
© Marc Burock 2019 1
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ABSTRACT

The Sleeping Beauty Problem is a polarizing thought experiment involving a fair coin toss, memory
erasure and temporal uncertainty. Despite its simplicity there is no agreed upon solution. In this work I
put forward a set of arguments that support the so-called Halfer or 1/2 solution to the problem, while
undermining the competing Thirder or 1/3 solution. In analyzing Elga’s original argument for the 1/3
solution, I bring to light a subtle but clear contradiction in his reasoning using temporal logic.
Temporal reasoning also helps to neutralize the main criticisms against the 1/2 solution. Surprisingly,
for some questions of probability or credence, it appears we need to distinguish between an event that
has yet to occur, and the same event after it has already occurred. Knowledge that an event has been
decided (without knowing the result) can be a type of admissible evidence when updating credences.
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1 Introduction

The so-called Sleeping Beauty Problem is a simple thought experiment involving sleep and memory

erasure, made infamous by Adam Elga (2000) and David Lewis (2001). It goes like this. A researcher

is going to put you to sleep on Sunday and then toss a fair coin. If Heads then the researcher will wake
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you up on Monday, ask you a question, then erase your memory and put you back to sleep until

Wednesday. If Tails, the researcher will wake you up on Monday and Tuesday, both times asking you

the same question, erase your memory, and put you back to sleep. You will wake on Wednesday for the

completion of the experiment with no memory of what happened. Here is the question asked during

your awakenings: what is your degree of belief (credence) that the coin toss was Heads?

We can imagine this experiment taking place in the actual world, and anyone with an introductory

understanding of probability can take a crack at it. Yet starting with seemingly straight-forward

premises, an analysis of the problem leads to two conflicting solutions—a degree of belief in Heads of

1/3 (Thirders) or 1/2 (Halfers). Try for yourself a solution if you have not yet taken a side in the

dispute. Despite an impressive literature on Sleeping Beauty by academic scholars and hobbyists, the

controversy continues.

Before I continue with the meat of the argument, I would like to briefly focus on Wednesday, or the

third and last day of the experiment, as it is sometimes neglected in the literature. At the end of the

experiment, the subject (I will refer to Sleeping Beauty as ‘the subject’ or ‘you’) must wae and stay

woke, and the researcher will inform him that the experiment is over. After finishing the experiment,

the subject does not know how many awakenings occurred prior to Wednesday, and the researcher does

not divulge this information. Nonetheless, the researcher may ask the subject, as he is leaving the lab,

what his credence in Heads is for the completed experiment. From the subject’s perspective, the last

thing he recalls is being put to sleep prior to beginning the experiment, and now only learns that the

experiment is over. Prior to being put to sleep, the subject’s (and researcher’s) credence in Heads was

1/2. After the experiment, the subject knows his temporal location and that he participated in the

experiment, but nothing about the specifics of that participation, just as prior to the experiment he

knows his temporal location and that he will participate but nothing more specific. He has no reason to

believe that the coin is unfair on Wednesday. The subject’s epistemic state with regard to the

experiment, prior to and after the experiment, are symmetric in this sense; so the subject’s credence in

Heads will be 1/2 afterward.

The subject’s situation during a Monday or Tuesday awakening is different. Upon awakening, she

randomly enters the world in the sense that she is uncertain about the day of the week, uncertain

whether the coin landed Heads or Tails, and uncertain whether she will wake a total of one or two times.

Prior to the experiment, the subject contemplates this uncertainty, and reasons about what her credence

in Heads ought to be when she awakens in this uncertain state, knowing everything I told you about

how the experiment is performed.
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In the following section I will present arguments that support the 1/2 solution to the Sleeping Beauty

problem while undermining the 1/3 solution. I don’t suspect that any of these arguments taken

independently will sway the opinion of a die-hard Thirder. I myself oscillated between the Halfer and

Thirder positions for some time before I fell into the Halfer position securely. In section 3 I highlight a

subtle probabilistic contradiction in Elga’s original argument for 1/3 that has not been addressed in the

literature before, and resolve the contradiction by applying a temporal logic to the coin toss. For those

who stick around, in Appendix B I derive a single expression for a Repeated Sleepy Beauty experiment

that unites Halfers and Thirders in the long run.

2 Arguments for 1/2

2.1 The total number of awakenings argument

Thirders and Halfers distribute uncertainty across awakenings differently (Table 1). Everyone

agrees there are three possibilities, but may disagree on the credence for each.

Table 1. Credences for centered awakening events

Suppose we ask the subject, upon awakening, “What’s your credence of waking up two times total

during the experiment?” The Thirder distribution implies that the subject’s credence for waking up a

total of two times during the experiment is 2/3, but this credence is incorrect according to a naive

frequentist interpretation of probability: if we perform the experiment a large number of times, about

1/2 of those trials will have a total of two awakenings, not 2/3 of them. While the Thirder may argue

that the credence of a Tails-awakening is 2/3—because there are twice as many Tails-awakenings as

Heads-awakenings in the long run—this argument cannot be used on the total number of awakening

per experiment. Yet landing Tails and waking up two times total ought to have the same credence.

Frequentist arguments famously do not settle the problem when only considering the side of the coin

because we can use two different reference classes to calculate the long run frequency of Tails(or

Heads). We might consider the number of Tails-awakenings or the number of times Tails occurred

during repeated experiments, which give conflicting answers. But when we focus upon the total

Label Situation Thirders
Credence

Halfers
Credence

H1 HEADS and it is Monday 1/3 1/2
T1 TAILS and it is Monday 1/3 1/4
T2 TAILS and it is Tuesday 1/3 1/4
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number of awakenings per experimental run, there is only one way to carve up the reference class, and

the Thirder gives the incorrect credence, according to a frequentist interpretation (as well as from a

perspective of objective chance.)

There is, however, a related situation where your credence in waking up two times total is 2/3. If we

imagine that the Sleeping Beauty experiment is repeated a large number of times, and I ask you to

choose a single awakening ‘at random’ from the collection of all awakenings across experimental trials,

and then ask: “What’s your credence that you wake a total of two times in the experimental run

containing the awakening you chose at random?”, then the correct credence is 2/3. You are more likely

to choose an awakening associated with experimental runs that have more awakenings－this is the so-

called problem of ‘random incidence’. But this is a different question. Rather, we want to know your

credence in waking two times for this run, and not in some run associated with a randomly selected

awakening across repeated experiments.

Here is another example to help see the difference. Imagine you have two cookies. One cookie has

only one chocolate chip on it and the other has two chocolate chips on it. Have someone flip a fair coin

and put the one-chip cookie in the bag if Heads or the two-chip cookie in the bag if Tails (but not both

at the same time). Without knowing which cookie is in the bag, randomly select a single chip from the

bag－someone or something can do this for you by giving you the only chip if it’s a one-chip cookie, or

by picking between the two chips with a fair coin if it is a two-chip cookie. What is your credence in

getting a chip from a cookie with two chips? Let us call this the One-Cookie-In-A-Bag-Experiment

(OCIABE). Next perform the Two-Cookies-In-A-Bag-Experiment (TCIABE) by putting both the one-

chip and two-chip cookies in a bag. Have someone or something randomly select a chip from the bag

by performing an equally likely selection between the three chips, and then give you the chosen chip.

Again, what is your credence in receiving a chip from the two-chip cookie?

Your credence in getting a chip from the two-chip cookie in the OCIABE is 1/2, while this credence

should be 2/3 in the TCIABE. Although for each experiment you will receive one of three possible

chips, the experiments differ by mechanism of selection of those chips. In the cookie-chip experiment

with two cookies in the bag, a single mechanism selects among the three chips contemporaneously, and

you are more likely to receive a chip from a two-chip cookie－because it has more chips and selection

was equally likely. For the one-cookie-in-a-bag experiment, no single mechanism selects between the

three possibly chips contemporaneously. A mechanism first selects the one or two-chip cookie, and

then another mechanism is either choosing the one and only chip, or selecting one chip on a two-chip

cookie to give you.
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While neither cookie experiment is structurally identical to the Sleeping Beauty experiment, the

OCIABE copies it fairly closely for one selection, minus episodes of amnesia. Chips correspond to

specific awakening events, the one-chip cookie corresponds to one awakening total when Heads, and

the two-chip cookie to two awakenings total when Tails. Like chips in the OCIABE, selection of

awakenings in the Sleeping Beauty experiment occur in two distinct stages－first the fair coin selects

for one or two total awakenings, then the researcher ‘selects’ (causally initiates) awakenings to give the

subject, dependent upon the first stage of selection. While all three awakenings are epistemic

possibilities for a single run of the Sleeping Beauty experiment, they are not contemporaneously

selectable within a single mechanism or act of selection.

The two situations can be expressed by subtly different samples spaces in set notation:

1 ={H1,T1,T2} vs 2 ={{H1},{T1,T2}}, where 2 respects the two-stage nested selection of the

Sleeping Beauty experiment and 1 does not. The sample space 2 further expresses the fact that T1

and T2 are mutually necessary events during the experiment－T1 and T2 occur together during the

experiment or neither occurs－and further that {H1} and {T1,T2} are elements of selection. When we

envision a mechanism that selects among the three awakening possibilities with one act of selection,

similar to the TCIABE with chips, we distort the causality of the original Sleeping Beauty experiment.

This is why Sleeping Beauty arguments which posit multiple runs of the experiment or multiple copies

of the subject, and then allow for selection of a single awakening from this collection of awakenings

are inappropriate models of the original experiment. In Appendix B I analyze a repeated Sleeping

Beauty experiment and show how your credence in Heads can be 1/2 for one run of the experiment,

and also approach 1/3 as the number of repetitions approaches infinity. This result also demonstrates

that a credence derived from numerous repetitions may not apply to the single case.

2.2 The Mirror (Dual-information) Argument

Here is a direct argument for P(HEADS and it is Monday)=1/2. The researcher watching the subject

undergo the sleeping beauty experiment can also assign credences to the various awakening outcomes

(Table 2), where these awakening events will be temporally uncentered.
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Situation Researcher
Credence

HEADS and subject wakes on Monday 1/2
TAILS and subject wakes on Monday 1/2
TAILS and subject wakes on Tuesday 1/2

Table 2. Temporally uncentered awakening events

The credences do not add to one because the Monday and Tuesday Tails awakenings are not

mutually exclusive from the uncentered perspective, and the three events in Table 2 do not form a

proper sample space. Suppose you (as the subject) had access to the researcher’s perspective while you

were undergoing the experiment. Define the following events:

HEADS=the fair coin lands on Heads

MUH= HEADS and you wake on Monday (temporally uncentered)

MCH= HEADS and it is Monday (temporally centered)

Then:

(M1) P(MUH)=P(HEADS)=1/2

(M2) P(MCH|MUH)=1, or in words, the credence this is a Monday awakening and Heads, given you

wake on Monday and Heads, is one.

(M3) P(MUH|MCH)=1, the credence you wake on Monday and Heads, given this is a Monday

awakening and Heads, is one.

(M4)  P(MUH)=P(MCH)=P(HEADS)=1/2 , where P(MUH)=P(MCH) follows from (M2), (M3), and

the definition of conditional probability.

The Mirror Argument argues that our temporally centered and uncentered credences in “Monday and

Heads” ought to be the same. When coupled to (M1)－which seems relatively uncontroversial－ it

gives P(HEADS and it is Monday)=1/2. If you deny (M1), but assume that P(MCH)=1/3 as do Thirders,

then the Mirror Argument requires that your uncentered credence in Heads and Monday is 1/3 as well.

In other words, it requires the researcher who does not undergo an awakening to assign 1/3 to Heads!

Less you think I surreptitiously smuggled in an identity to make this argument, consider a similar

situation with Tails:

MUT= TAILS and you wake on Monday (temporally uncentered)

MCT= TAILS and it is Monday (temporally centered)
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Then:

(T1) P(MUT)=P(TAILS)=1/2

(T2) P(MUT|MCT)=1, the credence you wake on Monday and Tails, given this is a Monday

awakening and Tails, is one.

(T3) P(MCT|MUT)<1, the credence this is a Monday awakening and Tails, given you wake on

Monday and Tails, is less than 1.

Why (T3)? Because given uncentered evidence that you wake on Monday and Tails, it is still

possible that your current awakening is Tuesday and Tails. Your credence in MUT is not automatically

identical to your credence in MCT. If we further apply indifference to these two outcomes, then

P(MCT|MUT)=1/2, and by Bayes Theorem P(MUT)=2·P(MCT). Noting (T1), this would yield P(MCT)=1/4.

2.3 The Really Direct Argument

Suppose that the coin was tossed on Sunday, prior to putting the subject asleep. The subject will

only wake on Monday if Heads, and on Monday and Tuesday if Tails. The subject’s credence that it is

Monday and Heads upon awakening is given directly by the definition of conditional probability:

P(MCH)=P(It is Monday|HEADS on Sunday)P(HEADS on Sunday)
=(1)·(1/2)

This first term follows from the structure of experiment. The second term is your uncentered,

unconditional credence that a fair coin, tossed on Sunday, landed Heads.

2.4 The Random Selection Argument

This argument is not new to the literature, but it does represent a new perspective and segues into

what I think is the primary source of confusion in the Sleeping Beauty problem. Suppose that the coin

has already been flipped and then you are awakened. You are uncertain about the side of the coin, and
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uncertain about it being Monday or Tuesday. From your perspective, upon awakening, you randomly

enter a world that is either Heads or Tails, and either Monday or Tuesday. You can reasonably model

this situation as a random selection process in two steps: first randomly select a side of the coin, then

dependent upon the side chosen, randomly select a day (Figure 1). Randomness can be interpreted as

indifference in the coin’s side, and then conditional indifference in the day given Tails. Two-stage

selection mirrors the causality of the experiment. The structure of the experiment also demands that

the day is Monday if the coin is Heads.

A common criticism about this distribution of credences is that P(HEADS|MONDAY)=2/3—why

would being told it is Monday raise your credence in Heads? This would be a strange credence if it

was Monday and the coin had yet to be tossed; in that case you should believe the credence in Heads is

1/2 less you violate the Principal Principle. But if the coin was already tossed, then given the random

selection model above, 2/3 is precisely the correct credence in Heads given that it is Monday, and the

Principal Principle is not violated because we are dealing with epistemic uncertainty in an outcome

after a chance event already occurred.

It is easy, and consistent, to be a so-called double Halfer (hold a credence of 1/2 for Heads prior to

flipping the coin), or triple Halfer (assign a credence of 1/2 to Heads after the experiment is over, too)

with this model. Prior to flipping the coin, we do not invoke the random selection model－this model

only applies during the experiment, after the coin has been flipped, on Monday and Tuesday.

P(HEADS) is simply 1/2 prior to flipping the coin, independent of the day, in accordance with the setup

of the example. After the experiment is over, I can likewise disregard the random selection model. The

outcome of the coin does not influence what happens on Wednesday, or Thursday, or anything after the

experiment is over. On Wednesday I am epistemically indifferent to Heads and Tails.

3 Temporal logic and a latent contradiction

I have suggested that whether the coin has already been tossed or not influences our reasoning.

Along this line, Elga and those after him suggest two ways that the researcher may perform the

Sleeping Beauty experiment:

1. first tossing the coin and then waking you up either once or twice depending on the outcome; or

2. first waking you up once, and then tossing the coin to determine whether to wake you up a second

time.
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Elga says that, upon awakening, the subject’s credence in heads ought to be the same regardless

whether method 1 or 2 is used to do the experiment, and proceeds to reason assuming that the

researchers use method 2. Lewis agrees that the experimental method ought not change the result, yet

the method of the experiment does influence the process of our reasoning, and Elga explicitly makes

use of method 2 to make his argument. Specifically, he considers waking the subject on Monday prior

to tossing the coin, then telling the subject that it is in fact Monday, and argues reasonably that

P(HEADS|MONDAY)=1/2, yet also argues that P(HEADS and it is Monday)=1/3 on Monday, prior to

being told it is Monday, and prior to tossing the coin.

I think method 2 generates a contradiction under probabilistic temporal analysis. To demonstrate this,

I suggest making a distinction between an event that has yet to occur, and the same event after it has

already occurred. In the case of the Sleeping Beauty problem:

H+ It will be HEADS in the future

-H It was HEADS in the past

Mo It is Monday now

I further assume a temporal symmetry principle that requires P(H+)=P(-H). With no other

conditional evidence, your past credence that an event will occur in the future should be the same as

your future credence that the same event already occurred in the past. Put slightly more formally:

given chancy event A, let tA be the time at which A is decided, tA- is some time before tA, and tA+ is

some time after tA . If you acquire no other evidence about A between tA- and tA+ other than the

knowledge that A has been decided, then your credence at tA- that event A will occur in the future

should be the same as your credence at tA+ that A occurred in the past.

If you recall the introduction to this paper, I loosely argued that your credence in Heads before

starting the experiment should be the same as your credence in Heads after waking up and finishing the

experiment on Wednesday, assuming the researcher did not leak any information to you. You knew the

coin was fair before the experiment, and it should remain a fair coin after the experiment. The

temporal symmetry principle above underlies the equality of credences. One might further argue that

temporal symmetry gives the answer to the Sleeping Beauty Problem directly similar to Lewis (2001).

Nonetheless, although P(H+)=P(-H), H+ is not equivalent to -H, and I will show that the

distinction can make a difference. In some cases, knowledge that an event has occurred can change

your credence in the event. Consider this example: suppose there is a light that is red, it is now on, and

you are about to flip a fair coin. If the coin lands Heads the light will change from red to green, but if



Marc Burock

10

the coin lands Tails the light will stay red. Your credence P(H+|Red) should be equal to 1/2－it is a fair

coin yet to be tossed, and the color of the light ought not change that. The situation for P(-H|Red)

differs. If the light is red after the toss, then I know that the coin landed on Tails and that P(-H|Red)=0.

Therefore P(H+|Red)≠P(-H|Red) and the temporal symmetry principle does not apply in this

conditional setting. Knowledge that an event occurred can be admissible evidence when updating a

conditional credence, and does not require a mysterious violation of the Principal Principle. More, it

would be an error to assume that P(H+|Red)=P(-H|Red) and perhaps lead to a contradiction if H+ and

-H were not distinguished. With regard to the Sleeping Beauty problem, Elga’s original argument for

1/3 also involves a situation where the occurrence of an event ought to count as admissible evidence,

and although he does not explicitly distinguish the tense of Heads, he necessarily relies upon future-

tensed reasoning:

Your credence that you are in H1 would then be your credence that a fair coin, soon to be tossed,

will land Heads. It is irrelevant that you will be awakened on the following day if and only if the

coin lands Tails — in this circumstance, your credence that the coin will land Heads ought to be

1/2. But your credence that the coin will land Heads (after learning that it is Monday) ought to be

the same as the conditional credence P(H1|H1orT1). So P(H1|H1orT1)=1/2, and hence

P(H1)=P(T1).

In this case, Elga relies upon H+ to make the argument, and does not make an appeal to -H nor

suggest that H+ and -H may differ. Therefore his argument entails:

(E1) P(H+)=1/2

(E2) P(H+|Mo)=P(H+)=1/2 , by objective chance and the Principal Principle

(E3) P(Mo|H+)=P(Mo) , from (E2) sinceMo and H+ are independent

But (E3) creates a problem. The structure of the Sleeping Beauty experiment implies that

P(Mo|H+)=1, yet this with (E3) implies that P(Mo)=1, which seems incorrect because the subject can

wake on Tuesday as well as Monday. So P(Mo) must be less than one, but then this implies that

P(Mo|H+)<1, which violates the structure of the experiment. Elga’s method 2 of doing the experiment

creates a paradox under analysis. Here is another way to see the contradiction when ignoring tense.

Before the toss on Monday, Heads and Monday are independent of one another if you believe that

P(H|Mo)=P(H)=1/2. After the toss ‘on Monday night’, then Heads and Monday become dependent
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upon one another if you believe that P(Mo|H)≠P(Mo). But it violates probability theory to believe that

both P(H|Mo)=P(H) and P(Mo|H)≠P(Mo) are true. This is why we must distinguish between H+ and

-H, for even though P(H+)=P(-H), -H may have developed future dependencies which do not exists

for H+.

Prior to tossing the coin, P(H+) is anchored by the Principal Principle and objective chance, and H+

is independent of all non-exotic evidence. I could similarly argue that the statement of the Sleeping

Beauty problem implies that the coin toss is unconditionally fair. But after the toss, the outcome of the

coin is no longer a chancy event. Our uncertainty after the toss is epistemic uncertainty in an outcome

that already occurred. If the particular outcome of the coin causes other events to transpire or is

correlated with other events, and we acquire knowledge of those events after the toss, then we can

conditionalize on that evidence to modify our credence in Heads after the toss. When the toss occurs

on Monday night using method 2, then the toss is both independent of and dependent upon Monday,

and we must make a distinction to avoid the contradiction.

The Random Selection Argument－which is a modified version of Lewis’s original halfer argument

－does not fall to the above contradiction because the reasoning is all done after the coin is tossed:

(R1) P(-H)=1/2

(R2) P(-H|Mo)=2/3 , by the Random Selection Argument

(R3) P(Mo|-H)=1 , by the structure of the Sleeping Beauty problem

Since (R1) does not equal (R2), -H and Mo are dependent, and it follows that P(Mo|-H) need not

equal P(Mo), thus avoiding the paradox as well as a violation of the Principal Principle. It is interesting

－but not inconsistent－ that P(H+|Mo)≠P(-H|Mo), which is similar to the example with the red and

green lights above. Before the coin is tossed the side it will land on is independent of the day, but after

the toss, whether it landed Heads or not is dependent on the day. The temporal symmetry principle

does not apply. Elga’s argument implicitly demands that P(H+|Mo)=P(-H|Mo), but this assumption

leads to a contradiction. The above expressions lead to two different but direct formula for ‘Heads and

It is Monday’, depending upon whether the coin was already tossed or not:

(E4) P(H+ & Mo)=P(H+|Mo)P(Mo)=1/2·P(Mo)

(R4) P(-H & Mo)=P(Mo|-H)P(-H)=1/2
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The expressions P(H+|Mo), P(Mo|-H), and P(-H) in (E4) and (R4) were chosen because each is

relatively uncontroversial. Our credence in Heads and Monday depends upon whether the coin toss has

already occurred or not. Specifically, there is a direct argument for P(-H & Mo)=1/2, but P(H+ & Mo)

will only be equal to P(-H & Mo) if P(Mo)=1, which is not correct because awakening on Tuesday is

possible. This implies that P(H+ & Mo)≠P(-H & Mo) in general, and that P(H+ & Mo) may be an

invalid expression because of the contradiction arising from future-tensed reasoning. An analysis on

Tuesday creates even more problems for future-tensed coin tosses (H+, T+), because on Tuesday the

toss will have already occurred, rendering future-tensed expressions nonsense. While Elga’s original

argument that P(H & Mo) equals 1/3 does not contain any clear errors, the argument entails other

consequences that are internally contradictory.

When making the distinction between -H and H+, the so-called double-halfer argument does not

contain an inconsistency, so long as we perform the experiment according to method 1:

P(H+)=P(H+|Mo)=P(-H & Mo)=P(-H)=1/2

The double-halfer can believe that P(H+|Mo)=1/2 without embarrassment － she simply will not use

this fact in making an argument for P(-H & Mo).

Titelbaum (2012) has suggested a variation of the Sleeping Beauty problem that creates an

interesting dilemma for the double-halfer position. In this variant, a fair coin is also tossed on Tuesday

night in addition to the toss on Monday, but unlike the Monday toss, the Tuesday toss does not

influence the course of the experiment－ the researcher just tosses it on Tuesday for fun. With a fair

toss on each day, we can now ask about the subject’s credence, upon awakening, that today’s toss is

heads. Titelbaum presents this experiment with the coin being tossed ‘at night’ at the end of each day.

Both tosses are future-tensed.

On the one hand, it seems obvious that your credence in Today’s toss being Heads, upon awakening

on either day, should be 1/2, and therefore your expectation of Today’s toss being Heads will be 1/2 as

well: P(Today Heads)=P(H+|Mo)P(Mo)+P(H+|Tu)P(Tu)=1/2·P(Mo)+1/2·P(Tu)=1/2. But the concept

of ‘Today’s toss’ in the experiment as suggested by Titelbaum is problematic since it necessitates

future-tensed reasoning, and entails that Monday and Heads are both independent and dependent. I

contend that we ought reject future-tensed reasoning in this example, and reject the expression

P(H+|Mo)P(Mo) as being invalid. The credence P(Today Heads)=1/2 does not derive from formal

analysis, but follows from reasoning something like this: whatever day it is, on that day my credence

in Heads is 1/2.
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A simple adjustment to Titelbaum’s variation makes it amenable to past-tensed reasoning. Suppose a

fair coin is tossed on Sunday night and on Monday night. For the Sunday night coin, if Heads then you

wake once on Monday, and if Tails you wake on Monday and Tuesday. The Monday night coin does

not influence the experiment. Now, what is your credence upon awakening that yesterday’s toss was

Heads? It is no longer obvious that P(Yesterday Heads)=1/2. This is because the dependencies

between Sunday’s toss and the day you awaken become palpable.

P(Yesterday Heads)=P(Mo|-HS)P(-HS)+P(Tu|-HM)P(-HM)

=(1)·(1/2)+P(Tu)·(1/2)

=1/2+(1/4)·(1/2)=5/8

P(Tu|-HM)=P(Tu) because whether you wake on Tuesday is independent of the coin toss the day

before by the setup of the experiment, and P(Tu)=1/4 in accordance with classic Halfer reasoning. I will

leave it to reader to decide if P(Yesterday Heads) ought be equal to P(Today Heads).

4 Discussion

The Sleeping Beauty Problem has been truly puzzling given its simplicity. Both the Halfer and

Thirder solutions have their appeal and reason. No one has identified a clear error or agreed-upon

contradiction in reasoning for either side, although Lewis’s claim that we should have a conditional

credence of 2/3 for Heads given information that it is Monday, prior to tossing the coin, has been a

strong contender for Most Likely to be an Error. However, when we conditionalize on Monday after

tossing the coin, this criticism is greatly attenuated. The temporal timing of the coin toss in relation to

our evidence seems to play an important role in reasoning about the credences for this problem, and

upon taking a closer look at Elga’s original argument, it appears to contain a demonstrable

contradiction. This contradiction should put the Thirder position on alert, although that is not the only

reason for questioning it. I have also suggested that reasoning about repeated runs of the experiment,

or multiple copies of the experiment; and then trying to apply those results to the single run case may

be invalid. It is entirely possible that a repeated Sleeping Beauty experiment will yield a credence in

Heads of 1/3, yet the single run credence remains 1/2 (see Appendix B). I also think the Mirror

Argument for 1/2 is compellingly neat and look forward to someone poking holes in it.

The following are some suggestions in this work:
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◦Reasoning about the total number of awakenings per run differs from reasoning about Heads or

Tails, despite the fact that these sets of events are equivalent.

◦The two Tails awakenings on Monday and Tuesday are mutually necessary. They are selected

together or not at all.

◦Selection of awakening events is grounded in the causal selection mechanism of the experiment,

where first the side of the coin is selected. The three awakenings are not contemporaneously

selectable by a single mechanism.

◦Reasoning about the multiple-run frequencies of events does not necessarily apply to the single run

case.

◦Method 1 and method 2 are not equivalent with respect to probabilistic reasoning, despite the fact

that both methods cause the same objective distribution of awakening events.

◦Method 2 reasoning leads to a direct contradiction using probabilistic temporal analysis.

◦Knowledge that an event has been decided (without knowing the result) can be a type of admissible

evidence when updating credences.

It is entirely possible I have led myself astray in trying to resolve this problem.
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Appendix A. Biased Sleeping Beauty

Here I show expressions for both the Halfer and Thirder solutions when the coin has an arbitrary

chance p of landing Heads. I will use the labels H1, T1, and T2 from Table 1 to identify each situation.

The Halfer solution is straightforward

P(H1)=p

Since P(H1)+P(T1)+P(T2)=1, and P(T1)=P(T2),

P(T1)=P(T2)=(1-P(H1))/2
=(1-p)/2

For the Thirder solution, I will make use of Elga’s future-tensed argument, but replace 1/2 by p,

which gives:

P(H1)/(P(H1)+P(T1))=p

P(H1)=p·P(T1)/(1-p)

Substituting P(T1)=(1-P(H1))/2, and solving yields

P(H1)=p/(2-p), and

P(T1)=P(T2)=(1-p)/(2-p)

Table A1. Solutions to Biased Beauty using a coin with chance p of landing Heads

While the intuition that gave us the Halfer solution carriers over directly to the case of arbitrary p,

the intuition that corresponds to the Thirder solution looses all of its force. There is nothing compelling

in the statement of the Sleeping Beauty problem to suggest that P(H1)=p/(2-p) generally, but a Thirder

who accepts Elga’s argument ought to support this expression more so than the particular value at

p=1/2.

Appendix B. Repeated Sleeping Beauty

Suppose that instead of flipping a fair coin just once and waking the subject up one or two times, that

the experiment was continued for multiple coin flips. In this variant of the problem, the coin is flipped

on day 1, the subject wakes on day 2 or both days 2 and 3 dependent upon Heads or Tails, and kept

Halfer Thirder
HI p p/(2-p)
T1 (1-p)/2 (1-p)/(2-p)
T2 (1-p)/2 (1-p)/(2-p)
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asleep on day 4. On day 4, the coin is flipped again, and the subject wakes on day 5 or day 5 and day 6

dependent on the toss, and so forth. The subject’s memory is erased after each awakening. Now in this

experiment of n tosses, what is the subject’s credence P(HEADS) that he awakens in a Heads

awakening? In the following section, I define P(HEADS)=P( It is a HEADS awakening).

The complete set of outcomes is listed in Table B1 for the n=2 case

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
H AH H AH
H AH T AT AT
T AT AT H AH
T AT AT T AT AT
Table B1. Awakening for n=2

Heads-awakenings are designated by AH and Tails-awakenings by AT, so P(HEADS)=P(AH). Instead

of flipping a coin on two different days, the researcher might decided to flip the coin two times on Day

1, and simply not do anything on Day 4 (Table B2). It is possibly that this change will influence our

reasoning or calculations. Initially I will assume it does not. Each awakening is individually identified.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
HH H1H HH1

HT H1T HT1 HT2
TH T1H T2H TH1
TT T1T T2T TT1 TT2
Table B2. Awakenings for n=2 individually labeled

B1 Halfer analysis

I propose the following analysis. Before you are put to sleep, each pair of tosses {HH, HT, TH, TT}

are equally likely, with credence of 1/4. When you awaken, you are in an experimental run determined

by one of those pairs. Suppose the coins landed HH. Then when you awaken, you are either in H1H or

HH1. A restricted prinicple of indifference (Elga), or a notion of collocation of uncentered possibilities

(Lewis), yields that you ought to have equal credence in each possibility, conditional on HH. A similar

reasoning applies if the coins landed HT, TH, or TT. Noting that the following equal conditional

credences sum to one yields:
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(B1) P(H1H|HH)=P(HH1|HH)=1/2

P(H1T|HT)=P(HT1|HT)=P(HT2|HT)=1/3

P(T1H|TH)=P(T2H|TH)=P(TH1|TH)=1/3

P(T1T|TT)=P(T2T|TT)=P(TT1|TT)=P(TT2|TT)=1/4

Then by the definition of conditional probability

(B2) P(H1H)=P(H1H & HH)=P(H1H|HH)P(HH)=(1/2)·(1/4)=1/8

P(H1T)=P(H1T & HT)=P(H1T|HT)P(HT)=(1/3)·(1/4)=1/12

P(T1H)=P(T1H & TH)=P(T1H|TH)P(TH)=(1/3)·(1/4)=1/12

P(T1T)=P(T1T& TT)=P(T1T|TT)P(TT)=(1/4)·(1/4)=1/16

And so forth, such that

P(H1H)=P(HH1)=1/8

P(H1T)=P(HT1)=P(HT2)=1/12

P(T1H)=P(T2H)=P(TH1)=1/12

P(T1T)=P(T2T)=P(TT1)=P(TT2)=1/16

(B3) P(HEADS)=P(H1H)+P(HH1)+P(H1T)+P(TH1)=2/8+2/12=5/12

Although I implemented a halfer-type reasoning to derive this answer, P(HEADS) does not equal 1/2

when n=2 tosses. The equations above are the ‘formal’ derivation of the n=2 solution, but consider the

following tables to determine a general expression for an arbitrary number of tosses.

Outcome
n=2

Total
Awakenings

Heads
Awakenings

HH 2 2
HT 3 1
TH 3 1
TT 4 0

Outcome
n=3

Total
Awakenings

Heads
Awakenings

HHH 3 3
HHT 4 2
HTH 4 2
THH 4 2
TTH 5 1
THT 5 1
HTT 5 1
TTT 6 0

For n=2 tosses
P(HEADS)

=(2/2+1/3+1/3+0/4)*1/4
=5/12

For n=3 tosses
P(HEADS)

=(3/3+2/4+2/4+2/4+1/5+1/5+1/5+0/6)*1/8
=31/80
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We need only add the fractions of Heads-awakenings for each outcome of the coin tosses, and then

multiple by 1/2n, which is the probability of each outcome for n tosses. Noting that each fraction

occurs n choose k Heads times (the respective binomial coefficient) we can deduce that the expression

reduces to:
















n

k
n k

n
kn
kn

nHEADS
02

1)(   (B4) P

And further point out two interesting values for n:

 
2
101

2
1)( 1 HEADSP

Which is the standard Halfer solution when n=1, where the only possible outcomes are H and T, and

3
1)(lim 

 nHEADS
n

P

Which reduces to the standard Thirder solution of 1/3 as n approaches infinity, when there are an

infinite number of coin tosses. I evaluated this result numerically, although those more able at math

may derive the limit directly.

Why is P(HEADS) less then 1/2 for n>1? As n gets larger, sequences of coin tosses (outcomes) with

approximately equal numbers of Head and Tails tend to dominate the complete set of possible

outcomes, in accordance with the binomial coefficients. And within outcomes with approximately

equal numbers of Heads and Tails, the ratio of Heads to Tails awakenings is approximately 1 to 2, thus

the probability of a Heads awakening approaches 1/3 as n approaches infinity. Equation (B4) is

consistent in that it reproduces the Halfer solution of 1/2 for n=1, and further, validates an aspect of

Thirder reasoning: in the long run of a repeated experiment, your credence in Heads ought to approach

1/3. It also demonstrates that sometimes the result of a repeated experiment or long-run analysis does

not apply to the single run case.

B2 Thirder inspired analysis

So much for a Lewisian inspired Halfer solution to repeated Sleeping Beauty. What happens when

we try to apply Elga’s reasoning to this problem? The restricted principle of indifference that gave us

(B1) carries over to this analysis, yet instead of using the equality of conditional credences, I will use

the unconditional equalities pace Elga and Lewis:
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
HH H1H HH1

HT H1T HT1 HT2
TH T1H T2H TH1
TT T1T T2T TT1 TT2

(T1) P(H1H)=P(HH1)

P(H1T)=P(HT1)=P(HT2)

P(T1H)=P(T2H)=P(TH1)

P(T1T)=P(T2T)=P(TT1)=P(TT2)

Since the credences of these awakenings must sum to one:

(T2) 2·P(H1H)+3·P(H1T)+3·P(T1H)+4·P(T1T)=1

So far, in (T2) there are four unknowns and only one equation, so the solution is underdetermined.

Elga used the following reasoning to derive additional equations to solve the problem for n=1:

Your credence that you are in H1 would then be your credence that a fair coin, soon to be tossed,

will land Heads. It is irrelevant that you will be awakened on the following day if and only if the

coin lands Tails — in this circumstance, your credence that the coin will land Heads ought to be

1/2. But your credence that the coin will land Heads (after learning that it is Monday) ought to be

the same as the conditional credence P(H1|H1orT1). So P(H1|H1orT1)=1/2…

We can first apply a similar reasoning for the first toss in a sequence of two tosses. Suppose you

know it is Day 1 and that the first coin was not yet tossed. Then your credence that a fair coin, soon to

be tossed, will land Heads is 1/2. This ought to be the same as the conditional credence P(H1H or

H1T|H1H or H1T or T1H or T1T). So

(T3) P(H1H or H1T|H1H or H1T or T1H or T1T)=1/2

2·P(H1H)+2·P(H1T)=P(H1H)+P(H1T)+P(T1H)+P(T1T)

P(H1H)+P(H1T)-P(T1H)-P(T1T)=0

Now there are two equations and four unknowns, which is still undetermined. A similar reasoning

can be applied to the second toss, assuming that you know the second toss is fair and has not yet

occurred
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(T4) P(HH1 or TH1|HH1 or TH1 or HT1 or TT1)=1/2

P(HH1)+P(TH1)-P(HT1)-P(TT1)=0

Recalling (T1) and substituting

P(H1H)+P(T1H)-P(H1T)-P(T1T)=0

Taken together, we have a system of three equations and four unknowns. This system is

underdetermined, and either has zero or an infinite number of solutions. Where might an additional

constraint be found? Elga’s argument perhaps can be extended to the case of two coin tosses, where

your credence in getting two Heads for two coins yet to be tossed is 1/4, which ought to be equivalent

to

(T5) P(H1H|H1H or H1T or T1H or T1T)=1/4

4·P(H1H)-P(H1H)-P(H1T)-P(T1H)-P(T1T)=0

3·P(H1H)-P(H1T)-P(T1H)-P(T1T)=0

Giving us another equation, enough to solve the problem. The next three equations follow as well,

from similar expressions:

3·P(H1T)-P(H1H)-P(T1H)-P(T1T)=0

3·P(T1H)-P(H1H)-P(H1T)-P(T1T)=0

3·P(T1T)-P(H1H)-P(H1T)-P(T1H)=0

Now the system is overdetermined with seven equations and four unknowns. Another four equations

can be derived by applying the reasoning in (T5) to the awakenings on Day 5, but those are identical to

those in (T5). The system of equations can be written in matrix form:

(T6)




















































































0
0
0
0
0
0
1

3111
1311
1131
1113
1111
1111

4332

1

1

1

1

TT
HT
TH
HH

Performing some linear algebra, we will find that the rank of the first matrix is 4, and that we can

select a set of four linearly independent rows, and solve for the four unknowns, giving
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P(H1H)=P(H1T)=P(T1H)=P(T1T)=1/12

Adding together the four Heads-awakenings yields

3
1)( 2 HEADSP

I will not attempt to formally generalize this result to arbitrary n, but it would be easy enough to

apply a similar analysis to any size n, generate the matrix and solve. I conjecture that for arbitrary n, a

generalized Thirder argument for the Repeated Sleeping Beauty experiment would give

3
1)( nHEADSP

I don’t suspect this would surprise anyone. The path to the solution is not particularly elegant and

comes off as a bit contrived, but that could be my fault.
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