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Abstract

Theorists working on information and representation often take themselves not

to be centrally concerned with “Shannon” information, as it is often put, but with

some other, sometimes called “semantic”, kind of information. This perception is

wrong. Shannon’s theory of information is the only one we need.

I sketch a (Shannon) informational account of representation, for a certain

important family of cases. This account, which represents a significant departure

from the Dretskean philosophical mainstream, will show how a number of popular

proposals about the purportedly non-informational ingredients in representation

actually belong in the same coherent, purely information-theoretic picture.
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1 Information, Shannonian and Dretskean

In what follows I will use a random variable, S, to encode the state the world is in, and

another random variable, M , for signals. How should we characterize the information that

values of M (i.e., individual signals) carry about values of S (i.e., individual world states)?

The most basic quantity with which information theory records dependence among two

random variables is the mutual information between them.1 This quantity being an

expected value, Dretske (1981, p. 52f) claims, renders it unsuitable for an analysis of

representational status, and it should be substituted by notions that record relations

between individual states, Si, and individual signals, Mj. The basic relation which

substitutes mutual information in contemporary Dretskean accounts is that of making a

probabilistic difference (Scarantino 2015): a signal Mj makes a probabilistic difference to

the instantiation of a state Si iff the following basic inequality holds:

Pr(Si|Mj) 6= Pr(Si)
1For definitions of mutual information and other basic information-theoretic quantities,

see Cover & Thomas (2006, ch. 2).



Nearly all the accounts of information developed in the recent, and not so recent,

philosophical literature on this topic are variations on, and attempts to quantify, this

inequality. For illustration, in Skyrms (2010, p. 36) the “information in [Mj] in favor of

[Si]” is defined as the pointwise mutual information [pmi] between state and signal.2

There is a direct relation between pmis and the basic inequality: the former are nonzero iff

the latter is true.

The running thread connecting most prominent contemporary accounts of information is

that all there is to Shannon’s information theory, at least for the purposes of investigating

the nature of representation, is two quantities: the unconditional probability of states and

the probability of states conditional on signals, perhaps rearranged as the logarithm of

their ratio, or in some other way. Unsurprisingly, from this it is routinely concluded that

there is much more to representation than information. This conclusion is premature:

informational content in the Dretskean tradition is not by a long shot all there is to

information theory. This claim is different from the claim that information is all there is

to representation, which I do not endorse—for one thing, I believe with teleosemanticists

(Millikan 1984; Neander 2017) that teleofunctions have a role to play in a complete theory

of representation—but, I will argue here, it does mean that no Dretske-style “semanticized

information” needs to be recognized, over and above the quantities studied in information

theory proper. I will argue that it also means that some prominent proposals as to ways to

bridge the information-representation gap are, in fact, unwittingly appealing to

informational structure.

In the following section I review two such proposals. My aim is not to argue against them.
2That would be i(Si; Mj) = log P (Si|Mj)− log P (Si).



They are built upon largely correct insights. I will instead aim at showing that a better

informed understanding of information provides a way of incorporating these insights in a

unified, purely information-theoretic picture.

2 Bridging Information and Representation

2.1 Many-to-One-to-Many Architectures

The first proposal is that, for a certain vehicle to qualify as a representation, on top of

carrying information it must sit in the right place in a certain cognitive architecture.

Sterelny (2003), for example, has argued that the emergence of representations is enabled

by two prior evolutionary transitions: from “detection” to “robust tracking”, on the one

hand; from “narrow-banded” to “broad-banded” behavioral responses, on the other.

Robust tracking is in essence a many-to-one relation between world state and signal: many

sensory inputs give rise to one and the same representation. Other theorists have

advocated similar architectural constraints on representational vehicles. Famously, Burge

(2010) places a great deal of weight on perceptual constancies in his characterization of

perceptual representation (Burge 2010, p. 413.) This is a variation on Sterelny’s idea and,

as such, a many-to-one architectural constraint on representational status.

As for broad-banded responses, in these systems a single representation will be flexibly

dealt with, resulting in different courses of action, depending on the context where the

representation is tokened. Response breadth is in essence a one-to-many relation between

representational vehicle and output: one representation, many agential outputs.



2.2 Reference Magnetism

A second proposal has been to focus on the entities that should figure in the content of

simple representations. The suggestion, typically, is that represented entities should be

appropriately natural, or real. For example, Dan Ryder (2004, 2006) has argued that

neurons become attuned to sources of correlation. These entities are closely related to

Richard Boyd’s homeostatic property clusters (also HPC henceforth, Boyd 1989): HPC

theory identifies natural kinds with clusters of properties which tend to be instantiated

together. What Ryder calls sources of correlation are the grounds for these HPC-related

frequent co-instantiations—whatever it is that makes them not mere statistical flukes.

Ryder claims that many of the representations the brain trades in target sources of

correlation. Martínez (2013) and Artiga (forthcoming) have made more general cases that

simple representations preferably target HPCs (Martínez), or properties that best explain

the co-occurrence of other properties (Artiga).

A similar idea has been explored in an entirely independent line of enquiry starting with

Lewis (1983, 1984): “among the countless things and classes there are . . . [o]nly an elite

minority are carved at the joints, so that their boundaries are established by objective

sameness and difference in nature. Only these elite things and classes are eligible to serve

as referents” (Lewis 1984, p. 227). This is what Sider (2014, p. 33) calls reference

magnetism.

As I show in section 4, many-to-one-to-many cognitive architectures and reference

magnetism, although apparently disparate ideas, are in fact closely related, and the

explanatory payback they bring to representation-involving talk depends on their



informational underpinnings.

3 Information Theory is a Source-Channel Theory

Philosophy has understood information theory as a mostly definitional effort: for all

philosophers have typically cared, the theory begins and ends with a presentation of what

it takes for one random variable (or the worldly feature it models) to carry information

about another. But information theory goes well beyond that. It is, well, a theory, and as

such it is chiefly composed of claims that are advanced in the hope that they be true

about the world.

In a nutshell, the most celebrated results in information theory have to do with specifying

how faithful the transmission of information from a source can be, when it happens over a

(noisy, narrow) channel. These results have typically played no role in informational

accounts of representation.3 Take, for starters, the idealized depiction of an

information-processing pipeline in Figure 1 (cf. Cover & Thomas 2006, Figure 7.1)

Source Encoder Channel Decoder
original message

M

signal signal decoded message

M̂

Figure 1: An information-processing pipeline

Here an encoder produces a signal as a response to a message incoming from a source.

This signal goes through a channel and is subsequently decoded, producing a message that
3Two better informed, recent philosophical treatments of information are Bergstrom &

Rosvall (2011) and Rathkopf (2017).



is then utilized for whatever purposes downstream. The first thing to note is that the

broadly Dretskean ideas about the content of a signal introduced in section 1 only have

use for the first two links in this information-processing chain: how signals carry

information about a certain original message produced by a source, as depicted in Figure

2. In fact, in information theory the main action happens immediately after that: a source

is producing stuff, and we want information about that stuff to go through a channel.

Source Encoderoriginal message signal

Figure 2: The information-processing pipeline in the Dretskean tradition

Information theory is mainly about providing theoretical guarantees of faithfulness in

transmission, given the rate of the channel. We can think of this rate as the number of

bits it provides for the encoder to use in the signal. If, say, the rate is 2 bits per use of the

channel, this means the encoder can use up to 2 bits to construct the signal and be sure

that it can pass unscathed through the channel and on to the decoder. In typical cases of

representation, channel rate is consistently smaller than ideal. Consider animal alarm calls.

Vervet monkeys, for example, are typically described as being able to produce three

different, discrete kinds of calls (Seyfarth, Cheney & Marler 1980a, 1980b) that are usually

taken to be associated with the presence of leopards, eagles and snakes respectively.

Obviously, the entropy of the relevant aspects of the environment that prompt the

production of a call (think of all the possible patterns of approach of these predators, for



example) vastly outstrip the rate of a channel, which consists in the production of just one

out of three possible signals. This means that loss in communication is inevitable. Alarm

calls, and for analogous reasons representations in general, are all about lossy transmission.

The way in which information theory deals with lossy transmission is by defining a

distortion measure (Cover & Thomas 2006, p. 304) that gives a score to a pair composed

of a certain original message M , and the decoded version thereof, M̂ . In what follows I

will be using the Hamming distortion which simply adds 1 to the distortion when the bits

in the original and decoded signals (which we can assume to be binary strings) do not

coincide, and 0 otherwise, then normalizes. So, for example, the Hamming distortion

between an original message M = 010011 and a decoded message M̂ = 000010 is 2
6 ,

because the second and last (a total of 2) bits have been decoded incorrectly, and there are

6 bits in total.

The central result in this so-called rate-distortion theory approach to lossy transmission is

that there is a rate-distortion function, R(D), which gives the minimum rate at which any

given distortion is achievable. The actual mathematical expression of the rate-distortion

function need not detain us here (see Cover & Thomas 2006, p. 307, theorem 10.2.1), but

it is such that the Blahut-Arimoto algorithm (Blahut 1972; Arimoto 1972) allows us to

calculate it easily.

The main thesis of this paper is that representations belong in information-processing

pipelines whose rate-distortion function has sweet spots: by this I mean points in the

rate-distortion curve such that the usefulness of increasing the rate of the channel past

those points is much smaller than before reaching them. Moreover, the encoding-decoding

strategies that make use of these representations tend to live in the vicinity of those sweet



spots. I submit that it is these information-theoretic properties that the conditions on

representation discussed in section 2 try to get at.

To see how rate-distortion analyses work let’s start by looking into a source that models a

series of fair-coin tosses: this random variable would have two values, heads and tails, with

associated probabilities Pheads = Ptails = .5). Using the Hamming distortion as our target

distortion measure, if the coin lands heads (tails) and the decoded message is tails (heads)

the distortion is 1, otherwise 0. The Blahut-Arimoto algorithm allows us to draw the

rate-disortion curve, in Figure 3.4 Here the continuous line is the rate-distortion curve. It

intersects the x-axis at 1.0 bits (the entropy of the source) and it intersects the y-axis at

0.5 (the lowest average distortion one can achieve when the channel is closed.) The dashed

line gives a measure of how steep the continuous line is at any given point—the absolute

value of the slope of the continuous line. The higher the dashed line, the steeper the

continuous line.

The situation this setup is modeling is one in which a single cue is present or not, and a

signal tries to keep track of whether it is. This is precisely the kind of situation where

many theorists (certainly Sterelny and Burge, for the reasons reviewed in 2.1) would see

the postulation of representations as entirely idle—see, e.g., Schulte’s vasopressin example

in his Schulte (2015). In agreement with the idea that postulating representations here is

idle, there is not much structure to the rate-distortion curve corresponding to this setup:

reading the chart from right to left, increasing the rate makes the achievable expected

distortion go smoothly down, until the rate hits the entropy of the source, at which point
4The code from which this and other similar figures in the paper are generated can be

freely downloaded from the OSF project https://osf.io/2r965/.
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Figure 3: The rate-distortion function for a coin toss



the achievable distortion is zero. That’s about it.

Let’s now model one kind of situation in which there is a reasonably wide consensus that

representations make an explanatory contribution: vervet-monkey alarm calls, as reviewed

above. In the model, the source—the situation the information-processing pipeline is

dealing with—randomly makes members of two natural kinds (we can think of them as

two different predators) be or not present at any given time, independently from one

another. This intends to mimic the situation vervet monkeys face, where snakes, leopards

and eagles show up or not, more or less at random.

These natural kinds are modeled as homeostatic property clusters (see section 2.2 above).

In order to derive a explicit probability distribution for the source out of this qualitative

description, the two HPCs are in their turn represented by two Bayesian networks, each

with a parent node and four children (see Figure 4.) Each of the nodes stands for a

property, such as having spots or moving in a slithery way; if the node is on it means the

corresponding property is instantiated; if it is off it means it is not. In the model, children

nodes replicate noisily the state of their parent. Thus, e.g., if the parent is on (if the

corresponding property is instantiated) each child property will have a .95 chance of being

instantiated too; if the parent is off the probability for each children of being instantiated

is .05. The unconditional probability of instantiation for the two parent nodes is .5.

In the model, the source produces a 10-place binary string, with each character of the

string being 1 if the corresponding node is on, and 0 if it’s off. This signal is encoded, goes

through a channel, and is then decoded at the other side. The target distortion measure is

the Hamming distortion. Figure 5 plots the rate-distortion curve for this model. It is very

different from the curve in Figure 3: here, there is a clear “sweet spot”—a sudden drop in



P1

P2 P3 P4 P5

P6

P7 P8 P9 P10

Figure 4: Two natural kinds

the usefulness of extra rate, see the dashed curve—when the system hits a rate of 2

bit/use. I.e, there is, in a certain principled sense, an optimal level of lossy compression; a

way to set up an encoding-decoding strategy that recover most of what’s going on in the

world of relevance to the information-processing system, even through a very severe, 2 bit

bottleneck. I claim that this is no coincidence. Our representation-attributing practices

gravitate towards this kind of situation.

To see how sweet spots in rate-distortion curves and representations are related, consider

now what an optimal encoding-decoding strategy would look like. That is, how should the

encoder encode the message coming from the source, and how should the decoder decode

the signal coming from the encoder, so that the resulting expected distortion between

original and decoded messages is the minimum achievable, at the sweet spot?

Optimal Encoding Strategy: First divide the incoming signal in two halves, one

corresponding to properties P1 through P5; the other corresponding to properties P6

through P10.

If there is a majority of 1s in the first half of the original message set the first bit of
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Figure 5: A sweet spot in the rate-distortion function



the signal to 1. Otherwise set it to 0. Ditto for the second half of the original

message and the second bit of the signal.

Optimal Decoding Strategy: If the first bit in the incoming signal is 1, set the first

half of the decoded message to 11111. Otherwise, set it to 00000. Ditto for the

second bit and the second half of the decoded message.

How should we interpret what encoder and decoder are doing here? A natural way is this:

they are using the presence or absence of properties in an HPC cluster as diagnostic of the

presence or absence of the underlying natural kind—this would be the encoding part—and

then taking the resulting signals as representing the presence of a paradigmatic instance of

the kind, one that has all the properties in the cluster—this would be the decoding part.

HPC kinds being what they are, frequently the first half of the incoming message will

resemble the paradigmatic presence of the first kind (11111) or its paradigmatic absence

(00000), and the same will happen with the second half and the second kind. That is why

this encoding-decoding strategy works so well.

In describing this optimal strategy I have helped myself to representational vocabulary; it

has been useful in order to explain how the strategy works, and how come that behaving

in this particular way achieves low distortion at low rates: it is because each of the two

bits in the signal is caused by, and causes, behavior that is optimally attuned to the

probabilistic structure of each of the two natural kinds in the model world, respectively.

Nothing going on in this system falls outside the purview of Shannonian information

theory—of information theory tout court, so at least in this kind of case representational

talk depends on no non-informational fact.



We can now understand better what’s lacking in the philosopher of mind’s

information-theoretic tookit: it is entirely possible, and computationally trivial, to

calculate, e.g., Skyrms’s pmi between each of the possible signals (00, 01, 10 and 11) and

each of the possible world states (all 1024 of them, from 0000000000 to 1111111111).

Doing so would leave us with 4 vectors (one for each signal) with 1024 entries each (one

for each world state.) First, this is an unwieldy collection of numbers, which doesn’t bring

out the relevant structure. For example, if the probability of children nodes being on

conditional on their parent being on was .96 instead of .95 the rate-distortion curve would

be qualitatively identical, with a sweet spot in exactly the same place, yet most numbers

in the Skyrmsian informational content vectors would change. Second, and most

important, nothing in those 4096 numbers allows us to infer the presence of a sweet spot.

The relevant information is simply not there, depending as it does on a distortion measure

which is not used in computing Skyrmsian informational contents.

If the discussion so far is on the right track, the question about what makes

representational talk explanatory can be readily answered: saying that a certain vehicle is

a representation conveys something quite specific about its informational context. It says

that the vehicle is part of an encoding-decoding strategy that exploits a sweet spot in a

rate-distortion curve—where the curve is in turn fixed by the probabilistic structure of the

world, and the target distortion measure. This, in less technical terms, translates to saying

that the vehicle is summarizing relevant (this is where the distortion measure comes in)

aspects of the current situation in an optimal, if lossy, manner, made possible by how the

world is (this is where the probabilistic structure of the world comes in.) This explication

of the explanatory contribution of representations can be turned into an explicit answer to



what makes something a representation—an answer, that is, to what Artiga (2016) calls

the metasemantic question:

The Rate-Distortion Approach: A signal, S, in a certain information-processing

pipeline, P , is a representation if the following two conditions are met:

Existence: There are sweet spots in the rate-distortion curve associated with P .

Optimality: S is produced as part of an encoder-decoder strategy that occupies

the vicinity of one of these sweet spots.

So, pace Dretske, the core information-theoretic notions of entropy, rate, distortion, etc.

can provide invaluable insight into the representational status of individual signals. If the

rate-distortion approach is on the right track, those information-theoretic notions, through

the existence condition, specify the kind of setup where representations live, which then

the optimality condition can use to provide a criterion for the representational status of

individual signals.

I offer the foregoing discussion as a preliminary case for the rate-distortion approach to

representation: it shows how postulating representations is explanatory, even if these

representations depend just on (Shannon) information. It illuminates the difference in

representational status between cue-driven examples, such as Schulte’s vasopressin; and

vervet alarm calls, and other similar examples. To complete this preliminary case I now

show how the ways to bridge the gap between natural and nonnatural information

discussed in section 2 can be seen as unwitting attempts to get at rate-distortion sweet

spots.



4 There is no Gap to Bridge

What does it take for the existence condition to be met? That is to say, what

circumstances result in sudden drops in the slope of the rate-distortion curve? We have

seen one such family of circumstances: if the pattern in which properties are instantiated

in the source is noisily replicated in a cluster then sudden drops are to be expected:

distortion will decrease with rate up to the point where all the main sources of variation in

property instantiations are accounted for, and all that remains is the residual noise in

instantiations within each cluster. Take a look again at figs. 4 and 5: to describe this

source we basically need enough rate to account for the two main sources of variation: P1

and P6. This is not all there is to the world, because it’s possible for the other properties

to (fail to) token independently of their parent, but the unlikeliness of these departures

makes the extra rate comparatively less useful.

Noisy replication of property instantiations is at the core of the HPC theory of natural

kinds, as we saw above. This means that, in general, the presence of HPC natural kinds in

a source will create sweet spots. This opens a line of argument in favor of reference

magnetism from information-theoretic premises: reference magnetism should be seen as

making a point about the kind of probabilistic structure that an information-processing

pipeline must be attuned to, if signals are to effect the kind of optimal lossy compression

that underlies our representation-attributing practices. Reference magnetism is just a way

of meeting part of the existence condition.

Regarding the suggestion, by Sterelny, Burge and others, that representations inhere

preferably on signals sitting in a one-to-many-to-one pipeline, I submit that the



many-to-one aspect of this suggestion aims at meeting the optimality condition; the

one-to-many aspect, together with reference magnetism, aims at meeting the existence

condition.

The first thing to note here is that the Optimal Encoding Strategy presented above

enforces what Sterelny calls robust tracking and Burge calls constancy: the strategy

consists in considering all properties coming from each of the two clusters and setting the

relevant bit to 1 only if a majority of those properties are instantiated. That is, the

encoder is taking a multiplicity of configurations (e.g., the first half of the incoming signal

being 00111, 01011, 10111, etc.) to a single output: the first bit of the signal being 1.

Furthermore, that part of the signal will be decoded as 11111: from there on, the system

downstream will treat whatever is out there in the world as a paradigmatic member of the

first kind. The system is recovering the presence of a natural kind out of many different,

noisy instantiation patterns. This is a clear instance of constancy. Suppose that the

encoder, insted of being many-to-one, depended on a single cue; say, suppose it set the

first bit to 1 if one of the children properties (say, P2) was instantiated, and to 0 otherwise.

In such a cue-driven setup, the best encoder-decoder arrangement possible is marked by

the circle in Figure 6. This has almost double the distortion than the optimal encoding

(marked by the cross) which sits right on top of the optimal rate-distortion curve. This

cue-driven system would not meet the optimality condition, which means that a

many-to-one architecture is instrumental to meeting it.

Finally, the target distortion measure in the information-processing pipeline can be seen as

that which Sterelny’s one-to-many condition on representation is actually tracking. Using,

for example, the Hamming distance as a distortion measure is tantamount to assuming
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Figure 6: Cue-driven encoding



that all of the properties of the natural kinds are relevant for downstream processing. One

natural way in which this may happen is when the agent is to respond flexibly to the

presence of the natural kind: in different contexts or states different properties of the kind

might be relevant and, for example, the presence of a tree might be sometimes relevant to

behavior because it bears fruit (if the agent is hungry) and some other times because it

has a dense cover (if the agent is looking for shelter.)

Caring about all (or many) properties of the kind is what makes the rate-distortion curve

display a sweet spot. If, instead, the agent has a rigid, stereotyped response to the

presence of members of the kinds—that is, if it only cares about the presence of one

property, which is the property that makes that rigid behavioral response fitness-conducive,

then the curve is again as presented in Figure 3. Rigid behavioral responses make the

probabilistic structure of the kinds largely irrelevant. As a result, the system behaves as if

a coin were tossed, where heads would mean that the target property is tokened, and tails

that it is not. This arrangement does not meet the existence condition. Sterelny’s

broad-banded responses are, again, a way of getting at rate-distortion sweet spots.
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