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Abstract

Albert Einstein’s bold assertion of the form-invariance of the equa-
tion of a spherical light wave with respect to inertial frames of reference
(1905) became, in the space of six years, the preferred foundation of
his theory of relativity. Early on, however, Einstein’s universal light-
sphere invariance was challenged on epistemological grounds by Henri
Poincaré, who promoted an alternative demonstration of the founda-
tions of relativity theory based on the notion of a light ellipsoid. A
third figure of light, Hermann Minkowski’s lightcone also provided a
new means of envisioning the foundations of relativity. Drawing in
part on archival sources, this paper shows how an informal, interna-
tional group of physicists, mathematicians, and engineers, including
Einstein, Paul Langevin, Poincaré, Hermann Minkowski, Ebenezer
Cunningham, Harry Bateman, Otto Berg, Max Planck, Max Laue, A.
A. Robb, and Ludwig Silberstein, employed figures of light during the
formative years of relativity theory in their discovery of the salient
features of the relativistic worldview.

1 Introduction

When Albert Einstein first presented his theory of the electrodynamics
of moving bodies (1905), he began by explaining how his kinematic
assumptions led to a certain coordinate transformation, soon to be
known as the “Lorentz” transformation. Along the way, the young
Einstein affirmed the form-invariance of the equation of a spherical
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light-wave (or light-sphere covariance, for short) with respect to in-
ertial frames of reference. The introduction of the notion of a light
sphere in this context turned out to be a stroke of genius, as Ein-
stein’s idea resonated with physicists and mathematicians, and pro-
vided a way to understand the Lorentz transformation, kinematics,
simultaneity, and Lorentz-covariance of the laws of physics.

A focus on the light sphere as a heuristic device provides a new
perspective on the reception of relativity theory, and on the scientific
community’s identification of Einstein as the theory’s principal archi-
tect. Acceptance of relativity theory, according to the best historical
accounts, was not a simple function of having read Einstein’s paper
on the subject.1 A detailed understanding of the elements that turned
Einsteinian relativity into a more viable alternative than its rivals is,
however, not yet at hand. Likewise, historians have only recently be-
gun to investigate how scientists came to recognize Einstein as the
author of a distinctive approach to relativity, both from the point of
view of participant histories (Staley 1998), as well as from that of
disciplinary history (Walter 1999a). The latter studies underline the
need for careful analysis when evaluating the rise of Einstein’s reputa-
tion in the scientific community, in that this ascent was accompanied
by that of relativity theory itself.

We know, for example, that the fortunes of relativity theory im-
proved when A. H. Bucherer (1908a) announced the results of electron-
deflection experiments in line with relativist predictions. Einstein’s
most influential promoter, Max Planck, himself a founder of relativis-
tic dynamics, was in Einstein’s view largely responsible for the atten-
tion paid by physicists to relativity theory (Heilbron 1986, 28). Planck
also praised Hermann Minkowski’s four-dimensional approach to rela-
tivity, the introduction of which marked a turning-point in the history
of relativity (Walter 1999a). There is more than Planck’s praise to tie
Einstein’s theory of relativity to Minkowski’s spacetime theory. Much
as the lightcone distinguishes Minkowski’s theory from earlier theories
of space and time, the light sphere was one of the key objects that set
apart Einstein’s theory of relativity (as it became known around 1911)
from alternative theories of the electrodynamics of moving bodies.

My account begins with Einstein’s relativity paper of 1905, in
which the notion of the form-invariance of the equation of a light
sphere was introduced. While interest in form-invariance of the dif-
ferential equation of light-wave propagation dates from the 1880s, the
idea that a light sphere remains a light sphere for all inertial ob-
servers – with a universal velocity of light – was recognized as a major

1For gradualist views of the acceptance of relativity theory see Hirosige (1968), Miller
(1981), and Darrigol (1996, 2000).

2



conceptual innovation in the fall of 1907, when it was first used to
derive the Lorentz transformation. By then, the light sphere had al-
ready been employed in Paris by Henri Poincaré, along with a second
figure of light, the “light ellipsoid”, to illustrate an alternative to Ein-
steinian kinematics. Inspired by his readings of Einstein and Poincaré,
Minkowski identified and exploited a third figure of light, the “light-
cone”, to define and illustrate the structure of spacetime. In the wake
of spacetime theory, other investigators used figures of light to explore
the relation of simultaneity, the properties of four-vectors, and the
conformal structure of spacetime. The period of study comes to a
close with the publication of Ludwig Silberstein’s textbook on relativ-
ity, which was the first to feature all three figures of light. Although
light-figures sparked discussion and debate until the early 1920s, Sil-
berstein’s discussion represents a point of closure on this topic, by
bringing together previously-disjoint intellectual developments of the
previous decade.

By following light-figures through a selection of published and
archival sources during the period 1905–1914, the skills and concerns
of a nascent community of relativists are brought into focus. The
progress of this community’s knowledge of the scope, history and foun-
dation of relativity theory, as it related to the domains of measure-
ment theory, kinematics, and group theory is reflected in the ways
it put these new objects to use, by means of accounts both formal
and discursive in nature. During the formative years of relativity, an
informal, international, and largely independent group of physicists,
mathematicians, and engineers, including Einstein, Paul Langevin,
Poincaré, Minkowski, Ebenezer Cunningham, Harry Bateman, Otto
Berg, Max Planck, Max Laue, Arthur A. Robb, and Ludwig Silber-
stein, employed figures of light to discover salient features of the rela-
tivistic worldview. Their contributions, and those of their critics, are
considered here on their own merits, as part of an intellectual move-
ment taking place during a period when the meaning of the theory of
relativity was still negotiable, and still being negotiated.

2 Einstein’s light sphere

The concepts of relative time and relative simultaneity were taken up
by Einstein in the course of his relativity paper of 1905. It seems
he was then unaware of Lorentz’s (1904) attempt to demonstrate the
form-invariance of Maxwell’s equations with respect to the Lorentz
transformation. By 1904, the Lorentz transformation had appeared
in several journals and books (Darrigol 2000, 381). Einstein demon-
strated the covariance of Maxwell’s equations with respect to the
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Lorentz transformation, but the requirement of covariance of Maxwell’s
equations itself determines the transformations only up to a global fac-
tor (assuming linearity). Consequently, in order to derive the Lorentz
transformation, imagination was required in order to set this factor
equal to unity.

To this end, Lorentz (1904) advanced arguments of a physical na-
ture, which failed to convince Henri Poincaré. If the transformation in
question is to form a group, Poincaré argued, the troublesome factor
can be assigned no value other than unity. Einstein took a different
tack: for him, the determination of the global factor resulted from nei-
ther physical nor group-theoretical considerations, but from kinematic
assumptions.2

He embarked upon what Mart́ınez (2009, § 7) describes as a “tortu-
ous” algebraic derivation of the Lorentz transformation from his kine-
matic assumptions, which puzzled contemporary scientists and mod-
ern historians alike. The details of Einstein’s derivation have been the
subject of close attention, and need not be rehearsed here. Instead, I
will focus on Einstein’s insertion of an argument for the compatibility
of his twin postulates of relativity and light-speed invariance.3

The compatibility of Einstein’s postulates of relativity and light-
speed invariance followed for Einstein from an argument which may be
summarized (in slightly-updated notation) as follows. Let a spherical
light-wave be transmitted from the coordinate origin of two inertial
frames designated S and S′ at time t = τ = 0. In system S the light-
wave spreads with velocity c such that the wavefront is expressed as:

x2 + y2 + z2 = c2t2. (1)

To obtain the equation of the wavefront in frame S′ moving with
velocity v with respect to S, we apply a transformation of coordinates
from S to S′, depending on an as-yet-undetermined factor ϕ, which is
a function of v:

ξ = ϕ(v)γ(x− vt), η = ϕ(v)y, ζ = ϕ(v)z, τ = ϕ(v)γ
(
t− vx

c2

)
, (2)

2On the assumption of linearity, see Brown (2005, 26), and for the kinematic back-
ground to Einstein’s first paper on relativity, see Mart́ınez (2009). Einstein did not let
kinematics decide the matter once and for all in 1905. In a letter of September 1918 written
to his friend, the anti-relativist and political assassin Friedrich Adler, Einstein considered
the global factor in the Lorentz transformation to be of an empirical nature, whose value
had been determined (to Einstein’s satisfaction) by the results of certain electron-deflection
experiments (Walter 2009, 213). Poincaré expressed his views to Lorentz by letter in May
1905; see Walter, Bolmont, and Coret, eds, 2007b, §§ 38.4, 38.5.

3On the compatibility argument, see Williamson (1977). Gaps in Einstein’s reasoning
are apparent from a modern standpoint; see, for example, Kennedy (2005).
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where γ = (1− v2/c2)−
1
2 . Applying (2) to (1), Einstein found:

ξ2 + η2 + ζ2 = c2τ2. (3)

Since (1) goes over to (3) via the transformation (2), Einstein observed,
the light-wave that is spherical in S is also spherical in S′, propagates
with the same velocity c, and consequently, “our two basic principles
are mutually compatible” (Einstein 1905, § 3, 901).

Einstein’s compatibility demonstration addressed one of the more
immediate objections to be raised against his theory: that the prop-
agation of light implied the existence of a substrate. This substrate,
known as the ether, was common to the electron theories of Lorentz,
Larmor, Bucherer-Langevin, and Abraham. Einstein’s axiomatic ap-
proach to the electrodynamics of moving bodies did not destroy the
conviction that a substrate was required for light propagation. On
the contrary, Einstein’s twin postulates of relativity and lightspeed
invariance rendered his theory all the more suspect. Arnold Sommer-
feld, for example, was impressed by Einstein’s “genial” theory, but
worried that something “almost unhealthy lies in this unconstruable
and intuition-free dogma”.4 For Richard Tolman (1910, 28, n. 1),
Einstein’s light postulate expressed “seemingly contradictory ideas”
of relativity and independence of propagation velocity of light from
that of its source.

Tolman’s concern over the compatibility of Einstein’s postulates
stemmed in part from the fact that the propagation velocity of light is
an extraordinary velocity in Einstein’s kinematics. While a spherical
light-wave is form-invariant for inertial frames in Einstein’s scheme,
the form of other physical objects is frame-dependent. A rigid sphere
of matter with radius R at rest in frame S, for example, is judged
by an observer in motion along the x-axis to have the flattened form
of an ellipsoid of revolution with axes (γ−1R,R,R). Light-waves had
a special role to play in Einstein’s theory, being essentially different
from other physical objects. As Einstein put it, the speed of light in
his theory “plays the role of an infinitely great speed”, and it renders
“senseless” the notion of hyperlight velocities (Einstein 1905, § 4, 903).

How did Einstein’s compatibility argument for his postulates of
relativity and constant lightspeed sit with his contemporaries? At
least one of Einstein’s readers, the Cambridge-trained mathematician
Ebenezer Cunningham (1881–1977) was intrigued by Einstein’s ap-
proach. A student of St. John’s College, where his director of studies
was the influential analytic geometer H. F. Baker, Cunningham was

4Sommerfeld to H.A. Lorentz, 26 Dec. 1907, in Kox, ed. (2008, § 165).
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Senior Wrangler in 1902.5 Cunningham lectured on mathematics in
Liverpool from 1904, and was joined there in 1906 by another Senior
Wrangler (1903), Harry Bateman (1882–1946), who had studied at
Trinity College. In 1907, Cunningham left Liverpool to lecture on
applied mathematics at University College London, and in 1911, he
returned to St. John’s as a Fellow and lecturer in mathematics.6

Among British theorists, relativity theory had few proponents, if
any, when Cunningham first took it up.7 Cunningham naturally read
Einstein in his own fashion, drawing on the intellectual tools at his
disposal. He understood Einstein’s theory to be consistent with the
existence of multiple ethers, provided that every inertial frame is as-
sociated with an ether.8 Inspired by Larmor’s electron theory,9 Cun-
ningham’s multiple-ether view of relativity recalls the view of mechan-
ics proposed by the Leipzig mathematician Carl Neumann. Newton’s
laws of mechanics, Neumann observed, give one the freedom to con-
sider any inertial frame to be at rest with respect to a fixed set of
coordinate axes he called the “Body Alpha”.10 Neumann described
the role assumed by the Body Alpha in the general theory of mo-
tion to be similar to that of the luminiferous ether in the theory of
optical phenomena (Neumann, 1870, 21). Views equivalent to Cun-
ningham’s, but stripped of reference to the ether, were subsequently
advanced by Minkowski (1909, 79) and Laue (1911a, 33). Cunning-
ham’s view, based on multiple ethers, found employment throughout
the 1920s, thanks to Sommerfeld’s celebrated textbook Atombau und
Spektrallinien (1919, 319).

Cunningham’s first paper on relativity set out to overturn an ob-
jection raised by Max Abraham with respect to Lorentz’s electron the-
ory. Abraham (1905, 205) believed that energy conservation required
a fundamental modification of Lorentz’s deformable electron model,
in the form of a supplemental internal, non-electromagnetic source of

5For an assessment of Baker’s rise to prominence among Cambridge geometers, see
Barrow-Green and Gray (2006).

6See McCrea (1978), and John Heilbron’s interview with Cunningham (1963).
7A proponent of Einstein’s theory is understood here to be an individual seeking either

to support or to extend any of the novel ideas contained in Einstein’s 1905 paper. On
the British reception of relativity, see Goldberg (1970), Sánchez-Ron (1987), and Warwick
(2003).

8See Goldberg (1970), and Hunt (1986).
9Cunningham noted a personal communication with Larmor, to the effect that while

a proof of the Lorentz transformation’s validity for electron theory to second order of
approximation in v/c appeared in the latter’s Æther and Matter (1900), Larmor had
“known for some time that [the Lorentz transformation] was exact” (Cunningham 1907,
539).

10Cunningham (1911) recalled this fact, without mentioning Neumann.
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energy. Cunningham challenged Abraham’s (frame-dependent) defi-
nition of electromagnetic momentum, and found that, under the same
quasistationary-motion approximation, and an alternative momen-
tum definition, the problem vanishes. He concluded that no non-
electromagnetic energy was required by Lorentz’s electron model, which
remained for him a possible foundation for a “purely electromagnetic
theory of matter.”11

Along the way, Cunningham assumed that if Lorentz’s deformable
electron is spherical when at rest, when put in motion and measured by
comoving observers, it will remain spherical. But when measured with
respect to a frame at rest, the moving electron will have a “spheroidal
shape as suggested by Lorentz” (Cunningham 1907, 540). Cunning-
ham took this suggestion a step further, arguing that a light-wave
would appear spherical to all inertial observers, in agreement with
Einstein on this point (and with reference to Einstein’s relativity pa-
per of 1905).

Next, Cunningham took an important step toward the legitimation
of the concept of light-sphere covariance, as Goldberg (1970, 114) first
noticed. Einstein’s demonstration of the Lorentz transformation could
be reduced to a handful of steps, Cunningham realized, by requiring
the covariance of the light-sphere equation (3) with respect to this
transformation. Cunningham’s requirement of covariance of the light-
sphere equation entailed the relativity of space and time:

For it is required, among other things, to explain how a
light-wave traveling outwards in all directions with veloc-
ity C relative to an observer A, may at the same time be
traveling outwards in all directions with the same velocity
relative to an observer B moving relative to A with velocity
v. This can clearly not be done without some transforma-
tion of the space and time variables of the two observers.
(Cunningham 1907, 544)

Cunningham went on to observe that Alfred Bucherer’s recent calcula-
tion of electron mass (Bucherer 1907) was mistaken, because Bucherer
did not “take into account this necessary modification of coordinates”.12

Unconvinced by Cunningham’s lesson, Bucherer (1908b) retorted quite
rightly that light-sphere covariance was not required for the explana-
tion of “any known fact of observation.”13

11Cunningham’s conclusion agrees with that reached later by Fermi; see Rohrlich (2007,
17), Janssen and Mecklenburg (2006).

12Cunningham (1907, 547). Both Cunningham and Planck failed to understand
Bucherer’s theory, which allowed for closed links between electrons; see Darrigol (2000,
371).

13According to Balàsz (1972), Bucherer’s remark shows that he was “confused about the
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Bucherer’s complaint of inutility notwithstanding, Cunningham’s
clever and economical approach to deriving the Lorentz transforma-
tion represented a significant advance over Einstein’s cumbersome ap-
proach via ideal rods and clocks, although he did not realize at first
just what he had accomplished. This much may be gathered from his
response to Bucherer’s complaint, published in March 1908:

May I explain that I did not wish to assert that [light-sphere
covariance] was required by any known fact of observation,
but that I took it to be involved in the statement of the
principle. I may have read more into it more than was in-
tended, but if the Maxwell equations are assumed to hold
when referred, as occasion requires, to various frames of
reference moving relatively to one another, the deduction
cannot be escaped that the velocity of propagation of a
spherical wave will be found to be exactly the same, what-
ever the frame of reference.

With Bucherer’s insistent prompting, Cunningham recognized not only
that lightspeed invariance was a convention, but that he had freely in-
terpreted Einstein’s theory.

A few months after Cunningham’s original paper appeared, Ein-
stein employed the latter’s method in an invited review of relativity
theory, making Cunningham the first British contributor to what was
later known as Einstein’s theory of relativity. Einstein did not ac-
knowledge Cunningham’s proof, however, and he may well have come
up with it on his own.14

Further contributions to relativity from Cunningham and Bate-
man, making novel use of the light sphere, were still to come in 1908–
1909. Before examining this work (in § 8), it will be useful to review
first the light-figures produced by Poincaré and Minkowski, whose
four-dimensional approach to relativity provided the basis for the later
papers of Cunningham and Bateman.

basic problem of relativity”, in that he failed to “realize the connection of this problem with
the Michelson-Morley experiment and its relation to the transformation laws.” Yet the
Lorentz-FitzGerald contraction explains on its own the null result of the Michelson-Morley
experiment, as Bucherer and contemporary theorists knew quite well.

14See Einstein (1907, § 3); reed. in Stachel et al., eds. (1989, vol. 2, Doc. 47). Cun-
ningham’s paper appeared in the October 1907 issue of the Philosophical Magazine, and
Einstein’s review article was submitted for publication in Johannes Stark’s Jahrbuch der
Radioaktivität und Elektronik on 4 December 1907.
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3 Poincaré and the Lorentz group

Poincaré (1905b) was quick to grasp the idea that the principle of rela-
tivity could be expressed mathematically by transformations that form
a group. This fact had several immediate consequences for Poincaré’s
understanding of relativity. Notably, following a method outlined
by Lie & Scheffers (1893, 669), Poincaré identified invariants of the
Lorentz transformation directly from the fact that the transformation
is a rotation about the coordinate origin in four-dimensional space
(with one imaginary axis). Any transformation of the Lorentz group,
he noted further, may be decomposed into a dilation and a linear trans-
formation leaving invariant the quadratic form x2+y2+z2− t2, where
light velocity is rationalized to unity. Poincaré naturally associated
this quadratic form with the propagation of light, and gravitational
action (Poincaré 1906, §§ 4, 8).

Curiously for one who had engaged with the Riemann-Helmholtz-
Lie problem of space, Poincaré avoided drawing consequences for the
foundations of geometry from the “new mechanics” of the Lorentz
group, with one exception. He observed that while previously, mea-
surement of length implied the physical displacement of solids consid-
ered to be rigid,

. . . this is no longer true in the current theory, if we ad-
mit the Lorentzian contraction. In this theory, two equal
lengths, by definition, are two lengths spanned by light in
the same lapse of time. (Poincaré, 1906, 132)

Light signals, in other words, were the new basis for both temporal and
spatial measurement. But how was one to go about measuring lengths
in a frame in motion, where measuring rods are Lorentz-contracted?

Poincaré’s measurement problem called for a solution, and shortly,
Poincaré provided one.15 In lectures at the Sorbonne in 1906–1907,
he interpreted the Lorentz transformation with respect to a geomet-
ric figure representing the wavefront of an electromagnetic pulse, as
judged by an observer at rest with respect to the ether. I will refer to
Poincaré’s figure as a “light ellipsoid”, following Sommerfeld’s coinage,
and to a meridional section of this ellipsoid as a “light ellipse”.16 The
light ellipse is a staple of Poincaré’s kinematics of relativity, in that
he illustrated his view with this device on at least four occasions, with
significant variations, during the final six years of his life, from 1906

15An alternative approach, advanced by Max Born (1909), involved redefining the notion
of a rigid body in Minkowski spacetime. On related developments, see Maltese and Orlando
(1995).

16Sommerfeld insisted in his lectures on electrodynamics that a Lorentz transformation
does not change a “Lichtkugel” into a “Lichtellipsoid” (Sommerfeld 1948, 236).
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to July 12, 1912. His light ellipse theory appeared three times in print
during Poincaré’s lifetime, in French journals of popular science, and
in a book of philosophy of science.17

The origin of Poincaré’s light ellipse is uncertain, but his most
likely source of inspiration is a paper published by Paul Langevin in
March 1905. Before discussing the latter source, however, another
possible source should be mentioned: Einstein’s relativity paper. As
noted above, Einstein clearly expressed the spherical form of a light
shell for inertial observers, and used the invariance of this form un-
der certain coordinate transformations to show the compatibility of
his postulates of relativity and lightspeed invariance. Also, Einstein
made an implicit distinction between an abstract geometric surface
and the realization of such a surface by wavefronts as measured by in-
ertial observers. This distinction underlies Einstein’s analysis (1905,
§ 8) of the energy content of a given “light-complex” (Lichtkomplex )
as measured in two inertial frames. Einstein imagined light propa-
gating spherically in a frame S, and examined the form of the sur-
face obtained by setting to zero the time t′ in the transformed wave
equation. The volume enclosed by the resulting “ellipsoidal surface”
(Ellipsoidfläche) measured in S′ is greater than that enclosed by the
corresponding “spherical surface” (Kugelfläche) measured in S, such
that the energy density is less in S′ than in S.

Einstein’s focus in section 8 of his paper was on the energy content
of volumes delimited by spherical and ellipsoidal surfaces. I disagree in
this instance with Arthur Miller’s gloss of Einstein’s argument, inas-
much as Miller identifies Einstein’s equation for the ellipsoidal sur-
face as an “ellipsoidal light pulse” (Miller 1981, 310). What Einstein
wrote with respect to the equation in question was the following: “Die
Kugelfläche ist – in bewegten System betrachtet – eine Ellipsoidfläche
. . . ” (Einstein 1905, § 8). In other words, Einstein considered the
energy content of an ellipsoid, and not an ellipsoidal light pulse.

More than likely, some of Einstein’s contemporaries also misread
Einstein’s remarks on the Ellipsoidfläche in a moving frame, and imag-
ined an ellipsoidal light shell in a moving frame. For example, in 1912,
the French polymath Maurice Lémeray (1860–1926), a recognized ex-
pert on relativity theory and a former warship designer, confidently
attributed a light ellipse interpretation to Einstein, only to retract his

17See the edition of Henri Vergne’s notes of Poincaré’s 1906–1907 lectures at the Paris
Faculty of Science (Poincaré 1953), and his 1912 lectures at the École supérieure des postes
et télégraphes (Poincaré 1913), along with the two articles (Poincaré 1908a, 1909). The
article of 1908 was reedited by Poincaré in Science et méthode (1908b); the light ellipse
is described on p. 239, but the diagram was suppressed from this version, presumably by
the editor, Gustave Le Bon.
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view shortly thereafter.18 While we can not rule out the possibility
that Einstein’s Kugelfläche inspired Poincaré’s light ellipse, there is a
second source, which is directly linked to Poincaré’s research on rel-
ativity: a paper by Paul Langevin. In the next section, I present an
argument in favor of Langevin’s influence on Poincaré’s conception of
the light ellipse.

4 Langevin’s electron wake

Paul Langevin (1872–1946) was a former student of Poincaré, whose
1896 lectures at the Paris Faculty of Sciences on Sommerfeld’s the-
ory of diffraction he followed.19 Langevin had also studied at the
Cavendish Laboratory, and his novel theory of the electron drew on
several sources, especially Joseph Larmor’s Æther and Matter (1900),
J. J. Thomson’s Notes on Recent Researches (1893), and George Searle’s
calculation of the energy of a Heaviside ellipsoid (Searle 1897). He
introduced a distinction between the velocity fields and acceleration
fields of the electron, and published a graphical depiction of the ve-
locity waves of a spherical electron in motion. This led in turn to a
geometrical derivation of the field of a Heaviside ellipsoid, introduced
by Heaviside in 1889, and glossed by J. J. Thomson in 1893 (op. cit.).

Langevin was concerned, as the title of his paper suggests, with the
source of electron radiation and the inertia of the electron. He sup-
posed that electron radiation was due entirely to acceleration. This
stipulation allowed him to calculate the energy of an electron in uni-
form motion. The “electromagnetic mass” of such an electron was
given to be a function of the “sillage”, or wake of the electron in
motion. The wake was composed of “velocity waves” propagating,
in Langevin’s picturesque language, “like the waves emanating from
the front of a ship” (Langevin 1905, 171). The electron’s electromag-
netic mass thus depended on the postulated charge distribution of the
electron; Langevin considered both a uniform surface charge, and a
uniform volume charge.

The distinction between velocity and acceleration waves made here
by Langevin recalls the retarded potentials introduced to electrody-

18See Lémeray (1912), communicated to the Paris Academy of Sciences on 9 Decem-
ber, 1912, and the retraction (ibid., p. 1572). It is not clear whether Lémeray meant
to attribute a flattened light-ellipsoid or an elongated light-ellipsoid to Einstein. Several
years later, the Swiss physicist Édouard Guillaume (1921) referred to an “ellipsöıde de
Poincaré”. Guillaume corresponded with Einstein on this topic; see Kormos Buchwald
(2006, Doc. 241).

19See Langevin’s notes of Poincaré’s lectures, Fonds Langevin, box 123, Bibliothèque de
l’École supérieure de physique et de chimie industrielle, Paris.
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Figure 1: Schematic diagram of an electron moving uniformly from left to
right, generating velocity waves. Redrawn from Langevin (1905).

namics by his former teacher Henri Poincaré (1891), following Lorenz
(1867). It recalls as well the formulation of the potentials for a moving
point charge due to Alfred Liénard (1898) and Emil Wiechert (1900).
Langevin’s theory, like Lorentz’s electron theory, assumed an ether at
absolute rest. According to Langevin, electrons traveled through the
ether at velocities less than that of light, generating velocity waves
and, in the case of non-inertial motion, acceleration waves. Both sorts
of waves propagated in the ether with the speed of light, while velocity
waves dissipated rapidly, such that only acceleration waves could be
detected far from the electron.20

5 Poincaré’s light ellipse

As a student in the mid-1890s, Langevin had followed Poincaré’s lec-
tures on Sommerfeld’s theory of diffraction, but he did not engage
personally with Poincaré until September, 1904, when they were both
members of the French delegation to the Congress of Arts and Sci-
ences, held at the World’s Fair in Saint Louis. The younger man was
flattered by the attention of his former teacher, as he recounted the
meeting by letter to his wife back in Paris.21 By that time, the two

20For details on Langevin’s paper, see Miller (1973).
21See Langevin’s notebook, box 123, and letter to his wife of 26 September, 1904, box

3, Fonds Langevin, Library of the École supérieure de physique et de chimie industrielle,
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men had a mutual interest in the theory of electrons, which was the
topic of Langevin’s lecture in Saint Louis (1906).

We do not know if Langevin ever discussed with Poincaré his forth-
coming paper on the inertia of the electron (Langevin, 1905). However,
we do know that Poincaré found inspiration from the latter paper for
his discovery of the Lorentz group, as it is one of the few papers cited
by Poincaré (along with Lorentz, 1904). Under the coordinate trans-
formations of the Lorentz group, Poincaré demonstrated in 1905, the
laws of electrodynamics retain their form. What impressed Poincaré
most was not Langevin’s constant-volume model of the electron, but
his explanation of the velocity and acceleration waves produced by an
electron, according to which these waves propagate in free ether at
the speed of light. Instead of Langevin’s model, Poincaré preferred
the deformable electron model proposed by Lorentz, which had the
advantage, as Poincaré proved, of preserving the principle of relativ-
ity. Poincaré (1906, 149) noticed further that by applying the Lorentz
transformations to Langevin’s acceleration waves, he could recover
Hertz’s solution of Maxwell’s equations for an oscillator at rest in the
absolute ether.22

In June, 1905, Poincaré supposed that all laws of physics were like-
wise form-invariant with respect to the transformations of the Lorentz
group, including the law of gravitation. In a letter to Lorentz an-
nouncing his discovery, Poincaré observed that the requirement of
Lorentzian form-invariance spelled the end of what he called the “unity
of time” (Poincaré to Lorentz, in Walter 2016, 2-38-3). Yet Poincaré
was not ready to abandon the traditional definition of time and space
in this new theoretical context. He deftly elided the question of time
and space deformation in his memoir on the dynamics of the electron
(Poincaré 1906) by focusing on active transformations alone (Stern-
berg 1986).

Questions of relativity of space and time remained on Poincaré’s
mind after 1905. In his university lectures of 1906–1907, Poincaré
explained how, in principle, one could measure Langevin waves, and
thereby determine the shape of an electromagnetic pulse generated by
a source in motion with respect to the ether. According to lecture
notes by a student note-taker, Henri Vergne (1879–1943), Poincaré
recalled Langevin’s paper, and reproduced (Fig. 3) the latter’s illus-
tration of the waves produced by an electron in motion (Fig. 1).23 He
also produced a diagram of his own creation (Fig. 2), which showed
how an electromagnetic pulse was related to the Lorentz transfor-

Paris.
22On Hertz’s solution, see Darrigol (2000, 251).
23Henri Vergne, notebook 2, François Viète Center, University of Nantes.
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Lorentz factor γ = 1/
√

1− v2/c2
Semimajor axis a = OA = γct
Semiminor axis b = OH = ct

Eccentricity e =
√

1− b2/a2 = v/c
Focal distance OF = γvt
Apparent time t′ = FM/c
Apparent displacement x′ = FP

Figure 2: The light ellipse, after Vergne’s notes (2, 50). Labels H and A are
added for legibility, and notation is modernized.

mations. The pulse created by the point source had the form of an
ellipsoid, elongated in the direction of motion of the source, with a
focus colocated at the source. A section through a meridian of the
ellipsoid produces the ellipse shown in Fig. 2.

Poincaré’s diagram illustrates the Lorentz contraction, whereby all
material objects contract by a Lorentz factor, but only in the direc-
tion of their motion with respect to the ether. Commentators offer
conflicting views of other aspects of Poincaré’s ellipse, and as I will
show later, Poincaré himself changed his view of the ellipse around
1909.

Poincaré’s concrete model of the propagation of electromagnetic
waves from a source in uniform motion merits our attention for two
reasons. His light ellipse was, first of all, a graphical illustration of
kinematic relations in relativity theory, the first in a long line of such
techniques designed to display the relations of relativistic kinemat-
ics. Secondly, Poincaré’s theory of the light ellipse stands as the
first of many attempts by physicists to reconcile an assumed Lorentz-
covariance of physical laws with Galilean kinematics. In particu-
lar, Poincaré’s interpretation of the Lorentz transformation constrasts
sharply with the views of Cunningham and Einstein, outlined in pre-
vious sections.

The light ellipse is, at the same time, a curious historical object,
that has given rise to variant readings. To some extent, the lack of
consensus among historians is to be expected: none of Poincaré’s four
independent discussions of the light ellipse clarifies fully his protocol
for measuring the dimensions of the locus of light in a moving frame.
To help distinguish the various readings of Poincaré’s ellipse, let us
consider three propositions:

1. The principle of relativity is valid.
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2. Measurements of the light shell are performed with concrete rods
by observers at relative rest with respect to rods and clocks, at
an instant of apparent time t′ indicated by light-synchronized
clocks.

3. Measurements of the light shell are performed with concrete rods
in motion by observers at relative rest with respect to the clocks,
at an instant of absolute time t.

Einsteinian relativity upholds (1) and (2) only, provided that we ne-
glect the distinction made in (2) between “apparent time” and “abso-
lute time”, time and space being frame-dependent quantities in Ein-
stein’s view.

The first historically-motivated account of Poincaré’s light ellipse,
due to Cuvaj, accepts (2), but rejects (1), in that comoving observers
“will have contracted measuring sticks, in their own frame S′ too, so
that a wave-sphere (of radius ct) will appear as an ellipsoid” (Cuvaj
1970, 74, original emphasis). Thus for Cuvaj, Poincaré’s protocol
contradicts the principle of relativity, and in light of this contradiction,
it is “defective”.

An alternative reconstruction of Poincaré’s measurement protocol,
advanced by Susan Wright (1975, 453), and Olivier Darrigol, accepts
(1) and (3), such that Poincaré’s light ellipse “represents the location
of a light pulse at a given value of the absolute time and for geometers
belonging to a moving system” (Darrigol 1995, 41). Both Wright and
Darrigol find Poincaré’s approach to be circuitous in comparison to
that of Einstein. For Darrigol, Poincaré’s employment of kinematic
attributes from different frames appeared “an absurdity from the Ein-
steinian point of view” (Darrigol 1995, 41), although he later acknowl-
edged that Einstein, too, mixed his attributes on occasion (Darrigol,
2015, n. 67).

According to the reading suggested here, following Walter (2014),
Poincaré originally upheld (1) and (3), but later revised his view, dis-
carding (3) in favor of (2). Poincaré, like Einstein, considered light
propagation in empty space to be the only physical phenomenon not
subject to Lorentz contraction. In his first popular account of rela-
tivity theory, Poincaré (1907) drew a series of consequences for the
philosophy of phenomenal space, during which he invoked a thought-
experiment, which proceeds as follows. Let all objects undergo the
same expansion overnight; in the morning, the unsuspecting physi-
cist will not notice any change. Poincaré likened the fantasy of an
overnight spatial expansion to the relativity of moving bodies in con-
temporary physics, in that Lorentz’s theory admitted the contraction
of bodies in their direction of motion with respect to the ether. Just
as with the thought-experiment, Poincaré disallowed detection of the

15



contraction, from the assumption that instruments of measure exhibit
compensating effects.24

In the same vein, Poincaré admitted the principle of observational
equivalence among inertial observers. He retained, however, a seman-
tic distinction between true and apparent quantities, corresponding
respectively to quantities measured in a frame at absolute rest S,
and those measured in frames in uniform motion with respect to the
absolutely-resting frame.25 His definition of temporal and spatial in-
tervals for observers in uniform motion with respect to the ether went
as follows: apparent time (or equivalently, local time) is the time in-
dicated by light-synchronized clocks at relative rest; local distance is
measured by light time-of-flight, such that a concrete rod at rest with
apparent unit length in a direction parallel to that of frame motion
has true length γ.

Consequently, in an inertial frame S′, concrete measuring rods of
length `′ contract in their direction of motion with respect to the
ether frame S according to Lorentz’s formula: `′ = γ−1`, where γ−1 =√

1− v2/c2, and ` designates the length of the rod in a frame at rest
S, v is the velocity of S′ with respect to S, and c is the velocity of
light, a universal constant. Observers in S′ can correct for the motion-
induced Lorentz-contraction of their measuring rods; Poincaré put the
correction factor at 5 · 10−9.26

In his Sorbonne lectures of 1906–1907 (mentioned above), Poincaré
employed the light ellipse in pursuit of two objectives. First, he wanted
to show that length and time measurements are transitive for inertial
observers, transitivity being a sign of objectivity. To do so, he imag-
ined a light source in uniform motion of velocity v, that passes through
the coordinate origin O at time t0 = 0. At a later time t1 > 0, the
source reaches a point B = vt1, such that the light-wave originating
at time t0 and propagating in all directions with speed c has a spher-
ical wavefront of radius ct1. Fig. 3, redrawn after Vergne’s notes of
Poincaré’s lectures, shows a section of the surfaces of two light spheres
associated with three successive positions of the source: O, A, and B.
The largest light sphere has center O, and the smallest has center B, as
judged by an observer at rest with respect to frame S with coordinate

24Poincaré’s fantasy was extended by Richard Tolman (1914) via dimensional analysis,
in the form of a “principle of similitude”, a view that attracted sharp criticism from Percy
Bridgman (1916).

25The notion of an absolutely-resting frame remained an abstraction for Poincaré. In
1912, he upheld the conventionality of spacetime, and expressed a preference for Galilei
spacetime over Minkowski spacetime (Walter 2009).

26See Poincaré (1901, 536), where the value is off by a factor of ten. In a later essay,
Poincaré (1904, 312) supplied the “correct” value of the correction factor α for terrestrial
observers and an ether at rest with respect to the Sun, where α = (`− `′)/` = 1− γ−1.
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Figure 3: A light source in uniform motion, redrawn from Vergne’s notebook
(2, 50).

Figure 4: Poincaré’s measurement scheme, redrawn from Vergne’s notebook
(2, 49).

origin O.
According to Vergne’s notes (2, 49), Poincaré described the “mea-

sured length” of the light ellipse to be elongated in the direction of
motion. I take this remark to mean that measuring rods are Lorentz-
contracted, such that for the resting observer, measured lengths are
greater than “true” lengths by a Lorentz factor. Poincaré’s published
accounts of the light ellipse do not repeat this particular description
of its measured dimensions. Nonetheless, Vergne’s notes illustrate in
detail Poincaré’s measurement protocol.27

Referring to a unit circle with two segments extending from the
center, as in Fig. 4, Vergne’s notes explain the measurement procedure

27The published version of the notes differs markedly from the original, suggesting
that their editor, the astronomer Marguerite Chopinet, disagreed with their content;
cf. Poincaré (1953, 219).
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for an observer equipped with a ruler in motion:28

So I take a rigorously-spherical surface, and I measure it
with my ruler. My ruler will be contracted by α along
the direction of motion; its true length will have become
1/α. Therefore, along the bearing of motion my diameter
will have the measured length α. Along the perpendicular
bearing the measured length will be 1. Therefore a sphere
will appear [as] an ellipsoid elongated along the bearing of
motion. (Vergne notebook 2, 49–50, original emphasis)

Fig. 4 shows a horizontal line segment labelled “α” extending from
the circle center just past the circumference, and a vertical segment
labelled “1”, extending from the center of the circle to the circumfer-
ence.

The dimensions of length measured by a comoving observer are in
error due to Lorentz contraction of rulers in motion, leading Poincaré
to “correct” for the contraction. Upon correction for the Lorentz-
contraction of rulers, Poincaré finds the “true” shape of “rigorously-
spherical surface” to be that of an ellipsoid of revolution, the major
axis of which is aligned with the direction of motion of the observer
and ruler with respect to the ether.

This measurement scheme is novel, but Poincaré went on to iden-
tify his “elongated ellipsoid” with the wavefronts of a light pulse, or
what we call, for convenience, a light ellipsoid. The exact dimensions
of the light ellipsoid depend on the time at which the measurement of
the light locus is performed. However, the form of the light ellipsoid
is the same for comoving observers, in that the eccentricity e is a con-
stant that depends on frame velocity v alone, e = v/c (cf. Poincaré
1908a, 393). Poincaré remarked that in a direction orthogonal to
the observer’s motion, there is no motion-induced length deformation,
such that the length b of the semiminor axis is b = ct, where t de-
notes “true” time, i.e., the coordinate time t1 of the ether frame S.
This remark led Poincaré to argue that apparent temporal duration
is transitive for inertial frames, and ultimately, to a derivation of the
Lorentz transformation.

The derivation of the light ellipse that Poincaré performed for his
students proceeded as follows, based on the ellipse dimensions shown
in Fig. 2. From the diagram, Poincaré read off the standard relation

28“Alors je prends une surface rigoureusement spherique. Je la mesure avec mon mètre:
dans la direction du mouvement mon mètre sera contracté de α; sa longueur vraie sera
devenue 1/α. Donc mon diamètre dans le sens du mouvement aura pour longueur mesurée
α. Dans le sens perpendiculaire la longueur mesurée sera 1. Donc une sphère parâıtra un
ellipsöıde allongé dans le sens du mouvement.”
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for an ellipse with focus F :

FM + FPe = a(1− e2), (4)

and then solved for t′:

t′ = γ−1t− vx′/c2. (5)

The latter equation shows the apparent time t′ to be a linear function
of apparent displacement x′, as desired.29 Although Poincaré did not
point this out, by simply rearranging (5), we obtain the transformation

t = γ(t′ + vx′/c2), (6)

and upon substitution for x′, we get t′ in terms of x:

t′ = γ(t− vx/c2). (7)

What Poincaré did point out explicitly to his students (Vergne note-
book 2, 51) was just this: since the difference between apparent and
true time is a linear function of apparent displacement, the variable
t′ that appears in the Lorentz transformation is the apparent time
featured in the light ellipse.

In summary, Poincaré associated during his lectures of 1906–1907
a light sphere in S of radius ct with a light-ellipsoid in S′ of semiminor
axis of length ct, and semimajor axis of length γct, from the dimensions
of which he derived the Lorentz transformation. Although he did not
realize it, Poincaré’s interpretation of the light ellipse was physically
flawed, in that it ascribed to observers physical events that have no
causal connection to them. The flaw can be grasped most easily by
referring to a cognitive tool that was not available to Poincaré until
1908: the three-dimensional Minkowski spacetime diagram (Walter,
2014).

According to the interpretation of the Lorentz group offered in
Vergne’s notes, the radius vector of the light ellipse corresponds to
light points at an instant of ether time t. On a Minkowski diagram,
the situation is described by an ellipse lying on a spacelike plane of
constant time t (Figure 5, with the t′-axis suppressed for clarity). The
ellipse center coincides with spacetime point B = (vt, 0, t), and the
points E, B, F , and A lie on the major axis, such that BH is a

29Using the relations specified in Fig. 2, we have

a(1− e2) = a(1− (1− b2/a2)) = a(1− (1− c2t2/a2)) = ac2t2/a2 = ct/γ.

Rearranging the latter expression in terms of t, we find t = aγ(1− e2)/c, and substituting
the value of a(1− e2) from (4) we obtain Poincaré’s expression (5) for apparent time t′.
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semiminor axis of length ct. The light ellipse intersects the lightcone
in two points, corresponding to the endpoints of the minor axis, H
and I.

In the foregoing Minkowskian representation of the light ellipse, it
is plain to see that there are points on the light ellipse that lie out-
side the lightcone. The latter points represent locations in spacetime
physically inaccessible to all inertial observers sharing a spacetime
origin. In four-dimensional Minkowski spacetime, the intersection of
the light sphere with center E and the light ellipsoid with center B,
where E and B lie on a spacelike plane, is a circle of radius ct. On
a three-dimensional Minkowski spacetime diagram, where one spatial
dimension is suppressed, the corresponding circle with center E and
ellipse with center B intersect in two points, labeled H and I, such
that EH = EI = BH = BI = ct. The upshot is that Poincaré’s
light-ellipse model of the Lorentz group admits superluminal signals.
This is certainly not what Poincaré wanted, and it may be assumed
that he was not aware of the flaw in his model.

Poincaré published a popular presentation of the light ellipse in
an article entitled “The dynamics of the electron”, that appeared on
30 May, 1908. This article recapitulates the presentation of the light
ellipse found in Vergne’s notebook, and introduces a discussion of
relative velocity, in which Poincaré affirms that we “must evaluate it in
local time” (Poincaré, 1908a, 397). While he did not explain how such
an evaluation would be performed, the problem of time measurement
in inertial frames was clearly posed by Poincaré. Other theorists,
including Einstein and Minkowski, had posed the same question, but
unlike Poincaré, they admitted that clocks in common uniform motion,
synchronized by crossed light signals, are valid timekeepers.

Like Einstein and Minkowski, Poincaré came to admit that clocks
in uniform motion are just as valid as clocks at rest in the absolute
ether. The occasion for this step was the sixth and final lecture de-
livered by Poincaré in Göttingen at the invitation of the Wolfskehl
Foundation, on 28 April, 1909. Entitled “La mécanique nouvelle”,
the lecture was the only one presented in French, as if to underline
the Gallic origins of relativity theory for an audience more familiar
with the theories of Einstein and Minkowski.30

For his Göttingen audience, Poincaré imagined an observer in mo-
tion equipped with light-synchronized clocks and a radio transmitter-
receiver.31 By exchanging telemetry data with a second observer in
relative motion likewise equipped, the first observer comes to the con-

30The context of Poincaré’s invitation to Göttingen is discussed in Walter (2018).
31On Poincaré’s engagement with electrotechnology, and wireless telegraphy in particu-

lar, see Galison (2003), Gray (2013), and Walter (2017).
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clusion that his watch is running fast. This situation corresponds to
the one invoked by Poincaré in 1908, as mentioned above.32

By allowing clocks to read local time, Poincaré was able to repair
the flaw in his interpretation of the light ellipse. A few months after
his lectures in Göttingen, he delivered a plenary lecture at the annual
meeting of the French Association of Arts and Sciences, in Lille, on
the third of August, 1909. In the course of the lecture, he recalled the
thought experiment from his talk in Göttingen, and noted this time
that, for the two observers A and B in relative motion,33

. . . a very elementary geometrical theorem shows that the
apparent time required for light to travel from A to B, i.e.,
the difference between the local time at A when the wave
leaves A and the local time at B when the wave reaches B,
this apparent time, I say, is the same as if the translational
motion did not exist, just as required by the principle of
relativity. (Poincaré, 1909, 173–174, original emphasis)

The “elementary geometrical theorem” referred to by Poincaré is just
(4). By employing apparent time instead of ether time, Poincaré trans-
formed in one fell swoop his light ellipse from a flawed interpretation of
the Lorentz group to a model of time dilation and Lorentz contraction.

Poincaré’s employment of apparent time t′ instead of ether time t,
first communicated during his lecture in Lille, alters the representation
of the light ellipse in a 3D-Minkowski diagram (Fig. 6), such that the
ellipse lies in a spatial plane of constant t′. The intersection of a
constant-time plane t = t1 with the lightcone (where c ≡ 1), x2 +
y2 − c2t2 = 0 is a circle of center E and radius ct1 in frame S, while
the intersection of the lightcone with a constant-time hyperplane in
S′ passing through spacetime point B forms an ellipse on a spacetime
diagram, corresponding to a circle of center B with respect to S′.
Poincaré’s light ellipse (Fig. 2) is identical to the intersection of the
lightcone with a spacelike plane in S′ passing through spacetime point

32One may wonder why the watch in Poincaré’s thought experiment runs fast, and not
slow, as would be required by time dilation in an Einsteinian or Minkowskian context. An
explanation is at hand, if we focus on the first observer’s experience. At first, he believes
he has a certain velocity, say 200km/s. An exchange of telemetry data with the second
observer convinces him that he is moving slower than he thought previously. One way
for him to account for this revision is to admit that his watch is running fast. Other
explanations for the fast watch can be imagined; see Walter (2014).

33“. . . un théorème de géométrie très simple montre que le temps apparent que la lumière
mettra à aller de A en B, c’est-à-dire la différence entre le temps local en A au moment du
départ de A, et le temps local en B au moment de l’arrivée en B, que ce temps apparent,
dis-je, est le même que si la translation n’existait pas, ce qui est bien conforme au principe
de relativité.”
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Figure 5: Spacetime model of Poincaré’s light ellipse (1906) in a spatial plane
(t =const.).

B on the t′-axis. The flaw of his previous interpretation of the light
ellipse (in Fig. 5), i.e., the existence of hyperlight signals, is no longer
present in the Lille interpretation, since all points of the light ellipse
lie on the lightcone.

The light ellipse was not a matter of discussion for theorists during
Poincaré’s lifetime, and it was rarely discussed after 1912, even though
Lorentz adopted the notion of a light ellipsoid in The Theory of Elec-
trons (Lorentz, 1909, 224). The neglect of Poincaré’s light ellipse may
be attributed in part to its obscure presentation in the Revue générale
des sciences pures et appliqués (1908a), which was the only detailed
presentation of the light ellipse to appear until 1913.34 Beyond this
particular case, both in France as elsewhere in Western Europe, alter-
natives to the Einstein-Minkowski theory were often debated, while
Poincaré’s theory was considered by almost no one but Poincaré.35

Among electron theorists, Lorentz followed Poincaré’s work more
closely than others, and he applauded Poincaré’s contributions, some
of which he adopted, including Poincaré stress (Lorentz 1909, 213). If
Lorentz was aware of Poincaré’s light ellipse, he left no trace of it, while
he reproduced Einstein’s light-sphere derivation of the Lorentz trans-
formations in the second edition of his Theory of Electrons (Lorentz
1916, 322). Lorentz did not identify the source of the derivation, which
suggests that by 1916, it had lost all novelty.36

34An excerpt of the Revue article was included in Poincaré’s Science et méthode
(Poincaré, 1908b), neglecting mathematical details, such as Poincaré’s discussion of rela-
tive velocity.

35For a sketch of the French reception of relativity, see Walter (2011).
36Despite Lorentz’s embrace of the what Louis du Pasquier called the “principle of light-
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Figure 6: Spacetime model of Poincaré’s light ellipse (1909) in a spatial plane
(t′ =const.).

Later investigators, beginning with one of Einstein’s early collabo-
rators, Édouard Guillaume (1922), invoked Poincaré’s light ellipse in a
quest to save the notion of absolute time. Guillaume’s view informed
the philosopher Henri Bergson’s interpretation of special relativity in
terms of “figures de lumière” (Bergson, 1922, 133). These contribu-
tions and others are neglected here as they fall outside our temporal
scope.37

If Poincaré’s geometric point of view is adopted, his light ellipse
shows how to construe the Lorentz transformation as a rotation cou-
pled to a dilation.38 Given Poincaré’s skill in conceiving intuitive
models of curved space,39 and in light of the fact that he interpreted
the Lorentz transformation algebraically as a pure rotation in four-
dimensional (3 + 1) space, one wonders if he considered illustrating
the Lorentz transformation as a pure rotation. The latter question
arises in this historical context, since Minkowski produced such an il-
lustration just a year or so after Poincaré introduced the light ellipse.
Minkowski’s theory of spacetime and its relation to the light sphere
and the light ellipse are taken up in the next section.

wave sphericity”, the Swiss mathematician later wrote that Lorentz rejected this principle
(Du Pasquier 1922, 68).

37On Guillaume’s collaboration with Einstein, see Einstein’s letter to Jacob Laub, 20
March, 1909, in Klein (1993, Doc. 143).

38A displacement from one point to another on the light ellipse corresponds to a Lorentz
transformation in this interpretation. The radii from a focus to any two points of the ellipse
are related by a rotation and, in general, a dilation or a contraction.

39On Poincaré’s models of hyperbolic geometry, see Gray (1989) and Zahar (1997).
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6 Minkowski’s lightcone

Hermann Minkowski was the first mathematician in Germany to take
an interest in relativity theory. His fellow mathematicians had long
abandoned research in theoretical physics, which in Germany had
become the affair of specialists like Max Planck and Ludwig Boltz-
mann, at least since the founding of physical institutes in the 1870s
(Jungnickel & McCormmach 1986). But like many in mathematics,
Minkowski kept abreast of research in analytical mechanics, a subject
on which he lectured at Zürich Polytechnic (now the ETH), where
Walter Ritz, Albert Einstein, and Marcel Grossmann were among his
students. From 1902, he taught this subject and others at the Georgia
Augusta University of Göttingen.40

In Göttingen, Minkowski rejoined his friend David Hilbert, and im-
mersed himself in the activities of the local research community. The
first decade of the twentieth century was a golden one for science in
Göttingen, thanks in part to Felix Klein’s success in attracting invest-
ments in new scientific and technical institutes from local industry and
government sources, and to the drawing power of the faculty. Students
from Europe, Russia, the United States and Japan came to Göttin-
gen to hear lectures by Hilbert, Minkowski, Klein, Walther Nernst,
Eduard Riecke, Woldemar Voigt, Karl Schwarzschild, Emil Wiechert,
Ludwig Prandtl, and Carl Runge.41

Electron theory served as a focus of many theoretical and ex-
perimental investigations undertaken by Minkowski’s colleagues, al-
though Voigt, Göttingen’s chair of theoretical physics, had assumed
a more critical stance. And while neither Hilbert nor Minkowski had
published on questions of physics, they were keenly interested in ex-
ploring the mathematical side of electron theory, and in the summer
semester of 1905, they co-directed a seminar on the subject, attended
by Wiechert, the mathematician Gustav Herglotz, Born, Laue and
others (Pyenson 1979). Electron-theoretical papers by Lorentz and
Poincaré figured prominently on the seminar syllabus, but their most
recent publications, in which the principle of relativity and the Lorentz
transformation were exploited more fully, were neglected. As for Ein-
stein’s relativity paper, it had yet to be published.

Following the electron-theory seminar, Minkowski delved into an-
other topic of great interest to theoretical physicists: the theory of
heat radiation. He lectured on recent work in this area by Planck and
Nernst for the Göttingen Mathematical Society in 1906, and offered
a course on the subject in the summer semester of 1907. Minkowski’s

40For background, see Walter (1999a; 2008).
41On the rise of Göttingen as a scientific center, see Manegold (1970) and Rowe (1989).
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course notes indicate that he was familiar with Planck’s pioneering ar-
ticle on relativistic thermodynamics (Planck 1907), in which he praised
Einstein’s relativity paper. Shortly thereafter, Minkowski wrote to
Einstein to request an offprint of this paper, for use in his seminar.

Einstein’s achievement came to Minkowski as a “huge surprise”,
according to Max Born, because Minkowski did not believe Einstein
possessed the mathematical background necessary to create such a
theory (Seelig 1960, 45; Born 1959, 502). From the vantage point
of its mathematical expression, Einstein’s electrodynamics of moving
bodies is all the more remarkable for its extreme simplicity. A lack of
training in advanced mathematics did not constitute a serious handi-
cap for Einstein in theoretical physics, as Hilbert and others pointed
out later.42 In this respect, Einstein’s electrodynamics of moving bod-
ies contrasts sharply with Minkowski’s memoir on the electrodynamics
of moving media (1908), the elegant formalism of which Einstein and
other physicists chose at first to ignore.

The full exploitation of light-sphere covariance required a math-
ematical sophistication somewhat beyond Einstein’s reach in 1905.
Mathematicians like Poincaré, Cunningham, and Minkowski were all
in a position to explore the consequences of light-sphere covariance
in their formal investigations of the principle of relativity, and all of
them did so. It is far from clear, however, that Minkowski grasped the
essentials of Einstein’s kinematics, of which he gave a frankly distorted
account in his essay “Space and Time” (Walter 1999a). As mentioned
above, Einstein provided no geometrical interpretation of his kinemat-
ics or of the Lorentz transformation. In his essay, Minkowski famously
illustrated his spacetime theory with geometric diagrams, and in an
effort to distinguish his theory from those of Lorentz and Einstein,
he interpreted the latter theories geometrically. Geometric reasoning
carried a significant part of Minkowski’s message in this work, as well
as in Minkowski’s earlier writings on relativity.43

In one of his first attempts to provide a geometric view of the
Lorentz transformation, Minkowski drew on Poincaré’s observation
that the Lorentz transformation corresponds to a pure rotation in
four-dimensional space (x, y, z, ct

√
−1). During the course of a

posthumously-published lecture for the Göttingen Mathematical So-

42See Frank (1947, 206). Miller (1976, 918) emphasizes the relative simplicity of the
mathematical tools deployed by Einstein in his relativity paper, in comparison to those
Poincaré brought to bear on similar problems. Renn (2007, 69) observes that Einstein’s
uncanny aptitude for informal analysis of complex problems served him well in both special
and general relativity.

43Minkowski’s visually-intuitive approach to relativity is explored at length by Galison
(1979).

25



Figure 7: A reconstruction of Minkowski’s 5 Nov. 1907 presentation of rela-
tivistic velocity space, with a pair of temporal axes, t and t′.

ciety on 5 Nov. 1907, Minkowski brought up the quadratic expres-
sion x2 + y2 + z2 − c2t2, which he expressed in the Euclidean form
x21 + x22 + x23 + x24, via the substitution of x1, x2, x3, x4, for the coor-
dinates x, y, z, ict (Minkowski, 1915, 374). With this substitution, a
re-expression of the laws of physics in four-dimensional terms was at
hand, the premises of which Minkowski laid out in his lecture. First,
however, he explored the geometry of his four-dimensional space, not-
ing an application of hyperbolic geometry.44 He described the hyper-
surface

t2 − x2 − y2 − z2 = 1 (8)

as a calibration curve of sorts, in that any line from the origin to a
point on this hypersurface may be identified with the temporal axis
of an inertial frame of reference. The hypersurface of equation (8)
may also be expressed, Minkowski observed, in the form of a pseudo-
hypersphere of unit imaginary radius

w2
1 + w2

2 + w2
3 + w2

4 = −1. (9)

Both hypersurfaces (8) and (9) were known to provide a basis for
models of non-Euclidean geometry.

The hypersurface (8) thus corresponds to the set of four-velocity
vectors. Although Minkowski did not spell out the interpretation, he
probably recognized that a displacement along (8) corresponds to a
rotation ψ about the origin, such that frame velocity v is described
by a hyperbolic function, v = tanhψ. However, he probably did not
yet realize that his hypersurfaces represent the set of events occurring
at coordinate time t′ = 1 of inertial observers, the worldlines of which
pass through the origin. According to (8), this time is imaginary,
which may have obscured the latter interpretation. In fact, Minkowski

44On Minkowski’s use of hyperbolic geometry in this lecture, see Reynolds (1993).
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did not yet possess the notion of a worldline, or of proper time (Walter,
2007a, 217).

Sometime before the end of 1907, Minkowski discovered both world-
lines and proper time, along with the lightcone structure of spacetime;
he published these insights in an appendix to his theory of the electro-
dynamics of moving media, on 5 April 1908. The Lorentz transforma-
tion, he realized, could be written in trigonometric form, by invoking
circular functions with an imaginary argument iψ:

x′1 = x1, x′2 = x2, x′3 = x3 cos iψ+x4 sin iψ, x′4 = −x3 sin iψ+x4 cos iψ,

where x4 = it, and c = 1. Frame velocity v is then expressed in
terms of a tangent, v = −i tan iψ. In this imaginary-angle form,
the two-dimensional Lorentz transformation may be interpreted as
a pure rotation about the center of a circle of imaginary unit radius.
Minkowski’s followers showed that in the real form, the Lorentz trans-
formation may be construed as a displacement along a unit hyperbola.
This unit hyperbola and the circle of imaginary unit radius correspond
to the surfaces (8) and (9), with two spatial dimensions suppressed.

In Minkowski spacetime, Einstein’s light-sphere covariance gives
way to lightcone covariance. Minkowski interpreted Einstein’s expres-
sion (1) for a light sphere as the equation of a lightcone in spacetime.
Whereas both Einstein and Poincaré understood light-waves in empty
space to be the only physical objects immune to Lorentz contraction,
Minkowski saw that when light-rays are considered as worldlines, they
divide spacetime into three regions, corresponding to the spacetime
region inside a future-directed (t > 0) hypercone (“Nachkegel”), the
region inside a past-directed (t < 0) hypercone (“Vorkegel”), and the
region outside any such hypercone pair. The propagation in space
and time of a spherical light-wave is described by a hypercone, or
what Minkowski called a lightcone (“Lichtkegel”).

One immediate consequence for Minkowski of the lightcone struc-
ture of spacetime concerned the relativity of simultaneity. In a section
of his paper on the electrodynamics of moving media entitled “The
concept of time”, Minkowski (1908, § 6) showed that Einstein’s relativ-
ity of simultaneity is not absolute. While the relativity of simultaneity
is indeed valid for two or three simultaneous “events” (Ereignisse), the
simultaneity of four events is absolute, so long as the four spacetime
points do not lie on the same spatial plane.45 Minkowski’s demon-
stration relied on the Einstein simultaneity convention, and employed

45“Werden jedoch vier Raumpunkte, die nicht in einer Ebene liegen, zu einer und dersel-
ben Zeit t0 aufgefaßt, so ist es nicht mehr möglich, durch eine Lorentz-Transformation eine
Abänderung des Zeitparameters vorzunehmen, ohne daß der Charakter der Gleichzeitigkeit
dieser vier Raum-Zeitpunkt verloren” (Minkowski 1908, 69).
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both light signals and spacetime geometry, but not the light sphere.
His result showed the advantage of employing his spacetime geome-
try in physics, and later writers, including Poincaré, appear to have
agreed with him, by considering the discovery of the existence of a
class of events for a given observer that can be the cause of no other
events for the same observer as a consequence of spacetime geometry
(Walter 2009, 210).

Physicists in Germany quickly seized upon Minkowski’s electrody-
namics of moving media, but as mentioned above, they stripped it of
the four-dimensional formalism in which it had been dressed by its in-
ventor. In what became the standard response to Minkowski’s electro-
dynamics of moving media, both in Germany and abroad, Minkowski’s
former students Einstein and Jacob Laub recast Minkowski’s four-
dimensional expressions in terms of ordinary vectors. In 1908, outside
of Göttingen and Cambridge, theorists saw no use at all for a four-
dimensional approach to physics.

One imagines that for Minkowski, this was a vexatious state of
affairs. According to his former student Max Born, Minkowski always
aspired

to find the form for the presentation of his thoughts that
corresponded best to the subject matter. (Born, 1914)

The form Minkowski gave to his theory of moving media had just
been judged unwieldy by his readers, and in the circumstances, de-
cisive action was called for if his formalism was to survive at all. In
September 1908, he took such action, by affirming the reality of the
four-dimensional “world”, and its necessity for physics (Walter 2010).
His celebrated lecture “Raum und Zeit”, delivered at the annual meet-
ing of the German Association of Scientists and Physicians in Cologne,
offered two diagrammatic readings of the Lorentz transformation, one
attributed to Lorentz and Einstein, the other to himself.

The first of these two readings was supposed to represent the kine-
matics of the theory of relativity of Lorentz and Einstein. In fact,
Minkowski’s reading captured Lorentzian kinematics, but distorted
Einsteinian kinematics, prompting corrective action from Philipp Frank,
Guido Castelnuovo, and Max Born.46 The idea stressed by Minkowski
was that in the (Galilean) kinematics employed in Lorentz’s electron
theory, time being absolute, the temporal axis on a space-time dia-
gram may be rotated freely about the coordinate origin in the upper
half-plane (t > 0), as shown in Fig. 8. The spatial position of a point
P may be described with respect to frames S and S′, corresponding

46See Born (1909, 9; 1959, 503). For further references and details on Minkowski’s
distortion and its reception, see Walter (1999a).
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Figure 8: A reconstruction of Minkowski’s depiction of the kinematics of
Lorentz and Einstein, after Born (1920).

to the coordinate axes (x, t) and (x′, t′), respectively, according to the
coordinate transformation: x′ = x− vt, t′ = t.

In contradistinction to the latter view, the theory proposed by
Minkowski required a certain symmetry between the spatial and tem-
poral axes. This constraint on symmetry itself was sufficient for a geo-
metric derivation of the Lorentz transformation. Although Minkowski
described his spacetime diagram as an illustration of the Lorentz trans-
formation, he did not spell out the interpretation in detail. Nonethe-
less, Minkowski did provide a geometric derivation of the Lorentz
transformation at some point, as attested by an autograph slide in
Minkowski’s Nachlass, which may have been projected during the lec-
ture he delivered to the German Association of Scientists and Physi-
cians in Cologne.47

While Minkowski acknowledged Einstein’s critique of absolute time,
he considered that the concept of a rigid body – upon which Einstein
had based his relativistic kinematics – made no sense in relativity
theory (Minkowski 1909, 80). Similarly, Poincaré deemed that mea-
surement in relativity theory could no longer rely on the displacement
of rigid bodies, which were replaced for the purpose of measurement
in Lorentz’s theory by light time-of-flight (§ 3). For Poincaré and
Minkowski, Einstein’s foundation of relativistic kinematics on the be-
havior of ideal clocks and rigid rods did not sit well at all with the

47NSUB Handschriftenabteilung. The demonstration missing from the published text of
Minkowski’s lecture was later supplied by Arnold Sommerfeld, in an editorial note to his
friend’s lecture. The annotated version of the lecture appeared in an anthology of papers
on the theory of relativity edited by Otto Blumenthal (1913). According to Rowe (2009,
37), Sommerfeld was the driving force behind the latter anthology.
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Figure 9: An autograph, hand-colored transparency of Minkowski’s geometric
derivation of the Lorentz transformation, probably from the Cologne lecture
of Sept. 21, 1908. Courtesy of the Niedersächsichen Staats- und Universitäts-
bibliothek, Handschriftenabteilung.
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Lorentz-deformation of displaced solids. They did not appeal to the
kinematics of rigid bodies to derive the Lorentz transformation, but
affirmed the principle of relativity, and required that the transfor-
mations of coordinates between inertial frames form a group.48 For
Minkowski, Lorentz contraction of electrons was a direct consequence
of the geometry pertaining to this group.

The latter consequences were displayed by Minkowski on a space-
time diagram, and elaborated upon by Sommerfeld on the occasion
of a reedition of Minkowski’s Cologne lecture (Sommerfeld 1913).
Minkowski’s spacetime diagram thus offered a novel means of un-
derstanding the strange consequences of Einstein’s kinematic assump-
tions. However, the spacetime diagram was understood by some physi-
cists to lend support to an ether-based outlook, as shown by Emil
Wiechert’s contributions (discussed in § 9).

7 Alfred A. Robb: repurposing the light-

cone

A physicist trained in Belfast, Cambridge, and Göttingen, Alfred A.
Robb (1873–1936), found the means in Minkowski’s spacetime geome-
try to realize an “optical geometry of motion”, in which he could dis-
pense with Einstein’s ideal clocks and rigid rods (Robb, 1911). Robb,
described by Larmor (1938, 320) as an “unremarkable” graduate of
St. John’s College, Cambridge, was ranked fifty-second (ex aequo) in
the 1897 Mathematical Tripos.49 He went on to write a theoretical
study of the Zeeman effect in Göttingen under W. Voigt’s direction,
published in the Annalen der Physik (1904), after which he returned
to St. John’s, and joined the Cambridge Philosophical Society.50

In his doctoral thesis, Robb took up one of the more puzzling prob-
lems facing physicists in the early twentieth century: to explain the
patterns of magnetic splitting of atomic spectral lines, known then
as the complex Zeeman effect. Starting from Lorentz’s Nobel-prize-
winning theory of doublet and triplet lines (1897), Robb introduced
elastic forces between electron pairs, triplets, and quadruplets. To
obtain agreement with observation, he introduced a geometric con-

48As seen above, Poincaré also derived the Lorentz transformation from the assumption
of Lorentz contraction of concrete rods, and the isotropy of light propagation for iner-
tial observers. He later considered (apparent) time deformation as a consequence of the
principle of relativity and Lorentz contraction; see (Poincaré 1913, 44).

49Tanner (1917, 571). I thank J. Barrow-Green for pointing me to this source.
50Robb was admitted to the Society on 27 Nov. 1905 (Proceedings of the Cambridge

Philosophical Society 16, 1912, p. 16).
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straint, requiring electrons to oscillate on the surface of a cone. As
he wrote to Larmor, the “restrictions are so peculiar that one may be
inclined to doubt the theory”, and indeed, Robb’s scheme was later
described by Lorentz as both “very ingenious” and “so artificial”.51

Much like his theory of the complex Zeeman effect, Robb’s opti-
cal geometry was both ingenious, and unattractive to physicists. Yet
Robb’s geometry laid the groundwork for a theory of time and space
that was later hailed by the likes of Hermann Weyl (1922, 209). To
build his optical geometry, Robb borrowed some basic insights from
Minkowski, and transformed them as needed. For example, he em-
ployed Minkowski’s trigonometric definition of velocity v, in a real
hyperbolic form, such that v = tanhω, and called ω the “rapidity” of
the particle.52 Taking a cue from the Minkowski spacetime diagram,
Robb described particle velocity with respect to the index-axis z via
the relation tan γ = tanhω, and expressed the lightcone in terms of
orthogonal axes xyz:

x2 + y2 − z2 = 0, (10)

where the z-axis represents a temporal index, the vertex coincides with
the origin, and the speed of light is unity.

For purposes of illustration, Robb followed Minkowski’s convention
on units, such that the path of light in vacuum is described for any
inertial observer by a line forming an angle of 45◦ with the z-axis. In
the place of Einstein’s notion of distant simultaneity, Robb introduced
a more restrictive definition, whereby the emission or reception of two
or more light signals is simultaneous if and only if it is observed at a
single spatial location at a single instant of time by a colocated, inertial
observer. Simultaneity is an absolute notion in Robb’s scheme, and
the distance to a particle of matter in arbitrary motion is determined
by round-trip light time-of-flight between the inertial observer and the
particle.

Light-rays play a fundamental role in Robb’s geometry of phenom-
enal space, as the title of his booklet suggests. Issues of clock synchro-
nization do not arise here, nor is there any question of transforming
measured quantities. However, Robb was careful to show that accord-
ing to his theory, lengths of material bodies “appear to be shortened

51Robb to Larmor, 6 March 1904, Larmor Papers, St. John’s College Library; Lorentz
(1909, 115). Voigt sent Lorentz a copy of Robb’s dissertation; see Lorentz to Voigt, 18
Dec. 1904, in Kox (2008, § 121).

52In a letter to Larmor of 18 Jan. 1911, the Cambridge mathematician A. E. H. Love
wrote that he had “noted explicitly in writing” to Robb that one of his formulas was from
Lobachevski geometry, and that “space might be saved by bringing this fact in” (Larmor
Papers, St. John’s College Library). On Robb’s use of hyperbolic geometry, see Walter
(1999b).
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in the direction of motion”, a result in agreement with other relativ-
ity theories.53 Moreover, to demonstrate this result, Robb implicitly
borrowed Poincaré’s idea of using a light shell as a metric surface.
Yet Robb openly distanced himself from Poincaré’s conventionalist
philosophy of geometry:

Speaking of the different “Geometries” which have been
devised, Poincaré has gone so far as to say that : “one Ge-
ometry cannot be more true than another; it can only be
more convenient.” [..] In reply to this; it must be remem-
bered that the language of Geometry has a certain fairly
well defined physical signification which in its essential fea-
tures must be preserved if we are to avoid confusion.54

From the latter remark, Robb’s philosophical position appears closer
to Einstein’s contemporary view of a physical geometry realized by
ideal rigid rods and clocks, than to Poincaré’s conventionalist doc-
trine, which ruled out any empirical determination of the geometry
of phenomenal space. But as mentioned above, Robb did not admit
Einstein’s distant simultaneity, rigid rods, or ideal clocks.

Robb’s philosophy of geometry was an innovative response to the
relativity theories of Einstein, Poincaré, and Minkowski, that he de-
veloped from around 1910 until the end of his life.55 In his first pub-
lication on geometry (1911), Robb’s philosophy found expression in
an original analysis of the form of a reflected light-shell for an ob-
server in motion. His approach to this problem employed a diagram
of a three-dimensional space, redrawn here as Fig. 10; it may be sum-
marized briefly as follows. An observer in uniform motion along the
x-axis with velocity v = tanψ transmits a number of light signals in
the xy-plane at an instant of time with index z0 = 0. These signals
are reflected from a ring of comoving particles surrounding the ob-
server in such a way that the signals arrive at the observer’s location
at point B at a single instant of time of index z1 > z0. Neglecting one
spatial dimension, Robb’s diagram shows a future-lightcone from the
origin in xyz-space that intersects with a past-lightcone with vertex at
point B = (z1 tanψ, 0, z1). The intersection of the two lightcones de-
fines an ellipse on an oblique plane, which is not illustrated in Robb’s
diagram, but which contains a diagonal of the rectangle in Fig. 10,

53For Robb the “appearance” of contraction was a necessary consequence of light time-
of-flight measurements. Robb, Einstein, and their contemporaries focused on the instan-
taneous form of moving objects, in an approach distinct from the one adopted in the
late 1950s. The latter studies characterized what Roger Penrose (1959) referred to as the
“photographic” appearance of a moving object.

54Robb (1911, 1), original emphasis. Cf. Poincaré, Science and Hypothesis (1905a, 50).
55For appreciations of Robb’s geometry, see Briginshaw (1979), and Cat (2016).
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Figure 10: A ring of particles in uniform motion in xyz-space, after Robb
(1911). Labels z1 and B are introduced for clarity.

and forms an angle ψ with the x-axis. By way of comparison, in
Minkowski three-dimensional spacetime the latter plane corresponds
to a spacelike plane of an observer in motion with velocity v.

Iteration of the signalling process produces a representation of an
elliptic cylinder of axis OB, the equation for which Robb derived.
From the perspective of an observer at rest with respect to the origin,
Robb argued, the “apparent form of this ring of particles” is given by
a section of the cylinder in the xy-plane. In other words, the apparent
form, for an observer in the rest frame, of the (reflected) light-shell of
an observer in motion is an ellipse of eccentricity

√
1− v2, the minor

axis of which is aligned with the ring’s direction of motion. Naturally,
Robb concluded that the length of objects in motion, when measured
by light time-of-flight, appears to a resting observer to be contracted
in the direction of motion.

Although Robb did not say as much, his observer in motion is in
a position to conclude that the reflecting ring of particles forms a cir-
cle. If Robb’s observer assumes, with Poincaré, that her concrete rods
are Lorentz-contracted, she may correctly infer that her light shell
is an elongated ellipsoid, the dimensions of which agree, moreover,
with Poincaré’s light-ellipsoid. Robb’s measurement protocol, how-
ever, featured no such concrete rods. Furthermore, unlike Poincaré,
Robb admitted no privileged frame of reference. Consequently, Robb
could no more uphold Poincaré’s homotheticity of light-ellipsoids than
he could affirm Einstein’s covariance of light spheres. His preferred
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figure of light was the lightcone.
In late 1910, Robb had submitted a like-titled work for publica-

tion in the Proceedings of the London Mathematical Society (LMS).56

One of the Society’s two secretaries (along with J. H. Grace), A. E.
H. Love asked Robb to “withdraw his paper temporarily”, in order
to address the criticisms of a referee. Robb appears to have com-
plained about Love’s request to his former teacher at St. John’s, and
LMS council member, Joseph Larmor. In response to Larmor’s query,
Love wrote that a referee had found the geometrical part of Robb’s
paper to be “extremely illogical”, and had recommended rejection.
Love noted that the theory of relativity also entered into the referee’s
assessment: Robb’s time index formula was “suggested by Einstein’s
work”, and furthermore, the referee felt “it might be necessary to
adopt Einstein’s assumptions in order to have some basis for Robb’s
formula.”57 The LMS reviewer’s critical assessment of Robb’s work
was echoed in softer terms by the Cambridge logician P. E. B. Jour-
dain (1879–1919). According to Jourdain’s published abstract, the
formulas in Robb’s booklet agreed with those of Einstein, Minkowski,
and Sommerfeld, but the concepts he employed, including that of the
index of a particle, were such that no summary could be provided.58

From these assessments, it appears that Robb’s theory was seen
in England as a confusing, mathematically-inept variant of Einstein’s
theory. The decision by the LMS council to follow Grace and Love’s
recommendation against publication of Robb’s manuscript meant his
theory would not benefit from a stamp of authority from Britain’s
leading mathematicians and theoretical physicists.59 Robb’s rejected
manuscript then became a booklet, the preface to which, dated 13
May 1911, suggests that its author was still smarting from the LMS
council’s negative decision:

From the standpoint of the pure mathematician Geometry
is a branch of formal logic, but there are more aspects of
things than one, and the geometrician has but to look at
the name of his science to be reminded that it had its origin
in a definite physical problem.

That problem in an extended form still retains its interest.

The italics in the passage above are Robb’s, underlining the triad:
geometry–logic–physics. Beyond the expected retort to the censorious

56LMS Council Minutes, 10 Nov. 1910, LMS archives.
57Love to Larmor, 18 Jan. 1911, op. cit. Sedleian Chair of Natural Philosophy at Oxford

since 1899, Love was Secretary (i.e., managing editor) of the LMS from 1890 to 1910.
58Jahrbuch über die Fortschritte der Mathematik 43, 1911, p. 559. A succinct summary

of Robb’s index concept is provided by Barrow-Green and Gray (2006).
59LMS Council Minutes, 9 Feb. 1911, LMS archives.
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pure mathematician, Robb’s preface affirmed his identity as a “geo-
metrician”, and his consequent right to “extend” the domain of appli-
cation of geometry beyond that of both logic and the measurement of
length intervals in the phenomenal space of physics.

From the LMS council’s rejection of Robb’s theory of relativity,
one gathers that this theory had its detractors. But as mentioned
above, the theory had its admirers, as well. One of these admir-
ers was Ludwig Silberstein (1872–1948). A former doctoral student
of Max Planck in Berlin, Silberstein wrote The Theory of Relativity
(1914), one of the first two textbooks on the subject to be published
in England, with Cunningham’s The Principle of Relativity (1914).
A lecturer in mathematical physics in Rome since 1903, Silberstein
based his textbook on lectures delivered at University College Lon-
don in 1912–1913. In his preface, Silberstein explained his wish “to
trace the connexion of the modern theory with the theories and ideas
that preceded it”. The modern theory Silberstein referred to here was
essentially that of Einstein and Minkowski.

In a chapter of his textbook entitled “Various Representations of
the Lorentz Transformation”, Silberstein recommended Minkowski di-
agrams, described as “very advantageous, especially for the trained
geometer of our days” (Silberstein, 1914, 131). His overview of the
“geometric representation” of the Lorentz transformation began with
a two-dimensional spacetime diagram, illustrated by a figure showing
two pairs of coordinate axes, the conjugate hyperbolas x2− c2t2 = −1
and x2 − c2t2 = 1, and their asymptotes. He recalled that for any
real number κ, the two families of hyperbolas x2 − c2t2 = −κ and
x2−c2t2 = κ are Lorentz-covariant. Extending his arguments to three
spacetime dimensions, and then four, Silberstein observed (p. 139)
that the spacelike hypersurface (t = 0) intersects the hyperboloid
x2 + y2 + z2 − c2t2 = 1 in a unit sphere, x2 + y2 + z2 = 1. A non-zero
rotation of this hypersurface about the origin in a plane orthogonal to
the t-axis cuts the hyperboloid in an ellipsoid, resulting in a primed
space, x′y′z′, and an assorted orthogonal axis, t′. Silberstein contin-
ued:

Take the semi-diameters of this ellipsoid as the new units
of length measured from the origin along any direction in
the x′y′z′-space. Then the Lorentz transformation, from S
to S′, will be completed, and the new metric surface which,
from the S-point of view, is an ellipsoid of revolution will
for the S′-standpoint become a sphere, x′2 + y′2 + z′2 = 1.

According to Silberstein’s analysis, the intersection of a t′-constant
hypersurface with a Lorentz-covariant hyperboloid in spacetime is an
ellipsoid of revolution in the S-frame, and a sphere in the S′-frame.
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8 Applications of the light sphere

Minkowski’s spacetime theory was understood to be consistent with
Einstein’s concept of light-sphere covariance, the latter being consid-
ered both as a special case of Lorentz-covariance of the laws of physics,
and as a mathematical theorem. The figure of a light sphere, how-
ever, was never discussed by Minkowski. Nonetheless, physicists like
Emil Wiechert (1911, 691) understood the derivation of the Lorentz-
transformation from form-invariance of the light-sphere equation to be
the true “point of departure” of Minkowski’s spacetime theory. Such a
reading suggests that Einstein’s light sphere prepared scientists for the
formal requirement of Lorentz-covariance for the laws of physics, as
manifested in Minkowski’s theory, and as realized in four-dimensional
vector and tensor algebras by Sommerfeld, Abraham, Gilbert Newton
Lewis, Laue, and others.

Minkowski employed the equation of a light sphere in his represen-
tation of the Lorentz transformation by postulating the invariance of
the quadratic form:

− x2 − y2 − z2 + t2, (11)

where the velocity of light is rationalized to unity (Minkowski 1908,
66). Next, invoking the substitution x1, x2, x3, x4 for coordinates x,
y, z, it, Minkowski expressed the general Lorentz transformation in
terms of a 4× 4 coefficient matrix A,

A =

∣∣∣∣∣∣∣∣
α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

∣∣∣∣∣∣∣∣ , (12)

with determinant unity such that

xh = αh1x
′
1 + αh2x

′
2 + αh3x

′
3 + αh4x

′
4 (h = 1, 2, 3, 4). (13)

Cunningham was struck by Minkowski’s equation (12), and by
the fact that Minkowski’s restriction on the determinant could be
relaxed, while preserving the form of the wave equation.60 The latter
insight was exploited in the papers he and Bateman published on the
conformal transformations of Minkowski spacetime in 1909–1910. In
addition to the form (12), Cunningham acknowledged Minkowski’s
interpretation of the Lorentz transformation in relation to the light-
wave equation:

60Cunningham (1914, 87–89); for an analysis of the procedure, see Newman & Price
(2010).
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It has been pointed out by Minkowski that in a space of four
dimensions in which the coordinates are (x, y, z, ct

√
−1),

the geometrical transformations employed by Einstein, is
simply a finite rotational displacement of the whole space
about y = 0, z = 0. The equation ∇2V = 0 [. . . ] is known
to be invariant for such a transformation. But this equation
is invariant for a larger group of transformations than that
of rotations, viz., for the group of conformal transforma-
tions in the four dimensional space, which, as is known, is
built up out of inversions with respect to the hyperspheres
of the space. (Cunningham, 1910, 79)

Cunningham noted further (p. 80) that the hyperspace (x, y, z, ict)
is conformal to the hyperspace (X, Y , Z, icT ) in virtue of the form-
invariance of the light-sphere equation. He was, however, not the first
to notice the conformal covariance of the wave equation in Minkowski
spacetime. For the latter insight, Cunningham acknowledged a remark
made to him by his former colleague in Liverpool, Harry Bateman.61

Following his success in the Mathematical Tripos, Bateman un-
dertook two years of postgraduate study in Paris and Göttingen, then
major centers for experimental and theoretical research on electrons.
A central topic of discussion in mathematical physics at the time, the
electron theories of Lorentz and Larmor were introduced to French
readers by Poincaré and Liénard starting in 1897 (Buchwald 1985).
Similarly, in Göttingen, Emil Wiechert, Karl Schwarzschild, and Max
Abraham contributed to electron theory, while the mathematicians
Hilbert and Minkowski co-led seminars on electron theory and electro-
dynamics in 1905 and 1907, respectively (Pyenson 1979). When Bate-
man studied in Göttingen, he was particularly impressed by Hilbert’s
approach to integral equations, a subject he taught at Cambridge in
1908.62

Returning to England in 1906, Bateman joined Cunningham as a
lecturer at the University of Liverpool. There he applied W. Thom-
son’s method of inversion to geometrical optics, and found the form of
the differential equation for light-wave propagation to be preserved un-
der conformal transformations of four-dimensional (Minkowski) space,
much as Minkowski had observed with respect to the transformations
of the (inhomogeneous) Lorentz group.63 Bateman also remarked that

61See Cunningham (1910, 79). As for Bateman, he credited Cunningham with the dis-
covery of the conformal transformations of the equations of electrodynamics; see Bateman
(1910c, 224).

62L’Enseignement mathématique 10 (1908), 336; Bateman to Hilbert, 1909, Nachlass
Hilbert 13, Handschriftenabteilung, NSUB Göttingen.

63See Minkowski (1909), where the Lorentz transformation is attributed to a paper pub-
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his method gave rise to a “geometrical construction” in ray optics,
whereby a sphere of radius ct and center (X,Y, Z) corresponds to an
inverse sphere of radius cT with center (x, y, z). In other words, light
spheres transform into inverse light spheres.64

Cunningham and Bateman were atypical in their rapid assimila-
tion of Minkowski’s four-dimensional approach to electrodynamics, a
fact which may be attributed in part to local factors, including their
training in mathematics. In particular, the technique of conformal
transformation was part of the Wrangler’s mathematical arsenal from
at least the mid-1890s, and studies of the conformal group in space of
n dimensions (n > 2) were familiar in Cambridge at the turn of the
century.65 In Bateman’s case, postgraduate studies in Göttingen in
1906 afforded him personal acquaintance with Hilbert and Minkowski,
both of whom were instrumental in the elaboration and diffusion of
four-dimensional approaches to physics. In a fashion similar to that of
the latter pair, but on a smaller scale, Cunningham and Bateman em-
ployed and promoted four-dimensional techniques: Bateman (1909)
published Maxwell’s equations and Lorentz’s microscopic equations
in four-vector form, while Cunningham’s treatise on relativity (1914)
featured an introduction to four-dimensional vector calculus.

Some of the earliest contributions to relativity theory are due to
one of the youngest relativists: Max Laue (1879–1960). A former doc-
toral student, then assistant to Max Planck, upon whose suggestion he
wrote a doctoral dissertation (Laue 1903) on interference phenomena,
Laue first heard of Einstein’s relativity paper in Planck’s colloquium.
As he recalled later, he found that Einstein’s paper presented “epis-
temological difficulties” that he was initially unable to master.66

Over the next five years, Laue came to master a few of the difficul-

lished in 1887 by Voigt. Minkowski described the covariance of the differential equation of
light-wave propagation as the “impetus and true motivation” for assuming the covariance
of all laws of physics with respect to the transformations of the Lorentz group (p. 80).

64See Bateman (1908, 629), read 8 Sept. 1908. No mention is made in this paper of
the source of the transformations, but a subsequent work by Bateman credits Cunning-
ham with the “discovery of the formulæ of transformation in the case of an inversion in
the four-dimensional space,” and cites papers by Hargreaves and Minkowski employing
a four-dimensional space with one imaginary axis (Bateman 1909, 224, communicated 9
Oct. 1908). Minkowski’s paper (1908, published 5 April 1908) was cited by both Cun-
ningham and Bateman. Remarked first by Whittaker (1953, 195), the significance of
Minkowski’s spacetime theory for the contributions of Cunningham and Bateman is con-
tested by Warwick (2003, 423 n. 49). On the “light-geometric approach” to the foundations
of relativity by Cunningham and Bateman, see Jammer (1979, 222).

65For example, see Warwick (2003, 421) and Bromwich (1901).
66Laue (1961, XVIII–XXI); Laue to Margot Einstein, 23 Oct. 1959, cited by Holton

(1965, 39).
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ties presented by Einstein’s theory, beginning with the derivation of
the Fresnel drag coefficient from the velocity addition formula (1907).
He adopted a comparative approach to the electrodynamics of moving
bodies, publishing a series of papers evaluating the various theoretical
options. One of his first contributions compared the electron theories
of Abraham and Lorentz to what he called Einstein’s “theory of rel-
ativity” (Laue 1908, 838). The differences between the two electron
theories, Laue found, were too small to matter as far as the radiation
from a charged particle in motion was concerned, but there was an
advantage in adopting Einstein’s theory, in that it was “much sim-
pler” to solve the latter problem (ibid.). When in 1911 Laue extended
Minkowski’s four-dimensional approach to the dynamics of matter via
the formal concept of a “world-tensor”, he was able to shed new light
on the nature of Poincaré’s hypothetical binding potential, later known
as “Poincaré pressure”, and on the null result of the Trouton-Noble
experiment of 1903.67

Recognizing Laue’s skill in addressing the questions posed by rel-
ativity theory, the publishing house of Vieweg asked him in 1910 to
write what was to become the first textbook on relativity.68 There
Laue identified Einstein as the principal founder of the theory of rela-
tivity. He did so, however, while expounding a four-dimensional vector
calculus he attributed to Minkowski, but which owed more to Som-
merfeld’s formalism.69 Laue’s text thus helped established Einstein
as a leading theorist in the new field of relativity, and to promulgate
four-dimensional tensor calculus.70

One of the results Laue included in his textbook was the light-
sphere-based illustration of the relativity of simultaneity. Laue’s ar-
gument and illustration drew on an idea expressed earlier by Planck in
lectures delivered at Columbia University in 1909, and published the
following year. Planck wanted to convey graphically what he called
the “new difficulty” introduced by the principle of relativity, concern-
ing the propagation velocity of light in the ether (Planck, 1910, 113).
To do so, he referred to two diagrams (see Fig. 11), representing a sec-
tion of a light sphere for observers A and B, respectively, with relative
velocity v. Taken separately, each of the two diagrams suggests that
light isotropy is valid only for observers at rest, since apparently, only
such observers will find themselves at the center of the light sphere.
Planck stressed, however, that no known physical phenomena distin-

67Laue (1911b); Janssen & Mecklenburg (2006).
68Laue (1952).
69See Max Born’s review in Physikalische Zeitschrift (1912).
70On Laue’s portrayal of Einstein’s contribution, see Staley (1998). Laue’s contributions

to relativity are detailed by Norton (1992) and Rowe (2008).
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guished the two frames, and that the difficulty could be overcome by
admitting, with Einstein, the Lorentz-covariance of the laws of physics
(Planck, 1910, 121).71

Laue took a different approach, by adapting Planck’s light figures,
in order to address the notion of relative simultaneity. Repeated in six
editions by 1956, Laue’s light figure became a staple of presentations
of relativity theory. Pared to essentials, his argument (Laue, 1911a,
34) focused on the simultaneity relation as judged by two observers,
respectively at rest, and in uniform motion. A “short light-signal” is
emitted in all directions by a source at rest at a “material point” A
in inertial frame S at time t0 = 0. If the origin of coordinates is fixed
at point A, then at time t > 0, the light signal reaches the points
described by the equation:

x2 + y2 + z2 − c2t2 = 0. (14)

Let two “material points” B and C at rest in S be equidistant from
the point A, such that the light signal reaches them both at time t
in S. Let a second frame S′ translate uniformly with respect to S,
in a direction parallel to the line segment joining B and C, such that
the material points A, B, C have velocity v with respect to S′. In S′,
furthermore, the origin of the primed coordinates x′, y′, z′, t′ coincides
with that of S at time t = t′ = 0. A light signal propagating in all
directions from point A at time t0 = t′0 = 0 will reach the surface of a
certain sphere at time t′ > 0, such that:

x′2 + y′2 + z′2 − c2t′2 = 0. (15)

The center of the light sphere in S′ at time t′ coincides with point O,
as shown in Fig. 12, while the origin of S has travelled a distance vt′

from O, and is located at point A′ with respect to frame S′.72 With
these preliminaries in place, Laue concluded that in frame S′ there
exists no value of time t′ for which the material points B and C lie on
the same spherical surface, and that consequently, B and C are not
reached by the light signal simultaneously in frame S′.

What the diagram shows, Laue wrote, is that in frame S′, a light
signal reaches point C before it reaches point B. For every inertial
system, he concluded, there is a “particular time, differing from that

71Planck’s argument, which builds on that of Einstein (see above, § 2), has inspired
many textbook authors. For an example employing a spherical array of photomultipliers
at rest in two inertial frames in relative motion, see Rosser (1967, 76).

72Laue’s use of primes in his light-sphere diagram is peculiar, but is reproduced intact
in Fig. 12, in keeping with the first four editions of his textbook (up to 1921). In the sixth
edition (1955, 29), A, B, and C are all unprimed, and the primed symbols are as expected:
O′ and t′.
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Figure 11: Meridional section of a light sphere for an observer A at rest (left)
and an observer B at rest (right), after Planck (1910, 114, 119).

Figure 12: Meridional section of a simultaneity light-sphere for frame S ′ with
origin O, after Laue (1911a, 35).
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of other systems”. For this insight, Laue credited the “acuity and
elevated philosophical sense of Einsteinian ideas”, and proceeded to
derive the Lorentz transformation, invoking the form-invariance of the
wave equation, along with linearity and symmetry constraints, and
noting the fact that the Lorentz transformation follows just as well
from the invariance of the sum of squares

x2 + y2 + z2 − c2t2. (16)

The light sphere formed the centerpiece of Laue’s discussion of the
Lorentz transformation. As mentioned above, Cunningham and Ein-
stein had employed the light-sphere demonstration in 1907. The fact
that Laue preferred to invoke the form-invariance of the wave equation
in his textbook is of no particular significance, as he, too, went on to
employ the light-sphere demonstration (see Laue 1913a, 110).

Laue’s treatise skillfully combined and repackaged results obtained
in the new field of relativity, including the Minkowski diagram and the
light-sphere interpretation of the Lorentz transformation and simul-
taneity relations. The treatise featured the light sphere in a discussion
of the foundations of relativistic kinematics and, in the revised and
extended second edition of 1913, employed the term “light sphere” in
this context (Lichtkugel, 1913b, 36).

Both the relativity of simultaneity and the proof of the Lorentz
transformation had previously been demonstrated with a light sphere
by Otto Berg (1874–1939), a Privatdozent at the University of Greif-
swald, in an essay entitled “The relativity principle of electrodynam-
ics”. Taking his cue from Minkowski’s bold claim that the new ideas
about time and space in relativity theory had sprung from the ground
of experimental physics (Minkowski, 1909), Berg, an experimental
physicist, prefaced his pamphlet with the opinion that “many philoso-
phers will doubt” such a claim. He then set out to examine the “exper-
imental foundations of the principle [of relativity]”, a topic Minkowski
had scrupulously avoided. In light of Bucherer’s attack on the util-
ity of the light-sphere hypothesis for explaining experimental results,
mentioned above (§ 2), Berg’s recourse to the light sphere in this essay
comes as a surprise. But as Berg observed, the “clarification of ideas”
in relativity theory realized by Einstein and Minkowski had “hardly
anything” to do with experiments. In any case, Lorentz’s theory was
“just as good” as the newer theories, as far as representing the latest
experimental results was concerned (Berg, 1910, 357).

Berg’s treatment of the relativity of simultaneity differed little from
that of Laue, mentioned above, with one exception: Berg did not
illustrate his discussion with a diagram. He presented his light-sphere
demonstration of the relativity of simultaneity as a “concrete example”
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of Einstein’s light-postulate, and one that later served his derivation of
the Lorentz transformation. Laue must have admired Berg’s approach,
as he employed it without change, apart from the addition of a graphic
illustration (redrawn here as Fig. 12).

Laue’s light-sphere-based demonstration of the relativity of simul-
taneity had another forerunner in the person of Harry Bateman. Fol-
lowing Cunningham’s lead, Bateman (1912, 340) reckoned Einstein’s
light postulate to be equivalent to admitting the existence of a group
of transformations for which (16) is covariant. By mid-1910, Bateman
(1910b, 624) realized that the Lorentz transformation did not alter the
form of tangent oriented spheres. This insight may be what led him
to attribute the origin of the Lorentz transformation not to Voigt, in
the manner of Minkowski (1909), but to the French differential geome-
ter Albert Ribaucour, known for his contributions to the geometry of
spheres (Ribaucour 1870).

In virtue of his understanding of the relation between the Lorentz
transformation and the fifteen-parameter group G15, Bateman went
on, in a paper completed in December 1910, to compare the results
of Cunningham and himself with those of Poincaré and the leading
German relativists:

According to the general principles of group-theory, the
quantities and relations which are invariant with regard to
the principal group should represent true physical quanti-
ties and relations. Some of these invariants for the group
G15 have been found by Einstein, Poincaré, Minkowski,
Planck, Cunningham and the author.73 It is desirable that
all the principal invariants and covariants for the group
should be found, for then we shall perhaps be able to de-
cide whether Einstein’s conditions of observation are the
right ones or not. (Bateman 1912, 340)

Bateman’s accomplishment was duly recognized by Philipp Frank (1884–
1966), with whom he probably crossed paths in Göttingen in 1906.
Frank (1911) described the covariance of the Maxwell equations un-
der the Lorentz group as “one of the most important mathematico-
physical facts of modern physics,” and identified Lorentz, Minkowski,
and Bateman as the principal investigators in this area of study, to
which he and the Viennese mathematician Hermann Rothe (1882–
1923) were active contributors, along with von Ignatowsky.

73The transformations of the 15-parameter group of conformal transformations G15 cor-
respond to what Bateman called the “spherical wave transformations.” On the Bateman-
Cunningham discovery of the covariance of Maxwell’s equations under G15, see Rowe
(1999, 211), and Kastrup (2008).
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Figure 13: A light-source in motion, redrawn from Bateman (1910a).

In a wide-ranging review of the consequences of relativity theory
for the philosophy of space and time, Bateman drew on Ribaucour’s
transformations of spheres; his idea was to investigate the “physical
aspect of time in order to understand the idea of simultaneity” (Bate-
man, 1910a, 2). In what Bateman called a “view”, an ordered pair
of spheres represents a four-vector, the components of which are dif-
ferences of spatial coordinates and radii. Four-vector magnitude is
given by the length of a shared tangent, such that that a null vector
corresponds to spheres in contact.

By considering Ribaucour’s spheres as light spheres, Bateman demon-
strated the relativity of simultaneity and the impossibility of hyper-
light velocities. Bateman’s depiction of a light source in uniform trans-
lation (Fig. 13) features four non-concentric light spheres. His figure
differs little from that employed by Poincaré in 1906–1907 (Fig. 3);
only the direction of motion is reversed. Imagining a space filled with
light-synchronized clocks, Bateman argued with respect to his dia-
gram that the wave-front of only one light sphere may pass through a
given point A at a given time, such that behavior of light-waves makes
manifest the simultaneity relation.

In subsequent papers, Bateman neglected to discuss or apply his
diagrammatic interpretation of four-vectors, which quickly fell from
view. A similar interpretation of four-vectors, proposed by a profes-
sor of descriptive geometry in Braunschweig, H. E. Timerding (1912;
1915), fared no better. Few theorists in Britain were then familiar with
four-vectors, and consequently, few were in a position to grasp the full
meaning of Bateman’s potent image of tangent spheres. Bateman’s
illustration of the Einstein simultaneity relation was thereby less com-
prehensible to his contemporaries than the simpler one concocted by
Laue, which involved only a passing knowledge of plane geometry.

45



9 Light-figure skepticism

More than a few physicists felt that the grounds for accepting light-
sphere covariance as the foundation of relativity were not compelling.
For example, as mentioned above, A. H. Bucherer saw no need to adopt
Einstein’s view of the light sphere. This section takes up the cases of
two light-figure skeptics, which is to say, physicists who contested the
epistemic priority accorded by Einstein to lightwaves: Emil Wiechert
(1861–1928) and Waldemar von Ignatowsky (1875–1943).

Minkowski’s colleague in Göttingen, the geophysicist Emil Wiechert
admired Minkowski’s theory, but like many scientists, he remained at-
tached to the notion of an ether. Wiechert’s ether was attached by
stipulation to an inertial frame, and was entirely consistent, in his
view, with Minkowski’s spacetime theory (Wiechert 1911, 757). In an
essay entitled “The principle of relativity and the ether”, Wiechert
held that both sound waves and light waves that are spherical in one
(absolute) frame are flattened in the direction of motion of an observer
translating with respect to this frame. Even if Wiechert granted that
Einstein was the first to develop a “rigorous understanding of Lorentz
covariance”, and to understand the conventional nature of distant si-
multaneity, he did not feel compelled to adopt Einstein’s kinematics.74

In a review of Wiechert’s theory, Laue (1912) found fault with his logic,
but he admitted with Wiechert that the question of the existence of
an absolute frame belonged to philosophy, not to physics.

Like Wiechert, von Ignatowsky admired Minkowski’s spacetime
theory, but was dissatisfied with Einstein’s relativity. In particular,
Einstein’s light postulate seemed unobvious to him. Nonetheless, he
was impressed by how the light constant c appeared in Minkowskian
relativity to be “more a universal spacetime constant than the speed
of light” (von Ignatowsky 1910, 793).75 What von Ignatowsky sought
to derive were coordinate transformations that guarantee relativity of
inertial frames, but do not depend on the light postulate. Introduc-
ing the usual constraints, and denoting by p a differential quotient
depending on position x, time t, and velocity v, he found (in modified
notation):76

dx′ = pdx− pvdt, dt′ = −pvndx+ pdt, (17)

74Wiechert to Lorentz, 9 March 1912, in Kox (2008, 359); Wiechert (1911, 756).
75Born in Tiflis (Tbilisi, Georgia), von Ignatowsky earned a Ph.D. in physics at the

University of Giessen in 1909, and found employment with the Leitz optical firm in Wetzlar
(Klein et al. 1993, 251).

76On von Ignatowsky’s transformation see Jammer (1979, 215), Torretti (1996, 76),
Brown (2005, 105), and Darrigol (2014, 139).
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where n is a universal constant, such that

p2 = 1/(1− v2n). (18)

In order to determine the value of the constant n, von Ignatowsky
considered the equipotential surface of a point-charge in uniform mo-
tion. For a comoving observer, the equipotential surface has the form
of a sphere, but for an observer at rest, the equipotential surface is
described by a Heaviside-ellipsoid. In other words, for an observer at
rest, the equipotential surface is a rotational ellipsoid, the longitudinal
and transverse axes of which are related by 1 ::

√
1− v2/c2. Von Ig-

natowsky’s transformation requires that a spherical surface attached
to the comoving observer’s frame transform to a flattened ellipsoid in
the frame of an observer at rest, such that√

1− v2/c2 =
√

1− v2n. (19)

Consequently, n = 1/c2, such that both c and n are now universal
constants. Von Ignatowsky’s identification of c as a universal constant
depends on the form of the equipotential surface, a form independent
of the principle of relativity, as von Ignatowsky was careful to point
out.77

Von Ignatowsky noted in passing that v represents the “speed of
one of our worlds,” i.e., one of “unendlessly many reference frames.”
While the latter description recalls Cunningham’s multiple-ether view
of relativity (§ 2), it is more likely an additional echo of Minkowski’s
Cologne lecture. In a final tribute to Minkowski’s spacetime realism,
von Ignatowsky concluded his derivation with the following credo:78

Now we should not consider an inertial coordinate system
as something like a mere mathematical entity, but we must
instead think of it as a material world with its observers
and synchronized clocks. (von Ignatowsky 1910, 794)

Although von Ignatowsky drew freely on Minkowskian language and
imagery, he did not adopt Minkowski’s four-dimensional calculus, pre-
ferring to rewrite the latter’s four-dimensional “vectors of the first
and second type” in the form of ordinary three-vectors. More than
likely, this was a choice guided by his recent investment in three-
dimensional vector analysis, in the form of a book (von Ignatowsky

77On the relation between Lorentz contraction and the Heaviside ellipsoid, see Hunt
(1988).

78“Nun dürfen wir aber unter einem Ruhekoordinatensystem nicht etwa nur ein math-
ematisches Gebilde verstehen, sonder müssen uns dabei eine materielle Welt mit ihren
Beobachtern und synchronem Uhren denken.”
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1909) published in Eugen Jahnke’s Teubner collection “Mathematisch-
Physikalische Schriften für Ingenieure und Studierende.”

Wiechert and von Ignatowsky were uneasy with the special evi-
dentiary status accorded by Einstein to light signals, as reflected in
their approaches to relativity. Wiechert’s rejection of Einstein’s rad-
ical reform of kinematics found inspiration in Minkowski’s spacetime
theory, in virtue of the absolute nature of the direction of a particle’s
four-velocity (Wiechert 1911, 757). Von Ignatowsky’s admiration for
Minkowski’s geometric interpretation of the light-constant c, and con-
comitant rejection of the latter’s four-dimensional formalism suggest
that one could accomodate a Minkowskian ontology, while rejecting
Minkowskian formalism, which is to say, the precise opposite of what
Laue advised in his textbook (Walter 2010).

10 Discussion

Introduced without fanfare by Einstein in connection with his postu-
lates of relativity and universal lightspeed invariance, the notion of
light-sphere covariance engaged the imagination of theorists and ex-
perimentalists alike. A rival light-shell theory was soon proposed, in
the form of Poincaré’s light-ellipsoid and assorted two-dimensional di-
agrams. At the time, Poincaré’s theory of the light-ellipsoid had much
to recommend it, including a privileged coordinate frame, and a simple
diagram-based derivation of the Lorentz transformation. Poincaré did
not seek to publish his derivation, however, and soon Cunningham and
Einstein published their own equally-elementary algebraic derivations
of the Lorentz transformation, based on light-sphere covariance.

Einstein’s kinematics lacked a visually-intuitive model until 1908,
when Minkowski proposed a model of spacetime that subtended an
elementary geometric derivation of the Lorentz transformation, al-
beit a derivation that Minkowski did not see fit to publish himself.
Minkowski did not discuss the light sphere directly, either. Instead, he
presented the Lorentz-covariance of the light-wave equation as a com-
pelling formal argument in favor of his four-dimensional approach to
physics, and cast light-sphere covariance in four-dimensional language,
introducing the lightcone structure of spacetime. His expression of the
Lorentz transformation as a 4 × 4 matrix inspired investigations by
Cunningham and Bateman of the conformal covariance of Maxwell’s
equations, which suggested the possibility of a generalization of the
principle of relativity to frames in non-inertial motion. The lightcone
itself inspired Robb’s theory of space and time, intended originally as
an alternative to Einsteinian relativity.

The idea of light-sphere covariance travelled across both national
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and disciplinary boundaries, being carried initially by journals of physics,
philosophy, and general science in Germany and Great Britain. When
Max Laue wrote his treatise on the principle of relativity (1911a),
he passed over the contributions of Cunningham and Bateman, and
drew instead on the work of a fellow German Privatdozent, Otto Berg.
Cunningham and Bateman were colleagues for a year, while Bateman
and Laue heard lectures by Hilbert and Minkowski in Göttingen. All
of these scientists were young men; only Berg had passed thirty. None
held a permanent university position at the time of the contributions
studied here, and all but Berg went on to obtain academic appoint-
ments.79

According to the recollections of Philipp Frank (1947, 206), Ein-
stein remarked to him that he could “hardly understand Laue’s book.”
Frank read Einstein’s comment as a reflection on the mathematical so-
phistication of Laue’s treatise, but the mathematics employed by Laue
were certainly not new to Einstein. In light of the several contributions
to relativity theory and the theory of the electron after 1905 reviewed
in this chapter, I suggest an alternative reading of Einstein’s offhand
comment to Frank on Laue’s treatise: Einstein found the content of
Laue’s book to stem in large part from the work of others; as such,
for Einstein Laue’s book was not incomprehensible, just foreign to his
own way of thinking about relativity.

Although the concept of light-sphere covariance crossed national
and disciplinary boundaries with apparent ease, it did not meet with
universal assent. There were those, like Bucherer, who found Ein-
stein’s argument in favor of light-sphere covariance to be unconvinc-
ing. The special evidentiary status assigned to the behavior of light-
waves in Einstein’s theory troubled physicists like von Ignatowsky and
Wiechert, who sought to treat electromagnetic waves in the same man-
ner as other propagation phenomena. The case of Poincaré and Robb
is particularly instructive in this regard, in that they both shared
Einstein’s high epistemic regard for lightwaves, but deplored – for dif-
ferent philosophical reasons – Einstein’s metric interpretation of the
light sphere.

Four decades after the events described in this chapter, Laue wrote
about the “somewhat excessive polemic” against relativity as a conse-
quence of “lack of insight” on the part of the theory’s opponents (Laue
1947, 68). The form of a light pulse for moving observers was a topic
about which leading theorists disagreed, as we have seen. Laue also
recalled a “decisive turn” for relativity theory, triggered by Einstein’s
view of the equal epistemic value of space and time measurements

79Berg went to work for the Siemens-Halske engineering firm in Berlin, where he co-
discovered element seventy-five (Rhenium) with Walter Noddack and Ida Tacke.
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among inertial frames of reference. Closely related to Einstein’s be-
lief, the derivation of the Lorentz transformation via covariance of the
light-sphere equation stabilized interpretations of the transformation
along Einsteinian lines, and contributed powerfully to the emergence
of a unified doctrine of the physics of inertial frames. One consequence
of this movement was a heightened recognition of Einstein as the prin-
cipal architect of the theory of relativity, as expressed by Laue’s 1911
treatise and its six re-editions.
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Balàzs, N. L. (1972). The acceptability of physical theories: Poincaré
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d’Einstein. Alcan, Paris.

Blumenthal, O., editor (1913). Das Relativitätsprinzip; Eine Samm-
lung von Abhandlungen. Teubner, Leipzig.

Born, M. (1909). Die Theorie des starren Elektrons in der Kinematik
des Relativitätsprinzips. Annalen der Physik, 335:1–56.

Born, M. (1912). Besprechung von Max Laue, Das Relativitätsprinzip.
Physikalische Zeitschrift, 13:175–176.

Born, M. (1914). Besprechung von Max Weinstein, Die Physik
der bewegten Materie und die Relativitätstheorie. Physikalische
Zeitschrift, 15:676.

Born, M. (1920). Die Relativitätstheorie Einsteins und ihre physikalis-
chen Grundlagen. Springer, Berlin.

Born, M. (1959). Erinnerungen an Hermann Minkowski
zur 50. Wiederkehr seines Todestages. Naturwissenschaften,
46(17):501–505.

Bridgman, P. W. (1916). Tolman’s principle of similitude. Physical
Review, 8:423–431.

51



Briginshaw, A. J. (1979). The axiomatic geometry of space-time: an
assessment of the work of A. A. Robb. Centaurus, 22(4):315–323.

Bromwich, T. J. I. (1901). Conformal space transformations. Proceed-
ings of the London Mathematical Society, 33(749):185–192.

Brown, H. R. (2005). Physical Relativity: Space-Time Structure from
a Dynamical Perspective. Oxford University Press, Oxford.

Bucherer, A. H. (1907). On a new principle of relativity in electro-
magnetism. Philosophical Magazine, 13:413–420.

Bucherer, A. H. (1908a). Messungen an Becquerelstrahlen; die
experimentelle Bestätigung der Lorentz-Einsteinschen Theorie.
Physikalische Zeitschrift, 9:755–762.

Bucherer, A. H. (1908b). On the principle of relativity and on the
electromagnetic mass of the electron; a reply to Mr. E. Cunningham.
Philosophical Magazine, 15:316–318.

Buchwald, J. Z. (1985). From Maxwell to Microphysics. University of
Chicago Press, Chicago.

Cat, J. (2016). Images and logic of the light cone: tracking Robb’s
postulational turn in physical geometry. Revista de Humanidades
de Valparaiso, 4(8):43–105.

Cunningham, E. (1907). On the electromagnetic mass of a moving
electron. Philosophical Magazine, 14:538–547.

Cunningham, E. (1910). The principle of relativity in electrodynamics
and an extension thereof. Proceedings of the London Mathematical
Society, 8:77–98.

Cunningham, E. (1911). The principle of relativity. Report–British
Association, 81:236–245.

Cunningham, E. (1914). The Principle of Relativity. Cambridge Uni-
versity Press, Cambridge.

Cuvaj, C. (1970). A History of Relativity: The Role of Henri Poincaré
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Lémeray, M. (1912). Sur un théorème de M. Einstein. Comptes ren-
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die Emission des Lichtes. Annalen der Physik, 299:278–284.

Lorentz, H. A. (1904). Electromagnetic phenomena in a system mov-
ing with any velocity less than that of light. Proceedings of the
Section of Sciences, Koninklijke Akademie van Wetenschappen te
Amsterdam, 6:809–831.

56



Lorentz, H. A. (1909). The Theory of Electrons and its Application
to the Phenomena of Light and Radiant Heat. Columbia University
Press, New York.

Lorentz, H. A. (1916). The Theory of Electrons and its Application to
the Phenomena of Light and Radiant Heat. Teubner, Leipzig.

Lorenz, L. V. (1867). On the identity of the vibrations of light with
electrical currents. Philosophical Magazine, 34(230):287–301.

Maltese, G. and Orlando, L. (1995). The definition of rigidity in the
special theory of relativity and the genesis of the general theory of
relativity. Studies in History and Philosophy of Modern Physics,
26(3):263–306.

Manegold, K.-H. (1970). Universität, Technische Hochschule und In-
dustrie. Duncker & Humblot, Berlin.

Mart́ınez, A. A. (2009). Kinematics: The Lost Origins of Einstein’s
Relativity. Johns Hopkins University Press, Baltimore.

McCrea, W. H. (1978). Ebenezer Cunningham. Bulletin of the London
Mathematical Society, 10(1):116–126.

Miller, A. I. (1973). A study of Henri Poincaré’s ‘Sur la dynamique
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dus hebdomadaires des séances de l’Académie des sciences de Paris,
140:1504–1508.
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Timerding, H. E. (1912). Über ein einfaches geometrisches Bild
der Raumzeitwelt Minkowskis. Jahresbericht der deutschen
Mathematiker-Vereinigung, 21:274–285.

60
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