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Abstract

Scientists use a variety of methods to assess their theories. While
experimental testing remains the gold standard, several other more
controversial methods have been proposed, especially in fundamental
physics. Amongst these methods are the use of analogue experiments
and so-called non-empirical ways of theory-assessment such as the no-
alternatives argument. But how can these methods themselves be as-
sessed? Are they reliable guides to the truth, or are they of no help at
all when it comes to assessing scientific theories? In this chapter, we de-
velop a general Bayesian framework to scrutinize these new (as well as
standard empirical) methods of assessing scientific theories and illustrate
the proposed methodology by two detailed case studies. This allows us to
explore under which conditions nontraditional ways of assessing scientific
theories are successful and what can be done to improve them.
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1 Introduction

Scientific theories are used for a variety of purposes. For example, physi-
cal theories such as classical mechanics and electrodynamics have important
applications in engineering and technology, and we trust that this results in
useful machines, stable bridges, and the like. Similarly, theories such as quan-
tum mechanics and relativity theory have many applications as well. Beyond
that, these theories provide us with an understanding of the world and address
fundamental questions about space, time, and matter. Here we trust that the
answers scientific theories give are reliable and that we have good reason to
believe that the features of the world are similar to what the theories say about
them. But why do we trust scientific theories, and what counts as evidence in
favor of them?

Clearly, the theories in question have to successfully relate to the outside
world. But how, exactly, can they do this? The traditional answer to this
question is that established scientific theories have been positively tested in
experiments. In the simplest case, scientists derive a prediction from the the-
ory under consideration, which is then found to obtain in a direct observation.
Actual experimental tests are, of course, much more intricate, and the evalua-
tion and interpretation of the data is a subtle and by no means trivial matter.
One only needs to take a look at the experiments at the Large Hadron Col-
lider (LHC) at the European Organization for Nuclear Research (CERN) near
Geneva, and at the huge amount of workforce and data analysis involved there,
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to realize how nontrivial actual experiments can be. However, there is no con-
troversy among scientists and philosophers of science about the proposition
that the conduct and analysis of experiments is the (only?) right way to as-
sess theories. We trust theories because we trust the experimental procedures
to test them. Philosophers of science have worked this idea out and formu-
lated theories of confirmation (or corroboration) that make the corresponding
intuition more precise. We discuss some of these proposals in the next two
sections.

While empirical testing is certainly important in science, some theories in
fundamental science cannot (yet?) be tested empirically. String theory is a case
in point. This arguably most fundamental scientific theory makes, so far, no
empirically testable predictions, and even if it would make any distinct pre-
dictions, referring to predictions that are not also predictions of the theories
it unifies (i.e., the Standard Model and General Relativity), these predictions
could not be confirmed in a laboratory because the required energies are too
high. The question, then, is what we should conclude from this. Are funda-
mental theories such as string theory not really scientific theories? Are they
only mathematical theories? Many people would refrain from this conclusion
and argue that string theory does, indeed, tell us something about our world.
But why should we believe this? Are there other ways of assessing scientific
theories, ways that go beyond empirical testing?

Several well-known physicists think so (see, for example, Polchinski, this
volume) and in a recent book, the philosopher Richard Dawid (2013) defends
the view that there are non-empirical ways of assessing scientific theories. In
his book, he gives a number of examples including the so-called No Alterna-
tives Argument, which we discuss in detail in section 4. Another example is
analogue experiments, examined in section 5. There is, however, no agree-
ment among scientists regarding the viability of these nonstandard ways of
assessing scientific theories. In a similar vein, these new methods do not fit
into traditional philosophical accounts of confirmation (or corroboration) such
as Hempel’s hypothetico-deductive (HD) model or Popper’s falsificationism.
Interestingly, these deductivist accounts exclude indirect ways of assessing sci-
entific theories from the beginning as, in those accounts, the evidence for a
theory under consideration must be a deductive consequence of it and it must
be observed.

There is, however, an alternative philosophical framework available:
Bayesian confirmation theory. We will show that it can be fruitfully employed
to analyze potential cases of indirect confirmation such as the ones mentioned
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previously. This will allow us to investigate under which conditions indirect
confirmation works, and it will indicate which, if any, holes in a chain of rea-
soning have to be closed if one wants to make a confirmation claim based on
indirect evidence. By doing so, Bayesian confirmation theory helps the scien-
tist (as well as the philosopher of science) better understand how, and under
which conditions, fundamental scientific theories such as string theory can be
assessed and, if successful, trusted.

The remainder of this chapter is organized as follows. Section 2 consid-
ers the traditional accounts of assessing scientific theories mentioned earlier
and shows that they are inadequate to scrutinize indirect ways of assessing
scientific theories. Section 3 introduces Bayesian confirmation theory and il-
lustrates the basic mechanism of indirect confirmation. The following two
sections present a detailed Bayesian account of two examples, namely the No
Alternatives Argument (section 4) and analogue experiments (section 5). Sec-
tion 6 provides a critical discussion of the vices and virtues of the Bayesian
approach to indirect theory assessment. Finally, Section 7 concludes with a
summary of our main results.

2 Trusting Theories

Why do we trust a scientific theory? One reason for trusting a scientific theory
is certainly that it accounts for all data available at the time in its domain of ap-
plicability. But this is not enough: We also expect a scientific theory to account
for all future data in its domain of applicability. What, if anything, grounds
the corresponding belief? What grounds the inference from the success of a
theory for a finite set of data to the success of the theory for a larger set of
data? After all, the future data are, by definition, not available yet, but we
would nevertheless like to work with theories which we trust to be successful
in the future.

Recalling Hume’s problem of induction (Howson 2000), Popper argues that
there is no ground for this belief at all. Such inferences are not justified, so all
we can expect from science is that it identifies those theories that do not work.
We can only falsify a proposed theory if it contradicts the available data. Pop-
per’s theory is called falsificationism and it comes in a variety of versions. Ac-
cording to naive falsificationism, a theory T is corroborated if an empirically
testable prediction E of T (i.e., a deductive consequence of T) holds. Note that
this is only a statement about the theory’s past performance, with no impli-
cations for its future performance. If the empirically testable prediction does
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not hold, then the theory is falsified and should be rejected and replaced by an
alternative theory. As more sophisticated versions of falsificationism have the
same main problem relevant for the present discussion as naive falsification-
ism, we do not have to discuss them here (see Pigliucci or Carroll, this volume).
All that matters for us is the observation that, according to falsificationism, a
theory can be corroborated only empirically. Hence, a falsificationist cannot
make sense out of indirect ways of assessing scientific theories. These possible
new ways of arguing for a scientific theory have to be dismissed from the be-
ginning because they do not fit the proposed falsificationist methodology. We
think that this is not a good reason to reject the new methods. It may well turn
out that we come to the conclusion that none of them work, but the reason for
this conclusion should not be that the new method does not fit our favorite
account of theory assessment.

Hempel, an inductivist, argued that we have grounds to believe that a well-
confirmed theory can also be trusted in the future. Here is a concise summary
of the main idea of the hypothetico-deductive (HD) model of confirmation that
Hempel famously defended:

General hypotheses in science as well as in everyday use are in-
tended to enable us to anticipate future events; hence, it seems rea-
sonable to count any prediction that is borne out by subsequent
observation as confirming evidence for the hypothesis on which it
is based, and any prediction that fails as disconfirming evidence.
(Hempel 1945, p. 97)

Note that the HD model shares an important feature with Popper’s falsi-
ficationism: Both are deductivist accounts; that is, the evidence has to be a
deductive consequence of the tested theory. Thus indirect ways of confirma-
tion also do not fit the HD model and must be dismissed for the same reason
falsificationism has to dismiss them.

The HD model has a number of (other) well-known problems, which even-
tually led to its rejection in the philosophical literature (see, however, (Schurz
1991) and (Sprenger 2011)). The first problem is the tacking problem: If E con-
firms T, then it also confirms T∧X. Note that X can be a completely irrelevant
proposition (such as “pink dragons like raspberry marmalade”). This is coun-
terintuitive, as we do not expect E to confirm the conjunction T∧X, but only
T. The second problem has to do with the fact that the HD model cannot ac-
count for the intuition that some evidence may confirm a theory more than
some other evidence. The HD model lacks an account of degrees of confirma-
tion and can justify only the qualitative inference that E confirms T (or not).
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Bayesian confirmation theory, discussed in the next section, accounts for these
and other problems of more traditional accounts of confirmation. It also has
the resources and the flexibility to model indirect ways of assessing scientific
theories.

3 Bayesian Confirmation Theory

In this section, we give a brief introduction to Bayesian confirmation theory
(BCT). For book-length introductions and discussions of the topic, we refer
the reader to (Earman 1992), (Howson and Urbach 2006), and (Sprenger and
Hartmann 2019). For recent surveys of the field of Bayesian Epistemology, see
(Hájek and Hartmann 2010) and (Hartmann and Sprenger 2010).

Let us consider an agent (e.g., a scientist or the whole scientific commu-
nity) who entertains the propositions T: “The theory under consideration is
empirically adequate” and E: “The respective evidence obtains” before a test
of the theory is performed.1 In this case the agent is uncertain as to whether
the theory is empirically adequate; she also does not know that the evidence
will obtain. The easiest way to represent her attitude towards these two propo-
sitions is to assign a probability to them. Bayesians request that rational agents
assign a prior probability distribution P over the propositional variables they
consider. In our case the agent considers the binary propositional variables T
(with the values T and ¬T) and E (with the values E and ¬E).2

Next we assume that a test is performed and that the evidence obtains.
As a result, the probability of E shifts from P(E) < 1 to P∗(E) = 1, where P∗

denotes the new “posterior” probability distribution of the agent after learning
the evidence. To make sure that P∗ is coherent, meaning that it satisfies the
axioms of probability theory, the agent has to adjust the other entries in the
posterior probability distribution. But how can this be done in a rational way?
For the situation just described, Bayesians argue that the posterior probability

1“Empirical adequacy” is a technical term made popular in the philosophical literature
by Bas van Fraassen. In his book The Scientific Image, he writes that “a theory is empirically
adequate exactly if what it says about the observable things and events in the world is true –
exactly if it ‘saves the phenomena’.” (van Fraassen 1980, p. 12). Note that empirical adequacy
is logically weaker than truth. A true theory is empirical adequate, but not every empirically
adequate theory is true. We could make our arguments also using the term “truth” instead of
“empirical adequacy,” but decided to stick to the weaker notion in the following discussion.

2We follow the notation of (Bovens and Hartmann 2004) and denote propositional variables
in italic script and their values in roman script. Note further that we sometimes use the letter
“E” (in roman script) to refer to the evidence directly and not to the proposition it expresses,
and likewise for the theory T. We submit that this does not cause any confusions.
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of T should be the old conditional probability:

P∗(T) = P(T|E). (1)

This identification, which is sometimes called “Bayes’ theorem” or “condi-
tionalization,” can be justified in various ways such as via Dutch Book argu-
ments (Vineberg 1997), Epistemic Utility Theory (Pettigrew 2016) and distance-
minimization methods (Diaconis and Zabell 1982; Eva and Hartmann 2018),
which we do not consider here. Once we accept Bayes’ theorem as a diachronic
norm, the right-hand side of eq. (1) can be expressed differently using the def-
inition of the conditional probability. As P(T|E)P(E) = P(T, E) = P(E, T) =

P(E|T)P(T), we obtain

P∗(T) =
P(E|T) P(T)

P(E)
. (2)

This equation expresses the posterior probability of T, P∗(T), in terms of the
prior probability of T, P(T); the likelihood of the evidence, P∗(E|T); and the ex-
pectancy of the evidence, P(E).

According to BCT, E confirms T if and only if P∗(T) > P(T), so that the
observation of E raises the probability of T. Likewise, E disconfirms T if and
only if P∗(T) < P(T), so that the observation of E lowers the probability of T.
The evidence E is irrelevant for T if it does not change its probability, so that
P∗(T) = P(T).

Note that in the standard account of BCT, the prior probability distribution
P (and therefore also the posterior probability distribution P∗) is a subjective
probability distribution, such that different agents may disagree on it. It may
therefore happen that one agent considers E to confirm T while another agent
considers E to disconfirm T (or to be irrelevant for T). That is, in BCT, confir-
mation is defined only relative to a probability distribution, which implies that
confirmation is not an objective notion in BCT.

Using BCT, especially eq. (2), has a number of desirable features. Con-
sider, for example, the situation where the evidence is a deductive conse-
quence of the theory in question. In this case, P(T|E) = 1 and therefore
P∗(T) = P(T)/P(E). As P(E) expresses the expectancy of the evidence be-
fore a test is performed, a rational agent will assign a value P(E) < 1. Hence,
P∗(T) > P(T) and therefore E confirms T. This is in line with our expectations,
and it is in line with the hypothetic-deductive (HD) model of confirmation
mentioned in the last section. Note further that the more E confirms T, the
lower the expectancy of E is. Again, this is in line with our intuition: More
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Figure 1: A Bayesian network representing the direct dependence between the
variables E and T.

surprising evidence confirms a theory better than less surprising (or expected)
evidence. As BCT is a quantitative theory, it allows us to account for this
intuition whereas qualitative theories such as the HD model and Popper’s fal-
sificationism do not have the resources to do so. They answer only the yes-no
question of whether E confirms (or corroborates) T.

Let us develop BCT a bit further. In many cases, there is a direct depen-
dency between T and E. We mentioned already the case where E is a deductive
consequence of T. In other cases, there is a direct probabilistic dependency be-
tween E and T (because of the presence of various uncontrollable disturbing
factors). In these cases, P(T|E) < 1, but P∗(T) may, of course, still be greater
than P(T). The direct dependence between theory and evidence is depicted
in the Bayesian network in Figure 1. Here the nodes E and T represent the
respective propositional variables and the arc that connects them indicates the
direct dependency.3

Note, however, that BCT can also deal with cases where the evidence is
indirect, that is, when the evidence is not a deductive or inductive consequence
of the theory in question. In these cases, the correlation between E and T
is accounted for by a third (“common cause”) variable X as depicted in the
Bayesian network in Figure 2. Here is an illustration: We take it that having
yellow fingers (E) is evidence of having heart disease (T). However, there is
no direct dependence between the two variables: For example, painting your
fingers green will (unfortunately) not lower your probability of having a heart
disease.4 Instead, the positive correlation between E and T and the fact that
the observation of E confirms T result from the presence of a common cause
X, the possible tobacco use (smoking) of the respective agent. Note that X and
T and X and E are positively correlated, such that observing E confirms X,
which in turn confirms T. Hence, for the Bayesian Network depicted in Figure
2, E confirms T.5

3For an introduction to the theory of Bayesian networks and their use in epistemology and
philosophy of science, see (Bovens and Hartmann 2004, Sect.3.5).

4For more on this, see (Woodward 2005).
5Note that the confirmation relation is symmetric: E confirms T if and only if T confirms E.
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Figure 2: A Bayesian network representing the (indirect) dependence between
the variables E and T, mediated by a common cause variable X.

To elaborate a bit further on this, the common cause X (of E and T) has
the following property: If the value of X is not known, then E and T are
dependent. But once the value of X is known (i.e., once the variable X is
instantiated) E and T become independent. One also says that X screens off E
from T.

We will see later that the common cause structure can be used to model
cases of indirect confirmation. Here, similar to the previous example, the ev-
idence probes a third variable, which in turn probes the theory in question.
The powerful formal machinery of Bayesian networks (and conditional inde-
pendence structures) makes sure that all of this can be made precise. It is
important to note that deductivist accounts of confirmation lack something
analogous to a common cause structure, which is their major drawback.

In the next two sections, we show in detail how these ideas can be applied
to analyze cases of indirect confirmation.

4 Illustration 1: The No Alternatives Argument

Scientists have been defending and developing string theory for several
decades, despite the lack of direct empirical confirmation. What is more, no
one expects this situation to change in the foreseeable future. This raises a
question: Why do scientists put so much trust in a theory that is not (and
perhaps cannot be) assessed by empirical data? What grounds this enormous
trust in string theory? In his recent book String Theory and the Scientific Method,
(Dawid 2013) provides a rationale for three non-empirical ways of arguing
for a scientific theory that lack direct empirical support. One of them is the

Note further that the confirmation relation is not necessarily transitive. Consider, for example,
the situation where, in addition to the arcs in the Bayesian network in Figure 2 there is an arc
from T to E (or vice versa) that represents a sufficiently strong negative correlation between E
and T. This negative correlation can then outweigh the positive correlation from the path via
X.
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No Alternatives Argument (NAA), which was subsequently analyzed in the
framework of BCT by (Dawid, Hartmann and Sprenger 2015). Our presenta-
tion follows this discussion.

The NAA relies on an observation at the meta-level; it is not a prediction
of the theory itself, but rather an observation about the status of the theory.
It is only in this sense non-empirical. The evidence, which is supposed to do
the confirmatory work, is the observation that the scientific community has,
after considerable effort, not yet found an alternative to a hypothesis H that
solves some scientific problem P. Let us denote the corresponding proposition
by FA (“the scientific community has not yet found an alternative to H”). Let
us furthermore define T as the proposition that the hypothesis H is empirically
adequate. The propositional variables T and FA take as values the previously
described propositions and their respective negations.

To show that the meta-level observation FA confirms T in the Bayesian
sense, one has to show that

P(T|FA) > P(T). (3)

Now, as FA is neither a deductive nor an inductive consequence of T, there
can be no direct probabilistic dependence between the two variables. Follow-
ing the strategy suggested in the last section, we therefore look for a common
cause variable that facilitates the dependence. But which variable could that
be? Here (Dawid, Hartmann and Sprenger 2015) introduce the multi-valued
variable Y, which has the values

Yk: There are k distinct alternative theories that solve P,

where k runs from 0 to some maximal value N. Yk is a statement about the
existing number of theories able to solve the scientific problem in question.
It is easy to see that Y screens off FA from T: Once we know the value of
Y, learning FA does not tell us anything new about the probability of T. To
assess it, all that matters is that we know how many equally suitable candidate
theories there are. Y facilitates the probabilistic dependence between FA and
T, since if there are only a small number of alternative theories, this would
provide an explanation for why the scientists have not yet found any; that is, it
would explain FA. In addition, if there are only a few alternative theories, that
should probabilistically impact our trust in the available theory. This relies
on an innocuous assumption, namely that there is at least one theory which
is empirically adequate. If this is the case, the number of alternatives will
probabilistically influence our trust in the theory. After the introduction of the
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Figure 3: A Bayesian Network depicting the No Alternatives Argument.

variable Y and its inclusion in the Bayesian network depicted in Figure 3, one
can show, given certain reasonable assumptions, that eq. (3) holds.6

This may suggest a very simple method to confirm scientific theories. How-
ever, this method relies on how well FA functions as a probe of Y. Note that
several complicating factors can arise. First, there might be another explana-
tion for why the scientific community has not yet found an alternative. For
instance, (Dawid, Hartmann and Sprenger 2015) introduce an additional node
into the Bayesian network representing the difficulty of the scientific problem
P. The observation of FA then may provide support only for the difficulty of
the problem. However, the difficulty of the problem is probabilistically in-
dependent of the empirical adequacy of the hypothesis, i.e. the variable T,
and hence the observation of FA may not confirm the theory in question. Sec-
ond, our argument relies on it being possible to establish FA in the first place.
However, it is a non-trivial task to find agreement amongst the members of
the scientific community about the existence or non-existence of alternative
solutions to some scientific problem P. Even if there is agreement, this is only
probative of the existing number of alternatives, indicated by the value of the
variable Y, provided that the scientific community has attempted to explore
the space of alternative theories (see Oriti, this volume) and have considered
all the problems one may encounter in doing so (see Dardashti, this volume).
This may have as a normative consequence a requirement to change the way
physics is practiced. Theory proliferation is not a common practice, but it may
be required for a successful application of non-empirical theory assessment.

6One of these assumptions is that the agent is uncertain about the number of alternatives.
If the agent were certain (i.e., if she knew the value of Y) then T and FA would be probabilis-
tically independent and FA would not confirm T. For example, an anti-realist who adopts the
underdetermination thesis to show that the number of alternatives is infinite (and therefore
sets P(Y∞) = 1) will not find the NAA convincing.
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5 Illustration 2: Analogue Experiments

When scientists are concerned with black holes, neutron stars, or the whole
universe, experiments are hard to come by. In these cases it has been suggested
that one may be able to use so-called analogue experiments.7 The idea is to
model the experimentally inaccessible target system via a table-top experiment,
the source system, that has specifically been built to model the equations that
are assumed to hold in the target system. Among the choices of source sys-
tems, one finds fluid systems, Bose-Einstein condensates (BECs), and optical
lattices. The underlying physical laws in these source systems are, therefore,
significantly different from the laws governing the inaccessible target system.
This raises the question of what one can learn about a target system from ana-
logue experiments (see Thébault, this volume). More specifically, one may ask
whether the evidence obtained from manipulating the source system is also
confirmatory evidence for the inaccessible target system.

The most-discussed examples of analogue experiments concern black hole
Hawking radiation. The thermal radiation of black holes was predicted in the
1970s by Hawking. It has played an important role in foundational debates
ever since (see Wüthrich (this volume) for a critical discussion), but lacks any
direct empirical support. This motivated a first proposal of an analogue model
of black hole Hawking radiation based on a fluid system by Unruh in the
early 1980s. This model and many of the subsequently proposed analogue
models8 are very difficult to implement experimentally. After several partial
successes in the last decade, Jeff Steinhauer finally announced that he has
observed quantum Hawking radiation in a BEC analogue model (Steinhauer
2016).

Steinhauer’s claim, however, goes even further. He stated that his findings
provide “experimental confirmation of Hawking’s prediction about the ther-
modynamics of the black hole” (Steinhauer in Haaretz, August 2016). Thus
the evidence obtained in the experiment is taken to be evidence not only for
the existence of Hawking radiation in BECs, but also of black hole Hawking
radiation. This is in stark contrast to theoretical physicist Daniel Harlow’s at-
titude regarding Steinhauer’s experiment, namely that it is “an amusing feat
of engineering that won’t teach us anything about black holes” (Quanta Maga-
zine, November 8, 2016). This example illustrates that scientists disagree about

7See (Barceló, Liberati, Visser et al. 2011) for a comprehensive review article on analogue
experiments of gravity.

8See (Barceló, Liberati, Visser et al. 2011, Ch. 4) for a discussion of classical and quantum
analogue systems.
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Figure 4: The Bayesian network of the BEC model and the black hole model
(independent case).

whether the observation of Hawking radiation in a BEC confirms black hole
Hawking radiation. We submit that a Bayesian analysis can shed some light
on this question.

To do so, we follow the analysis given in (Dardashti, Hartmann, Thébault
and Winsberg 2019), where the technical details can be found. As a first step,
we identify the relevant propositional variables and specify the probabilis-
tic dependencies that hold between them. Let us denote by TBH the binary
propositional variable that takes the following values:

TBH: The model provides an empirically adequate description of the black hole
system T within a certain domain of conditions.

¬TBH: The model does not provide an empirically adequate description of the
black hole system T within a certain domain of conditions.

The domain of conditions encodes the conditions necessary for the respec-
tive context, namely the application of the model to derive Hawking radiation.
Analogously, we define the binary propositional variable TBEC that is associ-
ated with the BEC system and takes the following values:

TBEC: The model provides an empirically adequate description of the BEC
system S within a certain domain of conditions.

¬TBEC: The model does not provide an empirically adequate description of
the BEC system S within a certain domain of conditions.

Furthermore, we introduce the propositional variable E, which has the val-
ues E: “The empirical evidence for the source system obtains” and ¬E: “The
empirical evidence for the source system does not obtain.”
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To better understand how the probabilistic dependence between the two
systems can occur, we need to introduce another layer of variables related to
the domain of conditions mentioned previously. The domain of conditions
depends on the various background assumptions involved in developing the
model. The empirical adequacy of each model in the respective context there-
fore depends on whether the various background assumptions involved ob-
tain. These background assumptions rely on the knowledge of the modeler
and involve both theoretical and experimental knowledge, both implicit and
explicit. For instance, I may assume in my description of the fluid model
that the fluid is inviscid and barotropic. If the experiment turns out to agree
with the predictions of that model, then that outcome not only supports the
proposition regarding the empirical adequacy of the model, but also that the
assumptions were justified. Note that this does not entail that the model itself
is actually viscosity-free or that barotropicity is a realistic assumption, but only
that it was a justified assumption within the respective domain of conditions.
Let us denote the variables representing the set of background assumptions by
XBH and XBEC, respectively. They take the following values:

XBH/XBEC: The background assumptions are satisfied in the model of system
S/T .

¬XBH/¬XBEC: The background assumptions are not satisfied in the model of
system S/T .

If the background assumptions were probabilistically independent of the
other variables, the relevant Bayesian network would be represented by Figure
4. In that case, there would be no probabilistic dependence, which does not
seem to be unreasonable given that the assumptions in the context of black
hole physics, and whether they are justified, seem to be independent of the as-
sumptions involved in the context of BEC physics. However, it has been argued
by (Unruh and Schützhold 2005) that Hawking radiation may, under certain
conditions, be considered a universal phenomenon. Here “universal” is meant
in the sense that the phenomenon does not depend on the degrees of freedom
at very high energies. The possible universality of the Hawking phenomenon
now relates directly to one of the elements of the background assumptions
involved in the black hole system, namely the possible influence of the trans-
Planckian physics on the thermality of the radiation. The semi-classical deriva-
tion of Hawking radiation assumes that the trans-Planckian physics, whatever
that might be, does not have an effect on whether Hawking radiation occurs.
As the phenomenon relies on the physics at very high frequencies, a domain
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Figure 5: The Bayesian network of the BEC model and the black hole model
(with universality).

where the semi-classical approach is not applicable, the assumption is con-
sidered to be problematic. It is referred to as the “trans-Planckian problem.”
Note, however, that the analogue model contains a similar assumption regard-
ing its independence from the underlying high energy theory. Based on these
considerations, we introduce an additional variable U corresponding to the
universality claim (see Figure 5). It has the following values:

U: Universality arguments in support of common background assumptions
hold.

¬U: Universality arguments in support of common background assumptions
do not hold.

One can now see how U can play the role of the common cause variable men-
tioned in Section 3: If the universality assumption are true, then that will
directly impact the legitimacy of the corresponding background assumptions.
Also, evidence for each analogue model of black hole Hawking radiation will
provide empirical support for the universality claim itself, as each analogue
model has a different high energy theory. Using the Bayesian network from
Figure 5 one can then show that, under certain reasonable conditions, E con-
firms TBH: P(TBH|E) > P(TBH).

Together with a number of plausible assumptions about the prior distribu-
tion, the Bayesian network depicted in Figure 5 provides a possible rationale
for Steinhauer’s strong claim about the empirical confirmation of black hole
Hawking radiation. At the same time, it illustrates the more general problem
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of analogue experiments: To probe an inaccessible target system via analogue
experiments, additional arguments establishing the probabilistic dependence
need to be established. If these cannot be established, the analogue experi-
ment cannot provide inductive support for the black hole system and may in
this sense be just an “amusing feat of engineering”. This, of course, does not
rule out other (e.g., heuristic) roles it may have (see Thébault, this volume).

6 Discussion

In the previous two sections, we have shown how BCT can be used to evaluate
ways of indirectly assessing scientific theories. Constructing Bayesian network
models of the corresponding testing scenarios allowed us to explore the con-
ditions under which these new ways of assessing scientific theories can be
successful and establish trust in a theory. In this section, we discuss a number
of concerns related to the Bayesian approach and suggest how a Bayesian can
respond to them.

1. The Bayesian approach is too flexible.

The advantages that come with the flexibility of the Bayesian approach
also bear the danger of too much flexibility (“anything goes”). Is it not
always possible to come up with a complicated Bayesian network that
does what one wants it to do? If this were so, then more needs to be
done to make a convincing claim in favor of the confirmatory value of
some piece of indirect evidence.

In response, the following can be said: First, a model is always only as
good as its assumptions. Sometimes called the GIGO principle (“garbage
in, garbage out”), it holds for scientific models as well as for philosoph-
ical models. Clearly, the assumptions of a model have to be justified:
We did, indeed, make sure that the crucial independence assumption
(i.e., that the common cause variable screens off the other two variables)
holds. We also discussed the possibility of including other variables (such
as the difficulty of the problem in the NAA example) that may influence
the conclusion. Second, by doing so, the Bayesian approach makes the
reasoning transparent. It forces the modeler to put all assumptions on
the table and it shows what can be concluded from a certain set of as-
sumptions. The Bayesian approach provides a reasoning tool that may
point to a hole in a putative argument.
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2. Confirmation is an absolute, not a relative notion, and indirect confirma-
tion cannot provide it.

Rovelli (this volume) claims that the common-sense understanding of
confirmation means “very strong evidence, sufficient to accept a belief
as reliable” and then goes on to claim that “only empirical evidence can
grant ‘confirmation’ in the common sense.”

In response, we note that Rovelli conflates “confirmation” and “accep-
tance.” While confirmation is a relation between theory and evidence,
acceptance is not. According to BCT, a theory is confirmed if its proba-
bility increases after the evidence obtains. In this case, the evidence is one
reason in favor of the theory and confirmation is, therefore, an epistemic
notion. For example, a theory is confirmed if its probability increases
from 1% to 5%. Acceptance, by contrast, is a pragmatic notion. For exam-
ple, one would not accept a theory if its probability is only 5%. Instead,
the threshold for acceptance should be greater than 50%; that is, it must
be more likely that the theory is true than that it is false.9 Rovelli (this
volume) would set the threshold for acceptance even as high as 95%. If
one sticks to this (Bayesian) use of the terms “confirmation” and “accep-
tance,” then there is no problem with the claim that indirect evidence can
confirm a theory (even if it does not lead to a high posterior probability).

3. The evidence provided by indirect confirmation is negligible.

Related to the previous issue, indirect evidence is always much less effec-
tive than direct empirical evidence. Hence, we should not take indirect
evidence seriously.

In response, one may agree with the claim that direct evidence is typically
better than indirect evidence. The observation of a new phenomenon that
can be accounted for using string theory will provide us with much more
confirmation than the NAA. However, if there is no such evidence (yet),
then the search for indirect evidence for the various candidate theories is
a means to better navigate in the epistemic landscape. Having discrim-
inating indirect evidence, however small it is, in favor of string theory
may provide a reason to keep on working on the program and develop-
ing it, while having no evidence whatsoever does not support this claim
(or justify the effort that is put into this research program).

9Interestingly, this intuitive way of explicating acceptance is not without problems. For a
discussion, see (Leitgeb 2017).
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4. BCT is subjective.

BCT assumes that scientists assign subjective degrees of belief to their
hypotheses, which they subsequently update in the light of evidence.
The resulting posterior probabilities are also subjective, which in turn
implies that confirmation is subjective. As a result, BCT does not provide
an objective account of the relation between theory and evidence.

In response, one may first point to the serious problems that more objec-
tive accounts such as HD confirmation or Popper’s falsificationism face
(see our discussion in Section 2). These problems led to the development
of the Bayesian approach. Furthermore, Bayesians admit that there is an
ineliminable subjective element in scientific reasoning and stress that the
Bayesian approach makes it explicit. By putting on the table where sub-
jective judgments come in (and where they do not), it becomes possible to
assess the reasoning of a rational agent and to criticize it (if appropriate).
Again, the Bayesian approach has the advantage of being transparent.10

7 Conclusion

The difficulty of experimentally probing certain energy regimes or reaching
certain target systems have persuaded many physicists to seriously explore
the possibility of alternative methods of theory assessment. At the same time,
the stronger reliance on alternative methods has led to profound disapproval
from members of the scientific community who question the viability of these
methods. This makes it necessary to rigorously analyze the argumentative
strategies employed when applying these methods, to identify the assump-
tions involved, and to investigate whether these methods can provide confir-
mation in the same way experiments can.

We have argued that standard qualitative accounts of confirmation (or cor-
roboration) do not provide the tools for an analysis of these methods, as they
are restricted to direct (deductive) consequences of the theories only. After hav-
ing introduced Bayesian confirmation theory, we discussed how this powerful
methodological framework provides the appropriate flexibility to rationally
reconstruct various indirect ways of theory assessment. More specifically, we
used the theory of Bayesian networks to demonstrate the possibility of indi-
rectly confirming a scientific theory via a common cause structure. Here the

10Much more can be said on this and other objections to the Bayesian approach. See, for
example, (Howson and Urbach 2006).
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evidence confirms the theory under certain conditions via a mediating com-
mon cause propositional variable. This methodology was then illustrated by
two examples, the No Alternatives Argument and analogue experiments.

The crucial task in evaluating these indirect ways of theory assessment in
the Bayesian framework is to identify a variable, if there is one at all, that plays
the role of the common cause. This is a nontrivial task, and there is no real
heuristic to find it. In the case of the No Alternatives Argument, the evidence
being used does not probe the theory directly but rather addresses the space
of theories as a whole, more specifically the number of alternatives available
in that space. By assessing how constrained the theory space itself is, it can
indirectly provide confirmation for a theory. In our second illustration, we
argued that analogue experiments of black hole Hawking radiation can indi-
rectly provide confirmation by probing directly a universality claim (which,
in turn, probes the theory in question). In both cases, BCT provides the tools
to reconstruct the argumentative strategies, to make transparent all assump-
tions involved, and to identify the normative consequences for the practic-
ing scientists. The possibility of indirect confirmation, relying on nontrivial
Bayesian network structures, opens up the possibility of analyzing other alter-
native ways of theory assessment.

Section 6 considered several possible objections to BCT and provided some
replies. There is much more to say about the vices and virtues of indirect ways
of assessing scientific theories within the Bayesian paradigm, but we hope to
have shown that BCT is a good framework with which to start to critically
and rationally assess the various methods, and a coherent framework for the
various exciting new scientific methodologies.
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