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Abstract

This paper is about the metaphysical debate whether objects persist over time

by the selfsame object existing at di�erent times (nowadays called `endurance'

by metaphysicians), or by di�erent temporal parts, or stages, existing at di�er-

ent times (called `perdurance'). I aim to illuminate the debate by using some

elementary kinematics and real analysis: resources which metaphysicians have,

surprisingly, not availed themselves of. There are two main results, which are of

interest to both endurantists and perdurantists.

(1): I describe a precise formal equivalence between the way that the two

metaphysical positions represent the motion of the objects of classical mechanics

(both point-particles and continua).

(2): I make precise, and prove a result about, the idea that the persistence

of objects moving in a void is to be analysed in terms of tracking the continuous

curves in spacetime that connect points occupied by matter. The result is entirely

elementary: it is a corollary of the Heine-Borel theorem.
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1 Introduction

In this paper I will address a debate in metaphysics, using some resources of elementary

mathematics (kinematics and analysis): resources which metaphysicians have, surpris-

ingly, not availed themselves of. The metaphysical debate is about the persistence

of objects over time: does an object persist over time by the selfsame object exist-

ing at di�erent times (nowadays called `endurance' by metaphysicians), or by di�erent

temporal parts, or stages, existing at di�erent times (called `perdurance')?

I will describe the two rival positions (endurantism and perdurantism) in more detail

in Section 2. Then I use some elementary mathematics to give two results about how

these two positions describe the objects of classical mechanics: results which should be

of interest to both positions. Here I use `object' to include both:

(i) point-particles, which we think of as moving in a void (so that a system composed

of �nitely many point-particles is �nite-dimensional); and

(ii) classical continua, i.e. bodies whose composing matter entirely �lls their volume,

so that the body is strictly speaking in�nite-dimensional; though it may be small and-

or rigid enough to be treated as �nite-dimensional. (Indeed, it may be small and

rigid enough to be treated as a point-particle: as in the usual Newtonian mechanical

treatment of planetary motion!)

The �rst result (in Section 3) is a precise formal equivalence between the way that

endurantism and perdurantism represent the motion of objects: both point-particles

and continua, in either a classical or relativistic spacetime. (But I will agree that

because the equivalence is formal, it is liable to be broken by various philosophical

considerations.)

The second result (in Section 4) make precise the idea that the persistence of

objects moving in a void is to be analysed in terms of tracking the continuous curves in

spacetime that connect points occupied by matter. (The result is entirely elementary:

it is a corollary of the Heine-Borel theorem.) By and large, it is perdurantists, not

endurantists, who discuss this idea of analysing persistence in terms of tracking matter;

since for them, persistence is not identity, so that they need to tell us what they take

it to be. (This endeavour is called `de�ning the genidentity relation between temporal

parts', as well as `analyzing persistence'.) But I maintain that this result (like the �rst)

is not only of interest for perdurantists: for endurantists, it makes precise the idea of

keeping track of enduring objects as they move through space.

On the other hand, this second result is limited in a way that the �rst is not: as

follows. One of the main arguments in the metaphysical literature on persistence is

an argument against perdurantism, that turns on the contrast between point-particles

and continua. The argument is based on two ideas:

(i) Homogeneous: In a continuum (i.e. continuous body) that is utterly homoge-

neous throughout a time-interval containing two times t0; t1, a spatial part at the time

t0 is equally qualitatively similar to any spatial part congruent to itself (i.e. of the same

size and shape) at the later time t1. (The properties of the continuum can change over
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time, but must not vary over space; e.g. the continuum could cool down, but must at

each time have the same temperature everywhere.)

(ii) Follow: The perdurantist will presumably try to analyze persistence (de�ne

genidentity) in terms of following timelike curves of maximum qualitative similarity.

The strategy of Follow seems to work well when applied to point-particles moving

in a void with a continuous spacetime trajectory (worldline): for starting at a point-

particle at t0, there is a unique timelike curve of qualitative similarity passing through

it. Similarly for point-particles moving, not in a void, but in a continuous 
uid with

suitably di�erent properties (a di�erent \colour", or made of di�erent \stu�"). That is

rough speaking: but it is widely accepted|and I will also accept it. But Homogeneous

implies that Follow's strategy stumbles when applied to a homogeneous continuum.

There are altogether too many spatial parts at t1 that are tied-�rst-equal as regards

qualitative similarity to the given spatial part at t0: any congruent spatial part will

do. In other words: the curves of qualitative similarity run \every which way".

This problem is made vivid by urging that the perdurantist cannot distinguish two

cases that, the argument alleges, must be distinguished: for example, a perfectly circu-

lar and rigid disc of homogeneous matter that is stationary, and a duplicate disc (con-

gruent, rigid, homogeneous, and made of the same material) that is rotating. Hence the

argument is nowadays often called the `rotating discs argument'; (recent discussions,

including references, include: Hawley 2001, p. 72-90, Sider 2001 p. 224-236).

I believe that the perdurantist can rebut this argument. But I argue this elsewhere

(2004, 2004a), and will not take up the issue. Here, I need to say only that this paper's

second result is limited in the sense that it does not address the argument. Nor does it

concern the idea that underlies the argument, of qualitative similarity relations among

the spatial parts of a homogeneous body. In other words, the second result applies

primarily to point-particles moving in a void (or in a 
uid of di�erent \stu�"). It

is applied to extended bodies by ignoring their inner constitution: i.e. in e�ect by

treating them as small and rigid enough to be modelled as a point-particle. But as the

above example of a planet shows, this need not be a drastic limitation.

I turn to summarizing how these results bear on the metaphysical dispute between

endurantism and perdurantism. First: I do not claim that these results resolve the dis-

pute, even for the objects of classical mechanics; nor that the sort of technical resources

I use could somehow be exploited to do so. Indeed, even when the metaphysical dispute

is considered only in connection with the objects of classical mechanics, the consider-

ations on the two sides are so various and inter-related as to resist formalization. So

we cannot be sure that the dispute can be formulated in a precise way acceptable to

both sides: let alone expect it to have a de�nitive, maybe formal or technical, resolu-

tion. (Details in Section 2; though I daresay almost any philosophical dispute similarly

resists a de�nitive, and in particular a technical, resolution! Cf. e.g. Kripke (1976,

Section 11(b), p. 407-416).)

But I do claim that my results shed some light on the dispute. I think that (i) the

equivalence contained in the �rst result, and (ii) the fact that the second result's idea of
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tracking can be endorsed by the endurantist as well as the perdurantist, suggests that|

as regards describing the motion of the objects of classical mechanics|the honours are

about even between endurantism and perdurantism. `Honours about even' is a vague

and ecumenical conclusion. But I think it is a worthwhile one|especially since, as

I argue elsewhere, it can be supported by a rebuttal of the rotating discs argument.

And because of that rebuttal, I believe that overall, as regards classical mechanics, the

cases for endurantism and perdurantism are about equally strong. In any case, setting

aside this paper's results: I suggest that the sort of resources I use here are a promising

armoury for attacking various somewhat technical questions about persistence that the

philosophical literature seems not to have addressed.

Finally, a point about my discussion's being restricted to classical mechanics: and

its focussing (in the second result) on classical point-particles, or objects small and

rigid enough to be modelled as point-particles. This restriction implies, I am afraid,

that (unlike most papers in this memorial issue) I will not discuss any of the mysteries

of quantum theory: not even in that lucid and even unmysterious form, the pilot-wave

theory, that Cushing championed so persuasively (1994; 1998 Chapters 23, 24). But I

hope that this mixture of physics and philosophy, and more speci�cally, this scrutiny

of point-particles, honours the memory of a man who had such mastery of both these

disciplines|and whose work gave point-particles such a good press!

2 Endurantism Vs. Perdurantism

I begin by introducing the metaphysical debate about persistence. I adopt the follow-

ing terminology, which is now widespread. `Persistence' is the neutral word for the

undeniable fact that objects are not instantaneous: objects, or at least most objects,

exist for a while. The debate is over how to understand persistence. The two main

positions can be roughly stated as follows:|

(i): Endurantism: The endurantist holds that persistence is a matter of the selfsame

object being present at two times|as is often said for emphasis, `wholly present at two

times'. This is called `endurance'. At �rst sight, this view seems close to \common

sense", and on that account plausible: it seems that the selfsame rock exists at noon

and 12.05.

(ii): Perdurantism: The perdurantist holds that at each time, only a stage or phase

of the object is present: persistence is a matter of there being a sequence of \suitably

related" stages. At �rst sight, this view clashes with \common sense", and is to that

extent implausible: a rock seems not to have stages. So perdurantists urge that their

view has advantages over endurantism that are worth the cost of revision; some perdu-

rantists say the advantages dictate the revision, others just that they favour it. I will

not need to list, let alone assess, these alleged advantages: they concern both general

principles, and the solutions to various puzzle cases.

Another way to put the contrast between endurantism and perdurantism is in terms

of spatial and temporal parts of objects. Both the endurantist and perdurantist accept
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that objects have spatial parts; e.g. the arm of the sofa. The perdurantist urges

that they likewise have temporal parts, viz. stages. Again, such temporal parts seem

to clash with common sense; and accordingly perdurantists admit that their view is

revisionary.2

This terminology of `persistence', `endurance' and `perdurance' is due to Johnston,

and became widespread through the in
uence of its adoption by Lewis (1986, pp. 202-

204). Another widespread terminology is to call endurantism `three-dimensionalism'

and perdurantism `four-dimensionalism': a terminology which is adopted by Sider,

whose �ne monograph (2001) surveys the debate and defends (what he calls!) four-

dimensionalism. Sider (2001, p.3) helpfully lists many advocates on both sides. Among

the recent advocates he lists are the following:

(i) for endurantism: Haslanger (1994), Johnston (1987), Mellor (1998) and Rea

(1998); Rea (1998) is useful since he replies seriatim to various arguments against

endurantism;

(ii) for perdurantism: Balashov (1999), Hawley (2001), Lewis (1986, pp. 202-204;

1988, 1999), and Sider himself.

I admit that my formulations of endurantism and perdurantism above are sketchy;

(and consequently, so is my claim that endurantism is closer to common sense). In fact,

the advocates listed give various formulations; and both sides of the debate have found

problems in their opponents' formulations|even to the extent of saying they do not

understand them! Thus some endurantists have complained that temporal parts are

problematic, or even unintelligible; and some perdurantists have found the formulation

of endurance problematic. (For example, Sider discusses both allegations, and endorses

the second; 2001, pp.53-62 and 63-68 respectively.)

But in this paper, I shall not need to be very precise about the formulation of either

position. I can make do with the following adaptation of Sider's position. In short: I

will follow his philosophical methodology, and his formulation of perdurantism; but I

will deny his allegation that endurantism is problematic.

Sider takes it that the perdurantist believes in the existence of a kind of object,

viz. temporal parts, that the endurantist (i) understands but (ii) denies to have any

instances. (He defends the presupposition here that the two parties disagree about a

matter of fact, albeit one that is hard to know, against a \no-con
ict view" of the type

suggested by Carnap's linguistic frameworks.) Sider then formulates perdurantism in

terms intelligible by the endurantist, as follows; (2001, pp.55-62). The endurantist

accepts the notions of existence at a time, and one object being a part of another at

a time. The claim that there are instantaneous temporal parts of any (spatiotemporal

as against abstract) object is then:

for any object o, for any time t at which o exists, there is an object that:

(i) exists only at t; (ii) is part of o at t; (iii) overlaps any object that is part

2
But even perdurantists should accept that spatial and temporal parts are individuated di�erently;

for details, cf. Butter�eld (1985, pp. 35-37).
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of o at t.

(Clause (iii) secures that the temporal part encompasses o's entire spatial extent at t.)

Similarly for non-instantaneous temporal parts, corresponding to any interval [t1; t2]

throughout which o exists. The claim is then:

for any object o, for any interval [t1; t2] throughout which o exists, there is

an object that, for any time t 2 [t1; t2]: (i) exists at t; (ii) is part of o at t;

(iii) overlaps any object that is part of o at t.

(One could make stipulations about what to say about intervals [t1; t2] for which o does

not exist throughout the interval.)

So endurantism denies these claims. Since they are universally quanti�ed, such

a denial could be very weak, claiming only that some object does not have all the

temporal parts (instantaneous or extended) claimed by the perdurantist. Of course,

endurantists usually make a much stronger denial. They say that the objects of or-

dinary ontology|J.L. Austin's `medium-sized dry goods' like chairs, organisms like

people, and \wet goods" like lakes or clouds|have no temporal parts. This is how I

shall understand endurantism.

To which I add four comments, of which the third and fourth are most relevant for

what follows:

(i): Sider himself argues that formulating endurantism is problematic. (He does

this by stating and rebutting possible meanings for the endurantist's catchphrase that

objects are \wholly present at a time"; 2001, pp. 63-68.) But I think endurantism is

adequately formulated as just the suitably strong denial, of the perdurantist's claims

above.

(ii): My formulation of the debate (and adjustments one might make in the light of

(i)) brings out that the debate is metaphysical, not linguistic or epistemic. From this

perspective, some arguments in the literature, in particular objections to perdurantism,

are misdirected. (Cf. Sider (2001, p.208-212) for some robust replies along these lines.

More positively, this means that the perdurantist can adopt a number of di�erent views

about the relation of temporal parts to temporal language and its semantics; which

Sider also discusses.)

(iii): There is of course a compromise mixed view, that some objects such as meals

and explosions|objects one might call `events'|have temporal parts. Though I think

this view has much to recommend it (2004a), I will not explicitly discuss it below: for

it will be obvious how my discussion, in particular my two results, would apply to this

view.

But I should stress that the mixed view has a signi�cant background role in my

discussion. For I will assume that endurantists and perdurantists alike can talk of

the spacetime manifold, and spacetime regions of various types like timelike curves

(worldlines) and spacelike slices. I defend this assumption elsewhere (2004). Here it

must suÆce to say that many on both sides of the current endurantism-perdurantism

5



debate are \scienti�c realists", and even substantivalists about spacetime. They be-

lieve that successful scienti�c theories like relativity theory, literally construed, are

approximately true; and even that spacetime points are bona �de objects bearing the

properties and relations represented by mathematical structures like metrics and con-

nection. Perdurantists who believe this typically take spacetime regions also to be

perduring spatiotemporal objects, viz. mereological fusions of their points, rather than

being \abstract" sets of points; (where `abstract' means at least `spatiotemporally

non-located, so that the question of persistence does not arise'). But since temporally

extended spatiotemporal regions surely do not endure, endurantists who are substan-

tivalists must either (a) take regions to be abstract sets of points, or (b) adopt the

mixed view, and then say that spatiotemporal regions are among the events.

(iv): Elsewhere (2004a), I argue that the perdurantist can perfectly well advocate

only extended i.e. non-instantaneous temporal parts; and that there is good reason for

them to do so|i.e. to deny the existence of strictly instantaneous parts. For one thing,

a perdurantist who advocates only extended temporal parts has a complete reply to the

rotating discs argument (2004). In (2004a), I also diagnose perdurantists' traditional

acceptance of instantaneous parts as due to an erroneous doctrine I call `pointillisme'.

In this paper, I will not need to be precise about pointillisme. I only need two main

ideas; as follows.

First: roughly speaking, pointillisme is the claim that the history of the world

is fully described by all the intrinsic properties of all the spacetime points and-or all

the intrinsic properties at all the various times of point-sized bits of matter.

Second: here, `intrinsic' means `both spatially and temporally intrinsic'; so that

(a) attributing such a property carries no implications about matters at other places,

or at other times, and (b) a pointilliste perdurantist will seek to analyse persistence as

a matter of some suitable relations between instantaneous stages.3

3 An Equivalence

In this Section, my main aim is to present my equivalence between endurantism's

and perdurantism's representations of the motion of the objects of classical mechanics

(whether point-particles or spatially extended).4

This equivalence is \only formal"|it ignores philosophical issues. And I agree that,

as so often, the formal nature of the equivalence makes it liable to be broken by philo-

sophical considerations. I shall not list, let alone survey, all these considerations. (I

3
Two ancillary remarks. (1) I will not need to be precise about the intrinsic-extrinsic distinction

among properties; which is fortunate, since how best to understand it is controversial. (2) A warning

about my jargon: What I here call `pointillisme' is called in my (2004a) `pointillisme as regards

spacetime'|to distinguish it from another doctrine, which is here irrelevant.
4
One can think of the equivalence as making precise an accusation sometimes made by people (in

my experience, especially physicists and mathematicians) when they are �rst told about the distinction

between endurance and perdurance|that it sounds spurious, a di�erence only in words.
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discuss some of them elsewhere (2004a). And anyone familiar with the endurantism-

perdurantism debate, e.g. as surveyed by Hawley (2001) and Sider (2001), will be able

to list yet more.) But I note that one such consideration, viz. criteria of identity, is the

topic of Section 4. And in this Section, the main point about breaking the equivalence

will be that under certain assumptions (including the pointilliste assumption of using

instantaneous temporal parts), the equivalence can fail formally for continua, i.e. con-

tinuous bodies (Section 3.5). Besides, a�cionados of the rotating discs argument will

recognize this failure as the formal fact underlying that argument. Hence my argu-

ments in (2004, 2004a) that once pointillisme is rejected, the rotating discs argument

fails, and perdurantism is tenable for the continuous bodies of classical mechanics.

I will present the equivalence in an informal way. I will not state more exactly than

I did in Section 2 what endurantism and perdurantism claim; nor what notions (like `...

is a part of ... at time t') they each �nd intelligible. Nor will I need to say what exactly

is intended by each of them \recovering" in their own terms, the perduring/enduring

object advocated by the other side. This informality will have the advantage of clarity.

But more important: it will also, I think, strengthen the equivalence, by making it

equally applicable to various precise formulations of endurantism and perdurantism

that one might adopt. But I will not try to prove this. Though I agree that it would

be a good project to do so, e.g. for the formulations discussed by Sider (2001, pp.

53-68), it is not necessary for this paper.

3.1 The idea: fusing worldlines

The equivalence depends on the idea that a spatially unextended i.e. point-sized endur-

ing object can be mathematically represented by a worldline, i.e. a curve in spacetime

giving its spatiotemporal location at any time at which it exists. Here a curve is de�ned

as a function q from time t 2 IR to spatiotemporal locations q(t); so for a point-particle,

q(t) 2 M, withM the manifold representing spacetime. (I shall shortly generalize the

discussion to spatially extended objects.)

On the other hand, a perduring spatially unextended object with its various stages

can be mathematically represented by a collection of \shorter" worldlines, one for each

stage. That is, we represent the location of each stage by a function de�ned on the

corresponding time-interval, mapping times to the stage's location at that time.

The idea of the equivalence is now obvious. Any function q de�ned on a domain

dom(q) is equivalent to (i.e. de�nes and is de�ned by) any collection of functions q�, �

the index, on a collection of subsets of dom(q) that (i) cover dom(q), i.e. [�dom(q�) =

dom(q), and (ii) mesh in the sense that if dom(q�1) and dom(q�2) overlap, dom(q�1) \
dom(q�2) 6= ;, then q�1 and q�2 agree on the overlap:

8t 2 dom(q�1) \ dom(q�2) 6= ; ; q�1(t) = q�2(t) : (3.1)

To make the point as simply as possible, let us consider an enduring point-particle,

labelled i, that is eternal in that it exists at all t 2 IR; and let us locate it in Euclidean
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space IR3 rather than spacetime. So we have a function qi : IR! IR3. As to perduran-

tism, we will consider only stages corresponding to closed intervals of time [a; b] � IR.

It will be clear that nothing in the sequel depends on dom(qi) being IR; I could instead

�x a temporal interval large enough to include all objects and stages of objects to be

considered. Nor will anything depend on using closed intervals, rather than say open

ones. Nor will anything depend on using all closed intervals, rather than a family that

cover the lifetime of the particle.

The function qi immediately de�nes suitable mathematical representatives of the

perdurantist's stages, viz. the restrictions of qi to subsets of its domain; in particular,

restrictions to closed intervals [a; b] � IR: qi j[a;b]: t 2 [a; b] 7! qi(t) 2 IR3. Conversely,

on the perdurantist conception of the point-particle, we represent the location of each

stage by a function de�ned on the corresponding time-interval, mapping times to the

stage's location at that time. So we have, for each closed interval [a; b] � IR, a function

q[a;b] : t 2 [a; b] 7! q[a;b](t) 2 IR3; where these functions are now not given as restrictions

of a function qi. But suppose we are given such a collection of functions which agree

with each other in the obvious way expected for a point-particle, viz. that if t 2
[a; b] \ [c; d], then q[a;b](t) = q[c;d](t). That is, the functions mesh in the sense of

eq. 3.1. Then there is a unique function qi : IR ! IR3 whose restrictions qi j[a;b] to
intervals [a; b] are the given functions q[a;b]. This function qi is a suitable mathematical

representative of the (location of) the endurantist's enduring object. (I have merely

labelled the endurantist's function, but not the perdurantist's functions, with i.) This

result suggests that the endurantist and perdurantist can each \reconstruct" what the

other says about the persistence of an object.

3.2 Generalizations

This equivalence extends readily to much more general situations. It is obvious that

it extends in the ways mentioned above: to a point-particle that is not eternal, and to

stages not speci�ed by a closed interval of times.

Furthermore, for a point-particle, the perdurantist can work with instantaneous

stages. (But beware: we will see in Section 3.5 that this extension to instantaneous

stages will not work for continua, rather than point-particles|which will spell trouble

for the pointillisme introduced at the end of Section 2.) For one way to cover the domain

dom(q) of a function q is with the singleton sets ftg; t 2 dom(q). That is: suppose the

endurantist writes for a point-particle labelled i that is, say, eternal, a single function:

qi : t 2 IR 7! qi(t) 2 IR3. Then the perdurantist can write an uncountable family of

functions qt, one for each t 2 IR, with domain just ftg, sending t to the point-particle's

location then: qt(t) 7! qi(t) 2 IR3. This uncountable family of functions trivially de�nes

the endurantist's function qi. (The meshing requirement eq. 3.1 is now vacuous; no

two domains overlap.)

The equivalence also obviously extends to spatiotemporal location, rather than

spatial location. The simplest such extension conceives spacetime as just IR� IR3, and
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de�nes a new q0

i
(t) := (t; qi(t)); but the generalization using any spacetime manifoldM

as codomain of the function qi is immediate. In particular, the equivalence obviously

extends to relativity. Indeed nothing in the discussion above requires the curve qi :

IR ! M to be non-spacelike (i.e. having a tangent vector that at all points on the

curve is on or in the light-cone).

It also extends to an object that is spatially extended. This requires that qi takes

as values subsets, not points, of the spacetime M (or of space, if we consider spatial

not spatiotemporal location). But with qi's values thus adjusted, the equivalence holds

good. Agreed, if we are considering spatiotemporal location, so that qi(t) �M, we will

want qi(t) to be a spacelike set of points so as to represent an instantaneous location

of the object; (`spacelike' can be de�ned for non-relativistic spacetimes, on analogy to

the relativistic de�nition). We will probably also want no two qi(t); qi(t
0), for t 6= t0, to

overlap. But such requirements do not a�ect the equivalence.

Besides, these extensions of the equivalence are compatible: they can be com-

bined. To list the extensions in the order given: the perdurantist can consider a

non-eternal object, conceiving it in terms of instantaneous stages (so using functions

qt, with dom(qt) = ftg), locating it in spacetime M rather than space, and taking it

as spatially extended: so that qt(t) �M.

3.3 The case of more than one object

What about the case where two or more objects are in play? Again, the equivalence

extends to this case; and it does so equally well for the various sub-cases|i.e. whether

the objects are point-particles in a void, or spatial parts (including point-particles)

of a common extended object, or distinct extended objects. From the endurantist

perspective, the situation is straightforward. In all these sub-cases, the endurantist

will have a collection of functions qi, where i now runs over an index set, which we can

allow to be in�nite and even uncountable. Just as before: each qi de�nes its restrictions

qi j[a;b], so that the endurantist can claim to recover the perdurantist's stages.

But from the perdurantist's perspective, the situation is more subtle. Yes, the

equivalence extends to many objects, and does so equally well for the various sub-

cases listed. But it is worth distinguishing two di�erent ways the perdurantist might

construct the endurantist's functions qi. For the second brings out the limitations

of pointillisme: that is, the second of these two perdurantist constructions cannot be

adapted to using instantaneous stages.

First, the perdurantist can work with a doubly-indexed collection of functions, qi;[a;b],

which for each �xed i meshes on overlapping values of the second index, in the sense of

eq. 3.1, so that for each �xed i there is a unique function qi that yields the given qi;[a;b]
by restriction|so that the perdurantist can claim to recover the endurantist's enduring

object labelled i. In short: the equivalence of Sections 3.1 and 3.2 carries over, the

index i just carrying along throughout (again: no matter how large the index-set).
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It is tempting to object to this construction that the perdurantist's use of an index

i as the �rst coordinate of a double-index amounts to presupposing the notion of

persistence, in an illegitimate way. But I say `tempting' to indicate that the objection

is not conclusive. For the dialectical situation here is not crystal-clear, since (as I

admitted above) I have not tried to formulate endurantism and perdurantism precisely.

In particular, I have not initially stated (for any of my equivalence's cases) exactly what

resources each side is allowed to assume, nor what exactly is intended by \recovering"

the perduring/enduring object of the other side. For example, a perdurantist might

reply to this objection with a tu quoque: saying that the endurantist's use, for the case

of two or more objects, of the same index i surely also presupposes persistence. I also

agree that to this, some endurantist might reply that the endurantist's (but not the

perdurantist's) presupposing persistence is legitimate, since the endurantist makes no

claim to analyse persistence. And I agree that this rejoinder may be right, for some

endurantists. And so it goes. As I said, the dialectical situation is unclear|and this

paper will not aspire to getting it crystal-clear. Here, it will be enough to discuss|

in the following two Subsections|some issues about what resources each of the two

sides might assume, and about what they can \recover" of the other side's notion of

persistence.

3.4 Avoiding double-indexing

The �rst comment to make is that the perdurantist can make another construction,

which \recovers" enduring objects, without assuming double-indexing from the begin-

ning. More precisely, the perdurantist can do this provided that: (a) they do not work

with instantaneous stages; and (b) the given enduring objects are mutually impenetra-

ble, i.e. no two of them are located at the same place at the same time. (And if they

are penetrable, the endurantists themselves arguably have work to do in regimenting or

justifying their index i ...) The idea of the construction is that impenetrability enables

one to use an equation like eq. 3.1 to build up whole worldlines uniquely in the same

way as before, i.e. by fusing the worldlines of stages|even though the stages are now

not given as stages of one object rather than another (i.e. are not given using an index

i).

Let us take the case where the endurantist's enduring impenetrable objects are

each of them eternal and are labelled by i, which runs over an index set I; and where

the perdurantist is to \recover" them using stages corresponding (for each object) to

all closed intervals [a; b] � IR of time that are of �nite length; i.e. b is not equal

to a (no instantaneous stages). To do so, the perdurantist needs only to assert the

existence of a singly-indexed family F of functions q� (� running over some index-

set) with the �ve properties, (i)-(v) below. The �rst and second properties concern

domains and codomains; the third expresses that there are enough perduring objects to

recover all the endurantist's set of objects (a set whose size is the size of I); the fourth

expresses the eternity of the objects; the �fth property is the main one, expressing the

impenetrability assumption.
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The properties (i)-(v) are:|

(i): for all q�: dom(q�) is a closed interval [a; b] � IR, with b not equal to a.

(ii): for all q�: the values of q� are points in space, say IR
3, or are points in spacetime

M, or are subsets of space or of spacetime|according as the objects considered are

located in space or spacetime, and are or are not spatially unextended.

(iii): for each closed interval [a; b] � IR, the family F contains as many functions

q� with dom(q�) = [a; b] as there are elements in the (endurantist's) index set I.

(iv): for any two overlapping closed intervals [a; b]; [c; d]: for any function q�1 with

dom(q�1) = [a; b], there is a function q�2 with dom(q�2) = [c; d] which agrees with q�1
on the overlap of their domains, i.e. eq. 3.1 holds.

(v): for any two overlapping closed intervals [a; b]; [c; d]; for any t 2 [a; b] \ [c; d];

and for any two functions q�1 ; q�2 with dom(q�1) = [a; b]; dom(q�2) = [c; d]:

If q�1(t) = q�2(t) ; then 8t0 2 [a; b] \ [c; d] q�1(t
0) = q�2(t

0) : (3.2)

To sum up:| Property (v) says, in words: two functions representing stages, that

have overlapping domains of de�nition, and agree on some argument t in that overlap,

must agree throughout that overlap, in the sense of eq. 3.1. This agreement re
ects the

fact that the two functions represent overlapping stages of a single persisting object.

Taking (iv) and (v) together: (iv) states the existence of a continuation of any stage

into the future (even the distant future, by letting d >> b); (v) makes that continuation

unique.

So given such a family F , the perdurantist can construct the worldlines of persisting
objects in much the same way as they did for a single object. Starting with any function

q�, with domain [a; b] say, representing the [a; b]-stage of some object, condition (iv)

implies the existence of a continuation upto any time d in the future; (v) makes that

continuation unique; and condition (iii) ensures that by considering all the functions

q� with domain [a; b], we can recover all the endurantist's objects indexed by the index

set I.

For the sake of completeness, I shall spell out the argument of the last paragraph,

showing how to introduce double-indexing for F , with the index i given by the objects'

non-overlapping locations on some �ducial time-slice. (But the details are not needed

later and can be skipped.) There are three steps.

(1): Pick any [a; b] and any t 2 [a; b]. Let any q�1 with dom(q�1) = [a; b] be given

two indices: i) q�1(t) and ii) its domain, [a; b].

(2): Now consider any other function q�2 with dom(q�2) = [c; d] say. There is a chain

of intervals from [a; b] to [c; d], with adjacent intervals overlapping, i.e. [a1; b1] := [a; b],

[a2; b2] with [a1; b1]\ [a2; b2] 6= ; etc ... [an; bn] := [c; d]. (In fact, by (iii) we can assume

the chain has just three members: no matter how far apart the intervals [a; b] and

[c; d] are, the interval between a+b

2
and c+d

2
overlaps both of them.) By (iii)-(v), this

chain determines a unique function q0 with dom(q0) = [a; b], whose unique continuation,

de�ned through the chain (in the sense of properties (iv) and (v)), on the interval [c; d]

is the given q�2 .
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(3): Now we label q�2 by: i) the index q0(t) given in step (1) above to q0 and ii)

q�2 's own domain [c; d]. Thus F becomes double-indexed in the desired way.

Again, the construction can be varied and generalized in obvious ways: e.g. one

could allow for non-eternal objects, and the perdurantist could work with open rather

than closed intervals of times. But more important for us: the construction does not

work if we use only instantaneous stages|which shows a limitation of pointillisme ...

3.5 Trouble for pointillisme

Recall from the end of Section 2 that pointillisme vetoes temporally extrinsic properties

as well as spatially extrinsic ones; so that a pointilliste perdurantist will seek to analyse

persistence as a matter of some suitable relations between instantaneous stages. So let

us consider trying to revise the above �ve conditions so as to use only instantaneous

stages.

Agreed, conditions (i)-(iii) cause no problem. For these, the revision amounts to

setting b := a so as to make the closed interval [a; b] degenerate into the singleton set

fag; and the conditions then express that at all times, there are as many instantaneous

stages (spatially unextended or extended, as the case may be, according to (ii)) as there

are objects in the endurantist's index-set I. But similar revisions of conditions (iv) and

(v) make them vacuously true, since no two distinct singletons fag; fcg overlap; and

being vacuously true, (iv) and (v) no longer state the existence and uniqueness of

continuations of a given stage.

Presumably, the perdurantist could impose some further assumptions so as to be

able to recover from instantaneous stages the endurantist's many objects, without

reverting to Section 3.3's assumption of a doubly-indexed family. But since these

assumptions are liable to be contested, I conclude that perdurantism is liable to face

trouble if it is pointilliste, i.e. tries to work only with instantaneous stages. Certainly,

a�cionados of the rotating discs argument will recognize the failure of Section 3.4's

construction when applied to instantaneous stages as a formal expression of the idea of

that argument|that in a homogeneous disc, the timelike lines of qualitative similarity

run \every which way".

There is one main exception to this failure: i.e. one salient further assumption

that presumably enables the perdurantist to recover from instantaneous stages the en-

durantist's objects. Namely, the assumption that the objects consist of point-particles

separated from one another by empty space (or by a 
uid made of some di�erent kind

of matter). In this special case, it seems the perdurantist can manage with just in-

stantaneous stages. Namely, they can recover persisting particles by tracking curves

of qualitative similarity; or alternatively, curves of the occupation of spacetime points

by matter (or by matter of the particles', rather than the 
uid's, kind). I will examine

this idea, and defend a precise form of it, from Section 4.2 onwards.

To sum up this Section, I have shown:
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(a): a formal equivalence of endurantism and perdurantism, based on the idea that

a function �xes and is �xed by the set of its restrictions to subsets of its domain; and

(b) how the equivalence fails under certain pointilliste assumptions (viz. avoid-

ing double-indexing, using instantaneous stages, and assuming continua not point-

particles).

4 Keeping Track of Particles

I turn to the topic of criteria of identity over time; (also called `diachronic criteria of

identity'). In Section 4.1, I discuss this in purely philosophical terms, distinguishing

various senses of `criterion of identity' and arguing that the endurantist and perduran-

tist face similar questions about such criteria|to which they can give similar answers.

In Section 4.2, I specialize to particles, and to what Section 4.1 calls their `epistemic

criteria of identity': viz. our grounds or warrants for judgments that a given particle

at one time is the same persisting particle (whether enduring or perduring) as a given

particle at another time. The idea of such criteria prompts some comparatively precise

questions about what bodies of information are suÆcient to justify such a judgment.

The next two Subsections (4.3 and 4.4) address some of these questions. The main

result, using the Heine-Borel theorem to give a simple formal model of how such judg-

ments can be justi�ed, is in Section 4.4. Finally, I discuss the prospects for other results

(Section 4.5).

4.1 Criteria of identity: variety and agreement

In this Section, I make some general comments about: (1) the variety of notions that

`criterion of identity' covers (Section 4.1.1); and (2) the properties invoked by criteria of

identity (Section 4.1.2). These comments are intended to report a consensus. I believe

that they are largely independent of the endurantism-perdurantism debate; and in

particular, that endurantism and perdurantism (and the mixed view mentioned in (ii)

at the end of Section 2) face some common questions about criteria of identity, and

can often give the same, or similar, answers to them. (Later Subsections will support

this claim as regards the objects of classical mechanics.)

One general reason for this independence is worth stressing at the outset: namely,

that it is a mistake to think that only the perdurantist owes an account of persistence.

That is, there is a tendency to think that while the perdurantist certainly owes an

account (in the jargon: a de�nition of the genidentity relation among temporal parts),

the endurantist does not, since for them \persistence is just good old identity". This

is wrong, on two counts.

First: for both sides of the debate, persistence involves identity. For perdurantists

say that a rock, that has temporal parts at noon and 12.05, exists at noon and also at

12.05. It is identical with itself. So, also for the perdurantist, something that exists at
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noon is identical with something that exists at 12.05; (this point is made by e.g. Sider

(2001, pp. 54-5)).

Second: all parties need to provide criteria of identity for objects, presumably

invoking the usual notions of qualitative similarity and-or causation (cf. Sections 4.1.1

and 4.1.2). In particular, an endurantist who denied the need to do so would thereby

allow that their \good old identity" could in principle come apart from any criterion

invoking such notions, no matter how plausible, precise, suitably restricted etc. it

was. Which is an odd, perhaps even unintelligible, idea. It would mean that for some

persisting object o, (i) one's best (most plausible etc.) criterion ruled that o at time t

is the same persisting object as o0 at t0, and yet (ii) this endurantist said that in fact

o at t0 is not o0 at t0|it is somewhere else, or no longer exists.

4.1.1 The variety of notions

`Criterion of identity' covers a variety of notions, which we can broadly distinguish

in terms of two contrasts, which I will call: (i) ontic-epistemic, and (ii) conceptual-

empirical. (As the generality of these labels suggest, these contrasts apply to many

other topics in philosophy besides persistence and criteria of identity.) I think that by

and large, philosophers' usage favours the �rst of each pair; i.e. `criterion of identity'

tends to be taken as ontic and conceptual. But my discussion in later Subsections will

concentrate on epistemic and empirical criteria, for particles in classical mechanics.

(i): The ontic-epistemic contrast. All parties agree that there is a contrast be-

tween persistence, and the grounds or warrants we typically use to make judgements

of persistence. The obvious everyday example is people. We recognize them by their

faces. But we all admit that this is a short-cut: indeed, in two senses. Not only is it

fallible in the everyday sense: `Hello! ... Oh, I'm sorry: in the poor light, I thought

you were someone I knew'. It is also fallible even when one gets the face right. In a

court-room drama, guilty A has had plastic surgery so as to look just like innocent B

used to look, while B's face has changed radically since witness C knew them; so that

C, who thought they saw B at the scene of the crime, got the face right|but got the

person wrong. Nor is it just face, and similarly ubiquitous and common-sense grounds

for persistence judgments, that are fallible in this second sense. So are special, tech-

nical grounds. In a science-�ction court-room drama, guilty A is a clone of innocent

B, so that both the witness using face and the detective using DNA-tests think that

B was at the scene of the crime. Just as for people, so also for other objects, natural

and arti�cial, such as rocks and chairs: we naturally distinguish between the fact of

persistence, and our grounds|everyday and technical, occasional or systematic|for

judgments of persistence.

By and large, `criterion of identity' tends to be used for the former, ontic, notion:

in philosophers' jargon, the `constitutive facts' of persistence|and perhaps for some

`canonical' or `analytically correct' grounds for judgment of persistence. So, to take a

simple example: if the criterion of identity of some solid object is given by sameness of

constituent matter, the canonical grounds for judgment might be that one has tracked
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all that matter continuously in space and time.5 But my later discussion (Section 4.2.2

onwards) will concentrate on the epistemic notion: in this example, the notion of how

one could track matter.

(ii): The conceptual-empirical contrast. All parties also agree that the topic of

criteria of identity|like, I daresay, almost any topic in analytic philosophy|can be

approached in either of two ways:|

(a): As a �eld for conceptual analysis: one analyses non-technical concepts, and

relates them to each other, aiming to describe but not to revise those concepts.

(b): As a �eld for constructing the best theory: where one can appeal to scienti�c

technicalities, and `best' can include requiring empirical adequacy; an enterprise that

could be revisionary, rather than descriptive, of the original concepts.

Of course, each of (a) and (b) is a broad church. For example, some practitioners of

(a) abandon the traditional requirement that analyses|i.e. in this discussion, criteria

of identity|be �nitely stated, and aim only to provide a supervenience basis, so that

\in�nitely long analyses" are allowed. Besides, there is obviously a spectrum from

(a), through appeals to common sense knowledge (\folk science"), to (b)'s appeals to

technical science. `Criterion of identity' tends to be used for the conceptual analysis

end of this spectrum. But my later discussion (Section 4.2.2 onwards) will concentrate

on the empirical end.

4.1.2 Agreement on the properties invoked

Many, I daresay most, philosophers agree that for most objects, their criterion of

identity will invoke one or both of the following two factors (which also might well

overlap): qualitative similarity, and causal relatedness.

Qualitative similarity concerns whether the object at the two times (or in perduran-

tist terms: the two stages) has suitably similar qualitative properties. Here, `suitably

similar' is to be read 
exibly. It is to allow for:

(i) only a tiny minority of properties counting in the comparison;

(ii) considerable change in the object's properties, provided the change is \suitably

continuous"; i.e. provided the object goes through some kind of chain of small changes.

Causal relatedness concerns whether the state of the object at the later time (or

the later stage) is suitably causally related by the earlier state or stage. Here again

`suitably causally related' is to be read 
exibly. It is to allow for:

(i) various rival doctrines about causation|including a special variety of causation,

called `immanent causation', that some philosophers believe relates an object at two

times (or in perdurantist terms: relates its stages); (Zimmermann 1997);

(ii) a suitable chain of states or stages linked by causation.

However, most philosophers will also agree that it is very diÆcult to go beyond

5
Agreed, this example is controversial, not least because philosophers recognize that the idea of

tracking matter is problematic (e.g. Robinson 1982): a topic to which I return in Section 4.2. But

the controversy is no bar to the example's present role.
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this vague consensus to give precise criteria of identity, i.e. precise necessary and-or

suÆcient conditions for persistence. And this is so, whether we take the criteria we

seek to be ontic or epistemic: and whether we take them to be empirical or conceptual;

and whether we take them to be for all objects in a very wide class, or for all objects

in a narrow class, e.g. a given species of animal (or even narrower). Even if we take

what we believe to be the easier option in these three regards (which is I suppose the

second, in each regard), there are intractable issues.

The most obvious issue is about weighing competing factors. This occurs even if

we consider only qualitative similarity, i.e. if we eschew causation. For example: even

for our judgments about the persistence of chairs, it is very hard to suitably weigh the

various possible changes of properties, including functional properties, and changes of

constituent matter. The situation is similar, and no doubt worse, for persons: here we

need to suitably weigh psychological vs. bodily considerations. These examples raise

the topic of vagueness. We can no doubt all agree that which (if any) of tomorrow's

objects counts as today's chair or person can ultimately be a vague matter|but how

exactly should we think of that? The philosophical literature addresses this issue in

detail. In fact, I believe the balance of evidence favours perdurantism, but I will not

argue this here.

Also, many philosophers (I amongst them) will be sceptical about appealing to

causation|the general notion, not just the idea of a special variety, immanent cau-

sation. It is not just that causation seems too controversial and ill-understood to be

a central notion in criteria of identity. Also, a good case can be made that there is

no single causal relation, so that a philosopher who appeals to causation for criteria

of identity needs to choose one of the range. (Hitchcock makes such a case; more

speci�cally, he advocates a pluralism about causation along two dimensions (2003, es-

pecially pp. 5-9).) Another threat is that some accounts of causation (e.g. Dowe 2000)

deliberately presuppose the notion of persistence|threatening a logical circle.6

But of course, this is not the place to explore these intractable issues. Fortunately,

they are in any case independent to a large extent of the endurantism-perdurantism

debate: as witness the fact that the above consensus about which properties to invoke

is common to endurantists, perdurantists (and advocates of the mixed view)|my for-

mulations of the two factors, qualitative similarity and causal relatedness, does not

favour endurantism or perdurantism.7

6
A brief look at the literature in analytic metaphysics reveals a wider phenomenon of intellectual

compartmentalization, which is worrying though of course undertandable: viz. metaphysical accounts

of various topics invoke causal notions but typically do not re
ect the agonies which philosophers of

science have gone through to give accounts of causation.
7
Cf. the general reason for this independence at the start of this Subsection: the fact that for the

endurantist, persistence is \good old identity" does not mean they need not address, along with other

philosophers, the usual puzzle cases about persistence, e.g. about personal identity.
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4.2 Particles

From now on I specialize to particles, as understood in classical mechanics: i.e. either

point-particles, or bodies small and rigid enough to be modelled as point-particles (in

which case, the discussion is silent about criteria of identity for the bodies' spatial

parts). I will assess the widespread idea that particles' criterion of identity is given

by what Section 1 called `Follow': i.e. by following the timelike curves of maximum

qualitative similarity. I will �rst brie
y defend this as an ontic criterion (Section 4.2.1);

then I will develop it in much more detail as an epistemic criterion.

4.2.1 The ontic criterion

For particles that move in a void (or in a continuous 
uid made of a di�erent kind

of matter), and are each assumed to have a continuous worldline, the idea of Follow

seems plausible as an ontic criterion of identity. The precise proposal will be along these

lines: a particle o at time t is the same particle as o0 at time t0 i� the unique continuous

timelike curve of maximum qualitative similarity through the spatial location of o at t

passes through the location of o0 at time t0. But we need to de�ne `curve of maximum

qualitative similarity', and maybe make ancillary assumptions, in such a way as to

secure a unique such curve.

Let us �rst assume that the particles do not collide. Agreed, that is a big assump-

tion. But it is an endemic one in mechanics, since collisions of point-particles are

both kinematically and dynamically intractable; e.g. under Newtonian gravity, two

colliding point-particles each have in�nite kinetic energy at the instant of collision. Let

us also allow particles to change their qualitative properties: but only continuously

as a function of time; and never in such a way as to be indistinguishable from any

surrounding 
uid|some \charge" or \colour" must remain di�erent from the 
uid's.

These assumptions mean that, without worrying about how exactly to de�ne `qualita-

tive properties' (which is philosophically very problematic), we can be con�dent that

any such de�nition will enable us:

(i) to de�ne through the spatial location of each particle at each time a unique

continuous timelike curve of `maximum qualitative similarity' (where this phrase will

be spelt out in terms of comparisons of properties at arbitrarily close times);

(ii) and so to contend that this curve is the worldline (initially assumed continuous)

of the given particle.

Unsurprisingly, one can vary these assumptions somewhat.

(a): Subject to a proviso, one can allow for discontinuous changes of properties, and

still de�ne the continuous curves of qualitative similarity as intended (i.e. still recover

the worldlines of particles). Roughly speaking, the proviso should say that any discon-

tinuous changes at a time t, as a result of which particles o; o0 become more like one

another than like their previous selves, are outweighed in the assessment of similarity

by other properties that o and o0 are not \exchanging" at t. (Nevermind the details,

which would require assumptions about such intractable issues as weighing competing
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properties; cf. the end of Section 4.1.2).

(b): More important for us: for particles in a void, it seems that instead of con-

sidering all their qualitative properties, we can just consider one quality of spacetime

points: viz. being occupied by matter. For with n point-particles in a void that are

assumed not to collide, there is through each spacetime point occupied by matter, just

one continuous timelike curve along which the quality of being occupied by matter is

maintained: viz. the particle's worldline.

I said that this ontic criterion was plausible. Before considering analogous epistemic

criteria, I should address two criticisms of it. The �rst is in e�ect that the criterion

is too weak, and the second that it is too strong. I shall have more sympathy for

the second criticism; but will still defend the criterion, for particles assumed to have

continuous worldlines.

(1) You might object that the criterion is too weak. That is, in terms of de�ning

genidentity in terms of qualitative similarity: you might object that the de�niens

is not suÆcient for genidentity. Thus some philosophers fantasize that a god could

instantaneously destroy an object and replace it immediately with a qualitative replica:

suggesting that a continuous timelike curve of qualitative similarity is not suÆcient for

persistence.

To reply to this objection, it would not help to have the criterion require qualitative

matching, instead of just similarity: for the qualitative properties of the destroyed

object and its replica need never change. Nor would it help to endorse (b) above, and

have the criterion follow occupation by matter rather than other qualitative properties.

For the criterion cannot follow occupation by the same matter, on pain of presupposing

persistence: and following occupation by some matter faces the original objection just

as much as following qualitative similarity.

Rather, what seems to be missing in such a case is an appropriate causal relation

between the destroyed object's state just before destruction, and the replica's state just

afterwards. Hence these philosophers conclude that criteria of identity should invoke

causation: and perhaps the special variety, immanent causation, that is meant to relate

an object at two times (or in perdurantist terms: its stages). (For references to these

replacement fantasies, cf. e.g. Zimmermann 1997 p. 435-437).

(2): On the other hand, you might object that the criterion is too strong, i.e. the

de�niens is not necessary to genidentity. Here the idea is to question the criterion's

initial assumption that each particle has a continuous worldline. Surely a persisting

particle could jump about discontinuously? Though this is forbidden by classical dy-

namics,8 it seems logically possible. Indeed, we could gather evidence for it, by �nding

appropriate patterns in the changing properties of the particle. To take a simple exam-

ple: suppose we �nd that the particle that seems to sometimes jump discontinuously in

space (say a metre every second) cools down, like ordinary objects do|and has equal

temperatures just before and just after a jump. That would con�rm the idea that the

8
Besides, it is notoriously too simplistic a way to think about quantum dynamics|even apart from

Cushing's favoured pilot-wave theory!
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particle persists across jumps.

Both these objections, (1) and (2), will strike most physicists as a mere parlour-

game, since both give no physical details (nor other details) about their main idea,

destruction and jumping respectively. Fair comment, say I. But note that, at least

on the conceptual analysis approach to criteria of identity (Section 4.1.1), this kind of

objection, that describes without empirical detail a \bare" logical possibility, can be

enough to refute a proposed analysis.9

So, \playing the game" of conceptual analysis, for what it is worth: as to (1), I

have already said that I am suspicious of appeals to causation (Section 4.1.2). Indeed

I think that one can bite the bullet about this objection; or at least, a perdurantist

can. That is: one can maintain that the de�niens is suÆcient for genidentity. So in a

world of the sort described, the object instantaneously destroyed and the immediately

succeeding replica would be the same perduring object.10 Here, I should sugar the pill

of this counterintuitive verdict, by making a point which also applies in many similar

cases of conceptual analysis. Namely: this is put forward as the verdict given by our

concept of persistence when used to describe that world; we can admit that inhabitants

of that world may well have good reason to use another concept that denies persistence

in such a case, say because a systematic pattern in the god's destructive acts makes it

important to sharply distinguish an object before and after the act.

As to (2), I am more sympathetic. Such jumping about is surely logically possible,

and appropriate patterns in particles' properties could give us evidence of it. But to

write down a de�niens for genidentity, i.e. an analysis of persistence, that accom-

modated the possibility would be a tall order: we would again have to address such

intractable issues as weighing competing properties (again cf. the end of Section 4.1.2).

I shall duck out of this, and simply take the ontic criterion as intended for particles

with continuous worldlines. That is fair enough, in so far as the criterion assumed

such worldlines at the outset: so the idea of jumping about represents, not so much an

objection to the criterion, as a limitation of it. In short, I think we should \divide and

rule": if we agree that jumping about is possible, then jumping particles fall outside

the scope of the ontic criterion.

4.2.2 Epistemic criteria

So much by way of defending the idea of following timelike curves of qualitative sim-

ilarity (Section 1's `Follow') as an ontic criterion, at least for particles assumed to

have continuous worldlines. From now on, I will discuss this idea as providing epis-

9
Besides, it seems only fair to the philosophers to point out that so great a physicist as John

Bell regarded an idea even odder than (2)'s jumping about as the best construal of the Everett

interpretation of quantum theory! The idea is that systems should jump discontinuously between

states, which include records of the past, in such a way that the jumping is undetectable. Cf. Bell

(1976, p. 95; 1981, p. 136); Butter�eld (2002, p. 312-316) is a discussion.
10
I agree that perhaps the endurantist will say that the very word `destruction' forbids the replica

being the same persisting object.
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temic criteria for such particles. So I ask: what bodies of information about \tracking

trajectories" are our grounds for judgments that a given particle at one time is the

same persisting particle (whether enduring or perduring) as a given particle at another

time? In this Subsection I formulate some more precise versions of this question. Then

subsequent Subsections will answer some of these versions.

To make vivid at the outset what I intend by an epistemic criterion (ground for

judgment of persistence), it helps to see how the ontic criterion would be of no use to

an engineer trying to design a robotic vision system which tracks n particles (treated

as point-particles) moving continuously through space. Imagine that the particles are

indistinguishable (i.e. not distinguished by colour or any other property to which the

robot's eye is sensitive); and that the robot's eye delivers to the central processor a

discrete-time sequence of instantaneous con�gurations of the n particles, the con�gura-

tions being reported in terms of particles' coordinates in a chosen cartesian coordinate

system. Since the particles are indistinguishable, each instantaneous con�guration is

an unordered set of n 3-tuples (ordered triples) of real numbers, each 3-tuple giving the

coordinates of one of the particles. So each con�guration is a set fq1; : : : ; qng; qi 2 IR3,

where the label i has no signi�cance in common among di�erent sets. (Here and from

now on, qi etc. will represent a spatial location, not a spatiotemporal one: as they

often did in Section 3.)

The task of the central processor is to determine for any choice of particle in each of

two con�gurations, whether the choice is of the same particle. That is: is the particle

with coordinates qi in a con�guration fq1; : : : ; qng the same as (genidentical with) the

particle with coordinates q0

j
in some other con�guration fq0

1; : : : ; q
0

n
g?

The engineer designing such a processor will not thank you for telling her that

the answer is Yes i� there is a continuous timelike curve of qualitative similarity (or

matter-occupation) from qi at the �rst con�guration's time to q0

j
at the second's. She

knew that already!

At this point, physicists will suggest that the general topic here is their traditional

prime concern: solving the equations of motion of some given dynamics. This prompts

three comments, in descending order of importance:

(1): First, I reply: fair comment. But I want to pose the search for epistemic crite-

ria at a di�erent level than this suggestion: a level that is in some ways more general,

e.g. in that no laws of dynamics are assumed, but in other ways more speci�c, e.g. in

focussing only on judgments of persistence. (My level will be akin to the engineers'

level, in that for them the system's dynamics is often not \given"|it is unknown or

intractable|so that to solve their problem, they have to exploit system-spec�c details.)

(2): Beware of an ambiguity: metaphysicians and physicists tend to use the word

`determine', especially in phrases like `determine the worldline' (of a given object) in

di�erent senses. Physicists naturally take this to mean solving the equations of motion

so as to calculate the object's future position, given its initial position and velocity,

and the forces acting on it. For metaphysicians, on the other hand, `determine' usually

means `subvene'; so that `determining the worldline' is a matter of stating those facts

on which the persistence of the object supervenes. Besides, this is often interpreted
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in terms of a �nitely stateable criterion of identity at the ontic and conceptual (not

epistemic and empirical) ends of Section 4.1.1's two contrasts.

(3): The ambiguity discussed in (2) is well illustrated by a point about velocity:

that the notion of velocity presupposes the persistence of the object concerned. For

average velocity is a quotient, whose numerator must be the distance traversed by

the given persisting object: otherwise you could give me a superluminal velocity by

dividing the distance between me and the Sun by a time less than eight minutes. So

presumably, average velocity's limit, instantaneous velocity, also presupposes persis-

tence. Accordingly, metaphysicians often say that instantaneous velocity cannot, on

pain of circularity, be in the supervenience basis for facts about persistence.11 But on

the other hand, in a classical (Newtonian not Aristotelian!) dynamics, initial veloc-

ity (or momentum) is an essential part of the initial conditions that `determine the

worldline'.

There are of course various ways to make precise the idea of an epistemic criterion

that tracks the worldlines of particles: as I put it above, various ways to choose a

level. I shall adopt a simple and abstract level, ducking out of making contact with the

details of a real engineering problem! To be speci�c, I begin by making the following

assumptions. But it will be obvious from the results in subsequent Subsections how

several of these, e.g. the assumption of Euclidean geometry, can be weakened.

I will assume a (relativistic or non-relativistic) spacetime manifold M which|

at least in the spacetime region with which we are concerned|can be foliated into

instantaneous i.e. spacelike slices, and covered by a timelike congruence of curves that

we think of as persisting spatial points. Furthermore, I assume that the slices can be

labelled by numbers in the real interval [a; b] � IR, and that the points have a Euclidean

geometry, so that I can represent the distance between them in cartesian coordinates

in the usual way. More speci�cally, I shall consider a closed temporal interval (slab of

spacetime) T coordinatized as T = [a; b]� IR3.

I represent the n particles as point-particles with continuous worldlines. So I assume

there is a set of n continuous timelike curves 
i : [0; 1] � IR !M; i = 1; : : : ; n, each

of which registers throughout T in the obvious sense that for all i, the worldline, i.e.

the image (range) of 
i, intersects (just once) each hypersurface of T , ftg � IR3; t 2
[a; b]. I assume also that the particles never collide in T , i.e. T \ (\iRan(
i)) = ;.
So, turning to the spatial location, rather than spatiotemporal location, of particle

i, I write (the image of) 
i on T as 
i(t) = (t; qi(t)) 2 T with qi(t) 2 IR3. So an

instantaneous con�guration of all n particles is given by a set of distinct points in IR3:

fq1; : : : ; qng; qi 2 IR3.

With these assumptions in place, I now ask what bodies of information are suÆcient

to answer the question above, that the robot's central processor is to address. That is,

now taking the label i to have no signi�cance in common among di�erent con�gurations,

the question: is the particle with coordinates qi in a con�guration fq1; : : : ; qng the

11
However, I argue in (2004, 2004a) that once we reject pointillisme, we can in a sense admit velocity

in to the supervenience basis.
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same as (genidentical with) the particle with coordinates q0

j
in another con�guration

fq0

1; : : : ; q
0

n
g?12

Broadly speaking, my answer will be:

(i): Examples show that if the bodies of information are limited in certain ways,

then they are not suÆcient|the robot's central processor cannot solve the problem.

(The case of one spatial dimension will be an exception.) But

(ii): Under some general conditions, there are suÆcient bodies of information: the

central processor can solve the problem. The idea of these conditions is that particles

move \slowly enough", so that two particles could not, between the times of the two

con�gurations, swap which spatial neighbourhoods they are in. I shall develop this

idea formally, using some elementary real analysis (the Heine-Borel theorem).

Details are in Sections 4.3 and 4.4 respectively.

4.3 Examples

Suppose we are given a choice of particle in each of two con�gurations, say qi in a

con�guration fq1; : : : ; qng and q0

j
in con�guration fq0

1; : : : ; q
0

n
g, with i and j having no

signi�cance in common among di�erent con�gurations. We are asked to determine

whether the choices are of the same particle. Under what conditions can we do so?

Suppose �rst that space is one-dimensional, and that particles are impenetrable.

Then we can immediately determine whether the same particle was chosen. We just

need to order each con�guration by spatial position along the real line, so that with �

and � the permutations that yield such an order from our given arbitrary labellings,

we have:

q�(1) < q�(2) < : : : < q�(n) and q0

�(1) < q0

�(2) < : : : < q0

�(n): (4.1)

Then, thanks to particles' impenetrability, the particle �(i) is the same particle as �(i),

for all i = 1; : : : ; n.

But if space has dimension at least two, this strategy fails. Indeed, it is easy to

give examples showing that the problem is insoluble (in various senses, corresponding

to various assumptions about what the body of information can contain). That is: no

body of information (subject to the assumptions) can answer the question, `was the

same particle chosen?'. As one would expect, these examples have a certain symmetry

that makes the Yes and No answers to this question equally well supported. I will give

two such examples.

(1): Suppose that the body of information is to be formulated wholly in terms of

the two con�gurations, fq1; : : : ; qng and fq0

1; : : : ; q
0

n
g. (We will not need to be more

12
Incidentally: these assumptions bring out that my project is a qualitative \opposite" to the

Machian dynamical theories of Barbour et al. (cf. Butter�eld 2002 for references). In short: these

theories assume the notion of persistence (and in their present form, some spatial structure such as a

Euclidean geometry), and apply Machian principles to de�ne further structure, especially a temporal

metric. But my project assumes a priori some simple spatial and temporal structure, and asks if we

can then de�ne persistence.
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precise than this.) Now suppose we are given two con�gurations C1; C2 of two particles

moving in two-dimensional space, in terms of cartesian coordinates hx; yi on IR2:

C1 := fh1; 0i; h�1; 0ig and C2 := fh0; 1i; h0;�1ig: (4.2)

We can also imagine that we are told \for free" that: (i) both particles orbit the origin

at constant radius 1 unit, with a common sense of rotation, and a common constant

speed, so that they are always opposite each other; and (ii) C2 is later than C1 by a

quarter-period. Still, we cannot tell whether

(a): this is anti-clockwise rotation, so that (using the \free" extra information) the

particle at h1; 0i in C1 is the same as the particle at h0; 1i in C2 (and the particle at

h�1; 0i in C1 is the same as the particle at h0;�1i in C2); or:

(b) vice versa: i.e. this is clockwise rotation, so that the particle at h1; 0i in C1 is

the same as the particle at h0;�1i in C2 (and the one at h�1; 0i in C1 is the same as

the one at h0; 1i in C2).

(2): The second example is very similar. Suppose again that we are told two

particles orbit the origin at constant radius 1 unit, with a common sense of rotation,

and a common constant speed, so that they are always opposite each other; and that

the angular speed is 2� radians per second. The two con�gurations we are given are

two identical copies of C1 := fh1; 0i; h�1; 0ig. We are also told that the time interval

between the con�gurations is greater than 0.25 seconds, but less than 1.25 seconds.

Then we cannot tell whether the time-interval is 0.5 seconds, so that the two particles

have exchanged positions between the two con�gurations, or is 1.0 second, so that the

particles have not exchanged positions.

Examples like these prompt the idea that the obstacle to answering the question

`was the same particle chosen?' is our lack of suitable information about: (i) other

con�gurations, especially at intervening times (example (1)); and-or (ii) the times at

which the given con�gurations occur (example (2)). Agreed, we cannot in general

expect to reconstruct the temporal order of a set of con�gurations.13 But there is no

strong reason to require that we pose the question `was the same particle chosen?'

without information about the times of con�gurations. Nor is there strong reason

to veto information about other con�gurations. After all, recall the robot's central

processor. We assumed that it received from the robot's eye a discrete-time sequence

of con�gurations, i.e. a whole set of con�gurations, not just two. And the eye could be

equipped with a clock that labels each con�guration with its time, before it is passed

to the central processor.

So let us consider the question `was the same particle chosen?', now thinking of

ourselves as being given a discrete-time sequence of time-labelled con�gurations. Now,

13
Just imagine a single particle at rest in space, at say (x; y; z) 2 IR

3
; so that all con�gurations,

without time labels, are the same: f(x; y; z)g. From this continuously large set of identical con�gura-

tions, \not even God" could reconstruct their correct temporal order. Indeed, there are @
@1

1
bijections

from the point-set [a; b] � IR to itself. So there are that many ways to linearly order this set of

con�gurations. Agreed: in less \symmetric" cases, the assumption that each particle has a continuous

worldline can help us temporally order a set of con�gurations.
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the assumption that each particle has a continuous worldline apparently makes our

problem soluble. That is: it seems that if the time-step in the discrete-time sequence

of con�gurations is small enough, our question `was the same particle chosen?' can

be answered completely reliably. For with a small enough time-step, no particle can

have traversed so great a distance as to have swapped places with another. The next

Subsection will take up this line of thought.

4.4 Bounding distances and speeds

I will argue that the intuition at the end of Section 4.3 can be vindicated. But as I

admitted in Section 4.2.2, I will adopt an abstract level, ducking out of the details of

real engineering problems. In particular, I will not assume we are given a discrete-time

sequence. Rather, I will think of ourselves as being given the whole set of time-labelled

con�gurations, and then ask how the whole set determines which particle is which,

across di�erent con�gurations.

Even when the problem is reformulated in this way, the intuition above holds good.

That is: given a spatial point occupied by a particle in one con�guration, we can

reconstruct the worldline through the point, by using the fact that, thanks to the

�nite speed of all particles (and the no-collision assumption), no other particle could

be very close to the point at times very close to the given time. The main reason we

can do this, even without assuming ab initio that there is a discrete time-step that is

\small enough", is that some facts of elementary real analysis in e�ect guarantee to

us that there is such a time-step. Speci�cally, I shall use the facts that a continuous

real function on a closed bounded real interval is bounded, attains its bounds, and

is uniformly continuous. I shall apply these facts|which are all corollaries of the

Heine-Borel theorem|to functions representing the spatial locations of, and distances

between, particles.

It will be clearest to proceed in three stages. (1): I will state and comment on the

assumptions I make. (2): I will state the notion of time-labelled con�guration I use.

(3): I will show how these con�gurations determine worldlines.

(1) Assumptions As at the end of Section 4.2.2, I assume that n point-particles,

labelled 1; : : : ; i; : : : ; n:

a): each register on every spacelike slice ftg � IR3 of some closed temporal interval

(slab of spacetime) T := [a; b]� IR3 ([a; b] � IR); and

b): each have, during [a; b], a continuous worldline, the (image of) a continuous

timelike curve 
i : [a; b]! T; i = 1; : : : ; n; with spatial location represented by writing


i(t) = (t; qi(t)) 2 T with qi(t) 2 IR3 and

c): never collide in T , i.e. T \ (\iRan(
i)) = ;.
Three comments on these assumptions, in ascending order of importance:|

[i]: In (3) below, I shall discuss (but not rely on) strengthenings of b) according to

which each function qi : t 7! qi(t) 2 IR3 giving spatial location is (i) di�erentiable at
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all t so that each particle has a velocity, or even (ii) continuously di�erentiable, so that

each particle's velocity is continuous.

[ii]: For clarity, I have stated these assumptions in a stronger form than needed. It

will be obvious that the result in (3) below is independent of the following: T 's spacelike

slices being isomorphic to IR3, or to each other; the number of spatial dimensions;

whether there is an absolute rest (i.e. non-dynamical timelike vector �eld �xing the

spacetime's connection); whether simultaneity is Newtonian or relativistic. Besides,

the result can be adapted to extended objects provided they are treated as wholes.

[iii]: On the other hand, I do need assumptions that will give space and time enough

structure so that I can apply the corollaries of the Heine-Borel theorem. But I will not

explore what the weakest such structures might be: that would amount to a project

in advanced analysis. SuÆce it to say here that: I need to consider a closed interval of

time [a; b], not an open one; and I need to assume that space (i.e. the set of persisting

spatial locations, but not necessarily IR3) is a metric space.

(2) Con�gurations Instantaneous con�gurations are to be taken as time-labelled; as

not presupposing any facts of persistence; and for simplicity, as presupposing absolute

space. Accordingly, I de�ne a con�guration as an unordered set of n (absolute spatial)

locations, taken as say triples of real numbers, that are occupied at a given time

t 2 [a; b]; together with the time-label t. (The time-label may as well be taken as an

element of the set along with the rest, as given the set we can immediately identify it,

viz. as the only real-number member.) So the con�guration at time t is the unordered

set:

fq1(t); : : : ; qn(t); tg = f< x1(t); y1(t); z1(t) >; : : : ; < xn(t); yn(t); zn(t) >; tg: (4.3)

A history H of the system of particles during the time-interval [a; b] is represented by n

functions qi. These de�ne a set Con�g(H) of instantaneous con�gurations of the form

eq. 4.3.

(3) The result I will now show how, given that a spatial location < x0; y0; z0 >

is occupied at t0 2 [a; b], Con�g(H) determines the worldline, the q-curve, through

< t0; x0; y0; z0 > 2 T .

Note �rst that Con�g(H) �xes all the inter-particle distances as a function of time.

Of course, in order not to presuppose facts about persistence, we must not think of

these distances as encoded in functions for each pair fi; jg; i; j = 1; : : : ; n; i 6= j,

distij : t 2 IR 7! distij(t) := the distance at time t between particles i and j. Rather, at

each time t, we can only label from 1 to n the n spatial points that are then occupied,

without regard to particles' persistence. So the particle labelling is arbitrary and t-

dependent, i(t); j(t) etc. Then we can de�ne distij(t) := disti(t);j(t)(t) := the distance

at time t between particles labelled at t as i and j. Since the labels can \jump about"

arbitrarily, distij(t) is not continuous as a function from [a; b] to IR.
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But we can obtain a continuous function by taking the minimum over all pairs.

That is, we de�ne

d(t) := minpairs i(t);j(t) fdisti(t);j(t)(t)g : (4.4)

d is a continuous function from [a; b] to IR. For the continuity of worldlines, assumption

b), implies that|with i; j now labelling persisting particles!|each of the n(n � 1)=2

functions distij(t) is a continuous function of t, so that d is also continuous.14

The idea now is that the perdurantist can use d to determine the worldline (q-curve)

through the occupied point < t0; x0; y0; z0 >2 T . I shall �rst present the intuitive idea,

then discuss how it faces a problem, and �nally show how the corollaries to the Heine-

Borel theorem solve the problem.

The intuitive idea is that since at time t0, the distance of any other particle from

the one at < x0; y0; z0 > is at least d(t0), it follows that for a small interval It0 of

time around t0 any particle closer than say d(t0)=2 to < x0; y0; z0 > must be the same

particle as occupied < x0; y0; z0 > at t0. That is: during It0 , any other particle that is

approaching < x0; y0; z0 > is still only in the shell consisting of positions < x; y; z >

between the two concentric spheres around < x0; y0; z0 >:

d(t)

2
< k< x0; y0; z0 > � < x; y; z >k � p �

(x0 � x)2 + (y0 � y)2 + (z0 � z)2
�
< d(t)

(4.5)

One then envisages applying a similar argument at other times t0 2 It0 .

The problem with this idea, as stated, is that It0 may be very small, as a result of a

high-speed particle that will \soon invade" the \inner sphere" i.e. the sphere consisting

of positions < x; y; z > with dist(< x0; y0; z0 >;< x; y; z >) < d(t)=2. More precisely,

the problem is as follows. Unless we invoke an upper bound on particles' velocity, there

is a risk that, as we apply the argument successively, �rst at t0 to de�ne It0 3 t0 in the

way indicated, then at t0 2 It0 to de�ne It0 , then at t00 2 It0 to de�ne It00 etc., the size

of the intervals It(k) that we de�ne may shrink as a result of there being at the times

t; t00; : : : ; t(k); : : : particles of successively higher velocity. (The threatened high-speed

invader need not be the same particle at the di�erent times.) As a result, there is a

risk that the intervals It(k) do not cover all of [a; b]: so that we do not determine the

q-curve through < t0; x0; y0; z0 > for all of [a; b].

If this seems just a technical glitch which is unlikely to occur in practice, it is

worth recalling that in classical mechanics an in�nite potential well, for example the 1
r

gravitational potential around a massive particle, represents an inexhaustible source of

energy, which another particle orbiting the given one might somehow tap. Furthermore,

this `somehow' is nowadays not mere speculation. Xia (1992) proved that Newtonian

gravitational theory for point-particles has solutions in which particles feed o� one

another's gravitational potentials, accelerating ever more rapidly, so that in a �nite

14
If we strengthened assumption b) to say that during [a; b], each particle is represented by a

di�erentiable timelike curve 
i, then d would be a piecewise di�erentiable function. That is, it would

be di�erentiable throughout [a; b], except perhaps at times when which pair of particles was closest of

all the pairs changed from one pair to another.
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time-interval, say [a; b] � IR, they escape to spatial in�nity. That is, they acquire

arbitrarily high speed, and the worldlines do not register on the �nal time-slice t = b.15

Indeed, even in a relativistic setting, with the strict upper bound c on particle

velocities, the above problem of shrinking intervals still looms, since I have not yet

secured a lower bound on particles' spatial separation. In more detail: at speed c it

takes at least a time

�(t0) :=
distance

speed
:=

(d(t0)=2)

c
(4.6)

for an invader moving at speed c to traverse the shell eq. 4.5, i.e. to enter the in-

ner sphere consisting of positions < x; y; z > with k< x0; y0; z0 > � < x; y; z >k<
d(t)=2. Similarly for the reverse direction of time. So: in the time-interval It0 :=

[t0 � �(t0); t0 + �(t0)], any invader (i.e. any particle approaching the particle that oc-

cupies < t0; x0; y0; z0 >) is still at worst only in the shell eq. 4.5. But for all I have so

far said, the problem above remains: since � = �(t0) depends on t0, the intervals It0
might shrink so as not to cover all of [a; b].

This sort of problem is familiar in elementary real analysis|and is solved by using

the Heine-Borel theorem, or one of its corollaries. Here, the relevant corollary is that

a continuous function on a closed bounded interval, such as � on [a; b], is bounded and

attains its bounds. (More generally: the image, under a continuous function between

metric spaces, of a compact set is compact; and every compact subset of a metric space

is closed and bounded; cf. e.g. Apostol 1974, theorem 3.38, p. 63 and theorem 4.25, p.

82.) In fact, since the particles do not collide during the time-interval [a; b] (assumption

c) of (1) above), d(t) attains a minimum during [a; b] which is positive: let us call it

dmin > 0. Then similarly: �(t) attains its minimum during [a; b], which is positive: let

us call it �min =
(dmin=2)

c
> 0.

For the non-relativistic case, there is a simple strategy which adapts the above

argument; in particular, using the same corollary of the Heine-Borel theorem, that a

continuous function on a closed bounded interval is bounded and attains its bounds.

But I shall point out that this strategy is philosophically questionable: but nevermind|

we can use another strategy (using another corollary), that is not questionable.

The simple strategy applies the above corollary to the speeds of each of the n

particles. Thus we now strengthen assumption b) by assuming that each function qi
is continuously di�erentiable at all t 2 [a; b]. Then the speed of each of the particles

i = 1; : : : ; n is a continuous function of time, and attains its maximum, say vi, during

[a; b]. Let V be the maximum of these: V := maxifvig. Then we can argue as for the

relativistic case, but now making V take the role of the universal speed c.

However, this strategy is philosophically questionable. For recall:

(i) that our overall motivation is an interest in epistemic criteria of identity; or in

other words, an \engineering" interest in answering `was the same particle chosen in

15
Xia's solution, using �ve point-particles, was the culmination of a century-long e�ort to �nd such

solutions (called `non-collision singularities'), or to prove they do not exist. A very �ne popular

account is Diacu and Holmes (1996, Chapter 3).

27



each of two con�gurations?'; and

(ii) that the notion of velocity presupposes the notion of persistence (cf. comment

(3) in Section 4.2.2).

So it seems that only once we have solved our problem i.e. determined the worldlines

through the various points that are given to us as occupied by the con�guration for

time t0, have we any right to information about the vi, and so about V . Agreed: one

could reply to this objection, saying for example that one might have some general

upper bound for V , like c in relativity theory. But we do not need to explore the pros

and cons here. For there is in any case a better strategy: one which is not questionable

in this way, and which does not require us to strengthen assumption b).

Namely, we use another corollary of the Heine-Borel theorem: that a continuous

function on a closed bounded interval is uniformly continuous on that interval. (More

generally, a continuous function between two metric spaces is uniformly continuous on

a compact subset of its domain: Apostol 1974, theorem 4.47, p.91.) We apply this, not

to speeds (which, with just assumption b), might not always exist), but to each of the

particles' continuous spatial trajectories, i.e. the functions qi : [a; b] ! IR3. That is,

for each i = 1; : : : ; n, there is a function Æi : " 2 IR+ 7! Æi(") 2 IR+ such that

8 " > 0; 8 t; t0 2 [a; b] : j t0 � t j< Æi(") ) k qi(t0)� qi(t) k < " ; (4.7)

where as in eq. 4.5, k k denotes the usual Euclidean distance in IR3. We now recall

that since the particles do not collide during the time-interval [a; b] the inter-particle

minimum separation d(t) attains a positive minimum during [a; b], dmin. We now choose

for each i, dmin

2
as the value of ", and we de�ne

Æ := min

(
Æ1(

dmin

2
); Æ2(

dmin

2
); : : : ; Æn(

dmin

2
)

)
: (4.8)

It follows that

8 t; t0 2 [a; b] : j t0 � t j< Æ ) 8i = 1; : : : ; n k qi(t0)� qi(t) k <
dmin

2
: (4.9)

We now take t in eq. 4.9 to be t0. So in the time-interval [t0; t0 + Æ], the particle

at < x0; y0; z0 > can move at most dmin

2
. That is, it remains in the \inner sphere" of

radius dmin

2
around < x0; y0; z0 >. On the other hand, any other particle: (i) must

at t0 be at least dmin from < x0; y0; z0 > (by the de�nition of dmin); and (ii) can, in

the time-interval [t0; t0 + Æ], move at most dmin

2
from its location at t0 (eq. 4.9). So

any such particle cannot during [t0; t0 + Æ] enter the inner sphere of radius dmin

2
around

< x0; y0; z0 >. So: we can be certain that any particle that is, during [t0; t0+ Æ], in the

inner sphere, is the same particle as was located at < x0; y0; z0 >.

4.5 Future prospects

The discussion since Section 4.2 has been a �rst attempt to connect philosophers'

concerns about persistence, especially epistemic criteria of identity for particles, with
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physicists' technical description of motion. I will end with a brief list of projects

suggested by that discussion.

First, some projects arise from the details above.

(1): One could seek results with the \opposite 
avour" than Section 4.3's examples.

That is, one could seek a result that for some class of suitably \non-symmetric" or

\generic" pairs of con�gurations, a certain kind of body of information is suÆcient for

answering the question `was the same particle chosen in the two con�gurations?'.

(2): One could seek generalizations and analogues of Section 4.4's result. As I

mentioned there, the result's assumptions can be generalized: but how exactly? The

result also took it that we (or better: the robot's central processor) were \given" the

instantaneous distances between all pairs of particles, as a function of t. That is, we

were given the distances disti(t)j(t)(t); and therefore also the minimum function d(t).

But in fact such information is always inferred from other information; so a study of

epistemic criteria of identity could try to model that inference. More generally, one

could seek other results exploiting the general idea that particles move slowly enough

that two particles could not swap which spatial neighbourhoods they are in.

Finally, there are two other projects, further from the detail above, and closer to

the concerns of engineering and physics.

(3): One could seek results about being given a �nite (discrete-time) sequence of

con�gurations (as I �rst discussed in Section 4.2.2).

(4): One could seek results about being given information about particles' veloc-

ities as well as their con�gurations. This last project brings us back to my denial of

what I call `pointillisme', introduced in (iv) at the end of Section 2. Recall that this

denial means that the perdurantist can advocate only extended i.e. non-instantaneous

temporal parts; and this means in e�ect that they can admit velocities into the super-

venience basis for persistence, despite the usual circularity objection that the notion

of velocity presupposes persistence (cf. (3) in Section 4.2.2).

So much by way of listing possible projects. In conclusion: I have described some

questions and results in the borderlands between the philosophy of persistence and the

physics of motion|and I hope that Jim Cushing, so wise in both physics and philoso-

phy, would have found them interesting.
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