mutual information, and is widely used in
automatic text parsing (e.g., Bouma 2009).
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In the information-theoretic constructions in his 2010 book and, as far as I am
aware, elsewhere, Skyrms uses all of but also only three mathematical objects:
the probability distribution of states, the sender strategy, and the receiver
strategy. Both the “all of” and the “only” are regrettable. The “all of” means,
among other things, that no informational analysis is possible until the sender and
the receiver have made up their mind as to what strategy to adopt. Postponing
informational analyses until a sender and a receiver strategy are available tacitly
assumes that information theory can offer no guidance as to what has led sender
and receiver to adopt those very strategies.4 Typically, indeed, prominent sender-
receiver configurations (e.g., Nash equilibria, or sinks in evolutionary dynamics)
are singled out for information-theoretic investigation. The underlying idea
seems to be that only (evolutionary) game-theoretic properties of the signaling
setup are relevant to sender and receiver adopting the strategies they do adopt.
Such features are, of course, sufficient for those strategies to obtain—this is just
the way signaling games are designed, after all. On the other hand, sender and
receiver are solving an informational problem: that of what to communicate,
and how much to communicate about it, given their interests. This is also by
design: signaling games are precisely a tool formulated to study communication.
It should therefore be possible to identify informational constraints on available,
and attractive, strategies for sender and receiver to adopt. Yet the mainstream
information-theoretical toolbox in philosophy, the one used by Skyrms and other
following on Dretske’s (1981) footsteps, has no resources for making information
theory contribute to our understanding of the informational structure of a
signaling gane, independently from this or that sender-receiver configuration.
That is, it has no way to answer the question: what are the informational
properties of the game setup that help explain players having ended in this or
that sender-receiver configurations?

Regarding the “only”, it is surprising that payoff matrices should play no role in
the informational analysis of signaling games. As I suggested above, sender and
receiver have possibly different desiderata as to what to communicate. Plausibly
these sets of interests will influence the properties of the code that their strategies
jointly constitute—what it singles out for transmission, and what it discards.
These sets of interests are given by the payoff matrices, which should therefore
be factored in our informational analysis.

These shortcomings are a result of the undue focus on the information carried
by particular vehicles in most philosophical treatments of information (Kraemer
2015; Scarantino 2015; Shea 2007; Skyrms 2010; Stegmann 2015, among many
others). In the Lewis-Skyrms framework, this translates into a focus on the
informational properties of particular signals, and in particular of the information

4As an anonymous referee helpfully remarked, this is not to say that Skyrms’s overall
theory does not offer such guidance. It does: it is the evolutionary game-theoretic aspect of
his theory that deals with the evolution of sender-receiver strategies—including the evolution
of the informational properties of these strategies (see, e.g., Skyrms 2010, p. 40, fig. 3.3).

The information-theoretic ingredient of Skyrms’s theory is silent about this, and only pertains
to the description of static, instantaneous sender-receiver configurations.
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they carry about states, on the one hand, and acts, on the other. This piecemeal,
one-sided evaluation of the informational properties of signals obscures the role
they play in the mediation between states and acts. It is this mediation that
signals are for.

3 Back to Shannon
Information theory proper, beyond the fragment Dretske chose to focus on and
interpret, offers a better analysis of signaling games. The main aim of information
theory, the branch of applied mathematics inaugurated by Claude E. Shannon’s
astonishing The Mathematical Theory of Communication (1948; the standard
textbook treatment is Cover & Thomas 2006) is to identify theoretical bounds for
distortion in the transmission of information through a (typically noisy, typically
narrow) channel. Signaling games can be described with the tools of information
theory because they are just that: information-processing pipelines, in which a
channel and a distortion measure can be readily identified.

First, as regards the channel, sender and receiver strategies in a signaling game
are, quite literally, an encoder-decoder pair (again, see Figs. 1 and 2): the
sender transforms world states incoming from the source into signals. The
receiver decodes those signals to obtain acts. The matrix that results from
multiplying sender and receiver strategies (Fig. 5), and that transforms states
into acts, identifies a rate equal to the mutual information between states and
acts, R = I(S;A). By the source-channel separation theorem with distortion
(Cover & Thomas 2006, Theorem 10.4.1) the channel through which signals are
sent must have a capacity, C, such that C > R.Pr(A1|S1) . . . Pr(Aa|S1)

...
. . .

...
Pr(A1|Ss) . . . Pr(Aa|Ss)


Figure 5: A Lewis-Skyrms code

Second, signaling games come equipped with a measure of distortion in the
transmission of information: the payoff matrices provide precisely an answer
to the question, how good is decoding state Si as Aj , compared to the best
we could possibly do? This observation can be turned into a formal distortion
measure simply by normalizing and rescaling the payoff matrices.5 Setting
pmax = maxij(pij), pmin = minij(pij), the distortion measure for the pair
(Si, Aj) is

5One could carry out all of the analyses in this paper, mutatis mutandis, using payoff values
directly. I will transform them into normalized distortion measures, though, as is standard in
rate-distortion analyses.
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dij = pmax − pij
pmax − pmin

(3)

Once we have a channel and a distortion measure, one central result in information
theory is that it is possible to calculate a rate-distortion function (Shannon 1948,
1959; Cover & Thomas 2006, ch. 10) that gives the minimum rate, and hence
channel capacity, sufficient to achieve any expected level of distortion D.6 This
function is given by:

R(D) = min
p(a|s):

∑
(s,a)

p(s,a)d(s,a)≤D
I(S;A) (4)

That is, it’s given by the minimum mutual information between states and acts
that still meets the distortion goal: “the minimization is over all conditional
distributions Pr(A|S) for which the joint distribution Pr(S,A) satisfies the
expected distortion constraint [D]” (Cover & Thomas 2006, p. 335—variables
changed). This minimization, in sum, gives the minimum rate at which a certain
distortion, or less, is achievable. The Blahut-Arimoto algorithm (Blahut 1972;
Arimoto 1972; Cover & Thomas 2006, sec. 10.8) provides an efficient way to
calculate the R(D) function.

The rate-distortion function depends only, on the one hand, on the probabilistic
structure of the source, S, and, on the other hand, on the distortion measure D.
Both of these quantities are prior to, and do not depend, on the actual strategies
being implemented by sender and receiver. The rate-distortion function, thus,
offers a way to characterize the informational structure of a signaling game,
independently of the actual behavior of senders of receivers—indeed, I will be
defending in what follows that it is illuminating to see senders and receivers as
reacting to this informational landscape.

For a first example of how these rate-distortion functions look like consider
one of the simplest signaling games: the 3x3 Lewis signaling game.7 In this
game there are three equiprobable states and three possible receiver acts. The
payoff for every combination of state and act is given by Table 1. Table 2 shows
the distortion measure that corresponds to this payoff matrix (i.e, the payoff
matrix rescaled and normalized as per eq. 3). The rate-distortion curve for this
Lewis-Skyrms model is given in Fig. 6.

This curve is a very simple object: looking at the point the curve touches the
y-axis, we can tell that if we wish to reach an expected distortion of 0 we need a
rate that matches the entropy of states, i.e., log2 3 ≈ 1.58 bits. This is because
the only way for the encoder-decoder pair to get it always right is to have a
signaling system (Huttegger 2007, proposition 3) in which the sender chooses a

6The expected distortion D is the average of distortion values for each pair of a state Si

and an act Aj , dij , weighted by the joint probability of those state and act, Pr(Si, Aj).
7This way of calling it comes from Bruner et al. (2018).
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A1 A2 A3
S1 1 0 0
S2 0 1 0
S3 0 0 1

Table 1: Payoff matrix for the 3x3 Lewis signaling game

A1 A2 A3
S1 0 1 1
S2 1 0 1
S3 1 1 0

Table 2: Distortion measure for the 3x3 Lewis signaling game

different signal for each state and the receiver chooses the right act in face of
each signal. The entropy of signals (thus, the rate of the code) in this situation
is the aforementioned 1.58 bits.

In fact one can directly argue for that rate value at distortion 0 on purely
information-theoretic grounds: Shannon’s source coding theorem (Cover &
Thomas 2006, Theorem 7.13.1) entails that there exists a channel which has a
rate equal to or larger than the entropy of the source and an error probability
arbitrarily close to zero, and that no code with lower rate can achieve this.
Signaling systems are a consequence of the source coding theorem.

On the other hand, if the rate is zero (that is, if the channel is completely closed,
and sender and receiver do not communicate) the best achievable expected
distortion is 2/3 ≈ 0.66. This is achieved, e.g., by the receiver always doing A1,
no matter what. This act will achieve a distortion of 0 one third of the time
(whenever S1 is the case, remember that all three states are equiprobable) and a
distortion of 1 two thirds of the time, which adds up to an expected distortion of
0.66. Distortions in between 0 and 1 correspond to different rates, as the curve
shows.

The rate-distortion function, as depicted in Fig. 6, fully characterizes the
informational structure of the 3x3 Lewis signaling game. Interrogating it is
useful. First, is there a problem that transmitting information can help solve?
Yes, there is: there are levels of distortion (indeed, distortion zero) which
are achievable with information transfer (i.e., with codes of nonzero rate, and
therefore channels of nonzero capacity) and not achievable otherwise. Second, is
there a distortion (equivalently, payoff) optimum for both sender and receiver?
Yes, there is as well: that would be the point at the upper left corner of the plot,
where distortion zero is achieved with a 1.58 bit code.

The rate-distortion curve is all there is to the informational problem at hand.
The informational facts represented in the curve, unsurprisingly, explain a lot of
the sender-receiver goings-on in the 3x3 Lewis signaling game: for example, the
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Figure 6: The Rate-Distortion Curve for the 3x3 Lewis Signaling Game

only strict Nash equilibria and the only evolutionarily stable strategies in n× n
Lewis signaling games are distortion zero / maximum rate points. This follows
from all such equilibria being signaling systems (Huttegger 2007, propositions 4
and 5) and all signaling systems constituting zero-distortion codes.8

One natural (but, as far as I am aware, unexplored) way to think of signaling
games is as, first and foremost, rate-distortion problems faced by sender and
receiver, where Nash equilibria and dynamical sinks describe ways to approximate
optimal solutions to these problems without joint deliberation. Game-theoretic
discussion of signaling is often cast in confrontational terms. The rate-distortion
perspective allows us to see sender-receiver behavior as much more cooperative
than it is typically seen.

So far I have only dealt with a very simple case, in which sender and receiver
have perfect common interest. I will now substantiate the foregoing remarks
by showing how the rate-distortion perspective can be extended to cases of
imperfect common interest.

8On the other hand, certainly not everything is explained by the rate-distortion curve: in
the same remarkable paper, Simon Huttegger also proves that not all random starting points
subjected to an evolutionary regime governed by the two-population replicator dynamical
equations reach a zero-distortion / maximum rate code—although only such codes correspond
to aymptotically stable points. In the 3x3 case, the proportion that don’t reach distortion zero
amount to just below 5% in numerical trials (Huttegger et al. 2010). See Hofbauer & Sigmund
(1998) for a description of the replicator dynamics, and Martínez & Godfrey-Smith (2016) for
a gentler introduction.
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4 Imperfect common interest
It is possible to present the 3x3 Lewis signaling game as a curve, as in Fig. 6,
because there is only one distortion objective: that is, both sender and receiver
agree completely in the distortion measure. Still, if one so wishes, the same
information can be presented by making it explicit that both sender and receiver
have their own distortion measure—it’s just that both coincide. One way to do
it is with a two-dimensional heatmap, as in Fig. 7.
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Figure 7: Rate-Distortion surface for a 3x3 Lewis signaling game

The way to read this plot is as follows: the x-axis codes distortion goals for the
sender, and the y-axis, for the receiver. The color at each point in the plot codes
the rate necessary to meet, or exceed, both distortion goals. So, for example, the
black area in the upper-right area of the plot delimits all pairs of sender- and
receiver-distortion goals that can be met with zero rate—i.e., with no information
at all passing from sender to receiver. As we saw above, any point with Dsender

and Dreceiver ≤ 2/3 can be reached with no information transfer whatsoever.
Below and to the left of the black area, the lower the distortion goals are, the
higher the rate necessary to achieve them. As we saw above, it is possible to
achieve zero expected distortion for both sender and receiver (that would be the
lower left corner), and the rate necessary to achieve that point is log2 3 ≈ 1.58
bits—the pale-yellow end of the color-coded rates.9 The fact that, in Fig. 6, the

9Why does it take 1.58 bits to reach the upper left and lower right corners? Because the
only way to achieve these goals is by achieving zero distortion for both players. Remember
that, as per eq. 4, distortion goals have to be at least met, but can be exceeded.
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rate-distortion curves becomes increasingly steeper as we approach distortion
zero is mirrored in Fig. 7 by colors ‘heating up’ faster near the lower-left corner
than near the upper-right one.

Fig. 7 is representing, in a less economical way, the situation already represented
in fig. 6. A two-dimensional heatmap is unnecessary when sender and receiver
payoff matrices (distortion measures) coincide. Indeed, this is the scenario
typically studied in information theory: one in which encoder and decoder coop-
erate to achieve a common communication goal. The rate-distortion approach
could hardly be recommended as an addition to the signaling-game theorist’s
toolbox if it only worked for cases of perfect common interest. Fortunately, the
extension of rate-distortion analyses to cases of imperfect common interest is
entirely conservative and straightforward, if seldom explored. In his seminal
paper on the numerical computation of rate-distortion functions, Richard Blahut
discusses the situation in which “it may be desired that two (or more) separate
definitions of distortion be satisfied” (1972, p. 470). The use case he mentions is
when “the reproduced data is to be made available to two different users with
different applications in mind.” (ibid. p. 471). To the best of my knowledge,
exploration of this proposed extension of rate-distortion theory to two distortion
measures is virtually non-existent in the information-theoretic literature. In any
case, I believe the present article to be the first to explore it in the context of
Lewis-Skyrms signaling games.

The way to adapt Blahut’s idea to signaling games is, quite simply, to convert
the two payoff matrices for sender and receiver into two independent distortion
measures, ds for the sender and dr for the receiver, and consider the case in
which a distortion objective for the sender, DS , and another for the receiver,
DR, must be satisfied (or exceeded) jointly. When there is divergence of interest,
then, the rate-distortion curve becomes a rate-distortion surface: we define

δs(s, a) =
∑
(s,a)

Pr(s, a)ds(s, a) (5)

and

δr(s, a) =
∑
(s,a)

Pr(s, a)dr(s, a) (6)

The rate-distortion function for two independent distortion measures then be-
comes

R(DS , DR) = min
{Pr(a|s):δs(s,a)≤DS ,δr(s,a)≤DR}

I(S;A) (7)

The rate-distortion surface presents the informational problem that sender and
receiver must solve: minimizing distortion simultaneously for two users with
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different needs. Take, for example, the main game Brian Skyrms uses to illustrate
his account of deception (Skyrms 2010, p. 81). The payoff matrices for sender
and receiver are given in Table 3. Each payoff matrix corresponds, in the manner
described above, to a distortion measure. The two distortion measures and the
fact that the source consists in three equiprobable states (ibid.) leave us with the
rate-distortion surface in Fig. 8. The bottom-left white region is unreachable:
there is no code that can transmit information in a way such that both DS

and DR can be met, for points 〈DS , DR〉 in that region. Every other point is
reachable.10

A1 A2 A3
S1 2, 10 0, 0 10, 8
S2 0, 0 2, 10 10, 8
S3 0, 0 10, 10 0, 0

Table 3: Payoff matrices for sender and receiver in Skyrms’s deception game.
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Figure 8: Rate-Distortion surface for Skyrms’s deception game. The colored
dots are notable points in the Pareto frontier, characterized in the main text.

10I state, without proof, a fact about rate-distortion surfaces that is useful in constructing
them. The proof, which is easy if somewhat involved, will be provided in subsequent work.

Let us say that a point 〈DS , DR〉 is strictly reachable iff there is a code with exactly those
expected distortions. I will also call codes Pr(a|s) for which all Pr(aj |si) are either 0 or 1
deterministic. It can then be shown that

A point 〈DS , DR〉 is strictly reachable iff it corresponds to the expected distortions of a
convex combination of deterministic codes.
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It is easy to see that every point that is reachable tout court is reachable by a
sender and a receiver playing a signaling game—just not necessarily reachable
with the minimum achievable rate. Suppose that 〈DS , DR〉 is reachable. Then
there is a Lewis-Skyrms code C that has these, or lower, distortion values. We
just need to find a sender strategy, S, and a receiver strategy, R, such that
S ·R = C. There are two trivial solutions to this equation: one is to set S = Is
and R = C, where Is is the s× s identity matrix; the other is to set S = C and
R = Ia, where Ia is the a× a identity matrix.

Again here, we can interrogate the rate-distortion surface to learn about the
underlying informational problem: is this a game in which both sender and
receiver stand to gain by opening the channel? Yes: there are points to the left
and below the zero-rate black region. That is, points reachable by a code of
nonzero rate, where both sender and receiver have less expected distortion than
anything they can achieve in the zero-rate region.

The best reachable points for both sender and receiver lie in the straight line
connecting 〈0, 0.133〉 (the red dot in Fig. 8) with 〈0.533, 0〉 (the blue dot in Fig.
8). That is, the frontier between reachable and unreachable. Any point to the
right of or above this line has a counterpart on the line that has a distortion
at least not worse for both players and strictly better for at least one. A set of
points meeting this condition is sometimes called a Pareto frontier. I will follow
this usage here.

Now, which point precisely in the Pareto frontier is the fairest solution to the
problem of, paraphrasing Blahut, “minimizing losses to two different users with
different applications in mind”, is undefined. A few plausible candidates are:

Center: The center of the Pareto frontier 〈0.267, 0.067〉

Same Expected Distortion: The point in the Pareto frontier at which the
expected distortion for both players is the same 〈0.107, 0.107〉.

Closest to Origin: The point in the Pareto frontier that is closest to the
unreachable no-distortion point 〈0, 0〉, i.e., 〈0.017, 0.130〉.

Any of these points, and probably a handful more, could plausibly be chosen by
a fully cooperative team in charge of designing a code that accommodates the
needs of sender and receiver.11

Skyrms (2010, chap. 6) offers an account of deception that falls in the family
of what Fallis and Lewis call functional deception: “the view that deception
only requires that a deceiver benefit from sending a misleading signal” (Fallis
& Lewis 2017, p. 3). In Skyrms’s own development of this idea, first, a signal
Mj is misleading iff there is a state Si such that either the world is not in Si

11The rate at these points (that is, how wide the channel needs to be at the best solution to
the bargaining problem sender and receiver face) could plausibly be regarded as a measure of
common interest between them. Comparing it to the measures of common interest described
in (Godfrey-Smith & Martínez 2013; Martínez & Godfrey-Smith 2016) is matter for another
paper.
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and the information Mj carries about Si is positive, or the world is in Si and
the information Mj carries about Si is negative. For the notion of carrying
information about a state see formula (1) above. Second, the sender benefits
from sending this misleading signal if “they do better than they would have had
the receiver known the true state with probability 1” (paraphrased from Fallis
& Lewis 2016, p. 8)

In his discussion of deception Brian Skyrms focuses on a Nash equilibrium in
the signaling game in Table 3 that results in the code marked with a red dot in
Fig. 8:

Best for Sender: If sender send signal M1 in states S1 and S2 and signal M2
in state S3; if receiver do act A3 on receipt of signal M1 and act A2 on
receipt of signal M2. (Skyrms 2010, p. 81—variables changed).

In the game of Table 3 and this Best for Sender equilibrium above, signal M1
is deceptive in Skyrms’s sense. It misleads: when sent in S1 (S2) it raises the
probability of S2 (S1). As a consequence, it carries positive information about a
non-actual state. This is to the detriment of the receiver, who is forced to do
A3, the best cover-all act for the receiver for S1 and S2, but not the best act for
the receiver for either S1 or S2 individually.

I do not wish to contest Skyrms’ definition of deception. The functional-deception
tradition is surely right that misleadingness plus benefit captures an important
part of what we mean by deception. But I do wish to contest that a confronta-
tional description of what happens in this game, for example, one in terms of
manipulation, is the most apt one. One can perfectly see “deceptive” results as
emerging from a cooperative endeavor—hence the somewhat provocative title of
this piece. In particular, it turns out that the candidates for a fair compromise in
respecting sender and receiver interests identified above (Center, Same Expected
Distortion, and Closest to Origin) come out as deceptive and manipulative,
according to Skyrms’s treatment. I draw this out in the following section.

5 Deception as Cooperation
To recap, the cooperative endeavor I was referring to above is that of constructing
a code that simultaneously minimizes sender and receiver distortion measures.
A sender strategy is just an encoder; a receiver strategy, just a decoder. The
most important behavioral unit is neither of those strategies, but the resulting
encoding-decoding pair—the code that connects states to acts. By the same
token, it is not a good idea to base confrontational and manipulative descriptions
upon the behavior of individual signals, because all signals conspire to generate
a code, and it is full codes that senders and receivers care about. Individual
signals are just means to an end.

For example, it turns out that the Best for Sender equilibrium above represents
a very good solution, for both parties, to this cooperation problem. It is in
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the Pareto frontier, and very close to the Closest to Origin point—the receiver
only does 2.5% worse at this point than at Closest to Origin. Moreover, at this
point, the rate of the code is H(1/3) = 0.92. Rate, recall eq. 6, corresponds
to the minimal mutual information between states and acts, I(S;A), at which
the two distortion goals are jointly achievable.12 0.92 bits is the maximum
information transfer anywhere in the R-D surface. That is, no reachable point
needs a higher mutual information between states and acts; and, in particular,
no more information is needed for the receiver to achieve zero distortion. The
problem with Best for Sender, to the extent that there is one, does not seem to
be a lack of informativeness on the part of the sender.

In any event, my case does not much hang on Best for Sender not being
particularly manipulative, because the center of the Pareto frontier is also
Skyrms-deceptive. Figure 9 gives a code that sits at exactly the Center point
(the numbers in the matrix are conditional probabilities of acts on states, as per
Fig. 5): .3 0 .7

0 .7 .3
0 1 0


Figure 9: The code corresponding to the Center point

As one can see by comparing this code to the payoff matrix in Table 3, the
usefulness of this code for sender and receiver is exquisitely balanced, so that both
get exactly the same payback out of setting it up. Yet, there are straightforward
ways of implementing this code with Skyrms-deceptive signals. One such way
is one of the two trivial encoding-decoding pairs for any given code, described
above—the one in which the receiver strategy is the identity matrix:.3 0 .7

0 .7 .3
0 1 0

 1 0 0
0 1 0
0 0 1


Figure 10: Sender and receiver strategies that implement the code in Fig. 9

Here, signals M2 and M3 are Skyrms-deceptive. Take M3. The probabilities
of states conditional on M3 are [.7, .3, 0]. Remember that we are dealing with
equiprobable states, so the unconditional probabilities of states are [1/3, 1/3, 1/3].
M3 is therefore misleading when sent in S2, according to Skyrms’s understanding
of misleadingness: Pr(S2|M3) = 0.3 < P (S2) = 0.33. This misleadingness is also
to the benefit of the sender: the receiver performs A3, the best cover-all act for
states S1 and S2, instead of A2, the best act for the receiver in S2.13

12In Godfrey-Smith & Martínez (2013, p. 3) we offer a justification, aimed at convincing
game-theorists, for using I(S; A) as the measure of meaningful information transfer. This is
anyway, as we have seen, the standard in information theory.

13Fallis and Lewis (2016, 2017) have produced convincing counterexamples to Skyrms’s
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It is somewhat awkward to claim that the sender is manipulating the receiver
in this situation, when the net result of their behavior has been designed to
be maximally fair—and if you are not convinced that Center is maximally fair,
the same argument could be repeated for other points in the Pareto frontier.
Whatever manipulation happens from sender to receiver must be offset by the
exact same amount of manipulation from receiver to sender.

Deception, in the functional-deception literature, is entirely a sender-to-receiver
affair. Receivers cannot deceive senders. This is reasonable: messages go from
sender to receiver, and it’s hard to see how the receiver could deceive in retrospect.
But manipulation is another thing entirely. The receiver does have the resources
to manipulate the sender, by granting or withdrawing access to certain actions.
For example, the blue dot in Fig. 8, at which the receiver has zero distortion,
can also be reached with a Nash equilibrium:

Best for Receiver: If sender send signalM1 in state S1 and signalM2 in states
S2 and S3; if receiver do act A1 on receipt of signal M1 and act A2 on
receipt of signal M2.

This equilibrium is the mirror image of the Best for Sender equilibrium. The
informational properties of the two equilibria are entirely analogous. The only
difference is that in the former it’s the sender that stands to gain; in the latter,
the receiver. It is perhaps awkward to claim that the receiver is deceiving the
sender here, but, regarding manipulation, there is no such awkwardness: either
the receiver is manipulating the sender in the latter equilibrium, or no one is
manipulating anyone in neither equilibrium.

analysis of misleadingness, and suggest that other measures of epistemic utility present in
the literature, such as the Brier rule, the logarithmic rule or the spherical rule, should be
examined and might be preferable (see Fallis & Lewis 2016, p. 579 for details) Their idea is
to deem a signal, Mi, misleading iff the epistemic utility of the probability distribution over
states conditional on Mi is lower than the epistemic utility of the unconditional probability
distribution over states (Fallis & Lewis 2017).
All three of these epistemic-utility rules agree that, in the case I have been discussing, the

vector of state probabilities conditional on M3 has lower epistemic utility than the vector of
unconditional probabilities. Using ∆ to refer to the difference between the epistemic utility
of state probabilities conditional on M3 and the utility of unconditional probabilities, if S2
is the actual state (so that ∆ < 0 corresponds to a misleading message), ∆Brier = −.313,
∆logarithmic = −.106, ∆spherical = −.183. M3 comes out misleading also according to Fallis
and Lewis’s criterion.
One final point regarding the misleadingness of signals: in both Skyrms’s and Fallis and

Lewis’s analyses misleadingness depends only on the joint probability of states and signals.
Payoffs are ignored. Yet, it is reasonable to think that being presented with a distorted image
of the payoff structure of the world is more important to the receiver than being presented
with a distorted image of its probabilistic structure—although the two are obviously related.
An investigation of how epistemic utility relates to, well, utility is also matter for another
paper.
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6 Conclusions
Both Best for. . . Nash equilibria are reasonable compromises for both players.
Both lie in the Pareto frontier, and no other point in the frontier, a fortiori none
of the fairer options discussed above, is reachable by a Nash equilibrium. In any
event, functional-deception analyses are unable to distinguish these points from
exquisitely egalitarian, non exploitative strategies of information transmission
with two different distortion measures, such as Center.

Some of the confrontational rethoric that typically goes with analyses of deception
is perhaps a nod to the ‘manipulationist’ approach to communication spearheaded
by Dawkins and Krebs (1978; Krebs & Dawkins 1984; see also Adams & Caldwell
1990; Byrne & Whiten 1990; Endler 1993; Owings & Morton 1997), according
to which communication is just “a means by which one animal makes use of
another animal’s muscle power” (Dawkins & Krebs 1978, p. 283). Whatever the
merits of this approach, manipulativeness cannot be established solely on the
basis of the behavior of individual signals. Signals are just a means to the end of
building a code that translates information about states into acts. An individual
signal only makes sense in the context of its code. Furthermore, information is
not a neutral commodity. Getting some things right is more important than
getting others right, differently so for each of the interested parties. Factoring
these observations in is, I submit, central to understanding the informational
structure of signaling games. Here I have offered rate-distortion analyses as an
obvious way to do so.
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