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“The development of the foundations of physics in the
twentieth century has taught us a serious lesson. Creat-
ing and understanding these foundations turned out to
have very little to do with the epistemological abstrac-
tions which were of such importance to the twentieth
century critics of the foundations of mathematics: finite-
ness, consistency, constructibility, and, in general, the
Cartesian notion of intuitive clarity. Instead, completely
unforeseen principles moved into the spotlight: comple-
mentarity, and the nonclassical, probabilistic truth func-
tion. The electron is infinite, capricious, and free, and
does not at all share our love for algorithms.”

Yu. I. Manin, A course in mathematical logic,
Springer, 1977, pp. 82-3.

1 Introduction

During the International Congress of Mathematicians, held in Paris in 1900, the
great mathematician David Hilbert presented a list of 23 Problems of Mathe-
matics which in his opinion should occupy the efforts of mathematicians in the
century to come. To solve one of the problems become a way of achieving some-
thing really important in mathematics, and several Fields medals were awarded
for this kind of endeavour. The sixth problem of his celebrated list dealt with
the axiomatization of the theories of physics; Hilbert proposed “to treat in the
same manner [as Hilbert himself had done with geometry], by means of axioms,
those physical sciences in which mathematics plays an important part”. In the
XXth century, much was done in this direction, in continuation of those efforts
already developed in the previous period, as remarked by Hilbert himself in his
mentioned paper. In 1974, the American Mathematical Society sponsored a
meeting to evaluate and to explore the consequences of Hilbert Problems. One
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Introduction 2

of the interesting implications of the Congress was that a new list of Mathe-
matical Problems was proposed. According to Felix Browder, the editor of the
Proceedings, this list was initiated by Jean Dieudonne through correspondence
with mathematicians throughout the world.

The first problem of this new list deals with the foundations of mathematics,
and was stated by the mathematician Yuri I. Manin; at item (b) (cf. quotation
below), he makes reference to the needs of questioning the paradigm of classical
set theory (the ‘Cantor’s paradise’ referred to in the statement of the prob-
lem) on the basis of the treatment of collections of indistinguishable elementary
particles in quantum mechanics, which (as he suggests) cannot be considered as
standard ‘sets’. It was then suggested that a ‘new language’ should be developed
for such a purpose; let us see how Manin states his problem:

”In accordance with Hilbert’s prophecy, we are living in Cantor’s
paradise. So we are bound to be tempted.

”Most mathematicians nowdays do not see any point in banning
infinity, nonconstructivity, etc. Gödel made clear that it takes an
infinity of new ideas to understand all about integers only. Hence
we need a creative approach to creative thinking, not just a critical
one. Two lines of research are naturally suggested.

”(a) to find out new axioms of (more or less naive) set theory, demon-
strably efficient in number theory. Most advanced new methods (l-
adic cohomology) should be explored thoroughly. Are they readily
formalized in Zermelo-Fraenkel or Gödel-Bernays systems ? Can we
use in necessary categorical constructions only known axioms, or has
something new already slipped in ?

”(b) We should consider possibilities of developing a totally new lan-
guage to speak about infinity. Classical critics of Cantor (Brouwer
et al.) argued that, say, the general choice axiom is an illicit extrap-
olation of the finite case.

”I would like to point out that this is rather an extrapolation of
common-place physics, where we can distinguish things, count them,
put them in some order, etc. New quantum physics has shown us
models of entities with quite different behaviour. Even ‘sets’ of pho-
tons in a looking-glass box, or of electrons in a nickel piece are much
less Cantorian than the ‘set’ of grains of sand. In general, a highly
probabilistic ‘physical infinity’ looks considerably more complicated
and interesting than a plain infinity of ‘things’.

”Certainly there are no a priori reasons to choose fundamental con-
cepts of mathematics so as to make them parallel to those of physics.
Nevertheless it happened constantly and proved extremely fruitful.
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”The twentieth century return to Middle Age scholastics taught us
a lot about formalisms. Probably it is time to look outside again.
Meaning is what really matters.”

When Manin says that ”[w]e should consider possibilities of developing a
totally new language to speak about infinity”, he is obviously talking about
set theory, also known as ’the theory of the infinite’. One of the reasons for
doing this would be, as it is clear in the quotation, that collections of quantum
objects would not be sets in the usual sense (cf. below). But why standard set
theories like Zermelo-Fraenkel, von Neumann-Bernays-Gödel or Kelley-Morse
are not appropriate (from a philosophical point of view) do deal with collections
of quantum objects? (this was also proposed by other authors, as we shall see
in the Introduction). And, if this is so, why physics still base itself in such
mathematical frameworks with so great success? These are of course interest-
ing questions related to the problem posed by Manin. In our opinion, the first
question is linked to the way these mentioned theories (and classical logic in
general) encompass a theory of identity: essentially, they impose to all mathe-
matics they ground a Leibnizian structure, where there can be no indiscernible
objects which are not the very same object (some form of Leibniz’s Princi-
ple of the Identity of Indiscernibles, saying that there can be no ’two’ objects
sharing all their properties, is a theorem of standard mathematics). The sec-
ond question, not considered here,1 which asks for the reason why we can deal
with indistinguishable objects within ’classical’ frameworks, can be explained
in considering the use (even implicit) of some postulates we introduce in our
physical theories, which can be summed up in the form of some Symmetrization
Postulate. In short, quantum physics always encompass some principle of sym-
metry, imposing that permutations of indistinguishable objects are not to be
regarded as observable, having no physical significance, as for instance when we
take as ’significative’ only symmetric and anti-symmetric vectors in a suitable
Hilbert space.2 The use of such symmetry principles are in a sense equivalent
of working within certain structures built in these set theoretical frameworks;
so, although indiscernible within the structure, for instance being invariant by
the automorphisms of the structure (as in the case of the Urelemente), the con-
sidered objects are distinguishable from the outside of the structure, namely,
in the whole set-theoretical (well-founded) universe 〈V,∈〉, where the singletons
can always be performed, and hence there exists always a property, namely, of
being identical with a (that is, to belong to {a}), which is characteristic of only
a, for whatever a. But here we shall be concerned with the first question, that
is, in presenting a mathematical framework which enable us to deal with indis-
tinguishable objects taking as such from the start, that is, as a primitive idea.
A further work would of course to show how to reconstruct quantum physics
within such a framework; a first step in this direction is suggested en passant

1But see Krause & Coelho 2002.
2For an account on these principles, see French & Rickles 2002.
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here with the case of quantum statistics. Some works pointing other facts were
have also been done already (see our references), but they will be not recalled
here. We guess that, in realising such a project, that is, in expressing quantum
theory in a mathematical framework like that one to be presented below, we
will be carrying out quantum physics with an ontology of truly indistinguish-
able objects, contrary to what happens in the standard formulations, where,
for instance, it is highly questioned whether there is a well defined ontological
interpretation for the relevant vectors in, say, Hilbert spaces (cf. Bitbol 1996,
Chap. 5).

The needs for such a ‘new language’ of ‘sets’ can perhaps be reinforced
by Manin’s own claim that “quantum mechanics does not really have its own
language [but ] uses a certain fragment of the language of functional analysis”.
Manin’s suggestions constitute a different way of saying that quantum theory is
demanding for a different kind of logic. That is, in trying to answer his claims
we are approaching ’quantum logic’ from a radically different way than the usual
study of the lattices associated to quantum theory, which become the standard
approach ever since the pioneering work by von Neumann and Birkhoff in the
1930s.3 This way, we are looknig to a ’logic of quantum mechanics’ as distinct
from standard ’quantum logics’. In this paper, we introduce a mathematical
formalism (termed Quasi Set Theory) which we think answers Manin’s Problem
and may contribute to express ’quantum facts’ closer to intuition.

2 Motivation

In the late seventies, M. L. Dalla Chiara and G. Toraldo di Francia presented
a quaset theory to provide the mathematical tools for the semantical analysis
of the languages of microphysics.4 According to them, standard set theories
are not adequate to represent microphysical phenomena, since the ontology of
quantum physics apparently does not reduce to that of usual sets. One of the
basic motivations underlying such a supposition is that collections of objects like
elementary particles do not obey the axioms of set theories like Zermelo-Fraenkel
due to the indistinguishability of their elements, since sets, as characterized by
the axioms of standard set theories, stand for collections of individuals, which are
distinguishable objects. In addition, they have suggested that identity questions
from quantum theories demand a kind of intensional semantics, for which quaset
theory should provide an adequate (meta)mathematical framework.

Starting from a distinct but related motivation, N. C. A. da Costa discussed
the possibility of presenting logical systems in which some form of the Principle
of Identity could be restricted. His motivations were essentially philosophical,
in trying to show that the laws of classical logic are not so secure that they
cannot be violated.5 Based on Schrödinger’s ideas concerning the fact that the

3Concerning these approaches, see Dalla Chiara & Giuntini 2001.
4Dalla Chiara & Toraldo di Francia 1993; see also Dalla Chiara, Giuntini & Krause 1998.

Further details will be presented at section 5 below.
5da Costa 1980, pp. 117-120.



Motivation 5

concept of identity, or sameness, should lack sense with respect to elementary
particles,6 da Costa introduced a two-sorted first order logic in which identity
statements of the form a = b make sense only with respect to the objects of
one of the considered sorts; to the others (which should be regarded as denoting
elementary particles), expressions like x = y simply are not formulas. Hence,
for these latter objects, it is not possible to say either that they are identical or
that they are distinct from one another.7

Da Costa realized that a complete semantics could be stated for these ‘Schrö-
dinger Logics’, but he noted that such a semantics, if grounded in the standard
set theories, would not be adequate to express the intuitive idea of collections
of objects for which the concept of identity lacks sense. Then he proposed that
a kind of theory of quasi sets should be developed, in which standard sets were
to be viewed as particular cases, and then, it was suggested, in such a theory
a more adequate semantics for his logics would be achieved, although da Costa
has not provided the details of such a quasi-set theory.

In 1990, a quasi set theory in this sense was proposed,8 and subsequently it
has been improved in certain respects.9 The main motivation was not only to
obtain a mathematical framework to provide semantics for Schrödinger logics,
but also to pursue Schrödinger’s intuitions and to explore the mathematical
counterpart of a theory which admits collections of objects for which identity
and diversity are meaningless concepts. But this should be done in such a way
that, taking into account the motivation provided by the quantum mechani-
cal treatment of elementary particles, a weaker concept of ‘indistinguishability’
could be considered as holding among certain elements.

In addition to Manin’s problem mentioned in the Preface and in Dalla Chiara
and Toraldo di Francia’s above arguments, the importance of the development
of such a mathematical framework may be viewed also from the following per-
spective. Ever since the 50’s, Patrick Suppes has promulgated the idea that “to
axiomatize a theory is to define a set theoretical predicate”.10 This summa-
rizes the fact that practically every concept of standard mathematics or even
of empirical sciences, like physics, can be formulated (or expressed) within the
scope of set theory. But, ever since T. Skolem in the 1920s, set theory has been
axiomatized as a first order theory.11 So, loosely speaking, we may say that
the axioms of a (either mathematical or physical) theory T may be divided into
three levels: (1) the “logical” ones (say, classical first order logic with or without
equality), (2) the “mathematical” ones (say, the Zermelo-Fraenkel set theory)
and (3) the specific axioms of the theory (for instance, axioms for groups, vector
spaces, particle mechanics or quantum mechanics). Generally, when one speaks
of the ‘axioms of T ’, he means those of the third level, the other two becoming

6Schrödinger 1952, pp. 17-18.
7da Costa’s system were extended to higher-order logics in da Costa and Krause 1994;

1997, following our previous work Krause 1990.
8See Krause 1990, 1992. That time, Dalla Chiara and Toraldo di Francia’s quaset theory

was still unknown to me.
9See Krause 1996, Dalla Chiara, Giuntini and Krause 1998, Sartorelli et al. 2001.

10Suppes 1957, 1967, 2002.
11Skolem 1922.
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implicit.
Of course that there are alternatives to the above schema, for instance by

considering some higher order logic, category theory or a set theory other than
Zermelo-Fraenkel to fulfill the axioms (1) and (2). We shall speak in general set-
theoretical terms in what follows in order to reinforce our point, by supposing
that what is to be said can be adapted to these other alternatives as well.
So, sometimes we speak in second-order languages, but the context will clean
possible confusions.

If the axioms of levels (1) and (2) are taken to be those of ‘classical’ logic
and set theory, and by this we may mean the classical first order logic (with or
without identity) and a set theory like Zermelo-Fraenkel (ZF) (von Neumann-
Bernays-Gödel (NGB) or Kelley-Morse (KM theories could be used instead) or
even some other among the most common and used systems, then whatever
theory T based on this axiomatic basis is compromised with the Traditional
Theory of Identity, that is, with the concept of identity as it is dealt with
within such a logical/mathematical framework. As it is well known, despite
some differences depending on the level of the employed language (either of
first order or higher-order etc.), the concept of identity is captured by Leib-
niz’s Law, which intuitively says that ‘two’ things are identical if and only if
they share all their properties; in a second order language, we may write it as
x = y iff ∀F (F (x) ↔ F (y)) (here, identical things are of course the very same
thing).12 The (extensional) set theoretical version asserts something similar,
saying, by definition, that two things (either sets or the Urelemente) are identi-
cal iff they belong to the same sets, and that sets are identical iff they have the
same elements (this is the Axiom of Extensionality, AE). In particular, it can
be proven that Leibniz’ Principle of the Identity of the Indiscernibles (PII for
short), in symbols, ∀F (F (x) ↔ F (y) → x = y, is a theorem of higher order log-
ics (equivalently, ∀z(x ∈ z ↔ y ∈ z) → x = y is a trivial theorem of the theories
of sets just mentioned, due to AE). Hence, classical logic and mathematics in
a certain sense vindicate Leibniz’s dictum that there are no two entities which
differ solo numero, and this should be so for whatever theory whose axioms (1)
and (2) are ’classical.

Notwithstanding, several authors have questioned the validity of PII in quan-
tum theory, mainly due to the existence of absolutely indistinguishable quanta,
which share all their attributes (or properties) and, even so, are of course not
the same object.13 So, it seems clear that if we agree with quantum theory in
considering indistinguishable but not identical quanta, then there is an interest-
ing foundational problem involved in this discussion, for collections of objects
which are indistinguishable contradict Cantor’s ‘definition’ of the concept of set,
namely, “by an aggregate (Menge) we are to understand any collection into a
whole M of definite and separate objects m of our intuition or our thought”
,14 an intuitive concept which is maintained within the axiomatic framework of
standard (extensional) set theories. By the above, this problem, namely, that of

12For details on the traditional theory of identity, see Krause and Coelho 2002.
13Cf. Dalla Chiara and Toraldo di Francia 1995.
14Cantor 1955, p. 85.
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finding axioms for dealing with collections of (truly) indistinguishable objects,
can be termed ’the Manin Problem’.

Quasi-set theory is a way of considering collections of indistinguishable but
not identical objects. The theory has been proposed precisely to provide a
mathematical tool for describing collections of objects whose indistinguishability
is considered right at the start, as demanded by Heinz Post in regarding quantum
objects.15 Generally, the ways of dealing with this concept within standard
mathematics tend to ‘mask’ the distinguishability of the elements of a set (in
the Cantorian sense just recalled) by ‘passing the quotient’ by some equivalence
relation and saying that those elements that belong to the same equivalence
class are ‘indistinguishable’ (by the way, this is what did Hermann Weyl in
his treatment of the concept of ‘aggregate of individuals’).16 Alternatively, we
could use groups of (permutation) symmetries in such a way that particles of the
same sort (but different as individuals) are treated as ‘identical’.17 But these
approaches, typical of the standard developments of quantum theory, grounded
on the idea of invariance by automorphisms, groups and the like, are artificial in
the sense that the considered objects (individuals) are firstly taken as belonging
to a set (hence being distinguishable entities) and then their individuality is
effectively rendered into a ‘mock’ form by some mathematical device. This kind
of trick makes physics works, but the philosophically more interesting problem
would be to look for a mathematical framework by means of which certain
elements (denoting elementary particles) could be supposed indistinguishable
from the beginning. This is what quasi-set theory aims to do.

3 The Quasi-Set Theory Q

The quasi set theory we shall present here presents some modifications from
earlier versions,18 and encompass more details and explanations. We call Q such
a theory, which is based on ZFU-like axioms (Zermelo-Fraenkel with Urelemente)
and having the classical first order predicate calculus without identity as its
underlying logic. However, instead of just one kind of atoms, the theory allows
the existence of two sorts of Urelemente, termed m-atoms and M -atoms (two
primitive unary predicates express that: m(x) says that x is an m-atom and
M(x) says that x is an M -atom). There are still the binary primitive predicates
≡ (indistinguishability) and ∈ (membership), one unary functional symbol qc
(quasi-cardinal) and a unary predicate letter Z (Z(x) says that x is a set, and
these will correspond to the sets of ZFU). Of course quasi-set theory could be
formulated as a higher-order theory, or even be based on other kind of axioms,
like NBG, perhaps with some advantages but such an approach will be not
considered here (although something in this sense is suggested below).

15Post 1963.
16Weyl 1949, App. B.
17See the paper by E. Castellani in Castellani 1998.
18Krause 1996; Dalla Chiara, M. L., Giuntini, R. and Krause, D. 1998, being closer to

Sartorelli et al. 2001.
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The basic idea is that the M -atoms have the properties of standard Ure-
lemente of ZFU, while the m-atoms may be thought of as representing the
elementary particles of quantum physics.19 With regard to this last kind of
entities, the concept of identity should make no sense.20 In quasi set theory,
this restriction is achieved by restricting the concept of formula: expressions
like x = y are not well formed if x and y denote m-atoms. The equality sym-
bol is not primitive, but a concept of extensional identity (represented by =E)
is defined so that it has all the properties of standard identity of ZFU. Then,
the axiomatics permits us to differenciate between the concepts of (extensional)
identity (being the very same object) and indistinguishability (agreement with
respect to all the attributes).

A quasi-set (qset for short) x is defined as something which is not an Ure-
lement. A qset x may have a cardinal (termed its quasi cardinal , and denoted
by qc(x)), but the idea is that the theory does not associate to certain qsets an
ordinal, since there should be quasi sets which cannot be ordered (since their
elements are to be indistinguishable m-atoms, expressed by the relation ≡). The
concept of quasi cardinal is then taken as primitive, since (in principle) it cannot
be defined by usual means (that is, as particular ordinals).21 This fits the idea
that quantum particles cannot be ordered or counted, but only aggregated in
certain amounts. Notwithstanding, due to the concept of quasi cardinal, there
is a sense in saying that there may exist a certain quantity of m-atoms obeying
certain conditions, although they cannot be named or labelled. (Below we shall
also present a variant of the theory Q where the quasi-cardinal of a qset x may
vary in time –see section 6, so as a theory Qm which explicit postulate the
existence of m-atoms.)

So, let us begin by describing the formal details of the theory Q. From now
on, we sometimes shall use relativised quantifiers as follows: ∀P xα(x) means
∀x(P (x) → α(x)), while ∃P xα(x) stands for ∃x(P (x) ∧ α(x)), where P is a
suitable predicate.

Definition 1

(i) [Quasi-set (qset)] Q(x) =df ¬(m(x) ∨M(x))

(ii) [Pure qset] (a collection of indistinguishable m-atoms) P (x) =df Q(x) ∧
∀y(y ∈ x → m(y)) ∧ ∀y∀z(y ∈ x ∧ z ∈ x → y ≡ z)

(iii) [Dinge] (either ‘sets’ or the Urelemente) D(x) =df M(x) ∨ Z(x) (these are
the ‘(classical) things’, to use Zermelo’s original terminology).22

19Of course this can be generalised to cope with more recent advances in physics, like
collections of strings and branes, but we shall keep the terminology as usual in these contexts.
By the way, Stephen Hawking says that ”all the branes are created equal” -Hawking 2001, p.
54, which suggests that a collection of them should be taken as a quasi-set.

20This idea follows Schrödinger 1952, pp. 17-18, but the same can be said for instance of
strings of String Theory (or of branes): in what sense can we say that two strings are distinct?
Apparently, as in the case of particles, Schrödinger’s ideas apply also here. In a sense, string
theory brings again an ontology of ’objects’ of a sort, of course indistinguishable ones.

21But see the remarks made below at section 3.2.
22Zermelo 1908.
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(iv) [A qset whose elements are also qsets] E(x) =df Q(x) ∧ ∀y(y ∈ x → Q(y))

(v) [Extensional Identity]

x =E y =df (Q(x) ∧Q(y) → ∀z(z ∈ x ↔ z ∈ y)) ∨ (M(x) ∧M(y)
→ ∀Qz(x ∈ z ↔ y ∈ z)),

where ∀Q is the universal quantifier relativized to qsets.

(vi) [Subqset] For all qsets x and y, x ⊆ y =df ∀z(z ∈ x → z ∈ y)

The first axioms of Q are the following:

(Q1) ∀x(x ≡ x)

(Q2) ∀x∀y(x ≡ y → y ≡ x)

(Q3) ∀x∀y∀z(x ≡ y ∧ y ≡ z → x ≡ z)

(Q4) ∀x∀y(x =E y → (A(x, x) → A(x, y))), with the usual syntactic restric-
tions, that is, A(x, x) is a formula whatever and A(x, y) arises from A(x, x) by
the substitution of some free occurrences of x by y, provided that y is free for
x in A(x, x).

Theorem 2 Whether Q(x) or M(x), then x =E x.

Proof: If Q(x), since ∀z(z ∈ x ↔ z ∈ x), then x =E x by the definition
of extensional identity. If M(x), then of course for all qset z, we have that
x ∈ z ↔ x ∈ z, so x =E x.

(Q5) Nothing is at the same time an m-atom and an M -atom: ∀x(¬(m(x) ∧
M(x))).

Theorem 3 Whether Q(x) or M(x), then ¬m(x).

Proof: If Q(x), then ¬m(x) by the definition of qset. If M(x), then ¬m(x) by
Q5.

(Q6) The atoms are empty: ∀x∀y(x ∈ y → Q(y)).

In the next sections we shall discuss a little bit on the existence of atoms.
This last axiom is interesting from the perspective of physics, for it seems that
we should suppose that the M -atoms could be ‘composed’ of m-atoms in some
way. This is precisely what should be given the physical interpretation we have
suggested, but in this case the relationship between the atoms would be not
membership. In this case, what seems to be required is some form of mereologic
theory suitable for expressing this relationship, but such a theory has yet to be
constructed.23

23Concerning mereology, or “the theory of part-whole”, first developed by the Polish logician
S. Lesniewski, see Simons 1987. The idea is to add to que axioms of the theory Q suitable
mereological axioms.
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(Q7) Every set is a qset: ∀x(Z(x) → Q(x)).

(Q8) Qsets whose elements are ‘classical things’ are sets and conversely:

∀Qx(∀y(y ∈ x → D(y)) ↔ Z(x)).

Our intention is to characterize sets in Q so that they can be identified with the
standard sets of ZFU. This should be achieved if they were taken to be those
qsets whose transitive closure24 do not contain m-atoms. The ‘→-part’ of Q8
gives half of the answer: if all the elements of x are Dinge (sets of M -atoms),
then x is a set. Concerning the converse, it is not enough to postulate that no
element of a set is an m-atom, since it may be that the elements of its elements
have m-atoms as elements and so on. But this question can be rightly answered
if we have Z(x) → ∀y(y ∈ x → D(y)), which is precisely the ‘←-part’ of Q8.

(Q9) This axiom is the conjunction of the following three sentences:

∀x∀y(m(x) ∧ x ≡ y → m(y))

∀x∀y(x =E y ∧M(x) → M(y))

∀x∀y(x =E y ∧ Z(x) → Z(y))

(Q10) [The empty qset] There exists a qset (denoted by ‘∅’) which does not
have elements: ∃Qx∀y(¬(y ∈ x)).

Theorem 4 The empty qset is a set.

Proof: Take x =E ∅. Since y ∈ x is false by Q10, then the antecedent of
∀y(y ∈ x → D(x)) is true, hence Z(∅) by Q8.

(Q11) Indistinguishable Dinge25 (see Def. 1) are extensionally identical:

∀Dx∀Dy(x ≡ y → x =E y).

Theorem 5 The relation of extensional equality has all the properties of clas-
sical equality.

Proof: Being x such that D(x) then x ≡ x → x =E x by Q11; the axiom Q4
provides substitutivity for Dinge; so, the standard axioms for first-order identity
are obtained.

Theorem 6 If M(x) and x ≡ y, then M(y); the same holds for ‘sets’, namely,
Z(x) and x ≡ y entails Z(y).

24This concept has its usual sense: TC(x) =df x ∪Sx ∪SSx . . ..
25Zermelo’s set theory is concerned with a domain (Bereich) of individuals, the sets and

the Urelemente, which he referred to simply as objects (Dinge).
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Proof: (For M -atoms) Suppose that M(x) and x ≡ y. If m(y), since y ≡ x
by Q2, then m(x) by Q9. So, M(y) or z(y). But, by Q11, being x an M -atom,
x ≡ y entails x =E y, hence by Q4, if M(x) stands for A(x, x), we get M(y).
Similar things happen if we suppose Z(y).

Remark: The distinction between extensional identity and the primitive indistin-
guishability may be seen as follows, although the formal details can be provided
only after other axioms being stated. By the above axioms and theorems, the
indistinguishability relation ≡ permits substitutivity for all primitive non log-
ical symbols, except membership. That is, if B is m, M , Z or even qc, then
B(x)∧ x ≡ y → B(y) is a theorem. If this was possible also for ∈, then since ≡
is reflexive (Axiom Q1), we would have full substitutivity for ≡, hence it could
be not distinguished from usual identity.26 But concerning membership, this is
not the case, that is, x ∈ w ∧ y ≡ x does not entail that y ∈ z, for the theory
has no axioms that grant this fact. So, indistinguishability is not ’standard’
identity.

(Q12) [Weak-Pair] For all x and y, there exists a qset whose elements are indis-
tinguishable from either x or y: ∀x∀y∃Qz∀t(t ∈ z ↔ t ≡ x ∨ t ≡ y).

We denote this qset by [x, y]. When x and y are Dinge, we may use the
usual notation {x, y}. Let us remark that [x, y] stand for the qset of the in-
distinguishable from either x or y, and in general may contain more that two
elements.

(Q13) [The Separation Schema] By considering the usual syntactical restrictions
on the formula A(t), that is, A(t) being a well formed formula in which t is free,
the following is an axiom schema:

∀Qx∃Qy∀t(t ∈ y ↔ t ∈ x ∧A(t))

This qset is written [t ∈ x : A(t)], and {t ∈ x : A(t)} when such a qset is a
set.

(Q14) [Union] ∀Qx(E(x) → ∃Qy(∀z(z ∈ y) ↔ ∃t(z ∈ t ∧ t ∈ x)))

This qset is denoted by
⋃

x or by
⋃

t∈x t or even by u ∪ v when t has just
two elements (qsets) u and v.

(Q15) [Power-qset] ∀Qx∃Qy∀t(t ∈ y ↔ t ⊆ x).

According to the standard notation, we write P(x) for this qset.

Definition 7

(i) [‘Ordered pair’] 〈x, y〉 =df [[x], [x, y]]

26Shoenfield 1967, Chap. 1.
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(ii) [Weak Singleton] [x] = [x, x] (this is the collection of the indistinguishable
from x)

(iii) x× y =df [〈z, u〉 ∈ PP(x ∪ y) : z ∈ x ∧ u ∈ y]

As in the case of [x, y], [x] is the qset of all those indistinguishable from x,
so it may have more than one element. The same may be said for the cartesian
product of two qsets etc. The concepts of intersection and difference of qsets
are defined in the usual way so that t ∈ x ∩ y iff t ∈ x ∧ t ∈ y and t ∈ x− y iff
t ∈ x ∧ t /∈ y.

(Q16) [Infinity] ∃Qx(∅ ∈ x ∧ ∀y(y ∈ x ∧Q(y) → y ∪ [y] ∈ x)).

(Q17) [Regularity] (Qsets are well-founded):

∀Qx(E(x) ∧ x 6=E ∅ → ∃Qy(y ∈ x ∧ y ∩ x =E ∅)).

Of course this axiom raises another cluster of questions, for if the m-atoms
are to be thought of as representing elementary particles, then apparently we
are faced with the old problem of continuously dividing up a certain object,
and our axiom may suggest that we are proposing that such a ‘division’ should
have an end. But of course this is not so, for the axiom talks in terms of qsets;
every qset has a qset as element to which it has no element in common, but
nothing is said about atoms. With regard to these ones, the problem regarding
a mereology remains; at least in principle, we should agree with Heisenberg
when he says that (in quantum physics) “the concept of ‘dividing’ has lost its
meaning”.27

3.1 Relations and quasi-functions

In this section we shall see that relations and functions cannot be defined in
quasi-set theory as in standard mathematics. The basic motive is that functions
cannot distinguish between arguments and values if there are m-atoms involved.
Furthermore, due to the lack of sense of speaking in Q about the identity and
about the difference of m-atoms, ordering relations cannot be adequately defined
on a qset with indistinguishable m-atoms as elements. We shall pay attention to
binary relations only, but of course the considerations below can be generalized.
Let us see the details.

Definition 8 A qset w is a quasi-relation (we shall call them only ‘relations’)
between x and y if it satisfies the following predicate R:

R(w) =df Q(w) ∧ ∀z(z ∈ w → ∃u∃v(u ∈ x ∧ v ∈ y ∧ z =E 〈u, v〉))

As usual we sometimes write uw v for 〈u, v〉 ∈ w. Relations are important
in general for characterizing attributes of the elements of certain collection of

27Heisenberg, ‘The nature of elementary particles’, reprinted in Castellani 1998.
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objects. In standard set theory, ordering relations, let us recall, are of two main
basic types: partial orderings are those binary relations P on a set A which are
(i) reflexive, that is, ∀x(xPx), (ii) anti-symmetric, that is, ∀x∀y(xPy ∧ yPx →
x = y), and (iii) transitive, ∀x∀y∀z(xPy ∧ yPz → xPz). If P is also (iv)
connected, that is, ∀x∀y(x 6= y → xPy ∨ yPx), then it is a total (or linear)
ordering. It is easy to see why such relations cannot be defined on a qset whose
elements are indistinguishable m-atoms: without the relation of identity, we
cannot even state the definition. But what about the so-called strict partial
and total orderings?

Let us recall that a strict partial ordering on a set A is a binary relation S on
A such that (i) S is irreflexive, that is, ∀x¬(xSx) and (ii) transitive. An strict
total ordering on A is one which is irreflexive, transitive and connected. The
reader could rightly say that a binary relation w on a qset x (that is, obeying the
predicate R of the above definition) such that (a) w is irreflexive, (b) transitive
and (c) for every u and v in x is such that uw v ∨ v w u, should be regarded as
a strict total ordering on x, although we cannot say that u and v are distinct.
What are the consequences of this result?

We should recall that in considering sets, we always can (at least in principle)
label whatever of is elements, say by associating their singletons to them: for
instance, associate {x} to x. In extensional contexts, this singleton can be
viewed as a ‘property’ of x only (remember that Leibniz Law holds in classical set
theory, so the elements of a set are ‘individuals’ in a sense). But in Q this cannot
be done if x is an m-atom, for the ‘singleton’ [x] (as it results from the remaining
axioms to be stated below) cannot be said to have cardinal 1 (in the case, we
should say ‘quasi-cardinal’). So, when we say that uw v, that is, 〈u, v〉 ∈ w, we
should remember the that by the definition of the ‘ordered pair’ given above,
〈u, v〉 ∈ w means [[u], [u, v]] and being u ≡ v, this pair is indistinguishable (in
the sense of the axiom of Weak Extensionality to be presented below) from
[[v], [v, u]], which is the ‘ordered pair’ 〈v, u〉. Furthermore, this qset is also
indistinguishable from [[u]], that is, from 〈u, u〉. Of course the theory does
not imply that 〈v, u〉 (or that 〈u, u〉) also belongs to w, but the relation w is
indistinguishable (in the same sense) from the relations w′ and w′′, which have
these pairs as elements (supposing that the other elements do not provide any
further distinction between w, w′ and w′′).

This means that whatever strict total order w on a qset x of indistinguishable
m-atoms such that 〈u, v〉 ∈ w is confused in the theory (they are indistinguish-
able) with another w′ such that 〈v, u〉 ∈ w′ (the same holds with respects to w′′

above), and no order could be said to make sense on x within Q, for the theory
cannot distinguish the defined order from another one that has its elements in
a ‘reverse’ order (the reader should remind that the idea of a ‘reverse order’
requires identification of the elements).

So, ordering relations (on a pure qset whose elements are indistinguishable
m-atoms) don’t have detectable significance, for the theory doesn’t distinguish
between such relations from those which (intuitively speaking) have the ‘same’
elements in a reverse order. This point has a certain parallel in physics. Suppose
that a certain atom releases an electron u becoming an ion. Later, an electron
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v is captured by the atom, which becomes neutral again. What is the difference
between the original atom and the (again) neutral atom? Well, as we know,
there are no differences, for quantum physics cannot distinguish between u and
v (let us remark that, in our theory, a theorem below will give us a mathematical
interpretation of this result). But there is a sense in saying that u and v are in
certain ‘order’, for one electron was released while ‘another’ one was captured.
But this ‘ordering’ is only meta-theoretical (the difference is only in mente Dei,
as Dalla Chiara and Toraldo di Francia could say). The same can be said
concerning the orderings w, w′ and w′′ above. Whatever distinction among
then is only metamathematical and cannot the given within Q.

Definition 9 [Quasi-functions] If x and y are qsets and R is the predicate for
‘relation’ defined above, we say that f is a quasi-function (q-function) with do-
main x and counter-domain y if it satisfies the following predicate:

QF (f) =df R(f) ∧ ∀u(u ∈ x → ∃v(v ∈ y ∧ 〈u, v〉 ∈ f))∧
∀u∀u′∀v∀v′(〈u, v〉 ∈ f ∧ 〈u′, v′〉 ∈ f ∧ u ≡ u′ → v ≡ v′)

Furthermore, f is a q-injection iff f is a q-function from x to y and satisfies the
additional condition:

∀u∀u′∀v∀v′(〈u, v〉 ∈ f ∧ 〈u′, v′〉 ∈ f ∧ v ≡ v′ → u ≡ u′)
∧qc(Dom(f)) ≤E qc(Rang(f)).

In the same vein, f is a q-surjection iff it is a function from x to y such that

∀v(v ∈ y → ∃u(u ∈ x ∧ 〈u, v〉 ∈ f)) ∧ qc(Dem(f)) ≥E qc(Rang(f)).

Finally, an f which is both a q-injection and a q-surjection is said to be a
q-bijection. In this case, qc(Dom(f)) =E qc(Rang(f)), where Dom(F ) and
Rang(F ), respectively the domain and the range of f have their usual meanings
(but the reader should note that due to the lack of individuality of the m-
atoms, these qsets have a peculiar characteristics, which is expressed by the
Theorem of the Unobservability of Permutations mentioned below). As it is
easy to see, when there are no m-atoms involved, the above concept coincides
with the standard definition of a function.

To summarize, we can state the following theorem:

Theorem 10 Nor partial nor total ordering relations can be defined on a pure
qset whose elements are indistinguishable from one another.

Proof : (Sketch) The definitions of partial and total orders require antisymmetry,
and this property cannot be stated without identity. Asymmetry also cannot
be supposed. In fact, if x ≡ y, then for every R such that 〈x, y〉 ∈ R, it follows
that 〈x, y〉 =E [[x]] =E 〈y, x〉 ∈ R; so, xRy entails yRx.
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3.2 Quasi-Cardinals

For presenting the remaining axioms, we need to realise that a ‘copy’ of ZFU
can be defined within Q. Let us see the main idea. Firstly, we need to define
the translation from the language of ZFU to the language of Q. This will show
that the theory Q encompasses a ‘classical’ counterpart which coincides with
ZFU.

The translation can be defined in the following way: let A be a formula
of the language of ZFU (which we may admit has an unary predicate S which
stands for ‘sets’). Then, call Aq its translation to the language of Q, defined as
follows:

(i) If A is S(x), then Aq is Z(x)

(ii) If A is x = y, then Aq is ((M(x) ∧M(y)) ∨ (Z(y) ∧ Z(y)) ∧ x =E y)

(iii) If A is x ∈ y, then Aq is ((M(x) ∨ Z(x)) ∧ Z(y)) ∧ x ∈ y

(iv) If A is ¬B, then Aq is ¬Bq

(v) If A is B ∨ C, then Aq is Bq ∨ Cq

(vi) If A is ∀xB, then Aq is ∀x(M(x) ∨ Z(x) → B)

Theorem 11 If A is an axiom of ZFU and Aq is its translation to the language
of Q given by the above definition, then Aq is a theorem of Q.

This theorem, whose proof can be given by careful checking, shows that if
Q is consistent, so is ZFU.

The above result shows that there is a copy of ZFU in Q (Figure 1). In
this ‘copy’, we may define as usual the following concepts: Cd(x) for ‘x is a
cardinal’; card(x) denotes ‘the cardinal of x, and Fin(x) says that ‘x is a finite
quasi-set’. Then, by considering these concepts, we may present the axioms for
quasi-cardinals:

(Q18) Every object which is not a qset (that is, every Urelement) has quasi-
cardinal zero: ∀x(¬Q(x) → qc(x) =E 0).

(Q19) The quasi-cardinal of a qset is a cardinal (defined in the ‘classical part’
of the theory) and coincides with its cardinal itself when this qset is a set:28

∀Qx∃!y(Cd(y) ∧ y =E qc(x) ∧ (Z(x) → y =E card(x)))

So, we are postulating that whatever qset has a quasi-cardinal and that
such quasi-cardinal is a cardinal (as defined by usual means in the ’standard’
part of the theory). This axiom apparently is contrary to the result mentioned

28Really, ‘sets in Q, that is, ‘copies’ of ZFU sets.
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Figure 1: The Quasi-Set Universe

in the preceding section which shows that no order relation can be defined
on a qset of indistinguishable m-atoms, for the existence of its quasi-cardinal
seems to suggest that whatever quasi-set (including those whose elements are
indistinguishable m-atoms) can be ordered, since, if defined as usual, a cardinal
is a particular ordinal. The explanation of this fact is that the associated ordinal
of a quasi-set of indistinguishable m-atoms cannot be something that belongs to
the ’classical’ part of the theory (in the figure above, it would lie in the region
above m of the ’pure’ qsets). Alternatively, we could say, as in the case of the
Skolem’s paradox, that such an ordinal does not belong to the theory at all!
(in the sense that its existence cannot be derived from the axioms). This is of
course an interesting point to be further considered, which we do not pursue
here. But what results is that perhaps for physical applications a different
concept of cardinal should be used instead of the standard one, for at least in
the cases involving quantum objects, it should be interesting to have a process
of counting which does not induces any kind of order. For instance, perhaps
we could take a definition in the sense of Frege-Russell (as a certain class of
equinumerous classes).29 Another alternative could be achieved by Enderton’s
definition of the concept of kcard;30 Enderton suggests that kcard(x) is to be
the set of all sets y equinumerous to x and having the least possible rank.
Then, kcard(x) = kcard(y) iff x and y are equinumerous, as desired, but the
definition of kcard relies on regularity, and not on the axiom of choice (which in

29More precisely, the cardinal of a set X would be card(X) =df {Y : Y ≈ X}, where ≈
means ’equinumerous to’ (Suppes 1960, p. 109). But the problems with such a definition are
well known (op. cit.).

30We thank Antonio Coelho for recalling us this definition.
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the standard definition is used to show that every set has a cardinal number),31

so for a finite nonempty set x, kcard(x) fails to be a natural number (which could
be not so good to physics). Perhaps we could eliminate from the axiom above
the fact that qc(x) is a cardinal and leave its characterization to the particular
model to be considered. Anyway, it seems clear that the search for a more
adequate definition of cardinal which could be useful to physics is something to
be investigated further.

Finally, still regarding the existence of quasi-cardinals, we remark that for
the discussion on quantum field theory,32 one might guess that it would be in-
teresting that in certain situations we couldn’t say that the quantity of elements
in a certain qset is fixed (the case of virtual particles comes to the mind). But
it is not necessary to fix this fact here, for the possibility of varying the quasi-
cardinal in time (as given in the theory Qt sketched below) and the concept of
the cloud of a qset (also given below) shall provide the mathematical insights
for the relevant discussion. Let us turn now to the other axioms.

(Q20) Every non-empty qset has a non null quasi-cardinal:

∀Qx(x 6=E ∅ → qc(x) 6=E 0)

(Q21) ∀Qx(qc(x) =E α → ∀β(β ≤E α → ∃Qy(y ⊆ x ∧ qc(y) =E β))

(Q22) ∀Qx∀Qy(y ⊆ x → qc(y) ≤E qc(x))

(Q23) ∀Qx∀Qy(Fin(x) ∧ x ⊂ y → qc(x) <E qc(y))

(Q24) ∀Qx∀Qy(∀w(w /∈ x ∨ w /∈ y) → qc(x ∪ y) =E qc(x) + qc(y))

In the next axiom, 2qc(x) denotes (intuitively) the quantity of subquasi-sets
of x. Then,

(Q25) ∀Qx(qc(P(x)) =E 2qc(x))

If the concept of identity has no meaning for m-atoms, how can we ensure
that a qset x such that qc(x) =E α has precisely 2α subqsets? In standard set
theories (as in the ‘classical part’ of Q, that is, in considering those qsets which
fit the sets of ZFU), as is well known, if card(x) denotes the cardinal of x, then
by the definition of exponentiation of cardinals, 2card(x) is defined to be the
cardinal of the set x2, which is the set of all functions from x to the Boolean
algebra 2 = {0, 1}.33 In Q this definition doesn’t work. Let us explain why.

Suppose that α is the quasi-cardinal of x, which is a cardinal by Q19. This
axiom says that every qset has an unique quasi-cardinal which is a cardinal
(defined in the ‘classical part’ of the theory), and if the qset is in particular a
set (in Q ), then this quasi-cardinal is its cardinal stricto sensu. So, every quasi-
cardinal is a cardinal and the above expression ‘there is a unique’ makes sense.

31Enderton 1977, p. 222.
32See French and Krause 1999.
33Enderton 1977, p. 141.
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Furthermore, from the fact that ∅ is a set, it follows that its quasi-cardinal is 0.
Then we may define

2qc(x) =df qc(α2) (3.1)

and then, since α is a cardinal and both α and 2 are sets in Q (that is, they are
copies of ZFU-sets), we have

2qc(x) =E card(α2). (3.2)

So, we may take the cardinal of the qset α2 in its usual sense to mean 2qc(x).
Then, this last equality gives meaning to the axiom Q25, since it explains what
2qc(x) means: it is the cardinal of the set of all the applications from α (the
quasi-cardinal of x) in 2. By considering this, the axiom may be written as
follows, where x is a qset and α is its quasi-cardinal:

Axiom Q25 (Alternative Form) ∀Qx(qc(P(x)) =E card(α2).

We remark that the second member of this equality has a precise meaning
in Q, since both α and 2 act as in classical set theories, as remarked above
since they are (copies of) sets. This characterization allows us to avoid another
problem, which could be thought to be derived in quasi-set theory. To explain it,
we recall that in standard set theories we can prove that P(x) is equinumerous
with x2 by defining a one-one function f : P(x) → 2 as follows: for every y ⊆ x,
let f(y) be the characteristic function of y, namely, the function χy : x → 2
defined by

χy(t) =df

{
1 if t ∈ y
0 if t ∈ x− y

(3.3)

Then any function h ∈ x2 belongs to the range of f since

h = f({t ∈ x : h(t) = 1}).34

Suppose now that x is a qset such that qc(x) is the natural number n and
that all elements of x are indistinguishable from each other (the natural numbers
are defined in Q in the usual way, just as in the model of ZFU we have defined
in Q).35 In this case, we cannot define the characteristic quasi-function χq

y for
y ⊆ x, since, for instance, if χq

y(t) =E 1 for t ∈ y, then χq
y(w) =E 1 as well for

every w ∈ x, independently if either w belongs to y or not. This is due to the
definition of the quasi-functions given above, since for every quasi-function f ,

〈a, b〉 ∈ f ∧ 〈c, d〉 ∈ f ∧ a ≡ c → b ≡ d.

In other words, if the image of a certain t by the quasi-function f is 1, then
the image of every element indistinguishable from t will be 1 as well. So, Q

34Enderton op. cit., p. 131.
35For all we need, it is sufficient to consider finite qsets (this definition is also standard;

roughly speaking, their quasi-cardinals are natural numbers).
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distinguishes only between two quasi-functions from x to 2, namely, that one
which associates 1 to all elements of x and that one which associates 0 to all
of them. This is the motive why we have used qc(α2) to mean 2qc(x), since
both α and 2 may be viewed as sets (in the standard sense). If we had used
x2 instead, we would be unable to distinguish among certain quasi-functions, so
complicating the meaning of Q25, since we could have no way of counting the
number of subquasi-sets of a qset. But, by using α2, since both α and 2 behave
‘classically’, we keep Q25 with its usual meaning.

From these considerations, we may conclude that when x is a qset whose ele-
ments are indistinguishable m-atoms, we cannot prove within Q that if qc(x) =E

n, so we cannot count 2n subquasi-sets in x. Since this is precisely what Q25
intuitively says, we may affirm that this axiom cannot be proven from the re-
maining axioms of Q. But, since it holds for particular qsets, namely, those
which are Q-copies of sets, it cannot be disproved either. In order to show that
Q25 cannot be disproved, consider the sets in Q; since they behave as classical
sets, we can prove that what Q25 asserts is true. Now it suffices to take a qset
whose elements are indistinguishable m-atoms and such that qc(x) =E α.

Axiom Q25 has another important implication for Q. In standard set theo-
ries, if card(x) is (say) the natural number n, then there are exactly n subsets
of x which are singletons. Can this result be proved also in Q? If not, how can
we make sense of the idea that if qc(x) =E n, then x has n elements? We recall
once more that the main motivation for Q is the way quantum mechanics deals
with elementary particles and then, although there is a sense in saying that,
say, there are k electrons in a certain level of a certain atom, there is no way of
counting them or of distinguishing among them, as we have already remarked
(see also below). These considerations motivate the definitions and axioms of
the next section.36

3.3 The ‘Weak’ Extensionality

If x is a qset whose elements are indistinguishable from one another as above
(let us suppose again that qc(x) =E n, which suffices for our purposes), then the
singletons y ⊆ x are indistinguishable from each other, as follows from the Weak
Extensionality axiom Q26 below. So, all the singletons (in the intuitive sense)
seem to fall into just one qset. But it should be recalled that these ‘singletons’
(subqsets whose quasi-cardinality is 1) are not identical (that is, they cannot be
proven to be the same object in the theory), but they are indistinguishable in a
precise sense (given by Q26 below). In other words, although the theory cannot
distinguish between them, we cannot affirm either that they are the same qsets
or that their elements are identical. So, it is consistent with Q to suppose that
if qc(x) =E α, then x has precisely α ‘singletons’ (which are of course not of the
form [y] given above). So, due to Q25, the theory does not forbid the existence
of such singletons, despite the fact that in Q we cannot prove that they exist as

36Sant’Anna and Santos 2000 have proposed a modified version of axiom Q25 to cope with
other physical insights.
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‘distinct’ entities, and hence we may reason in Q as physicists do when dealing
with a certain number of indistinguishable quanta or with collections of them.

The absence of a theory of identity for the m-atoms, due to the lack of
meaning of speaking about either the identity or the difference of m-atoms,
causes the necessity of a modification in the usual Axiom of Extensionality of
standard set theories,37 which here does not hold as usual. In order to do so,
let us introduce the following definition:

Definition 12 For all non empty quasi-sets x and y,

(i) Sim(x, y) =df ∀z∀t(z ∈ x ∧ t ∈ y → z ≡ t). In this case we say that x and y
are similar.

(ii) QSim(x, y) =df Sim(x, y) ∧ qc(x) =E qc(y). That is, x and y are Q-similar
iff they are similar and have the same quasi-cardinality.

In the axiom below, x/≡ stands for the quotient qset of some qset x by the
equivalence relation ≡.

(Q26) [Weak Extensionality] Qsets which have the same quantity of elements of
the same sort are indistinguishable. In symbols,

∀Qx∀Qy((∀z(z ∈ x/≡ → ∃t(t ∈ y/≡ ∧ ∧QSim(z, t))))

∧∀t(t ∈ y/≡ → ∃z(z ∈ x/≡ ∧ ∧QSim(t, z))) → x ≡ y)

It is easy to note that if there are no m-atoms involved, once in this case
≡ becomes usual identity, then the axiom coincides with the standard axiom of
extensionality used in ZFC.

As a consequence, it is easy to prove the following theorem:

Theorem 13

(i) x =E ∅ ∧ y =E ∅ → x ≡ y

(ii) ∀Qx∀Qy(Sim(x, y) ∧ qc(x) =E qc(y) → x ≡ y)

(iii) ∀Qx∀Qy(∀z(z ∈ x ↔ z ∈ y) → x ≡ y)

(iv) x ≡ y ∧ qc([x]) =E qc([y]) ↔ [x] ≡ [y]

One of the main applications of the Weak Extensionality axiom is the theo-
rem of the Unobservability of Permutations to be presented below, which pro-
vides a way of expressing in quasi-set theory the idea that if a certain object is
‘permuted’ by an indistinguishable one, then ‘nothing changes at all’ ! Of course
this has no meaning in standard mathematics, first due to the lack of sense in

37As it is well known, this axiom says that those sets which have the same elements are
identical.
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speaking on indistinguishable but not ‘identical’ objects, as we have seen else-
where. Furthermore, the standard axiom of extensionality should act, and hence
whatever permutation of non-identical object would give us a different set. In
what follows we shall show other applications of this axiom, but before that let
us comment on the replacement axioms of Q.

3.4 Replacement axioms

We may add to the quasi set theory replacement axioms as follows. If A(x, y) is a
formula in which x and y are free variables, we say that A(x, y) defines a y-(quasi-
functional) condition on the quasi-set t if ∀w(w ∈ t → ∃sA(w, s) ∧ ∀w∀w′(w ∈
t ∧ w′ ∈ t → ∀s∀s′(A(w, s) ∧ A(w′, s′) ∧ w ≡ w′ → s ≡ s′)) (this is abbreviated
by ∀x∃!yA(x, y)). Then, we have:

(Q27) [Replacement Axioms]

∀x∃!yA(x, y) → ∀Qu∃Qv(∀z(z ∈ v → ∃w(w ∈ u ∧A(w, z))).

Intuitively speaking, this axiom says that the images of qsets by quasi-
functions are also qsets. It is easy to see that when there are no m-atoms
involved, that is, when Q becomes essentially ZFU, then this schema coincides
with standard replacement axioms. The difference here is the way of stating
the schema, for we must obey the restriction imposed above to the concept of
quasi-function.

3.5 The strong singleton

An important concept in quasi-set theory is that of the strong singleton of an
element x (either a qset or an atom). This is a qset with quasi-cardinality 1
whose ‘only element’ is indistinguishable from x. It is interesting that, contrary
to what would be expected, we cannot prove that this element is x. So, we will
arrive at a situation according to which we will be able to say that we have just
one element of a certain kind but without theoretical means of identifying it,
even in principle. Let us look at the details.

Definition 14 A strong singleton of x is a quasi-set x′ which satisfies the fol-
lowing property:

x′ ⊆ [x] ∧ qc(x′) =E 1.

In words, a strong singleton of x, as remarked above, is a qset x′ whose
only element is indistinguishable from x. In standard set theories, this qset is
of course the singleton stricto sensu whose only element is x itself, but here x
may be an m-atom, and in this case there is no way of speaking of something
being identical to x. Even so, we can prove that such a qset exists:

Theorem 15 For all x, there exists a strong singleton of x.
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Proof: The qset [x] exists by the weak pair axiom. Since x ∈ [x] (since ≡
is reflexive), we have that qc([x]) ≥E 1 by Q20. But, by Q21, there exists a
subqset of [x] which has quasi-cardinal 1. Take this qset to be x′.

Theorem 16 All the strong singletons of x are indistinguishable.

Proof: Immediate consequence of Q26, since all of them have the same quasi-
cardinality 1 and their elements are indistinguishable by definition.

The important remark is that, as we shall see, we cannot prove that the
strong singletons of x are extensionally identical. With regard indistinguishable
m-atoms, we cannot give ostensive definitions, say, by putting our finger over
an m-atom and saying ‘This is Peter’. Even so, as in quantum physics, we may
reason as if a certain element does or does not belong to the qset; the law of the
Excluded Middle x ∈ y∨x /∈ y remains valid, even if we cannot verify which case
holds.38 This idea fits what happens with the electrons in an atom, as we have
already explained in other parts of this book; in general we know how many
electrons there are, and we can say that some of them are in that atom, but
we cannot tell which particular electrons are in the atom: this question simply
loses its usual meaning.

Theorem 17 For all qsets x and y, if y ⊆ x and x is finite, then qc(x− y) =E

qc(x)− qc(y).

Proof: By definition, t ∈ x − y iff t ∈ x ∧ t /∈ y. Then (x − y) ∩ y =E ∅.
Hence, by Q25, qc((x− y) ∪ y) =E qc(x− y) + qc(y) (let us call this expression
(i)). But, since y ⊆ x, (x − y) ∪ y =E x and so, in order for (i) to be true,
qc(x− y) =E qc(x)− qc(y).

The next result may be regarded as a quasi-set version of the Indistinguisha-
bility Postulate, which, as we have noted elsewhere, says that permutations of
indistinguishable quanta are not observable. In order to state and prove this
result, we introduce a definition.39

Definition 18

(i) Let x be a qset such that E(x), that is (according to Definition 1), its elements
are also qsets. Then,

⋂
x =df [z ∈

⋃
x : ∀s(s ∈ x → z ∈ s)]

(ii) If m(u),40 then Su =df [s ∈ P([u]) : u ∈ s]
38These facts cause interesting consequences in the underlying logic. For instance, the

’choice rule’ (Mendelson 1997, p. 81) ∃xα(x) → α(t) cannot hold for t being a descrip-
tivist term, like an individual constant, which names an individual; the rule must be written
∃xα(x) → α(y) instead, where y is a variable.

39The Lemmas that follow were originally formulated and proven by A. Sartorelli.
40The case where u is an m-atom is of course the most interesting one. The generalization

of this definition to M -atoms and sets is immediate, but in this case the result coincides with
the analogous (and sometimes trivial) situation in standard set theories. The case of m-atoms
is really the one which makes the difference.
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(iii) u∗ =df

⋂
t∈Su

t

Lemma 19 If m(u), then:

(i) u ∈ ⋃
t∈Su

t

(ii) ∀s(s ∈ Su → u ∈ s)

(iii) z ∈ u∗ iff z ∈ ⋃
t∈Su

t ∧ ∀s(s ∈ Su → z ∈ s)

(iv) u ∈ u∗

(v) u∗ ⊆ [u]

(vi) If s ∈ Su, then u∗ ⊆ s

Proof: (i) z ∈ ⋃
t∈Su

t iff ∃t(t ∈ Su ∧ z ∈ t). Therefore, by the above definition,
z ∈ ⋃

t∈Su
t iff ∃t(t ∈ P([u]) ∧ u ∈ t ∧ z ∈ t). But since [u] ∈ P([u]) and u ∈ [u],

it follows that u ∈ ⋃
t∈Su

t. (ii) ∀s(s ∈ Su ↔ s ∈ P([u]) ∧ u ∈ s). Therefore,
∀s(s ∈ Su → u ∈ s). (iii) Immediate consequence of the above definition. (iv)
is an immediate consequence of (i)-(iii). (v) Suppose that z ∈ u∗. By (iii), we
have ∀s(s ∈ Su → z ∈ s). But since [u] ∈ Su, it follows that z ∈ [u]. (vi) If
z ∈ u∗, then, as before, ∀s(s ∈ Su → z ∈ s). But, by hypothesis, s ∈ Su; so,
z ∈ s.

Lemma 20 If u is an m-atom and z is a qset, then if z ⊆ u∗ and qc(z) =E 1,
it follows that u ∈ u∗ − z or qc(u∗) =E 1.

Proof: Suppose that u /∈ u∗ − z. Since u ∈ u∗, it follows that y ∈ z. But
z ⊆ u∗ ⊆ [u], therefore z ∈ Su. But, by the above Lemma (6), u∗ ⊆ z. By
hypothesis, z ⊆ u∗, hence u∗ =E z, and so qc(u∗) =E qc(z) =E 1.

Theorem 21 For every u, qc(u∗) =E 1.

Proof: By (iv) of Lemma (19), u∗ 6=E 0. So, by Q20, qc(u∗) 6=E 0, hence
qc(u∗) ≥E 1. We shall show that the equality holds. Suppose that qc(u∗) >E 1.
Then, by Q21, there exists a qset w ⊆ u∗ such that qc(w) =E 1. So, by Lemma
(20), u ∈ u∗ − w. But u∗ − w ⊆ [u], since u∗ ⊆ [u], therefore, by (v) of Lemma
(19), u∗ ⊆ u∗ −w. But since u∗ −w ⊆ u∗, it follows that u∗ =E u∗ −w. Again
by Q20, w 6=E ∅ since qc(w) =E 1. Then let be t ∈ w. So, t ∈ u∗ since w ⊆ u∗,
hence t ∈ u∗ − w (once u∗ =E u∗ − w). Then t /∈ w, a contradiction.

Lemma 22 For all m-atoms u and v, if u ≡ v, then u∗ ≡ v∗. Furthermore, if
u ∈ w, then u∗ ⊆ w for any qset w.

Proof: If u ≡ v, then u∗ ⊆ [u] and v∗ ⊆ [v], so Sim(u∗, v∗) (see Definition (12)).
But, by Theorem (21), qc(u∗) =E 1 and qc(v∗) =E 1 and then, by Lemma (20),
u∗ ≡ v∗. The last part can be proven by noting that if u ∈ w, then u ∈ w ∩ [u],
so as w ∩ [u] ⊆ [u], therefore w ∩ [u] ⊆ Su. Then, by (v) of Lemma (19),
u∗ ⊆ w ∩ [u] and so u∗ ⊆ w.
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These last results show that u∗ is, as expected, a strong singleton of u.
The remarkable fact is that we cannot prove that u∗ ≡ v∗ entails u∗ =E v∗.
This is due to the fact that nothing in the theory can assure that that m-atom
that belongs to u∗ is the same m-atom that belongs to v∗, since neither the
expression u = v nor u =E v are well formed in this case. Furthermore, it is
worth recalling that the usual Extensionality Axiom, which could be used for
expressing this fact, is not an axiom of our theory but, instead, we have the
‘weak’ axiom Q26 which talks about indistinguishability only, but not about
identity. The impossibility of proving the above result should not be regarded
as a deficiency of the theory, but rather as expressing the fact that it is closer
to what happens in quantum physics than usual set theories. The next theorem
reinforces this point.

3.6 Permutations are not observable

If we think of material bodies as collections of quanta of some sort, as intu-
itively we may think of that wall in front of us as ‘composed’ of atoms, protons,
electrons and the like, the first attempt for approaching its mathematical char-
acterization is to regard such a collection as a set endowed with some kind of
structure. For instance, Walter Noll’s definition of a continuum body says that
a body is a triple 〈B, Φ,m〉 where B is an arbitrary set, Φ is a set of map-
pings (hence, also sets) from B into E, the three-dimensional Euclidean point
space, and m is a function defined on the subsets of B into the set < of real
numbers; the set B is the set of particles of the continuum body. There follows
some axioms which provide the desired ‘structure’, but which do not interest us
here.41

Of course we know that a material body is not just a collection of particles,
as our body is not a collection (set) of cells. As recalled by Toraldo di Francia,
in discussing this point, a physical body is richer than a simple set of objects.
As he says, “put together a million billiard balls and try to see if we can observe
something interesting”.42 But even so we could try to approach ’quantum bod-
ies’ in Noll’s sense. Granted that the analogous definition in quantum theory
would be more complicated, a ‘quantum body’ should still be regarded as a
collection of some sort, plus something which expresses the ‘structural’ charac-
teristics. But to express this structural aspect is far from be a simple task. Of
course, it is well known from our knowledge of isomers that collections of ‘iden-
tical’ atoms may yield completely different substances, as for instance C2H6O
may stand for both CH3 − CH2 −OH, the ethylic alcohol and H3C−O− CH3,
the methylic ether. But, to consider collections is a first step in this direction.
Then, setting aside all the details and paying attention just to these collections,
even so we find them quite distinct from standard sets. One of the most basic
characteristics of such collections (which would stand for the B in Noll’s defini-
tion) is that certain elements can be exchanged without altering the collection.

41See Ignatieff 1996, Chap. 9.
42Toraldo di Francia 1990, p. 17.
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In other words, the Indistinguishability Postulate (IP) should hold and hence
such collections should satisfy the basic quantum situation, nicely expressed by
Roger Penrose that

“according to the modern theory [QM], if a particle of a person’s
body were exchanged with a similar particle in one of the bricks of
this house then nothing would have happened at all”.43

The next theorem is the quasi set version of this principle and constitute an
important step to see quantum bodies as entities like Noll’s bodies.

Theorem 23 [Unobservability of Permutations] Let x be a finite qset such that
x 6=E [z] and z an m-atom such that z ∈ x. If w ≡ z and w /∈ x, then there
exists w′ such that

(x− z′) ∪ w′ ≡ x

Proof: Case 1: t ∈ z′ does not belong to x. In this case, x− z′ =E x and so we
may admit the existence of w′ such that its unique element s does belong to x
(for instance, s may be z itself); then (x− z′) ∪ w′ =E x. Case 2: t ∈ z′ does
belong to x. Then qc(x−z′) =E qc(x)−1 by the above Theorem (17). Then we
take w′ such that its element is w itself, and so it results that (x−z′)∩w′ =E ∅.
Hence, by Q25, qc((x − z′) ∪ w′) =E qc(x). This intuitively says that both
(x − z′) ∪ w′ and x have the same quantity of indistinguishable elements. So,
by applying Q27 (see above), we obtain the result.

Supposing that x has n elements, then if we ‘exchange’ their elements z
by correspondent indistinguishable elements w (set theoretically, this means
performing the operation x− z′ ∪w′), then the resulting qset remains indistin-
guishable from the original one. In a certain sense, it is not important, from
a pragmatic point of view, if it is either x or x − z′ ∪ w′ that we are dealing
with. If this result can help in some discussion on reidentificability or is a kind
of discussion we leave to the reader.

3.7 The Axiom of Choice

Finally, the theory Q can be supplied with a version of the axiom of choice:

(Q28) [The Axiom of Choice]

∀Qx(E(x) ∧ ∀y∀z(y ∈ x ∧ z ∈ x → y ∩ z =E ∅ ∧ y 6=E ∅) →
∃Qu∀y∀v(y ∈ x ∧ v ∈ y → ∃Qw(w ⊆ [v] ∧ qc(w) =E 1 ∧ w ∩ y ≡ w ∩ u)))

Intuitively speaking, if x is a qset whose elements are disjointed non empty
qsets, then there exists a qset u such that for every y ∈ x and v ∈ y, u has as
element an indististinguishable from v (which is expressed by the last part of

43Penrose 1989, p. 360.
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the axiom). In other words, we may form a qset which has elements indistin-
guishable from the members of the elements of x. Using Russell’s well known
example of the pairs of socks, we are not collecting in the ‘choice qset’ u one
element of each pair of socks, but a sock indistinguishable from one of the el-
ements of each pair of socks (which of course may be one of them, but we can
never prove that). This is closer to what happens with bodies in general (and
with persons in particular) if we consider what has been said about personal
identity; we cannot strictly ‘prove’ that a certain person we are seeing now is
the same one we saw yesterday; as Hume has already shown us, the only we
can say us that we have a propensity (or a custom) to call that person we are
seeing now with the same name we have used before (Hume 1985). Standard
mathematics masks this discussion due to extensionality, but maybe quasi set
theory can provide the tools for a new discussion.

Of course the discussion could be further explored in several points. For
instance, since the idea of a strong singleton of x gives a qset with just one
indistinguishable from x, then apparently we could think of using such a qset
in whatever sentence involving one x. In other words, the existence of such
strong singletons could act in the theory as Hilbert’s ε-symbol, which (as it is
well known) entails that the sentence which expresses the axiom of choice is a
theorem of standard set theories. So, perhaps some form of the axiom of choice
would be a necessary resulting fact of whatever theory involving indistinguisha-
bility. But this is a matter for future analysis. Anyway, such responses would
require that collections of m-atoms could be constructed in the theory, and the
above axioms do not postulate the existence of Urelemente. Let us comment on
this point a little bit next. Finally, let us remark that we can’t agree that the
Urelemente can fit adequately quantum objects. Although invariant by the ac-
tion of automorphisms, Urelemente can be seen as sets of the same rank, and are
consequently distinguishable from the ’outside’, that is, in a model of ’pure’ set
theory where ZFU is interpreted (which is possible due to their equiconsistency).

3.8 Remark on the existence of atoms: the theory Qm

The reader for sure has noted that in Q we have not postulated the existence
of atoms. This is in accordance with the most theories involving Urelemente.
But for the purposes of physics it seems that the existence of such entities (so
as of collections of them) would be interesting and even necessary. If necessary
for particular applications, we can add to our theory an axiom saying explicitly
that (say) qsets of m-atoms exist; let us call Qm such a variant of the above
theory. So, its specific axiom would be

[Axiom of Qm] ∃Qx(x 6= ∅ ∧ ∀y(y ∈ x → m(y)))

Of course the existence of such collections should be explored, but we shall
not develop the theory Qm here. Anyhow, it is patent that specific qsets of
m-atoms can be obtained if necessary, although we guess that in this case (that
is, by considering the theory Qm), the relative consistency to Zermelo-Fraenkel
(as described below for Q) cannot be obtained.
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4 Relative Consistency

Let us come back to the theory Q. In the preceding sections we have seen that
there is a ‘copy’ of ZFU in Q. This proves that if Q is consistent, so is ZFU
(and, hence, so is ZF) (see Figure 1); now let us see what happens in considering
the other way around. We shall see that there is a sense in saying that we can
‘mimic’ the behaviour of quasi sets in ZF (hence in ZFU).44 This of course does
not show that all we can do in Q can also be done in ZF (or in ZFU), as we shall
see below, for in classical mathematics we can’t deal with indistinguishable but
not identical objects, except if we relativise the discussion to a certain structure.
That is to say, the most we can say is that a and b are indistinguishable relative
to a structure A (for instance, a and b are indistinguishable in A if and only
if they are invariant under automorphisms of A).45 But even in this case a
and b are objects of the universe of ZF, hence they are individuals in the sense
of obeying the classical theory of identity, despite their distinction can’t be
done within the structure. In quasi-set theory, the existence of objects which
are indistinguishable from the point of view of the whole theory, that is, from
the point of view of the whole model of Q is allowed, contrary to classical
mathematics.

In the remaining of this section, we shall be working in ZFC. Let m be a non
empty set and let R be an equivalence relation on m. The equivalence classes
of the quotient set m/R are denoted by C1, C2 . . .. If x ∈ m, define x̂ = 〈x,Cx〉,
where Cx is the equivalence class to which x belongs and call m̂ the set of all x̂
with x ∈ m.

Let X be the set X = m̂∪M , where m̂ is as above and M is a set such that
m̂ ∩M = ∅ and rankm̂ = rankM .

Then we define a superstructure Q over the set X, called the Q-set universe
(see Figure 2). As we will see, Q acts as a ‘model’ for the quasi-set theory Q.
The definition is as follows:

Q0 =df X

Q1 =df X ∪ P(X)
...

Qλ =df

⋃
β<λ Qβ if λ is a limit ordinal

Q =df

⋃
α∈On Qα.

44If is left open whether the same can be said concerning the theory Qm. We guess that
this theory cannot be embedded in ZFC.

45See Krause and Coelho, forthcoming. Roughly speaking, inside the structure some ele-
ments may be invariant by automorphisms, so ‘indistinguishable’ from the point of view of the
structure according to the standard definitions ibid.. But even so they can be distinguished
from the outside since in the Zermelo-Fraenkel universe they are always distinguishable, as we
have insisted above; for instance, add to the structure the singletons of these elements, which
suffice to make the distinction.
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Figure 2: Simulatin qsets in V (the ZFC-universe). The elements of m –dashed
lines– are outside Q.

In accordance with the terminology of Q, the elements of M are called M -
atoms, M -elements or M -objects, while the elements of m̂ are called m-atoms,
m-elements or m-objects. The final goal is to interpret the basic elements of Q
in the corresponding objects in Q.

For the sake of simplicity, we introduce another superstructure which we will
call Qs, constructed in a similar way as Q above but having only the set M as
its ‘ground’ basis instead of the whole set X. The sets of Q (that is, those x
that satisfy the predicate Z(x)) will be the only elements of Qs.

Now we define a translation from the language of Q into the language of
ZFC. But firstly let us define on the quotient set m̂ the following relation, which
is an equivalence relation, as it is easy to see:

x̂ ∼ ŷ iff Cx = Cy. (4.1)

If x̂ ∼ ŷ, we say that x and y are indistinguishable. We note that this identi-
fys x and y by means of the class (or ‘state’, or ‘sort’) they are in, represented by
the equivalence classes they belong to, and this is done without direct reference
to the objects themselves, which lie outside the structure Q.46 This approach
is essentially Weyl’s idea of ‘aggregates’ of individuals, a concept he showed to
be important in quantum mechanics as well as in chemistry and biology, as we
have seen before.

Let us now turn to the translation. Suppose that A is an atomic formula
46Recall that the rank of the elements of bm are lower that the rank of bm, hence of the

elements of X. See Figure 2
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of the language of Q; let us call A′ its translation into the language of ZFC.47

We suppose that all those sets (of ZFC) involved in the definition below belong
to Q and that the quantifiers are restricted to this class. Then, the translation
says:

(i) If A is m(x), then A′ is x ∈ m̂.

(ii) If A is M(x), then A′ is x ∈ M

(iii) If A is Z(x), then A′ is x ∈ Qs ∧ x /∈ M

(iv) The translation of the term qc(x), is card(x), the cardinal of the set x.

(v) If A is x ≡ y, then A′ is (x ∈ m̂ ∧ y ∈ m̂ ∧ x ∼ y) ∨ x = y)

(vi) If A is x ∈ y, then A′ is x ∈ y

The other formulas are translated in the usual way. By means of the above
procedure, the definitions of Q can be translated into ZFC. Let us give some
examples:

1. In Q, a quasi-set is an object which is neither an m-atom nor an M -atom.
The formal definition is Q(x) =df ¬(m(x) ∨ M(x)), as we have seen. Due to
the translation, in ZFC this simply means that x ∈ Q but neither x ∈ m̂ nor
x ∈ M . That is, a set, which in ZFC ‘represents’ a quasi-set, is a set of the class
Q that neither belongs to M nor is an ordered pair of the form 〈x,Cx〉.
2. In Q, the ‘pure’ quasi-sets are those quasi-sets whose elements are only
m-atoms. In the present case, they are interpreted (in ZFC) as subsets of m̂.
Furthermore, in Q we define a classical object as an x which obeys the predicate
C defined by C(x) =df M(x) ∨ Z(x). This simply means that x is either an
element of M or of Qs.

3. Quasi-set inclusion is defined as in ZFC;48 so, its translation coincides with
the standard inclusion of sets in such a theory.

4. Extensional Equality expresses (in ZFC) the usual identity governed by the
axiom of extensionality (in the case of sets) or the identity of the elements of
the set M .

Now we should turn to a detailed translation of the axioms of Q so that
the translated formulas can be proven to be theorems of ZFC. Those axioms
of Q which are adaptations of the axioms of ZFU have obvious translations.49

We remark that, in Q, the Axioms of Indistinguishability state that ≡ has
the properties of an equivalence relation. If we consider the above translation,

47We use x, y, . . . as individual variables in both theories.
48That is, x ⊆ y iff ∀z(z ∈ x → z ∈ y).
49In the present case, the elements of X play the rôle of the Urelemente in Q: the elements

of bm act as the m-atoms while those of M act as the atoms in ZFU.
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it is easy to see that the images of the pairs 〈x, y〉 such that x ≡ y define
an equivalence relation in ZFC.50 Concerning the extensional identity, since it
means no more than the usual identity for certain sets of ZFC, it results that
the substitutivity law is also valid. So, the translations of the axioms (Q1)
throughout (Q4) are true in ZFC.

The other axioms of Q and their translations can be dealt with according to
the above definitions. Then, by careful checking, we can realize that all these
translations are true in the defined model.51

What is the meaning of this result? We have constructed in ZFC a kind of
internal model for quasi-set theory. Hence, if ZFC is consistent, so is Q. Does
this result entail that quasi-set theory is not necessary and that all can be done
within classical mathematics, so apparently contradicting what we have said
above? Of course this could be said, but it would be a complete misleading,
a wrong interpretation of all we have done. Let us explain a little bit what is
going on.

An important distinctive feature of the ‘model’ Q is that the rank of the sets
x and y are smaller that the rank of the elements of the set X (X = m̂∪M) which
is the ground set of the structure.52 In other words, x and y (being elements of
the set m) are outside the model Q; hence, we cannot talk about neither their
identity nor about their diversity within Q, so respecting the basic idea involving
quasi-sets. But of course we can do this from the outside, for instance in the the
standard model V = 〈V,∈〉 of ZFC, in the same vein as we can talk about the
identity and about the diversity of two electrons in the natural language (say,
English), despite this does not make much sense in quantum mechanics, as we
have seen.53 But when we look inside Q and ask for its internal logic, then
of course it cannot be classical logic. This kind of logic we call non-reflexive,
meaning a logic in which the ‘traditional’ (Leibnizian) theory of identity of
classical logic does not hold in full. The meaning of this expression ‘internal
logic’ can be seen exactly in the same sense as when one asks for the internal
logic of a topos in category theory. There, as it is well known, it is said that
such a logic is intuitionistic logic, since the partially ordered sets of ‘sub-objects’
of a given ‘object’54 is not a Boolean algebra, but a Heyting algebra.55 That
what happens with collections of indistinguishable things, like quantum objects,
is in a certain sense analogous to what happens with toposes, although in the
first case we are dealing with empirical sciences, while in the second just with
mathematical objects. But a remark made by Hatcher can be applied here;
paraphrasing him, we may say that we can study quasi-sets (as collections of

50In saying that, of course we intend to say that the properties which define an equivalence
relation hold for the defined relation. From now on, we shall not make more qualifications
like this one, asking for the reader’s patience concerning the language we use.

51An example of this work for an early version of the quasi-set theory is given in da Costa
and Krause 1999.

52Let us recall that the rank of a set A is the least ordinal α such that A ⊆ Vα.
53As Schrödinger says, this talk should be understood as ”an abbreviation of speech” –

Schrödinger 1952, p. 17.
54This terminology came from category theory.
55See Hatcher 1982, p. 303.
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non-individual quanta) from the set-theoretical point of view, as the physicist
does when he uses classical mathematics. But this is the external logic, which
can be chosen to be, as Hatcher says, “anything we choose it to be”;56 but
the internal logic of quasi-set theory (hence, of the structure Q) is a kind of
non-reflexive logic, in the sense suggested in this chapter.57 Furthermore, if
we consider the theory Qm introduced above, which postulate the existence of
qsets of m-atoms, the above translation doesn’t work, and we guess that no
translation from (the languages of) Q to ZFC can be defined at all. So, if this is
the case, Qm is not equivalent to ZFC. The search of such a translation is still
an open problem.

Anyhow, even keeping within Q, if someone would like to dismiss it by
saying that due to the above result it doesn’t differ from ZFC, we recall that
intuitionistic logic has also an interpretation in modal logic S4, but for sure we
will not say that intuitionistic logic has not its intrinsic merits due to this fact.
We shall show other kind of advantages of Q in the next sections. But before
that, let us have a contact with quaset theory, for it may helps in fixing the
ideas.

5 Quaset ideas in Quasi-Set Theory

As we have mentioned in the Introduction, M. L. Dalla Chiara and G. Toraldo di
Francia have proposed a quaset theory with the aim of discussing controversial
issues involving semantics for the languages of scientific theories about ‘the
infinitely large’ (astrophysics) and ‘the infinitely small’ (microphysics). Here,
we shall make some few remarks on their ideas regarding microphysics only.58

Some of the basic facts of microphysics, as the authors observe, are the fol-
lowing (here mentioned without justification):59 in microphysics, there are no
proper names, because the objects of this domain are described only nomo-
logically, that is, they are given by physical law, in the sense that they have
fixed and prescribed characteristics. Contrary to standard ’usual’ objects of
our surroundings, to which we attribute properties after analysis, the objects
of microphysics, to which we have no ’direct’ access, so to say, are born with
theory, having their characteristics given by the laws of physics. It is a fun-
damental principle of quantum mechanics, they say, that two micro-particles
of the same kind (e.g., two electrons) are absolutely indistinguishable in their
physical properties (which do not include location in space-time). According to
them, two such particles cannot have ’names’ that act as rigid designators. In
this realm, there is no trans-world identity, which means that the very notion
of a rigid designator becomes completely useless, or fuzzy at least.

56Op. cit., p. 303.
57The terminology ‘non-reflexive’ came from the fact that since x = y is in general not a

formula, the reflexive law of identity (sometimes called Principle of Identity) ∀x(x = x) does
not hold at all.

58For a detailed review, see Cocchiarella 1995.
59The interested reader should have a look in their papers mentioned in the references. See

also French & Krause’s forthcoming book.
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The notion of a quaset is introduced to deal with the idea that electrons of a
particular atom have a cardinality but, since they are indistinguishable, it is not
possible to count (or well-order) them. So, the authors introduce the notion of
a quaset, which is a collection of elements that are to be indistinguishable from
(but not identical to) one another. A quaset, according to them, sometimes
can “mimic some properties of a classical body”, namely, when are situated in
isolation in space and, in this case, can bear a name, although such a name
has nothing to do with substantiality. The basic underlying idea is that entities
like electrons, as a natural kind, can be characterized intensionally (through a
theoretical description of the properties electrons have essentially, that is, nomo-
logically), but not extensionally, or at least, “not by giving the term ‘electron’
its extension in an ordinary way”, as they say. According to them, what we
find in nature are electron quasets and not electrons proper, which means that
“the extension of the natural kind ‘electron’ can be defined as a quaset whose
subquasets are all the electron systems that can be detected experimentally”. In
this regard, “the intension of a particle term determines—at least in principle—
an extension of the term”, and we arrive at a situation that is “usually believed
to be impossible in classical semantics: different extensions can correspond to
one and the same intension”.

Let us have a general look on their quaset theory, here not presented in its
original formulation.

5.1 The quaset theory

The theory QST to be described below is a slight modification from the original
one, already involving some terminology taken from quasi-sets (for instance, we
use the term ’quasi-cardinal’); the formulation below is based on Dalla Chiara,
Giuntini & Krause’s paper (1998). QST is formalized in classical first order
logic with identity (which is dealt with as a logical constant), and its language
contains the following primitive non-logical concepts:

(i) One monadic predicate: urobject (O);

(ii) Three binary predicates: the positive membership relation (∈), the negative
membership relation (/∈), and the inclusion relation (⊆). In the intuitive inter-
pretation , x ∈ y (x /∈ y) is read as ‘x certainly belongs to y’ (‘x certainly does
not belong to y’) (see the explanation below);

(iii) A unary functional symbol: the quasi-cardinal of (qcard);

(iv) A binary functional symbol: the quaset-theoretical intersection (u).

Restricted quantifiers are assumed as in the theory Q (although with differ-
ent predicates). Further, the quantifier ‘there exists exactly one’ (∃!) is under-
stood as defined in the usual way.

We will present here only the minimal axiomatic nucleus of the theory. The
notion of quaset is defined as follows:
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Definition 24 (Quaset) A quaset is something that is not an urobject. In
symbols,

Q(x) := ¬O(x).

Then, the basic idea of a quaset is that of a collection of objects which has
a well-defined cardinal, but in such a way that there is no way to tell (with
certainty) which are the elements that belong to the quaset. The primitive
predicates ∈ (the positive membership) and /∈ (the negative membership, which
is not the negation of the former) help in expressing this. The postulates, to
be stated below, imply that z ∈ y entails ¬z /∈ y, but not the converse. So,
it may be the case that it is false that z certainly does not belong to y, but
this does not entail that z (certainly) belongs to y. The elements z for which it
may be said that ‘it is false that they certainly do not belong to y’ might act
as members in potentia of y.60 Since the cardinal of the quaset is well defined,
there is a kind of ‘epistemic’ indeterminacy with respect to the elements of a
quaset.61 The postulates below provide the grounds for the whole theory:

Ax1 All that has elements is a quaset: ∀x∀y(y ∈ x → Q(x)).

Ax2 The inclusion relation ⊆ between quasets is a partial order (reflexive,
symmetric and transitive).

In the intended interpretation, ⊆ has an intensional meaning: x ⊆ y can be
read as ‘the concept x involves (or implies) the concept y’.62

Ax3 Suppose that something certainly does not belong to a given quaset. Then
it is not the case that it certainly belongs to our quaset, but generally not the
other way around: ∀x∀y(x /∈ y → ¬x ∈ y).

As a consequence, a strong tertium non datur principle (x ∈ y∨x /∈ y) fails,
and this opens the door for indetermined membership relations (as they say, ”in
accordance with the quantum uncertainty relations (op. cit.)).

Ax4 Intensional inclusion implies extensional inclusion (but not the other way
around):

∀x∀y(x ⊆ y → ∀z(z ∈ x → z ∈ y) ∧ (z /∈ y → z /∈ x))

Ax5 Any quaset has exactly one quasiextension, where the quasiextension of a
quaset x is the unique quaset that certainly contains all the elements of x and
certainly does not contain all the other entities:

∀Q∃!Qy∀z((z ∈ y ↔ z ∈ x) ∧ (z /∈ y ↔ ¬z ∈ x))

Axiom 5 justifies the definition of a unary functional symbol ext (the quasiex-
tension of x). —Definition 3.2

60Dalla Chiara and Toraldo do Francia do not use this terminology.
61This makes a distinction to quasi-sets, where the indeterminacy is ontological, in the sense

that the objects being considered (the m-atoms are in some sense veiled ; see Krause & French
1999.

62See also Dalla Chiara 1987.
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Definition 25 (The quasi-extension of a quaset)

∀x∀y(y = ext(x) ↔ ∀z(z ∈ y ↔ z ∈ x) ∧ (z /∈ y ↔ ¬z ∈ x))

Definition 26 Sets are quasets that are identical with their quasiextension.

One can easily show that sets satisfy the Extensionality Principle. The
extension of an empty quaset (which turns out to be trivially a set) is postulated.

Ax6 [The empty quaset] There exists a quaset that necessarily does not contain
any element: ∃Qy∀x(x /∈ y).

QST contains a copy of ZF (Zermelo-Frankel set theory), obtained by re-
stricting the the universe of quasets to sets only. For any formula A of ZF, let
Az be the corresponding formula of QST relativized to sets. Then,

Ax7 If A is any instance for an axiom of ZF , then Az is an axiom of QST .

The notion of quasicardinality of a quaset is introduced as follows:

Ax8 Any quaset has a unique quasicardinal, which is a cardinal number:

∀x∃!y(card(y) ∧ qcard(x) = y)

A similar remark we have made concerning quasi-sets is in order here in
regarding quasi-cardinals and ordinals, for (roughly speaking) since the quasi-
cardinal of a quaset, being a ’standard’ cardinal, is an ordinal, and hence quasets
do have ordinals. Dalla Chiara and Toraldo di Francia do not discuss this ques-
tion, but we think that the same remarks we have done with respect to quasi-sets
apply also here, namely, that the corresponding ordinal is not something which
can be described by the axioms of the theory. It might exist only ’outside’
quaset theory, but this point of course needs explanation.

Ax9 Quasicardinals and cardinals coincide for sets:

∀x(Z(x) → qcard(x) = card(x))

Ax10 The quasicardinal of a subquaset is less or equal than the quasicardinal
of the whole quaset:

∀x∀y(x ⊆ y → qcard(x) ≤ qcard(y))

Ax11 The quasicardinal of a quaset is greater or equal than the quasicardinal
of its quasiextension:

∀x(qcard(x) ≥ qcard(ext(x)))

Ax12 u represents a weak conjunction for quasets. This weak conjunction
coincides with the usual set-theoretical intersection in the case of sets:

∀x∀y((x u y ⊆ x ∧ x u y ⊆ y) ∧ (Z(x) ∧ Z(y) → x u y = x ∩ y))



Quaset Ideas in Quasi-Set Theory 35

As a consequence, a separation procedure may be applied. Notice that our
axioms do not require that proper quasets (that are not sets) exist. From an
intuitive point of view, the quasiextension of a proper quaset does not represent
an adequate semantic counterpart for the usual notion of extension. Think for
instance of the fact that the quasiextension a quaset, whose quasicardinal is
greater than 0, might have an empty quasiextension.

It should be of course interesting to follow Dalla Chiara and Toraldo di
Francia’s use of quasets in their semantic analysis of physics, but this will be not
made here. Let us focus just on a minor but interesting point: what can be said
about the validity of Leibniz Principle in this theory? Are non-identical objects
always distinguished by a property, represented by a quaset? As expected, the
answer is in the negative. Namely, the implication

¬x = y → ∃Qz(x ∈ z ∧ y /∈ z)

generally fails, and so the classical set-theoretical argument founded on the
theorem of ZF:

¬x = y → x ∈ {x} ∧ y /∈ {x}
cannot be repeated here, for nothing guarantees that the singleton of x (which
should be the characteristic property of x) exists and that x certainly belongs
to it.

5.2 Quasets within Q

As we have seen, in quaset theory there are two basic membership relations;
x /∈ y is read ‘x certainly does not belong to y’ and x ∈ y is read ‘x certainly
belongs to y’. The interesting fact, as we have seen, is that x /∈ y is not the same
as ¬(x ∈ y). Here, to avoid difficulties with the terminology, we shall introduce
the following definitions, given in Q.

Definition 27 xεy =df ∃z(z ∈ y ∧ z ≡ x)

So, its negation x 6 εy reads ∀z(x ∈ y → z 6≡ x). In this case, following
the terminology of quaset theory, we say that x certainly does not belong to y,
and that it certainly belongs to y otherwise. Intuitively, we may say that when
zεy, there are ‘traces’ of x in y, for there are indistinguishable from x in y. By
using the above concept, we can introduce something like the dual of the quasi-
extension of a quaset; there, the quasi-extension of a quaset x was defined as
the collection of all objects that certainly belong to x. Now, we can introduce
what we can call the fuzzy complement of x relative to a certain previously
given quasi-set z (such that x ⊆ z) to indicate the collection (quasi-set) of the
elements of z for which we cannot affirm that they certainly do not belong to
x; if we call Clz(x) such a quasi-set (the cloud of x relative to z), then:

Definition 28 (The Cloud of x relative to z) Clz(x) =df [t ∈ z : tεx]



Quaset Ideas in Quasi-Set Theory 36

The elements of z for which we can’t ensure that they certainly do not
belong to x may be said to be ‘elements in potentia’ of x, as in Dalla Chiara
and Toraldo di Francia’s quaset theory, as we have mentioned earlier. This qset
z may also be said to be the environment of x, that is, the ‘place’ from where x
can exchange its elements. We remark that since x may be a subqset of distinct
z’s, by making he variable z to range on a certain collection of qsets, the quasi-
cardinal of the cloud of x remains undetermined.63 Furthermore, we can define a
quasi-function a† : z 7→ z as follows: a† associates to w a qset whose elements are
indistinguishable from the elements of x and whose quasi-cardinal is qc(w) + 1,
which can be done for considering w the cloud of some x for suitable z’s. In
the same way, we may define a quasi-function a which intuitively decreases the
quasi-cardinal of x of one unity, among other possibilities. It is clear that these
quasi-functions act as the creation and the annihilation operators in quantum
field theory, but this parallel shall be not pursued here.

It is easy to prove for instance the following results:

Theorem 29 If x ⊆ z, then:

(a) ∀Qx∀Qz(Clz(x) =E

⋃
t∈x[t] ∩ z)

(b) Clz(∅) =E ∅ and Cl∅(x) =E ∅
(c) For every z, Z(x) → Clz(x) =E x

The concept of the cloud of a qset suggests the idea that a qset x is something
in between its extension Ext(x), namely, the qset of the objects that certainly
belong to x and its cloud Clz(x) for some z. Due to the fact that we can’t
identify the elements of a pure qset, we may say that a qset is not strictly
determined by its elements, hence, some degree of intensionality is also present
here, as remarked by Dalla Chiara and Toraldo di Francia in regarding their
quasets.

The concept of the cloud of x may be useful also for the understanding of
some basic facts about quasi-sets, since it gives us an interpretation of what
means to say that a certain non-individual belongs to a certain collection of
entities. Think for instance of a finite quasi-set x whose elements (by simplicity)
are indistinguishable m-atoms. Then the axioms of the theory Q tell us that
there is a quasi-cardinal which stands for the number of elements of x. But since
these elements don’t have individuality, how can we verify if a certain object,
say t, either belongs to x or not? First of all, we should remark that t, as used
here, cannot be understood as a proper name of an m-atom, for we can’t reason
in quasi-set theory according to our standard (‘classical’) ways of reasoning; one
thing is to discuss the concepts in the metalanguage, which is ‘classical’, and
where we can talk about ‘this’ or ‘that’ m-atom. But in order to be precise, we
need to look at the right formulas written in the language of Q. In the present
case, to say that (a certain) t does belong to x is to say that there is something

63This can be useful in discussing quantum field theories, that is, when there are ’virtual’
particles involved.
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like t in x which behaves as we expect t do behave: in our terminology, we say
there is an element indistinguishable from t in x, that is, tεx.

The above theorem about the Unobservability of Permutation also helps
in fixing this interpretation. Let us recall that this theorem says intuitively
that if we exchange an element of x with an indistinguishable one, then the
resulting qset is indistinguishable from the original one. The axioms of Q state
that the membership relation ∈ behaves as in standard set theories, contrary
to what happens in the theory of quasets, but due to the non-individuality of
the m-atoms, we cannot have, say, a decision procedure (even for finite sets) for
checking either a certain element does belong to a qset or not. The axioms act
always in the conditional form: if a certain object belongs to a certain qset,
then this or that. The concept of the cloud of a qset expresses the idea of a
collection (the Cloud) of those elements of which it is false to say that they
certainly do not belong to the considered quaset.

Since the m-atoms do not have individuality, then there is still a certain
epistemic indeterminacy whether a certain element belongs to a certain qset or
not; all we can say is that there may be traces of something which behaves like
such an element in the collection, but we never can say that we are talking about
that element. We have always elements (this is particularly important for non-
individual entities) which ‘could be’ in x, but we cannot affirm that they really
are or are not elements of x, since there may be elements indistinguishable
from them in x which play the same role. In quasi-set theory, as in quaset
theory, the quasi-cardinal of a quasi-set is well determined, but now, since the
quasi-set x may be a subset of some z, then we can’t affirm the same about
the quasi-cardinality of the cloud of x, except if we fix the qset z. But, if in
the expression Clz(x) the variable z remains free, then the quasi-cardinal of the
collection remains undetermined.

Of course, the idea of the cloud of x may suggest several applications, but
in what follows we shall explore the idea that the quasi-cardinal of a quasi-set
may be not well defined. Perhaps there is a link here with the idea of virtual
particles and with quantum field theory, as antecipated by Toraldo di Francia,64

although he has spoken in terms of quasets. Really, in quantum field theories
even the quantity of elements in a certain state might be undermined due to
the creation/annihilation processes, so in certain situations even the cardinal
of the collections might be not defined (see below). To give a short account
to such a situation, let us modify the theory Q by exchanging the axioms for
quasi-cardinals in order to give a sense in saying that the quasi-cardinal of a
quasi-set may vary in time. We shall to it in the next section.

6 Changes in Time: the theory Qt

The intended interpretation of the m-atoms of our theory as elementary particles
gives the idea that the qsets would stand for certain ‘states’ in which these
particles might be. Of course this is a problematic question, for we need to

64Toraldo di Francia 1978.
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explain the meaning of the term ‘state’, and this is not so easy to do, even in
quantum theory. But even without a detailed discussion, some aspects of this
idea might be captured by our formalism and in describing this point we will
have the opportunity of mentioning some of the philosophical and mathematical
difficulties one has to describe in ‘set-theoretical’ terms collections of particles
when other assumptions are considered, as for instance, the existence of virtual
particles.

Dalla Chiara and Toraldo di Francia have suggested that the cardinality of
a quaset may vary in time, although they have not developed such an idea.
Of course the same might be said for the quasi-cardinal of a quasi-set. Let us
consider this possibility in this section by considering how it is possible to map
‘the changes in time’ of Weyl’s aggregates65 into the scope of quasi-set theory.

Hermann Weyl has considered the mathematical treatment of finite collec-
tions of objects so that, intuitively speaking, each one of the elements may be in
a certain ‘state’ and that the only information we may have concerns the num-
ber of elements of the whole collection (the aggregate) there are in each state,
but so that there is no possibility of identifying the elements that belong to each
particular state. The fundamental idea concerning Weyl’s ‘effective aggregates’
cannot be accurately described within the scope of classical theory of sets since
a set is a collection of distinguishable objects and, so, it should not be possible
to maintain the idea that the elements that belong to a certain state should be
not (even in principle) distinguished from one another.

In our theory, the effective aggregates in Weyl’s sense may be considered
as qsets x/≡ (the quotient of x by the indistinguishability relation), where x
is a pure qset, that is, a qset containing only m-atoms as elements. That is
to say, the states can be viewed as the equivalence classes of elements of x by
the indistinguishability relation; since the full concept of identity lacks sense for
the m-atoms, only their quantity in each ‘state’ (that is, the quasi-cardinality
of each equivalence class) may be known, and this conforms to Weyl’s intuitive
ideas.

But in doing so we are considering such aggregates only ‘statically’, that is,
without considerations regarding the possibility that the quantity of elements
in a state may vary in time. However, Weyl did consider this possibility:

“As long as elements are capable of discrete states only, we are forced
to dissolve time into a succession of discrete moments,

t = . . . ,−2,−1, 0, 1, 2, . . . .

Transition of the system from its state at the time t into its state at
time t + 1 will then be a jump-like mutation. With the n elements
individualized by the labels p, the changing state of affairs will be
described by giving the state C(x; t) of the element p at the time t as
a function of p and t. This ‘individual’ description, by means of the
function C(x; t), is to be supplemented by the principle of relativity

65Weyl 1949 , App. B; see also Krause 1991.
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according to which the association between the individuals and their
identification marks p is a matter of arbitrary choice; but it is an
association for all time, and once established it is not to be tempered
with. If, on the other hand, at each moment attention is given to
the visible states only, then the numbers n1(t), . . . , nk(t) in their
dependence on t contain the complete picture –however incomplete
this information is from the ‘individualistic’ standpoint. For now
we are told only how many elements, namely ni(t), are found in the
state Ci at any time t, but no clues are available whereby to follow
up the identity of the n individuals through time; we do not know,
nor is it proper to ask, whether an element that is now in the state,
say C5, was a moment before in the state C2 or C6. The world is
created, as it were, anew at every moment, no bond of identity joins
the beings present at this moment with those encountered in the
next. This is a philosophical attitude towards the changing world
taken by the early Islamic philosophers, the Mutakallimûn. This
non-individualizing description is applicable even if the total number
n1(t) + · · · + nk(t) = n(t) of elements does not remain constant in
time”.66

It is possible to map these ideas into the scope of our formalism if we modify
conveniently the theory Q. Let us call Qt the theory obtained by modifying the
language of Q as follows. The new language encompasses the following:

(i) two additional binary predicate symbols: < and =t;

(ii) a binary functional symbol: tcard ;

(iii) a ternary predicate symbol: ε;

(iv) a denumerably infinite collection of variables of ‘second species’: t′, t′′, . . ..
The individual variables of the language of Q will be called variables of first
species and the functional symbol qc does not appear in this new language.

We use x, y, . . . and t, t1, . . . as syntactical variables ranging over the collec-
tions of variables of first and of second sort respectively. The variables of second
kind are called ‘time variables’.

Among the terms, we have now the following additional ones: if x and t
are variables of first and of second species respectively, then tcard(x, t) is also
a term.

The set of atomic formulas is increased by the following, where x and y are
variables of first species and t1 and t2 are variables of second species: ε(x, y, t),
t1 < t2 and t1 =t t2.

The formulas in general are defined by the usual procedures, by observing
that we now are dealing with a two sorted language. The new terms and atomic
formulas may be intuitively thought of in the following sense: t1 < t2 says that

66Weyl op. cit., pp. 242-3
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time t1 precedes time t2 in the order <; ε(x, y, t) will be written x ∈t y and
means that x is an element of y at the time t. Finally, the term tcard(x, t)
stands for the quasi-cardinal of the quasi-set x at the time t.

The postulates of Qt are essentially those of Q (alternatively, we could use
Qm instead), but instead of the axioms for qc, we have the similar axioms for
tcard (see below), plus the following ones (we recall that by the definition of
atomic formulas, < and =t must be flanked by time variables only):

(T1) < is irreflexive, anti-symmetric and transitive

(T2) =t is reflexive and obeys the substitutivity principle

These axioms impose the usual interpretation on the time relations, and
time may be thought of as a succession of discrete moments. (T2) says that
=t is like classical identity for instants of time. Then, a time variable t may be
thought of as ranging over a totally ordered set of instants of time. Obviously,
alternative approaches are possible; for instance, instead of a totally ordered set
(which may be discrete), we could postulate that the set of instants of time is
a complete ordered field, as for instance the set of reals. In this way, we could
talk about an ‘interval’ of time in the usual intuitive sense, as for instance a
closed interval of the real number line. For such an alternative, it is sufficient to
change the axioms (T1) and (T2) above by the axioms for a complete ordered
field, plus an obvious adaptation of the language.

The axioms for the concept of tcard are essentially those we used for qc,
with adaptations to the case we are considering here, that is, the fact that the
primitive concept of cardinal is now a binary functional symbol whose first and
second arguments must be occupied respectively by variables of first kind and
by time variables. We recall that card(x) stands for the cardinal of the set x,
defined in the ‘classical part’ of the theory, ∃! means ‘there is exactly one’, Cd(y)
stands for ‘y is a cardinal’ (also defined in the qset copy of ZFU), [x] denotes
the qset of the objects which are indistinguishable from x (which in general has
more than one element) and P(x) is the power-qset of x. The axioms are the
following:

(Q18t) ∀Qx∀t(¬Q(x) → tcard(x, t) =E 0)

(Q19t) ∀Qx∀t∃!y(Cd(y) ∧ y =E tcard(x, t) ∧ (Z(x) → y =E card(x)))

(Q20t) ∀Qx∀t(x 6=E ∅ → tcard(x, t) 6=E 0)

(Q21t) ∀Qx∀t(tcard(x, t) =E α → ∀β(β ≤ α → ∃Qy(y ⊆ x∧ tcard(y, t) =E β))

(Q22t) ∀Qx∀Qy∀t(y ⊆ x → tcard(x, t) ≤ tcard(x, t))

(Q23t) ∀Qx∀Qy∀t(Fin(x) ∧ x ⊂ y → tcard(x, t) < tcard(y, t))

(Q24t) ∀Qx∀Qy∀t(∀w(w /∈ x ∨ w /∈ y) → tcard(x ∪ y, t) =E tcard(x, t) +
tcard(y, t))
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(Q25t) ∀Qx∀t(tcard(P(x), t) =E 2tcard(x,t))

The above axioms, as it is easy to see, preserve all the desired properties
of the quasi-cardinal of a qset (which, by force of Q19t, is also a cardinal) in
each instant of time. Then, Weyl’s aggregates are qsets x/≡, where x is a pure
qset and ≡ our indistinguishability relation, but now the quasi-cardinal of the
equivalence classes may vary in time.

A link with our previous considerations can be given as follows. Suppose
that the qset z in the definition of the cloud of x relative to z may vary, that
is, z range on the sequence of qsets z′ ⊆ z′′ ⊆ z′′′ . . .. We can associate this
sequence with a time sequence t, t′, t′′, . . ., so that tcard(Clzi(x), t) may vary.
Then, we have a precise sense in saying that the quasi-cardinal of some qset
whose elements are varying in number vary in time. The details of course can
be easily fulfilled.

7 Quantum Statistics within Q

The derivation of quantum statistics depends on the assumption of the Indis-
tinguishability Postulate (IP), which roughly says that permutations of indis-
tinguishable quantum objects are not regarded as observable. In this section
we will see that in using the language of quasi-set theory, we may avoid such
an hypothesis. This of course has a price, namely, the complication of the lan-
guage, since we need to work within the theory Q. But the gain in other places
is interesting, for we can see, for instance, that in considering (truly) indistin-
guishable objects, we arrive ‘naturally’ to quantum statistics, what reinforces
the idea that IP is imposed by the necessity of discourse, that is, its existence
is due to the difficulty we have of dealing with ab ovo indistinguishable objects
within ‘standard’ languages as those of classical logic and mathematics.67 Let
us provide a sketch of the main ideas involved in the derivation of the quan-
tum distribution functions within Q; we begin by showing how to obtain the
electronic distribution of an atom, for instance, in taking a sodium atom, we
shall give a meaning, in terms of quasi-sets, to the expression 1s2 2s2 2p6 3s1.
Restricted quantifiers shall be used: so ∀Axα means ∀x(x ∈ A → α), while
∃Axα stands for ∃x(x ∈ A ∧ α).

Suppose that P is a collection of non-empty pure qsets, that is, their elements
are m-atoms. The elements of

⋃P will be called quantum objects.68 Let S be
a finite and totally ordered ‘set’ (in the sense of Q) of quantum states, whose
elements are denoted by s1, . . . , sn. Furthermore, let F be an unary predicate
defined as follows: F (x) =df m(x) ∧ ∀Ss(x ∈ s → qc(s) =E 1). In words, F (x)
says that x is a quantum object which cannot belong to a state with more than

67This section is based on Krause, Sant’Anna and Volkov 1999 an on Sant’Anna and Santos
2000.

68We remark that such an hypothesis has a physical motivation. For instance, we could be
occupied with certain collections of particles, as those listed in a particle table. Furthermore,
the elements of the collections in

SP are not necessarily indistinguishable.
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one element; such an x shall be called a fermion; furthermore, let us define
B(x) =df m(x) ∧ ¬F (x) and call such an x a boson.69

Now let R be the quasi-relation

R =df [[p, s] : p ∈ P ∧ s ∈ S], (7.1)

which is subjected to the following restriction: for every [p, s] ∈ R, if x ∈ p
obeys F (x), then qc(p) =E 1. That is, there can be no more than one fermion
in each quantum state. Call this restriction Pauli’s Principle (PP).

For instance, let us consider our example of the electrons of a sodium atom.
So, qc(

⋃P) =E 11 (there are eleven electrons to be distributed), and let S =E

{s1, . . . , s12} be the set of possible states (the reason we are taking twelve states
shall be made clear below). So, in this case the particular relation R given by
equation (7.1) is

R =df [[p1, s1], . . . , [p12, s12]], (7.2)

where qc(pi) =E 1 (i =E 1, . . . , 11), and qc(p12) =E 0.
In the general case, being defined the relation R (equation (7.1), we can

select a family {Si}i∈I (I =E {1, . . . , n}) of subsets of S such that
⋂

Si =E ∅.
For instance, in our example, we may have

{Si}i∈{1,...,12} =df {{s1, s2}, {s3, s4}, {s5, s6, s7, s8, s9, s10}, {s11, s12}}. (7.3)

Each Si may be called an energy bin (or macrostate), while each element
s ∈ Si may be called an energy state (or microstate). The mention of a particular
Si (which is generally done by physical criteria) particularizes the collections of
particles to certain interesting states, namely, the states that belong to the
selected set Si.

Taking our example once again, we see that each element of {Si}i∈{1,...,12}
(equation 7.3) corresponds to an energy level in the sodium atom. So, the
element

{s5, s6, s7, s8, s9, s10} ∈ {Si}i∈{1,...,12}

corresponds to the energy level 2p, which encompasses 6 electrons, since each
si, i = 5, . . . , 10 is associated to a quasi-set with just 1 quantum object (such
a qset, remember, is a strong singleton). The element {s11, s12} corresponds to
the energy level 3s, which allows two electrons but in this case ‘has’ just one
electron (recall that qc(s11) =E 1 and qc(s12) =E 0). The other two elements
of {Si}i∈{1,...,12}, namely, {s1, s2} and {s3, s4}, correspond respectively to the
energy levels 1s and 2s. The above equations induce the definition of the quasi-
relation

69So, if Q is consistent, then no x can be at the same time a fermion and a boson. The
given definitions make the particles to be either a fermion or a boson, but we could modify
them conveniently in order to admit within our description other kinds of particles as well,
hence other kinds of statistics, as parastatistics, say –see French & Krause’s book. But in this
section we shall be restricted to consider just bosons and fermions to exemplify the technique
of using quasi-sets.



Quantum Statistics 43

R =E [[p1 ∪ p2, {s1, s2}] , [p3 ∪ p4, {s3, s4}] ,
[p5 ∪ . . . ∪ p10, {s5, . . . , s10}] [p11 ∪ p12, {s11, s12}]] ,

where qc(p1 ∪ p2) =E qc(p3 ∪ p4) =E 2, qc(p5 ∪ . . . ∪ p10) =E 6 and qc(p11 ∪
p12) =E 1. This quasi-relation R is the quasi-set theoretical version for the
usual expression 1s22s22p63s1.

Now let us turn to the quantum statistics. Just to see the differences between
the approach by using quasi-sets and the ‘classical’ one, we shall take another
example. Informally speaking, suppose that we have two indistinguishable par-
ticles, labelled #1 and #2, distributed among two distinct states, specified by
orthogonal wave-functions ψ1 and ψ2.70 Then, due to the indistinguishability
of the particles, we know that the corresponding vectors for bosons are

|ψ1
1〉 ⊗ |ψ1

2〉 , |ψ1
2〉 ⊗ |ψ1

1〉 and
1√
2

(|ψ1
1〉 ⊗ |ψ2

2〉+ |ψ1
2〉 ⊗ |ψ2

1〉) (7.4)

while, in the case of fermions, we have

1√
2

(|ψ1
1〉 ⊗ |ψ2

2〉 − |ψ1
2〉 ⊗ |ψ2

1〉). (7.5)

So, the labels #1 and #2, originally attached to the particles, were veiled
by the adequate choose of the vectors which express symmetry conditions, as in
the usual approach. In order to see how quasi-sets enter in the discussion, let us
suppose now that we have defined a quasi-relation R as in equation (7.1), that
is, R =E [[p, s] : p ∈ P ∧ s ∈ S]. In other words, we are considering a certain
collection of elementary particles (say, particles of several kinds), and let us
suppose that qc(

⋃P) =E νi (this is the total number of particles), subjected
to certain states which are taken as elements of a collection S of states. Then,
again as above, suppose that we are able to select a family {Si}i∈I of subsets of
S such that

⋂
i∈I Si =E ∅, where I =E {1, 2, 3, . . . , ki}. Then, for any particular

situation i, we can define the quasi-relation R|i =E [[p, s] : p ∈ P ∧ s ∈ Si].
Each relation R|i describes intuitively a particular distribution of the νi par-

ticles in the ki states of Si. So, if we intend to answer the fundamental question:
‘In how many ways can we correspond (or distribute) νi indistinguishable bosons
in ki quantum states ?’, since a correspondence between bosons and quantum
states is given by the quasi-relations R|i, and taking into account that we are
talking about bosons, which are not subject to the restriction imposed by the
Pauli Principle mentioned above, the answer is precisely the quantity of quasi-
relations R|i that can be performed.

Let us explain this last assertion by considering a particular case. Suppose
that νi =E 5; so, we have five indistinguishable bosons to be distributed among,

70Sant’Anna and Santos 2000 have considered also a number k > 2 of particles and a number
n > 2 of states.
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say, 3 distinct cells (states) s1, s2 and s3. That is, qc(Si) =E 3. Since collections
of bosons with the same quasi-cardinality are indistinguishable in the sense of the
Weak Extensionality Axiom, we shall refer to them by their quasi-cardinalities
only. Thus, there are 21 different ways of distributing 5 indistinguishable bosons
into states s1, s2 and s3, that is, there are 21 possible quasi-relations R|ji ,
j =E 1, . . . , 21 that can be defined for this particular situation i. In the present
example, these quasi-relations are shown in the table below, where the number of
entries stand for the quasi-cardinality of the quasi-sets p1, p2 and p3 associated
to each si; the numbers 1, . . . , 21 name the relations R|1i to R|21i :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

s1 5 4 4 3 3 3 2 2 2 2 1 1 1 1 1 0 0 0 0 0 0

s2 0 1 0 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

s3 0 0 1 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0

(7.6)

For instance, in the third emphasised column, we have the quasi-relation

R|3i =E [[p1, s1], [p2, s2], [p3, s3]], (7.7)

where qc(p1) =E 4, qc(p2) = 0 and qc(p3) =E 1.
This table shows that the number of ways we have to distribute νi indistin-

guishable bosons in the ki quantum states s is 21, a number which is usually
obtained by Einstein’s equation:

Ii
bosons =E

(ki + νi − 1)!
(ki − 1)!νi!

. (7.8)

So, Einstein’s equation expresses here the way of calculating the number of
possible relations R|ji that can be performed in each situation i.71 In the same
way, if we repeat our calculations for fermions; due to the Pauli Principle, we
have:

Ii
fermions =E

ki!
(ki − νi)!νi!

. (7.9)

An important remark is that usually these last equations are obtained by
considering that different quantum states correspond to distinct energy levels.
Our calculations are more general in the sense that we may have different quan-
tum states at the same energy level as in the case of the sodium atom considered
above. In interpreting quantum states as energy levels, we could consider, for
example, that S should be an energy interval given by [0, kT ], where k is the
Boltzmann constant and T is, say, 300K, while each Si corresponds to an en-
ergy range of about 10−33J (there are 1012 Si’s), and each Si has 1019 quantum
states s.

71Recall that the numbers involved in the formula are quasi-cardinals of certain qsets.
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The total number of microstates corresponding to a given macrostate (energy
bin) is given by

Ibosons(fermions) =E

∏

i

Ii
bosons(fermions). (7.10)

Since classical mathematics can be obtained within the scope of quasi-set
theory, all the calculations that follow the derivation of the statistics can be
performed here as usual. The most probable macrostate will be determined by
maximizing log I − αN − βE, where α and β are Lagrangian parameters that
have been introduced to take into account the restriction of fixing the total
particle number N , total energy E, and log is the natural logarithm. Thus, it
seems clear that we need to define an injective q-function f : S → E , where E
is an interval of positive real numbers. Intuitively, E corresponds to energy.

In the case of fermions we should maximize the following q-function F :

F =df log

(∏

i

ki!
(ki − νi)!νi!

)
− α

∑

i

νi − β
∑

i

νiεi =

∑

i

[ki(log ki − 1)− (ki − νi)(log(ki − νi)− 1)

−νi(log νi − 1)− ανi − βεiνi] , (7.11)

where εi stands for the energy associated for each Si. It is clear from these cal-
culations that we have used Stirling’s approximation, which states that log K! ≈
K(log K − 1) for K À 1. Nevertheless, such an approximation was used just
for bin occupation numbers νi and not for the state occupation numbers.

If

∂F

∂νi
=E 0, (7.12)

there results that

νi =E
ki

eα+βεi + 1
. (7.13)

If we assume that the energy differences of the states in the i-th bin are
negligible, then according to equation (7.13), the average occupation of any
individual state in that bin is

νi

ki
=E

1
eα+βεi + 1

. (7.14)

Finally, the average occupation number of the n-th single-particle state of
energy εn is given by the well-known Fermi-Dirac distribution function:

ffermions =E
1

eα+βεn + 1
. (7.15)



Quantum Statistics 46

For bosons, the calculations are very similar, and we have the Bose-Einstein
distribution function:

fbosons =E
1

eα+βεn − 1
. (7.16)

The physical interpretation of the parameters α and β is standard: β =E

1/kT , where k is Boltzmann constant and T is the absolute temperature, while
α is a normalization constant usually referred to as affinity.

The helium atom is probably the simplest realistic situation where the prob-
lem of individuality plays an important role. With identity question put aside,
the wave function of the helium atom would be just the product of two hydrogen
atom wave functions with Z =E 2 instead of Z =E 1. Nevertheless, the space
part of the wave function for the case where one of the electrons is in the ground
state (100) and the other one is in excited state (nlm) is:

φ(x1,x2) =E
1√
2
[ψ100(x1)ψnlm(x2)± ψ100(x2)ψnlm(x1)], (7.17)

where the + (−) sign is for the spin singlet (triplet)72 and x1 and x2 are position
vectors of the electrons.

For the ground state, however, the space function needs to be necessarily
symmetric. In this case, the problems regarding identity have no physical effect.
The most interesting case is certainly the excited state. Equation (7.17) reflects
our ignorance on which electron is in position x1 and which one is in position
x2. Nevertheless, in the same equation there are terms like ψ100(x1), which
corresponds to a specific physical property of an individual electron.

Our quasi-set theoretical interpretation of equation (7.17) is the following (it
resembles the case of the sodium atom discussed above). Let P be a pure quasi-
set such that qc(P ) =E 2. We intuitively interpret the elements of P as electrons
of the Helium atom. If G is a unary predicate such that G(x) intuitively says
that ‘x is in the ground state’ (the definition of G depends on physical aspects),
then, by using the Separation Axiom of Q, we obtain the sub-quasi-set p1 ⊆ P
defined by

p1 =df [x ∈ P : G(x)]. (7.18)

If we call p2 =df P − p1, then qc(p1) =E qc(p2) =E 1. So, the elements of
p, despite their indistinguishability, are ‘separated’ by their ‘respective states’.
More formally, by calling g1 the ground state and g2 the another state, we may
define

R =df [[p1, g1], [p2, g2]]. (7.19)

It is clear that g1 and g2 may be interpreted respectively as 100 and nlm as
above. So, we have obtained a way of expressing that between two objects (the

72Spin singlet refers to total spin zero and spin triplet refers to total spin different of zero.
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elements of P ) there is one of them in the ground state, although we cannot
identify which one, since the qsets p1 and p2 are indistinguishable (in the sense
of the Weak Extensionality Axiom). In other words, equation (7.19) stands for
the situation presented in equation (7.17).

We still need to show how the quasi-function R evolves in time, that is, we
need to explain the sense according to which equation (7.19) plays the role of the
wave function given in equation (7.17). This may be achieved if we consider the
modified quasi-set theory Qt described above, in which the quasi-cardinals may
vary in time. But this would complicate in much the mathematical details.73

8 Conclusion: on justifying Quasi-Set Theory

If the reader agrees with Hilbert that the mathematician (so as the philosopher)
is free for investigating all possible theories, and not only those which are near
to reality (Hilbert 1902), no justification for developing quasi-set theory in in
need. But, if he/she is like F. Gonseth (Gonseth 1974) and thinks that logic
(here understood in the sense of the ’great logic’, that is, involving also set
theory) is the physics of the object whatever, then it makes sense to ask for
’the logic’ which underly certain empirical domains, in particular the quantum
domain. It is well known that ever since the 1930s von Neumann (and, later,
he and G. Birkhoff) proposed the directions of ’quantum logics’, which turn to
be more the algebraic study of some lattices that the study of the ’logic’ which
underly quantum mechanics itself.74

Believing in quantum mechanics, and following this second direction, we
should regard the basic entities of the same kind as indiscernible , right at the
start, as required by H. Post (1963), and so we should not promote some kind
of ad hoc device for treating them as they were indiscernible, as what happens
when some form of symmetrization postulate is introduced. Anyway, it is a per-
tinent philosophical question to look for the kind of ’logic’ these indiscernible
entities do obey. In such a logic, of course we would be able to talk of indiscerni-
bility, and to consider that some entities may have all their relevant properties
in common without turning to be the very same entity, as implied by Leibniz
Law.

Two directions are open to us in this endeavor. The first is that one which
’makes physics work’. This is achieved by finding an adequate mathematical
description of quantum theory in which the concept of indiscernibility can be
dealt with. This route gives us the standard approaches to microphysics, and
being developed within a standard mathematical framework, corresponds to
restrict the theory to some mathematical structure built in set theory. But then
it is necessary to introduce some kind of principle of symmetry, which (summing
up) says that permutations of (supposed) indiscernible entities do not give a

73Sant’Anna and Krause have suggested a way of obtaining Schrödinger’s equation in Q,
but this will be not pursued here. Sant’Anna & Krause 1998.

74For a general survey on quantum logics in this last sense, see Dalla Chiara & Giuntini
2001.
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distinct situation than that one we had before the permutation. An example
of this situation if the selection of symmetric and anti-symmetric vectors of the
relevant Hilbert space as representing physical phenomena.

But we could be interested in following Heinz Post suggestion that the in-
discernibility of quantum entities should be considered as their very peculiar
characteristic, not as something made a posteriori by ad hoc devices, but as
a primitive notion. This is what quasi-set theory aims to do. It enable us to
consider quantum objects as really and truly indistinguishable entities ab ovo.
The price to be payed is a complication in the underlying language, as we have
seem, for quasi-sets are less intuitive than standard sets. But there is at least
one example in the scientific literature which may inspire us (preserved the dif-
ference of importance in both cases and without comparing them of course); as
it is well known, Albert Einstein used a non-Euclidian geometry in his relativity
theory. Such a ’complication’ of the underlying mathematics had a role to play,
according to Rudolf Carnap. Carnap tells us that the use of non-Euclidean
geometry for space in relativity theory, despite the mathematical complications
in relation to the well known Euclidean geometry, caused “an enormous sim-
plification of physical laws” so avoiding the use of ”weird laws”.75 The use of
quasi-sets for the treatment of some concepts in quantum theory may be use-
ful for similar purposes, at least in what respects philosophical aspects of the
concept of non-individual quanta.
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logic 1879-1931 , Harvard Un. Press, 1967, pp. 290-301.

[41] Suppes, P.: 1957, Introduction to logic, Van Nostrand.

[42] Suppes, P.: 1960, Axiomatic Set Theory, Dover Pu. 1972 (first editon by
van Nostrand 1960).

[43] Suppes, P.: 1967, Set theoretical structures in science, mimographed
notes, Stanford Un.

[44] Suppes, P.: 2002, Representation and Invariance of Scientific Structures,
CSLIPu. Chicago Un. Press.

[45] Toraldo di Francia, G.: 1978, ‘What is a physical object?’, Scientia 113,
pp. 57-65.

[46] Toraldo di Francia, G.: 1990, Un universo troppo simplice: la visione
historica e la visione scientifica del mondo, Feltrinelli, Milano.


