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Abstract: This paper provides an epistemic reformulation of quantum mechanics (QM)

in terms of inference consistency requirements of objective Bayesianism, which include the

principle of maximum entropy under physical constraints. Physical laws themselves are

understood in terms of inference and physical consistency requirements. Strong comple-

mentarity - that di�erent observers may �live� in separate Hilbert spaces - follows as a

consequence, which resolves the �rewall paradox. Other clues pointing to this reformu-

lation are analyzed. The reformulation, with the addition of novel transition probability

arithmetic, resolves the measurement problem completely, thereby eliminating charge of

subjectivity of measurements from quantum mechanics. An illusion of collapse comes from

Bayesian updates by observer's continuous outcome data. Spacetime is to be understood in

epistemic sense, instead of existing independently of an observer, following spirits of black

hole complementarity. Dark matter and dark energy pop up directly as entropic tug-of-war

in the reformulation.
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1 Introduction

Section 2 and 3 revolve around the reformulation of quantum mechanics from objective

Bayesian principles. A state vector simply encodes state of uncertainty knowledge about

other subsystems from an observer point of view. An observer updates a state vector when

her own outcome arrives by the Bayes rule - this creating an illusion of state vector collapse.

Because outcomes of past need to be used to update today's state vector, Hamiltonian and

Schrödinger equation enter. Hamiltonian is selected by the principle of maximum entropy,
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which is the key principle of objective Bayesianism.[1][2] As with state vectors, spacetime

is considered to be of epistemic nature, following spirits of black hole complementarity[3].

In fact, the word �reformulation� may even be misleading, as this is in essence mod-

ern Copenhagen interpretation, updated from traditional Copenhagen interpretation such

that collapse of a state vector is just understood as a Bayesian update with new observer

outcomes. What follows thus is what hidden consequences we can get from this modern

Copenhagen interpretation by explicitly stating it out. However, the reformulation works

with other consistent interpretations of quantum mechanics, as they all are supposed to

give us same predictions.

Section 2 provides some intuitions for what is to come up in section 3. Details of a

state vector and its Bayesian update is described in section 3. How the Born rule and

Schrödinger equation may be derived from combination of physical and inference require-

ments is discussed in the section as well. In essence, this is just usual quantum mechanics,

with exception of the principle of maximum entropy, compatible with all consistent in-

terpretations of quantum mechanics. Under repeated experiments, Bayesian and classical

statistics converge toward the same answer - this is why we can use the same theory to

make reliable predictions, despite the principle of maximum entropy imposed for choosing

Hamiltonian.

The principle of maximum entropy drives strong complementarity and the �rewall

paradox, which is not a paradox at all from the reformulation point of view.

Di�erent consequences of the reformulation are discussed in section 4. �Dark matter� is

created as a result of entropy reduction due to an arrival of an outcome, and �dark energy�

is created because of increase in entropy due to the principle of maximum entropy.

Section 5 discusses how one may recover spacetime from entanglement data from the

principle of maximum entropy and area law.

Section 6 attempts to resolve the measurement problem completely. Section 2 already

resolves the basis ambiguity problem of the measurement problem, but completeness of

Bayesian inference is left to be demonstrated. The transition probability arithmetic �lls in

this hole.

The essential parts of this writing are: subsection 3.2 of section 3, section 5 and sec-

tion 6. Together, they demonstrate that the objective Bayesian re-formulation of QM is

consistent and illuminating.

1.1 Terminology

Hamiltonian formalism and Schrödinger picture of quantummechanics are assumed through-

out the writing, with time t ∈ R. Whenever the word entropy is mentioned without addi-

tional quali�cation, it refers to von Neumann entropy.

A state vector represents degree of uncertainty an observer has about the entire system,

assumed in this writing to be always pure. Thus, initially, di�erent observers may have

di�erent state vectors. We distinguish states of the entire system from states of a subsystem

that cannot be further factorized into subsystems. The latter states will be referred to as

outcomes, instead of states for clarity of writing. An observer is always assumed to be a
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subsystem that cannot be factorized into other subsystems, unless quali�ed as a macroscopic

observer. Observer outcomes thus refer to states of an observer.

Total entropy of the (entire) system will solely refer to sum of von Neumann entropy

of subsystems:
∑

i Si, where Si refers to von Neumann entropy of subsystem i that cannot

be factorized in other subsystems. Thus it does not refer to von Neumann entropy of the

entire system, which will anyway be a vacuous measure if the universe is in a pure state.

2 Epistemic nature of quantum mechanics

2.1 Area law

Area law for von Neumann entropy of some subsystem is given by:

S = αA+ Ssub = −tr [ρ ln ρ] (2.1)

where ρ is density matrix of a subsystem, tr is trace, S is entropy of a subsystem and k is

some constant. Ssub is a sub-correction term to the area law. Consider the following pure

two-qubit state vector:

|Ψm〉 = (|00〉+ |11〉)/
√

2 (2.2)

We notice that entropy of either qubit is maximal. Ignoring sub-correction, given state

vector |Ψm〉, one should obtain that the area interface between two qubits is maximal from

Equation 2.1.

However, note that this is before some outcome is measured for each qubit. When

either qubit is measured, the state is either |00〉 or |11〉. In either case, an area interface

collapses to zero.

This is a rapid change. Before measurement, we had maximal area interface, and

now we have zero area interface, assuming sub-corrections are very insigni�cant. If one

reads the area law other way around, the rapid change comes because reality (�area�) is

constructed out of epistemic ignorance (�entropy�). But can reality really be constructed

from quanti�cation of ignorance?

Recently, spacetime-from-entanglement mini-revolution[4][5][6][7] has been under the

way. But these approaches are all subject to the above criticism. �Traditional� quantum

(gravity) understandings say there is uncertainty (quanti�ed by probability) about which

state we are in, even if we know the state vector of a system. The Born rule provides an

exact rule of uncertainty quanti�cation (probability) from the state vector. But it does

not say that spacetime is constructed out of ignorance, since post-measurements, spacetime

would be coupled to de�nite matter states, not uncertainty.

In what follows, we will show that the �traditional� understanding is a wrong way to

think of quantum mechanics - in fact it is not even orthodox understanding in modern sense.

From an epistemic view of quantum mechanics, there is no problem. Spacetime arises out

of epistemic requirements, just as black hole complementarity[3] mandates.
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2.2 �Reality� of an observer

An observer can only notice and picture exterior world by variations of her outcomes. Even

spacetime is visible only through these variations. E�ectively, she �constructs� spacetime

such that some reality can be seen from her epistemic state vector. Notice that while the

word �constructs� is used, the word is used only for convenience, as there is no active mea-

surement. In fact, as one expects, in physics, there is no place for subjective measurements.

Thus this �construction� of spacetime is done automatically without requiring active and

subjective measurements.

The above seems to go counter to anti-realist theorems of quantum mechanics such

as Hardy's paradox, but this is a misunderstanding. In fact, the above is just minimal

Copenhagen interpretation, with the collapse postulate updated in modern sense such that

�collapse� really is just an observer checking her own outcomes to measure exterior world,

which is updating a state vector by outcomes. But because all consistent interpretations of

quantum mechanics provide same predictions, the reformulation will be compatible with all

these interpretations as well. It is just that Copenhagen interpretation, suitably modern-

ized, provides most minimal set of assumptions for formulating quantum mechanics. For

Hardy's paradox, this is about what is being measured, not an observer. Thus even if an

observer remains �real� while other subsystems remain �anti-real�, there really is no prob-

lem. In fact, this aspect is what presents an illusion of observer supremacy and omniscience

in modern Copenhagen interpretation. Thus, anti-realist theorems present no problem in

upholding �reality� of an observer.

Still, one may object that the above view of quantum mechanics does leave subjectivity

as to when an observer updates a state vector. This is again a misunderstanding. An

observer does not �choose� to see outcomes - an observer is forced to see outcomes and

update them into state vector. In fact, we will assume reasonably that variations of observer

outcomes are continuous over time. Thus, an observer continuously updates her state vector.

This completely gets rid of charges of subjectivity in quantum measurements. An observer

does not know what outcome she will see at the end of the experiment, thus usual quantum

mechanical calculations are saved in the reformulation.

2.3 But why do we only perceive few outcomes of ourselves?

But clearly, an observer does not perceive some of her own outcomes. What are circum-

stances that an observer would perceive outcomes?

The answer relies on the fact that a macroscopic observer actually consists of multiple

microscopic observers (or in quantum computation, qubits). These observers together form

shared picture of reality. But a �nal picture, to be presented, would have to be processed.

If underlying reality is not �robust,� such as being too volatile, then processing would fail,

and we would not notice much.

When is reality guaranteed to be robust? This is answered by quantum decoherence,

which we will explore soon. It provides why despite measurements of an observer herself

continuously existing at all time, only few are actually perceived by a macroscopic observer.
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2.4 Black hole evaporation

An observer takes away mutual information uncertainty about outcomes of a subsystem,

when her own outcome occurs. This re�ects back into reduction of area term interface

between a black hole (BH) and its non-BH complement. Later, it will be seen that the

principle of maximum entropy �ghts against this reduction in entropy. But in case of a

black hole, entropy would have been already so maximized at some point that it cannot

�ght against this loss of entropy due to an observer outcome, because there is no way to

increase its entropy. This is a weird but obvious curse that one can follow from Page curve[8]:

because of entropy maximality, a black hole just has to watch it evaporate completely. (Or

more correctly, an observer has to picture a black hole that way, as a state vector is of her

own.)

3 State vector from objective Bayesianism

3.1 Principle of maximum entropy and state vector update

Objective Bayesianism suggests that the principle of maximum entropy is to be used to

quantify uncertainty an observer faces about the universe. The modern understanding is

that the principle arises out of inference consistency requirements[1][2][9].

The question is how to update a state vector with new observer outcomes consistent

with the principle of maximum entropy. The answer of course is the Bayes rule, but it

does not provide a way of gathering and comparing together past outcomes and present

outcomes. This requires probabilistic modeling of how reality evolves, because we need to

think of how past and present states are related.

Thus, we now see two main things an observer must have to experience reality: state

vector |Ψ(t)〉 and Hamiltonian H(t), where t ∈ R is time. For now, we will simply assume

that Schrödinger equation is the constraint of inference as the law of state vector evolution

over time:

i
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉 (3.1)

where H is restricted to self-adjoint operators and ~ normalized to 1.

Bayesian updating The magic of Bayesian updating is that one can forget about all

past outcomes and simply update on prior probabilistic distributions, which are same as

preceding posterior probabilistic distributions, with present outcomes. Prior distributions

already contain all past data. In case of quantum mechanics, this needs to be re�ned

with preceding posterior probabilistic distributions (state vector) evolved by Schrödinger

equation and updating with a present-time observer outcome, but rest remain the same.

While in�nitesimal arguments are not rigorous - and we will remedy this in subsection

3.2 - the general intuitions can be captured as follows:

At time t = −dt (dt is in�ntesimal time), an observer would have state vector |Ψ(−dt)〉
and Hamiltonian H(−dt) which is the inferred Hamiltonian at t = −dt. This Hamiltonian

would be used to evolve state vector such that we get some state vector |Ψ′0〉. Notice that
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Ψ has a prime in superscript. This re�ects the fact that an outcome at t = 0 has not yet

been factored in.

Now an observer factors in her own present-time outcome to obtain |Ψ(0)〉. This is

simply an application of the Bayes rule applied to state vector, and what one can call as

�collapse� of a state vector.

But now H(0) is missing, and this is required to form |Ψ(dt)′〉. And this is where the

principle of maximum entropy enters. It asks us to setH(0) to obtain |Ψ(dt)′〉 by Schrödnger
equation such that total entropy of the system is maximized for |Ψ(dt)′〉 subject to some

constraint.

But again, there exists an additional constraint that has to be factored in. To make

an analog to macroeconomics, one speci�ed law of state evolution and individual utility to

be maximized, but one has not speci�ed a budget constraint. And what comes next is this

budget constraint.

Euclidean unitarity: partition function invariance And that budget constraint is

Euclidean unitarity: that partition function Z = tr[e−βH(t)] (β = 1/ [kBT (t)], with kB
Boltzmann constant, T (t) temperature) has to stay invariant across time. One may ask

why.

A natural motivation comes from studies of renormalization group in thermodynamics,

where the idea is capturing same physics but with di�erent succeeding e�ective descriptions.

There, it is the above Z that is constant. This is what we want as well.

Initial state vector of the universe The initial state vector of the universe at the

beginning of the universe is not assumed to be set by the principle of maximum entropy. This

is because entanglement is about correlation, but at the beginning, there should not have

been any epistemic correlation between subsystems. A subsystem only just started learning

about other subsystems - thus the initial state vector of the universe must be a tensor

product of pure state vectors that describe each irreducible subsystem. The consequence

is that the initial state vector of the universe allows one to identify individual irreducible

subsystems by Hilbert space factorization.

Basis ambiguity does not exist It is said that quantum mechanics does not provide a

rule for a basis on which an outcome comes out of a state vector. But in the reformulation,

it is observer outcomes that determine the basis. Or better wording would be that a new

outcome would be projected onto a selected basis vector for representation, as physics does

not care which basis is selected. Thus, this part of the measurement problem is resolved.

One may argue that this runs counter to an observer having some freedom on what basis

some subsystem would be measured in an experiment - but there is nothing contradictory

here. In classical physics, humans do not really have �freedom� to build a computer - physics

dictates that we will build a computer. But one can imagine as if a human has freedom to

do something when the universe is approximated.

3.2 Summary: maximization problem

In form of a control theory problem:
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• Objective: max
∑

i Si(t) where Si(t) represents von Neumann entropy of irreducible

subsystem i at time t, with i indexing subsystems.

• State: |Ψ(t)〉

• Control: Hamiltonian H(t), temperature T (t)

• Initial state vector: |Ψ(t0)〉

• State evolution: Schrödinger equation, i~d|Ψ(t)〉/dt = H(t)|Ψ(t)〉.

• �Budget� constraint: given constant Z where Z = tr[e−βH ], β = 1/[kBT (t)].

• Observer outcome trajectory (Bayesian update constraint) that constrains possible

state vectors at each time: the observer outcome at t must have probability of 1 in

state vector at t.

3.3 Derivation of quantum mechanical laws

It was so far explained how quantum mechanics is essentially equivalent to Bayesian infer-

ence given physical conditions, assuming the Born rule and Schrödinger equation. These

two are not something yet derived from Bayesian inference requirements.

Why the Born rule? Fortunately, a derivation of the Born rule from Bayesian inference

requirements was already done in Sebens-Carroll (2016) [10], and despite the title, many-

worlds intepretations are not required to derive the Born rule in the article. The required

principle is the epistemic separability principle (ESP), which will be accepted as a law in

this writing.

The ESP idea is simple. Consider the universe consisting of system A, observer O and

environment E. Now assume that the state of the combined system of A + O is exactly

known at t = t0 - which means it will be represented by a pure state vector. This implies

that the state of the environment is in a pure state vector as well at t = t0. At t = t0
then, how one assigns probability to a state vector of A+O should be independent of what

the state vector of the environment E is (candidates di�ering by unitary transformation).

However, it must be simultaneously true that a state vector of the whole A+O + E must

represent probability of states of the entire universe as well. Resolving these requirements

results in the Born rule.

Why Schrödinger equation? Now Schrödinger equation. One can easily derive it using

assumption of linearity and unitarity. Unitarity comes from the Born rule requirement and

sum of probability being 1, so what is left is linearity. Fortunately, such a consideration was

already explored using information-theoretic and thus Bayesian inference requirements[11].

In Parwani (2005), linearity of Schrödinger equation follows from physical constraints mo-

tivated from classical physics (but those that also seem to apply to quantum systems as

well) and the principle of maximum entropy. One can argue that the physical constraints

do not apply for non-classical systems, though, and this would be up to empirical evidences

to check out. So far, these constraints and Schrödinger equation held up empirically, so

linearity in Schrödinger equation is sound.
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Where Bayesians and classicals all agree A state vector of a quantum system is

reliable, if we do not have to care about distinctions between classical and Bayesian statis-

tics. It is well-known that classicals and Bayesians �e�ectively� all agree asymptotically on

probabilistic distributions - thus the question is whether number of outcomes of the same

system (as far as epistemic limitations go) can be generated to guarantee such convergence.

This is what allows one to use a quantum theory (Hamiltonian) to make correct predictions

- because converged �nal Hamiltonian can always be used to make predictions. There,

whether one is a subjective Bayesian, objective Bayesian or classical statistician does not

matter.

Evidence: The law of maximum entropy production In non-equilibrium classical

thermodynamics, Swenson and others[12] proposed the law of maximum entropy production

(LMEP) as the fourth law of thermodynamics. The intuition, as stated by Rod Swenson,

behind LMEP is simple - let me quote directly from the cited article:

As an example, R. Swenson considered further the change of the temperature

in a house in winter. If all doors and windows are closed, the street and room

temperatures equalize through heat conduction, i.e. relatively slowly. Open-

ing of a door or a window provides a new opportunity for equalization of the

temperatures through the convective transfer. This mechanism will bring the

�house-street� system to the thermal equilibrium faster.

Traditional laws of equilibrium thermodynamics do not explain how equilibrium, or steady

state, is reached, and this fourth law �lls this missing piece.

And basically, this is a classical thermodynamics application of the principle of maxi-

mum entropy. While observer outcomes continuously reduce entropy, maximal generation

of entropy ensures maximal entropy states out of feasible ones.

4 Consequences of the QM reformulation

Measurement problem The basis ambiguity problem of the measurement problem was

shown to be a non-existent problem. What about the rest of the measurement problem?

The measurement problem is:∑
x

P (x)P (x→ z) 6= P (z) (4.1)

where x (time 0), z (time dt) all are outcomes at di�erent times in some particular basis (at

each time, di�erent basis may be chosen) and P (x → y) represents transition probability

from x to y, assuming P (x→ y) = |〈y|e−iH(dt)|x〉|2.
But this damages traditional notion of probabilistic inference completeness - the in-

equality in Equation 4.1 should have been equality.

In fact, the problem is on how transition probability is de�ned mathematically. What

one needs to preserve is the Born rule on individual states, not on transition probability.

The full transition probability arithmetic that resolve the measurement problem completely

will be provided in section 6.
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4.1 Strong complementarity

Strong complementarity is an idea that di�erent observers live in di�erent Hilbert spaces.

And in fact, an observer herself may change Hilbert space as Hamiltonian H comes to

change. This is because Hamiltonian H is of epistemic nature.

Firewall paradox Because of strong complementarity and epistemic nature of quantum

mechanics, the �rewall paradox[13] is automatically dissolved. Observers have two di�erent

epistemic uncertainty, so what? There is nothing wrong about this. Having re-formulated

quantum mechanics as Bayesian inference, if the �rewall paradox really is a paradox, it

would amount to saying that Bayesian inference is conceptually wrong. Of course it is the

no drama assumption that is at heart of the �rewall paradox - but it is dissolved as long

as we recover spacetime of general relativity for an infalling observer, and spacetime-from-

entanglement literature suggests it is not a problem, as we will see in section 5.

Another question that arises from the �rewall paradox is why observers may face dif-

ferent H in case of a black hole, while in other normal circumstances H is largely shared.

Notion of distance: why same H in usual circumstances? Observers largely share

same H because they are very close to each other. When subsystem X comes to extract

most of available mutual information with its complement X̄ from my point of view, X

must be very close to me via locality - which just says information �ows to me from nearby.

This connection allows one to de�ne notion of distance from entanglement. And consistency

of underlying reality mandates that approximately same H should be shared between me

and X.

Now this story seems to be opposite to the usual quantum �eld theory story[6]: en-

tanglement of subsystems usually decreases with increasing distance. Thus we expect more

entanglement whenever distance decreases. This is not the case. From my point of view,

observer Y far away from me is more entangled with subsystems near Y than subsystems

near me. What we need to remember here is that a state vector and entanglement must be

understood from an observer point of view. Thus, there is no inconsistency.

How locality is related to mutual information will be discussed in depth when talking

of �spacetime from entanglement�, speci�cally in section 5.

4.2 Dark energy and dark matter

A strange observation then can be noticed. Essentially each arrival of an observer outcome,

which happens at every time t, reduces von Neumann entropy of a subsystem. The area

law suggests that this shrinks spacetime.

But the principle of maximum entropy provides a reason why total entropy of the entire

universe may increase.

This seems to echo so heavily with the concept of dark matter (matching with outcome-

induced entropy loss) and dark energy (matching with the principle of maximum entropy).

If spacetime is of epistemic nature, so should dark energy. Dark matter is of a di�erent

beast, but the general point stands.
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The vision that dark energy and dark matter be of entropic characteristics is nothing

new.[14] The novelty here is matching dark matter with outcome-induced entropy and dark

energy with the principle of maximum entropy.

4.3 Basis, decoherence and causal diamond complementarity

This writing was not initially inspired by Bousso-Susskind (2012)[15], but it became clear

that there is a heavy connection. Let us review the two ideas in Bousso-Susskind (2012).

Observer trajectory First, an observer trajectory used to de�ne a series of causal dia-

monds in Bousso-Susskind (2012). This appeared in this writing as data for a state vector

update.

Objective decoherence Second, objective decoherence. In a way, decoherence is simply

about looking at behavior of density matrix of individual subsystems, to see if any coherence

in each subsystem is lost. That objective density matrices for the entire causal diamond

have special meaning may seem strange.

But we believe Bousso-Susskind was essentially at the right track. The point is that

a single preferred basis may be viewed as being shared across the causal diamond, even

when we just trace out an environment, de�ned as those not in the causal diamond. Of

course decoherence is incomplete always, so this is more like an approximation. In this

basis, the states of the causal diamond may be considered separately, because there is lack

of coherence between them. It is as if the universe has branched into multiple universes in

Everettian interpretation.

Why causal diamond? In order for exterior world (relative to an observer) to have

any possibility of directly a�ecting an observer, it must be in the causal diamond of an

observer, given a present-time observer outcome. This has been the fundamental point in

the reformulation of quantum mechanics.

Back to decoherence So what is the point about di�erent subsystems in the causal

diamond sharing the same privileged basis?

First, as said before, a state in a privileged basis allows one to view it as somewhat

classical reality.

As observers come nearby, they come to share almost same Hamiltonian H, and fur-

thermore entropy of an observer from another observer's perspective begins to be reduced

signi�cantly, as we come to learn more about each other. This requires that classical reality

of di�erent observers dominates, as expected. This restricts the number of plausible bases

in which an observer outcome can arrive as a subsystem basis vector, because di�erent

observers must agree epistemically as well.

This is why quantum decoherence seemed to provide important insights toward re-

solving the basis ambiguity part of the measurement problem, despite never being able to

resolve it completely. It required a deeper understanding of quantum mechanics to see how

it all played out.
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Macroscopic observer While decoherence is analyzed in cosmological scale, one can

restrict to a macroscopic observer (or a human) that consists of microscopic observers.

There, macroscopic reality emerges when microscopic observers come to form a robust and

redundant picture of the universe.[16] If microscopic observers speak of di�erent pictures

that cannot be combined by error correction reliably, then a macroscopic observer would

ignore them, while continuing to update her microscopic observers. This is why we do not

seem to observe quantum reality, despite them existing.

A macroscopic process involves initial divergence of same H and state vector, but

convergence is arrived as decoherence is achieved su�ciently, induced by outcome updates.

5 Spacetime from entanglement

5.1 Locality: area equals mutual information?

The intuition behind locality is if I am very close to you I would be able to know you fairly

well - mutual information would have been depleted. If I am far away from you, there will

be mutual information still left to be updated by my future outcomes. This inspires the

conjecture of area equaling mutual information.

It is widely believed that while the conjecture holds approximately, it does not hold

exactly. However, there is value in approximating spacetime reasonably, especially in case

the conjecture does hold exactly. Thus we will proceed as if the conjecture holds exactly.

Area is the measure of the interface between a subsystem and its complement. Now

let me combine these points. Area of surface between subsystem X and its complement X̄

from an observer point of view is:

A(X; X̄) =
1

2α
I(X; X̄) (5.1)

which one would set α = 1/4 in accordance to Bekenstein-Hawking entropy. A(X; X̄) refers

to area interface betweenX and X̄, I(X, X̄) refers to mutual information betweenX and X̄,

c = G = ~ = 1 by Planck units. This allows one to de�ne the area perturbation δA(X, X̄)

from state vector perturbation δ|Ψ〉 and the principle of maximum entropy δ[
∑

i Si] = 0.

The area perturbation data allow one to recover emergent metric - recovery details are

left to Cao-Carroll (2018)[6], though in this writing the RC state restriction is dropped

without any adverse consequences, because recovery itself is independent of the restriction.

In �entanglement equilibrium�, δSi = 0 is recovered from the principle of maximum entropy,

as in [6].

5.2 Story of Big Bang cosmology

Because the initial state vector of the universe exhibits no entangement, it naturally leads

to the idea that subsystems (or observers, equivalently) had zero distance between them

at the start of the universe. Then entropy maximization kicks in heavily because there are

very few outcomes for Bayesian updates. This expands spacetime, generating moments of

Big Bang. Outcome updates create shrinking �force� for spacetime - dark matter, while the

principle of maximum entropy continuously expands on spacetime - dark energy. Note that
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this story holds independent of which spacetime construction turns out to be general - as

far as the area law holds well approximately.

5.3 Alternative spacetime constructions

The spacetime-from-entanglement alternatives to [6] exists - though they are understood in

terms of AdS/CFT, such as entanglement holonomies[7], error-correction codes[4] and neu-

ral network emergence[17]. Recent dS/dS correspondence[18][19] may allow us to transport

results in AdS/CFT to our realistic spacetime eventually, but for now where we stand as

to exact recovery of spacetime remains unclear.

5.4 Spacetime from neural network

Recently, a paper[17] that casts AdS/CFT correspondence in terms of a deep Boltzmann

machine has appeared - which presents bulk as learning about boundary.

If the idea that trained weights of the neural network create emergent spacetime is

correct, then spacetime must be of epistemic nature, as assumed throughout the writing,

unless spacetime depends on unknown future outcomes as well.

The bright line behind this idea is instead of trying to �rst state laws of spacetime

construction, we may simply �gure out emergent spacetime directly from data. This is

much more natural from epistemic perspectives of quantum mechanics. After all, why would

spacetime be special, when quantum mechanics simply is Bayesian inference? Furthermore,

the �data� for the neural network do not necessarily have to be in style of boundary CFT,

technically speaking.

And some ideas, such as entanglement holonomies[7], may not be distinct from the

neural network idea, as we need to re�ne how a neural network would be structured. Those

re�nements may be provided by these ideas, just as we arrived at the Born rule from

epistemic requirements.

5.5 Error-correcting code and decoherence

Quantum error-correcting code vision[4] of holographic duality becomes very useful, in

relation to quantum decoherence (subsection 4.3). A valuable insight provided is that error

correction breaks down for a black hole such that two observers no longer arrive at same

bulk spacetime. But it is easy to expect this. In fact, quantum decoherence literature[20]

suggests that su�cient decoherence takes time, even if little, for quantum redundancy to

form, so error correction is not instantaneous - the main point being that redundancy has

to be formed, instead of being just there.

But why error correction? The intuition is actually clear. If di�erent observers agree

(in probabilistic sense) on the system, it would mean that mutual information they expect

from each other has aligned. This immediately implies that some error-correcting algorithm

would be able to extract �shared agreement� from state vectors of di�erent observers, which

would recover spacetime.

� 12 �



6 Transition probability arithmetic: resolving the measurement problem

completely

The starting system of probability equations Transition probability arithmetic starts

from the system of probability equations, re�ecting transition, that must hold:

P0(x1)Pu(x1 → y1) + · · ·+ P0(xn)Pu(xn → y1) = Pt1(y1)
...

P0(x1)Pu(x1 → yn) + · · ·+ P0(xn)Pu(xn → yn) = Pt1(yn)

(6.1)

where Pt(x1) refers to probability of outcome x1 at time t = 0, t1, t1 → 0 but t1 > 0,

and Pu(xi → yj) represents transition probability from outcome xi at t = 0 to outcome

yj at t = t1. Subscript u refers to undetermined status of transition probabilities, and we

derive P0 and Pt1 from a given state vector by Born rule. A state vector is assumed to be

n-dimensional, but the conclusion obtained can be generalized to in�nite dimension as well.

Outcomes satisfy 〈yi|yj〉 = δij .

P0 and P1 are probability vectors, and this means that Pu is a stochastic matrix with∑
j Pu(xi → yj) = 1. Thus this consistency requirement does not have to be imposed. All

that is to be ensured additionally is non-negativity of transition probability.

Note that the above system of equation satis�es objective completeness of quantum

mechanics and unitary evolution.

The requirement of transition probability arithmetic A law of transition probabil-

ity has to satisfy Pu(xi → yj) = |〈yj |e−iHt1 |xi〉|2 if P0(xi) = 1. This re�ects the traditional

collapse and measurement intuition.

The ratio rule There are n2 unknown transition probabilities and n equations in Equa-

tion 6.1. Thus n2 − n equations need to be provided to determine transition probabilities.

The ratio rule is speci�ed as:

Pu(x1 → y1) : Pu(x2 → y1) = |Am(x1 → y1)|2 : |Am(x2 → y1)|2

Pu(x1 → y1) : Pu(x3 → y1) = |Am(x1 → y1)|2 : |Am(x3 → y1)|2
...

Pu(x1 → y1) : Pu(xn → y1) = |Am(x1 → y1)|2 : |Am(xn → y1)|2

Pu(x1 → y2) : Pu(x2 → y2) = |Am(x1 → y2)|2 : |Am(x2 → y2)|2
...

Pu(x1 → y2) : Pu(xn → y2) = |Am(x1 → y2)|2 : |Am(xn → y2)|2
...

Pu(x1 → yn) : Pu(x2 → yn) = |Am(x1 → yn)|2 : |Am(x2 → yn)|2
...

Pu(x1 → yn) : Pu(xn → yn) = |Am(x1 → yn)|2 : |Am(xn → yn)|2

(6.2)

where Am(xi → yj) = 〈yj |e−iHt1 |xi〉 refers to transition amplitude from outcome xi at

t = 0 to outcome yj at t = t1. This gives us additional n2 − n equations needed, and

satis�es the requirement. Non-negativity of transition probability is guaranteed as well.
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7 Conclusion

If what is written in this writing proves to be in the right direction, then it suggests that we

are at least fairly close to completing the project of quantum gravity. Both spacetime and

state vector are results of probabilistic inference of an entire system from observer outcomes,

with spacetime potentially rising out of epistemic requirements[7][17], just as quantum me-

chanics arises out of epistemic requirements. We believe that the promising future direction

is on �nding epistemic requirements to notion of metric to recover spacetime.

Despite this partial (in)completeness of quantum gravity, there are things we newly ar-

rived from the reformulation of quantum mechanics, which may be said as modern Copen-

hagen interpretation explicitly stated. First, the �rewall paradox[13], even if valid in ar-

guments, is not paradoxical because of epistemic nature of quantum mechanics. Second,

spacetime does not exist independently of observer state of knowledge. This is a direct

consequence of spacetime having to be derived from quantum mechanics. Third, potential

candidates for dark energy and dark matter come out directly from the explicit reformula-

tion of quantum mechanics - dark energy from the principle of maximum entropy and dark

matter from arrival of observer outcomes. That dark energy and dark matter being entropic

has long been suspected[21], and this writing provides a more solid foundation toward that

direction.

There is one thing worth mentioning separately. In order to provide realistic predic-

tions, the reformulation of quantum mechanics in this writing, just as with modern quantum

gravity theories, requires �regularizing� our working quantum �eld theories so that subsys-

tems do not possess in�nite entropy - indeed, we expect Hilbert space of quantum gravity

to be locally �nite-dimensional[22]. This work of regularization is non-trivial, and it is yet

unclear where our progress is at this point.

In any case, matters are real (ontic), but spacetime and state vector are purely epis-

temic, guided by objective Bayesian requirements.
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